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In this paper we analyze, mainly in a finitary setting, the consistency properties of fuzzy

possibilities, interpreting them as instances of upper previsions and applying the basic
notions of avoiding sure loss and coherence from the theory of imprecise probabilities. It

ensues that fuzzy possibilities always avoid sure loss, but satisfy the stronger coherence

condition only in a special case. Their natural extension, i.e. their least–committal cor-
rection to a coherent upper prevision, is determined. The same analysis is then performed

when min is replaced by a T–norm (or seminorm) in the definition of fuzzy possibility,

showing that the consistency properties and also the natural extension remain the same.
Some “closure” properties are also discussed, which are guaranteed to hold if the T–norm

is continuous, and are satisfied by (ordinary) possibilities too.
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1. Introduction

Real world decisions often happen to be taken about facts which are not quite
well specified. Consider, for instance, an investor who decides to buy (or to sell) a
financial asset at a certain price because he is told that, very likely, the asset will
guarantee (or will not guarantee) a good yield in one year’s time.

We pinpoint three facts about this example:

(a) the sentence S, “the asset will guarantee a good yield in one year’s time”, does
not represent an event, because of its linguistic indeterminacy, due to the word
“good”;

(b) the uncertainty evaluation of S is quite rough: S appears to be very likely ;
(c) in spite of the intrinsic vagueness of points (a) and (b), the investor may be

willing to pay a (non vague, but) certain price to buy the asset.

Since decisional situations similar to the investor example do occur in practice,
it is important to study some modelisation which may reasonably closely interpret
them.
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Fuzzy set theory provides a conceptual framework for (a): given a partition (or
universe of discourse) Ω (i.e. a set of pairwise disjoint events, whose union is the sure
event), a map F : Ω→[0, 1] measures the degree of compatibility of each element
of Ω with the concept represented by S. Clearly Ω should be related to S, usually
because its elements are described by propositions of (classical) logic which solve
in alternative ways the indeterminacy in S. In our example, one such proposition
could be “the asset guarantees an annual gain strictly between 3% and 4% of its
buying price”. The map F identifies the fuzzy event S, and is also commonly called
fuzzy event. We shall often follow this convention too.

If further a (normal) possibility distribution π is given on Ω, a way of tackling
(b) is to measure the uncertainty of S (or F ) by the fuzzy possibility Πf defined,
following Zadeh24, as

Πf (F ) = sup
ω∈Ω

{
min{π(ω), F (ω)}

}
. (1)

As for point (c), fuzzy set theory does not relate Πf (F ) with the asset buying
or selling price, not explaining if and how a given value of Πf (F ) determines it, or
more generally the investor’s behavior.

Behavioral interpretations of uncertainty evaluations are on the contrary well-
developed in the theory of imprecise probabilities16, where the consistency notions
of avoiding sure loss (weaker) and coherence (stronger) are applied to upper (and
lower) previsions. We shall say more about this approach in section 2.

One link between the two theories is the fact that when F ∈ {0, 1}, F is the
membership function (or indicator) of an (ordinary) event in the powerset P(Ω) of
Ω, and Πf (F ) = Π(F ) is a possibility – mathematically, a supremum preserving
function. A possibility Π is a special instance of upper prevision, and is coherent
if and only if its restriction on Ω, the possibility distribution π = Π|Ω, is normal,
which means supω∈Ω{π(ω)} = 14,?. Normal possibilities have several interesting
properties within the theory of imprecise probabilities17,?,?; in particular we shall
be concerned in section 3 with some less known closure properties of theirs, i.e.
such that they are obtained from properties of coherent upper previsions replacing
“coherent upper prevision” with “possibility” in their statement.

In this paper we analyze the behavioral interpretation of fuzzy possibilities as
upper previsions in a finitary setting, i.e. referring to a finite partition Ω, show-
ing that they avoid sure loss but are not coherent, apart from a special case, and
determining their natural extension, i.e. their least–committal correction to a co-
herent upper prevision. This is done in section 4, while in section 5 we answer the
same questions for a generalization of (1), called fuzzy T–possibility, where min is
replaced by a T–norm (or more generally by a seminorm). Interestingly, it turns
out that the generalization does not affect the natural extension, which remains
the same (cf. theorem 4 (c)). Also, fuzzy possibilities have the closure properties
of possibilities, and this fact seems to depend on the continuity of min. In fact, we
show that fuzzy T–possibilities have these properties when T is a continuous norm,



30th October 2003 15:54 WSPC/INSTRUCTION FILE ”Fuzzy Possiilities
rivista”

not necessarily otherwise.
The following interpretation of fuzzy possibilities and T–possibilities is also rel-

evant and will be exploited in the paper: since a map F : Ω→[0, 1] corresponds,
in probabilistic language, to a random variable (or gamble, according to Walley16),
given a possibility Π on P(Ω) and considering the set F = F(Ω) of all random
variables in [0, 1], (1) or also any fuzzy T–possibility are special types of extensions
of Π onto F . More specifically, they are extensions by means of fuzzy integrals.
The question of extending coherent upper probabilities using fuzzy integrals was
tackled also by de Cooman2,?. We say more on this in the later section 5.1. Section
6 contains concluding remarks.

2. Preliminaries

This section is mainly a concise presentation of some aspects of the theory of im-
precise probabilities. A much more extended discussion is in a book of Walley16,
who made also a shorter on–line presentation18.

Although the term “imprecise probabilities” is currently prevailing, the theory
in Walley’s book16 actually deals with imprecise (upper or lower) previsions, which
are (imprecise) uncertainty evaluations for bounded random variables. An imprecise
probability for an event A is a special case of upper prevision where the random
variable is the indicator of A, I(A), i.e. the random variable which is 1 when A is
true, 0 when A is false.

In Walley’s book16, following and extending an approach which goes back to
de Finetti7, imprecise previsions are given a behavioral interpretation in terms of
betting schemes. The upper (lower) prevision P (X) (P (X)) an agent assigns to a
(bounded) random number X is his/her infimum selling price (supremum buying
price) for X. Since selling X is equivalent to buying −X, we may focus on upper
previsions only (P (X) = −P (−X)).

In other words, given P (X), the agent is willing to accept the bet which (as he
receives at least P (X) for selling X) guarantees him the uncertain gain G(X) =
P (X) − X, which might possibly be negative for some values of X. It is however
unreasonable that sup G < 0, because this would cause a sure loss to the agent, if
the selling price is sufficiently close to P (X). Further, if the agent finds P (X)−X

acceptable, and has a linear utility scale, he should find s(P (X) − X) acceptable
too, ∀ s ≥ 0.

A generalization of this idea leads to the consistency notion of avoiding sure loss
for an upper prevision P : D→R, where D is an arbitrary set of bounded random
numbers.

Definition 1. Given P : D→R, P is an upper prevision that avoids sure loss if and
only if ∀ n ∈ N+, ∀ s1, . . . , sn ≥ 0, ∀X1, . . . , Xn ∈ D, defining G =

∑n
i=1 si(P (Xi)−

Xi), supG ≥ 0.

Definition 1 is a natural consistency requirement: if P does not avoid sure loss,
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there exists a finite set of bets, all individually acceptable, giving an overall sure
loss.

However, avoiding sure loss is too mild a consistency notion. For instance, it does
not necessarily require P (X) ≤ supX, nor does it require monotonicity. Although
special cases of previsions that avoid sure loss, with certain additional properties,
may correspond to interesting models11, the stronger coherence condition is usually
preferable.

Definition 2. Given P : D→R, P is a coherent upper prevision if and only if
∀ n ∈ N, ∀ s0, . . . , sn ≥ 0, ∀ X0, . . . , Xn ∈ D, defining G =

∑n
i=1 si(P (Xi)−Xi)−

s0(P (X0)−X0), supG ≥ 0.

We refer to Walley’s book16 for a behavioral interpretation of coherence. Possi-
bility measures, plausibility functions, 2-alternating probabilities are special cases
of coherent upper (probabilities, and hence) previsions16,?.

A coherent precise prevision P onD is a map P : D→R that satisfies the modified
version of definition 1 where “s1, . . . , sn ≥ 0” is replaced by “s1, . . . , sn ∈ R” 7, and
is a special case of both upper and lower coherent prevision16.

Remark 1. Although its definition does not involve any probability distribution,
the notion of precise prevision is equivalent to that of expectation (a proof may be
found in a report of Crisma6).

In particular, we shall be concerned in theorem 3 with precise previsions on the
set F of all mappings from Ω = {ω1, . . . , ωk} into [0, 1]. Since, for i = 1, . . . , k, the
indicator function I(ωi) of ωi belongs to F , and its prevision P (I(ωi)) is simply the
probability of ωi, any precise prevision P on F uniquely determines a probability
on Ω, i.e. a probability vector (p1, . . . , pk) such that pi = P (I(ωi)) is the probability
of ωi. Conversely, given a probability vector (p1, . . . , pk) on Ω, a coherent precise
prevision P on F is determined by computing, ∀ F ∈ F , its expectation E(F ) =∑k

i=1 piF (ωi) and putting P (F ) = E(F ). Clearly, P extends (p1, . . . , pk) on F , and
is further its unique extension on F to a coherent precise prevision.

Previsions that avoid sure loss and coherent previsions are characterized indi-
rectly using precise previsions:

Theorem 1. Given P : D→R,

(a) P is an upper prevision that avoids sure loss if and only if P dominates a
coherent precise prevision P on D, i.e. iff P (X) ≥ P (X), ∀ X ∈ D;

(b) (Upper envelope theorem) P is a coherent upper prevision if and only if P (X) =
supP∈M{P (X)}, ∀ X ∈ D, where M is some non-empty set of coherent precise
previsions (sup is attained). P is called the upper envelope of M.

Another fundamental concept in the theory is that of natural extension, defined
in Walley’s book16. In our framework, it is sufficient to recall that the natural
extension E on D of an upper prevision which avoids sure loss on D (is always



30th October 2003 15:54 WSPC/INSTRUCTION FILE ”Fuzzy Possiilities
rivista”

finite and) is its least-committal correction to a coherent upper prevision on D.
This follows from (c) in the next theorem, which collects some properties of the
natural extension to be used later.

Theorem 2. Given P : D→R, suppose that P avoids sure loss and let M∗ be the
set of all coherent precise probabilities dominated by P on D. Then

(a) the natural extension E of P is given by E(X) = maxP∈M∗{P (X)}, ∀ X ∈ D,
and M∗(P ) = M∗(E);

(b) P is coherent if and only if P = E;

(c) if P
∗

is a coherent upper prevision dominated by P , then P
∗
(X) ≤ E(X),

∀ X ∈ D.

Note in particular that (a) is a characterization of the natural extension in
Walley’s book16, but can be taken as its definition in our framework.

3. Closure properties of possibilities

We recall that given a (not necessarily finite) partition Ω, Π : P(Ω)→[0, 1] is a possi-
bility (measure) if there exists a function π : Ω→[0, 1] (called possibility distribution)
such that

Π(A) = sup
ω∈A

{π(ω)}, ∀A ∈ P(Ω) (2)

(assuming Π(∅) = 0); hence Π is a supremum preserving function. Further, Π is
normal if and only if supω∈Ω{π(ω)} = 1. In the sequel we shall consider normal
possibilities only.

Possibility measures have been studied in a number of different theories, in
particular fuzzy set theory (some general references include the books of Dubois
and Prade8 and Wang and Klir20), and, more recently, imprecise probability theory.

Within the theory of imprecise probabilities, a possibility is viewed as an in-
stance of upper prevision, and is coherent if and only if it is normal4,?; non–normal
possibilities incur sure loss, as is easy to verify.

Although a possibility is a rather special case of upper prevision, when viewed
as upper previsions possibilities have several interesting features, investigated by de
Cooman, Walley and others2,?,?,?,?,?.

In particular, we shall be concerned in this section with a further aspect of
possibilities, that is their complying with a certain number of “closure” properties.
This means properties of coherent upper previsions which hold also when replacing
“coherent upper prevision” with “possibility” in their statement. For instance, an
upper envelope of possibilities is a coherent upper prevision, by a general result in
Walley’s book16 about upper envelopes of coherent upper previsions (and hence of
possibilities), but it is also a possibility by the next proposition. The subsequent
propositions concern uniform and pointwise convergence of sequences of possibili-
ties. One motivation for studying such properties is that, as we shall see in later
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sections, they are to a large extent preserved when extending possibilities to fuzzy
possibilities and fuzzy T–possibilities.

Proposition 1. Let {Πγ}γ∈Γ be a set of possibility measures on P(Ω). Its upper
envelope Π∗, defined by Π∗(A) = supγ∈Γ{Πγ(A)},∀ A ∈ P(Ω), is a possibility
measure on P(Ω).

Proof. Follows easily from supremum preserving properties of possibility measures,
cf. (2).

Proposition 2. Let {Πn}n∈N+ be a sequence of possibility measures on P(Ω), where
Ω is not necessarily finite, that converges uniformly to a function Π. Then Π is a
possibility measure.

Proof. We prove first that the limit function π of the sequence {πn} (πn is the
possibility distribution of Πn) is a possibility distribution. In fact, since 0 ≤ πn(ω) ≤
1, ∀ n ∈ N+, π is non–negative and supω∈Ω{π(ω)} ≤ 1. We show that actually
supω∈Ω{π(ω)} = 1. Since the convergence of {πn} is uniform,

∀ ε > 0,∃ n such that ∀ n ≥ n, sup
ω∈Ω

∣∣πn(ω)− π(ω)
∣∣ < ε (3)

Therefore the following inequalities hold for n ≥ n (suprema are performed over all
ω ∈ Ω)

ε > sup
∣∣πn(ω)− π(ω)

∣∣ ≥ sup
{
πn(ω)− π(ω)

}
≥ sup{πn(ω)} − sup{π(ω)},

from which sup{π(ω)} ≥ sup{πn(ω)} − ε = 1− ε. Summing up,

∀ε > 0, 1− ε < sup{π(ω)} ≤ 1, i.e. sup{π(ω)} = 1.

To complete the proof, we have to show that (2) holds. In fact,
Πn(A)→ supω∈A{π(ω)} and its convergence is uniform, because

sup
A∈P(Ω)

∣∣Πn(A)− sup
ω∈A

{π(ω)}
∣∣ = sup

A∈P(Ω)

∣∣ sup
ω∈A

{πn(ω)} − sup
ω∈A

{π(ω)}
∣∣

≤ sup
A∈P(Ω)

∣∣ sup
ω∈A

{πn(ω)− π(ω)}
∣∣ ≤ sup

A∈P(Ω)

sup
ω∈A

∣∣πn(ω)− π(ω)
∣∣

≤ sup
A∈P(Ω)

sup
ω∈Ω

∣∣πn(ω)− π(ω)
∣∣ ≤n≥n sup

A∈P(Ω)

ε = ε

where the last inequality follows from the uniform convergence of {πn} to π, that
is from (3).

On the other hand, from the theorem assumptions Πn(A)→ Π(A), ∀ A ∈ P(Ω).
Hence, (2) follows from uniqueness of the limit.

Proposition 3. (Pointwise convergence) Let {Πn}n∈N+ be a sequence of possibil-
ity measures on P(Ω) which converges pointwise to a function Π on P(Ω), i.e.
Πn(A)→Π(A), ∀ A ∈ P(Ω).
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Then Π is a possibility measure if Ω is finite, while this is not necessarily true when
Ω is infinite.

Proof. If Ω is finite, the assumption follows from proposition 2, recalling that
uniform and pointwise convergence are then equivalent.

We give now an example where Ω is infinite and Π is no possibility: let Ω =
{ω1, . . . , ωj , . . .} and consider the sequence of 0–1 valued possibility distributions
{πn}n∈N+ , where πn(ωj) = 1 if j = n, πn(ωj) = 0 if j 6= n.

The sequence of possibility measures {Πn} induced by {πn} converges pointwise
to a limit function Π which is no possibility, because (2) does not hold. In fact
1 = Π(Ω) > supj∈N+{π(ωj)} = 0, where π = limn→∞ πn.

To end this section, we note that possibilities are not closed with respect to
some other properties of coherent upper previsions. For instance, while a convex
combination of coherent upper previsions is a coherent upper prevision16, it is easy
to find examples of convex combinations of possibilities which are not possibilities.

4. Fuzzy possibilities as upper previsions

In this section we investigate the consistency properties of fuzzy possibilities as
imprecise previsions. Recall from section 1 that F is the set of all maps F from
a given partition Ω into [0, 1]. Moreover, whenever F ∈ {0, 1}, F is the indicator
function of some event A in the power set of Ω, and (1) reduces to the possibility
of A, Π(A), hence to a coherent upper prevision (probability) for A. It ensues that
a fuzzy possibility may be interpreted as (an extension of) an upper prevision. Its
consistency properties are investigated in section 4.1, where Ω is a finite partition.
This assumption does not necessarily hold in section 4.2, where we study closure
properties of fuzzy possibilities.

4.1. Fuzzy possibilities, coherence, and natural extension

Since Ω = {ω1, . . . , ωk} in this section, (1) reduces to

Πf (F ) = max
ω∈Ω

{
min{π(ω), F (ω)}

}
. (4)

The basic result for analyzing consistency of Πf is the following theorem, which
characterizes the set of (coherent) precise previsions dominated by Πf .

Theorem 3. Let Πf be a fuzzy possibility, defined by (4). Define

IΠ = {i ∈ {1, . . . , k} | πi = 1}. (5)

The set M(Πf ) of coherent precise previsions dominated by Πf on F is charac-
terized as follows:

M(Πf ) =
{
P | P (I(ωi)) > 0 ⇔ i ∈ IΠ

}
. (6)
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Proof. We preliminarily recall (cf. Remark 1) that a (coherent) precise prevision
P on F is uniquely identified by a probability vector (p1, . . . , pk) on Ω, so that we
can write pi = P (I(ωi)).

Given this, consider P such that pi = P (I(ωi)) > 0 if and only if i ∈ IΠ (there
are such precise previsions, because normality of π guarantees that there exists
j ∈ {1, . . . , k} such that π(ωj) = 1, i.e. IΠ is non-empty).

We show that P is dominated by Πf (F ), and therefore belongs to M(Πf ). In
fact, ∀ i ∈ IΠ, min{πi, F (ωi)} = F (ωi), hence Πf (F ) ≥ maxIΠ{F (ωi)}. It ensues
that, ∀ F ∈ F ,

P (F ) =
k∑

i=1

piF (ωi) =
∑
IΠ

piF (ωi) ≤
∑
IΠ

piΠf (F ) = Πf (F ).

Conversely, let P be a precise prevision such that, for some j, pj = P (I(ωj)) > 0
and j /∈ IΠ. Then P does not belong to M(Πf ).

To see this, suppose for notational ease that π(ω1) = 1, π(ω2) = π2 < 1, and
p2 > 0. Consider F ∈ F such that F (ω2) = 1 and F (ωi) = π2 for i 6= 2. Since
min{π(ω1), F (ω1)} = min{π(ω2), F (ω2)} = π2 and min{π(ωi), F (ωi)} ≤ π2 for
i > 2, we obtain Πf (F ) = π2. Then

P (F ) =
k∑

i=1

piF (ωi) = p2 +
∑
i 6=2

piπ2 = p2 + π2(1− p2)

= p2(1− π2) + π2 > π2 = Πf (F ).

We may thus state that the set M(Πf ) is characterized by (6).

Corollary 1. If π is unimodal, the cardinality of M(Πf ) is one.

We shall also need the following definition, before turning to consistency prop-
erties of Πf .

Definition 3. A fuzzy possibility Πf is termed non–comparative if and only if
it is generated by a {0, 1}–valued possibility distribution, is termed comparative
otherwise.

Proposition 4. Let Πf be a fuzzy possibility. Then Πf avoids sure loss. Moreover,
Πf is coherent if and only if it is non–comparative.

Proof. It was shown in the proof of Theorem 3 that M(Πf ) is non–empty. There-
fore Πf avoids sure loss by theorem 1 (a).

To prove the remaining part of the theorem, we prove (equivalently, by theorem
1 (b)) that Πf is the upper envelope of the set M(Πf ) if and only if it is non–
comparative.

Let Πf be non–comparative. Then Πf (F ) = maxi∈IΠ{F (ωi)}.
Now let F ∈ F , and suppose that Πf (F ) = F (ωj). The precise prevision P ∗

generated by the probability vector (p1, . . . , pk) with pj = 1, pi = 0 for i 6= j
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(belongs to M(Πf ) and) is such that P ∗(F ) = F (ωj) = Πf (F ). Clearly, any other
prevision in M(Πf ) is dominated by Πf by theorem 3. Therefore Πf is the upper
envelope of M(Πf ).

Vice versa, let Πf be a comparative fuzzy possibility. Hence there exists πj =
π(ωj) such that 0 < πj < 1. Let 0 ≤ f < πj , and consider the following F ∗ ∈ F :

F ∗(ωi) =


f if i ∈ IΠ

πj if i = j

0 otherwise

Then Πf (F ∗) = πj > f , but if P is any precise prevision in M(Πf ),

P (F ∗) =
∑
i∈IΠ

piF
∗(ωi) =

∑
i∈IΠ

pif = f < πj = Πf (F ∗),

from which follows that Πf is not the upper envelope of M(Πf ) on F , hence it is
not coherent.

Proposition 5. (Natural extension theorem) Let Πf : F→[0, 1] be a fuzzy possi-
bility on Ω. The natural extension of Πf on F is

EΠf
(F ) = max

i∈IΠ
{F (ωi)}, ∀ F ∈ F (7)

Proof. By theorem 2 (a) it is sufficient to show that EΠf
(F ) is the upper envelope

of the set M(Πf ). To do that, choose F ∈ F . Whatever is P ∈M(Πf ),

P (F ) =
∑
i∈IΠ

piF (ωi) ≤
∑
i∈IΠ

pi max
i∈IΠ

{F (ωi)} = max
i∈IΠ

{F (ωi)}.

Further, equality is achieved above for some P ∈ M(Πf ). In fact, let
maxi∈IΠ{F (ωi)} = F (ωj) and consider the precise prevision P ∗ generated by the
probability vector (p1, . . . , pk), where pj = 1, pi = 0 for i 6= j.

Then P ∗ belongs to M(Πf ), and P ∗(F ) =
∑

i∈IΠ
piF (ωi) = F (ωj).

Comment. A fuzzy possibility is generally not coherent, but avoids sure loss.
Its natural extension E has a rather simple expression. Loosely speaking, E is a
sort of “defuzzification”, as it takes account only of those events in Ω which have
possibility one (i.e., the most likely ones), and among them chooses the one(s) most
compatible with F (having the maximum F (·)).

4.2. Some properties of fuzzy possibilities

Fuzzy possibilities, although being generally not coherent, preserve however some
closure properties of possibilities, as shown in the following proposition.

Proposition 6. (a) Let PΓ = {Πf γ}γ∈Γ be a family of fuzzy possibilities on
F = F(Ω), where Ω is arbitrary. The upper envelope Πf

∗ of PΓ, Πf
∗(F ) =

supγ∈Γ{Πf γ(F )}, ∀ F ∈ F , is a fuzzy possibility.
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(b) Let Ω be finite and let {Πn
f }n∈N+ be a sequence of fuzzy possibilities on F(Ω)

which converges pointwise to Πf on F , i.e. Πn
f (F )→Πf (F ), ∀ F ∈ F . Then Πf is

a fuzzy possibility.

Proof. We preliminarily observe that the restriction Πf |F0,1 of a fuzzy possibility
Πf to the set F0,1 of all binary (0–1 valued) F ∈ F is an ordinary possibility on
P(Ω).

Proof of (a). Since {Πf γ |F0,1}γ∈Γ is a family of ordinary possibility measures,
its upper envelope is a possibility by proposition 1. In particular Πf

∗(ω) = π∗(ω)
is a possibility distribution on Ω. Hence we have to prove that

Πf
∗(F ) = sup

ω∈Ω

{
min{π∗(ω), F (ω)}

}
,∀ F ∈ F . (8)

We prove first that

sup
γ∈Γ

{
min{πγ(ω), F (ω)}

}
= min

{
sup
γ∈Γ

{πγ(ω)}, F (ω)
}
. (9)

To obtain (9), consider a monotone sequence πγn(ω) ↑ supγ∈Γ{πγ(ω)}. Then we
get, using the sequence’s monotonicity at the second equality and continuity of
f(x, y) = min(x, y), f : R2→R, a well known real analysis result (see, for instance,
the book of Rudin12), at the third equality:

supγ∈Γ

{
min{πγ(ω), F (ω)}

}
= supγn∈Γ

{
min{πγn(ω), F (ω)}

}
= limn→∞

{
min{πγn

(ω), F (ω)}
}

= min
{

limn→∞ πγn
(ω), F (ω)

}
= min

{
supγ∈Γ{πγ(ω)}, F (ω)

}
.

Using also (9), we obtain then (8) as follows:

Πf
∗(F ) = supγ∈Γ{Πf γ(F )} = supγ∈Γ supω∈Ω

{
min{πγ(ω), F (ω)}

}
= supω∈Ω supγ∈Γ

{
min{πγ(ω), F (ω)}

}
= supω∈Ω

{
min{supγ∈Γ{πγ(ω)}, F (ω)}

}
= supω∈Ω

{
min{π∗(ω), F (ω)}

}
.

Proof of (b). Proposition 3 guarantees that, ∀ F ∈ F0,1, Πf |F0,1 =
limn→∞Πn

f |F0,1 is an ordinary possibility measure. Hence π = limn→∞ πn is a
possibility distribution on Ω. We have to show now that (4) holds for Πf .

From continuity of minimum and the convergence assumption we get, ∀ ω ∈ Ω,
min{πn(ω), F (ω)}→min{π(ω), F (ω)}, and using also continuity of maximum

max
ω∈Ω

{
min{πn(ω), F (ω)}

}
→max

ω∈Ω

{
min{π(ω), F (ω)}

}
.

It follows that:
Πn

f (F ) = maxω∈Ω

{
min{πn(ω), F (ω)}

}
↓ ↓

Πf (F ) maxω∈Ω

{
min{π(ω), F (ω)}

}
and uniqueness of the limit gives then (4).
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5. A generalization of fuzzy possibilities

It is natural in fuzzy set theory to replace the minimum operator with a more
general one, often a T-norm (see for instance the book of Nguyen and Walker9, or
the preentation of Yager and Fodor22). We shall do that too, considering now a
fuzzy T-possibility, defined by

ΠT (F ) = sup
ω∈Ω

{T (π(ω), F (ω))}, (10)

where T is a T-norm, and answering the same questions raised in section 4. Again,
we call non-comparative a fuzzy T-possibility generated by a {0, 1} valued possibility
distribution.

Definition 4. We recall that a triangular norm or T–norm is a mapping T :
[0, 1]2→[0, 1] such that:
(a) ∀ x ∈ [0, 1], T (x, 1) = x (identity)
(b) ∀ x, y ∈ [0, 1], T (x, y) = T (y, x) (commutativity)
(c) ∀ x, y, z ∈ [0, 1], T (x, T (y, z)) = T (T (x, y), z) (associativity)
(d) ∀ x, y, z, w ∈ [0, 1], such that x ≤ z and y ≤ w, T (x, y) ≤ T (z, w) (isotonicity
or monotonicity),
while a T-seminorm1 is a mapping S : [0, 1]2→[0, 1] satisfying (d) and
(a’) ∀ x ∈ [0, 1], S(x, 1) = S(1, x) = x.
Clearly, every T–norm is also a T–seminorm. Further, it is easy to verify that
properties (a’), (d) imply
(e) ∀ x ∈ [0, 1], S(0, x) = S(x, 0) = 0.

Theorem 4. Let ΠT : F→[0, 1] be a fuzzy T-possibility on F = F(Ω), where
Ω = {ω1, . . . , ωk}. If ΠT is comparative, then:

(a) ΠT is not coherent
(b) ΠT avoids sure loss
(c) the natural extension EΠT

of ΠT is, ∀ F ∈ F ,

EΠT
(F ) = max

i∈IΠ
{F (ωi)} = EΠf

(F ), (11)

where IΠ is defined in (5) and EΠf
is the natural extension of Πf , the fuzzy T-

possibility with T = min.

Further, if ΠT is non–comparative it is coherent.

Proof. To prove (a), recall that the set T of all T-norms has a maximal and a
minimal element, which means in our framework that ∀ T ∈ T ,∀ω,∀(π(ω), F (ω)),

Z(π(ω), F (ω)) ≤ T (π(ω), F (ω)) ≤ min(π(ω), F (ω)), (12)

where Z is the drastic product defined by

Z(π(ω), F (ω)) =
{

min(π(ω), F (ω)) if max(π(ω), F (ω)) = 1
0 otherwise

(13)
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We prove now that

EΠf
(F ) ≤ ΠZ(F ), (14)

whatever is the given possibility distribution π (ΠZ is the fuzzy T-possibility where
T is the drastic product Z).

In fact, putting IF =
{
i ∈ {1, . . . , k} | F (ωi) = 1

}
,

ΠZ(F ) = max
ω∈Ω

{
Z

(
π(ω), F (ω)

)}
= max

i∈IΠ∪IF

{
min

{
πi, F (ωi)

}}
. (15)

Using also proposition 5, we obtain now (14), ∀ F ∈ F :

EΠf
(F ) = maxi∈IΠ{F (ωi)} = maxi∈IΠ

{
min{π(ωi), F (ωi)}

}
≤ maxi∈IΠ∪IF

{
min{π(ωi), F (ωi)}

}
= ΠZ(F ).

There exists F ∈ F which makes the inequality strict in (14). In fact, since ΠZ is
comparative there is ωj ∈ Ω such that 0 < π(ωj) < 1. Let F ∈ F be defined by
F (ωj) = 1, F (ωi) = 0, ∀ i 6= j. It is immediate to see that ΠZ(F ) = π(ωj) > 0 =
EΠf

(F ).
Apply now the maximum operator in (12) and use (14) to get

EΠf
(F ) ≤ ΠZ(F ) ≤ ΠT (F ) ≤ Πf (F ). (16)

These inequalities tell us that ΠT is dominated by Πf (F ), but dominates –
strictly at least for one F , as seen above – the natural extension of Πf (F ). Therefore
ΠT cannot be coherent: if it were so, this would contradict theorem 2 (c), applied
to the natural extension EΠf

(F ).

Proof of (b): ΠT dominates EΠf
, which (being coherent) avoids sure loss and

therefore dominates some coherent precise prevision P by theorem 1 (a); ΠT then
dominates P and hence avoids sure loss, again by theorem 1 (a).

Proof of (c): let M(ΠT ) (M(EΠf
), M(Πf )) be the set of coherent precise pre-

visions dominated by ΠT (by EΠf
, by Πf ). From (16) and theorem 2,

M(Πf ) = M(EΠf
) ⊆M(ΠT ) ⊆M(Πf ), (17)

hence M(ΠT ) = M(Πf ), which means, applying again theorem 2, that EΠT
(F ) =

EΠf
(F ).

To complete the proof of the theorem, let now ΠT be non–comparative. It is
easy to see then that ΠZ(F ) = Πf (F ), ∀F ∈ F (for instance, using (15)). Since
applying the maximum operator over all ω ∈ Ω to the members of (12) we get,
∀ F ∈ F ,

ΠZ(F ) ≤ ΠT (F ) ≤ Πf (F ) (18)

(incidentally, note that (18) holds also for a comparative ΠT ), all T–norms are equal
to Πf in the non–comparative case. Coherence of ΠT follows then from proposition
4.
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5.1. Discussion

There are several points which deserve some discussion at this stage.

(a) Generalization to fuzzy T–seminorms. Although we presented the gen-
eralization (10) of (1) where min is replaced by a T–norm, theorem 4 still holds if
min is more generally replaced by a T–seminorm (definition 4). In fact, the key in-
equalities (12) apply also when T (π(ω), F (ω)) is a T–seminorm, as is easily verified
using (a’) and (e) of definition 4.

Further, the inequalities (18) hold too, ∀ F ∈ F and for a given π. This means
that replacing min with a T–seminorm in (4) provides us with a better (while still
not coherent, in the comparative case) evaluation, in the sense that it is closer to its
least–committal coherent correction, the natural extension (11). In this view, the
drastic product is preferable among all T–seminorms.

(b) Fuzzy T–possibilities as fuzzy integrals. A fuzzy T–possibility is a way of
extending a possibility (a special case of coherent upper probability) from P(Ω) to
F(Ω). A fuzzy T–possibility is also an instance of fuzzy integral, as defined by de
Cooman3 (generalizing Sugeno’s original definition15; other generalizations include
those by Garcia and Alvarez14 and Weber21). According to this definition, given a
bounded measurable non-negative map X, X : Ω→R+, a map T : R+ × R+→R+

satisfying (d) and (e) of definition 4 and a possibility measure Π on P(Ω), the fuzzy
integral of X with respect to Π is

(f)
∫

XdΠ = (f)
∫

Ω

XdΠ = sup
x≥0

{T (x,Π(X ≥ x))}. (19)

When T is the algebraic product, (19) reduces to the Shilkret integral13.
Under the assumptions of theorem 4,

(f)
∫

FdΠ = max
ω∈Ω

{T (π(ω), F (ω))}, (20)

as follows from results by de Cooman and Kerre5 or, more directly, from de
Cooman3, proof of eq. (10), recalling that any T–norm on a finite set is completely
distributive with respect to supremum. Extensions of coherent upper probabilities
and of possibilities using the fuzzy integral (19) are investigated by de Cooman2,?,
and our work therefore relates closely to these papers. In particular, part (a) of the-
orem 4 follows from general results in de Cooman2,?; however, our proof is different
and is instrumental for determining the natural extension EΠT

, a question which is
not tackled in de Cooman2,?.

We incidentally note also that the fact that when the given Π is non–comparative
all T–seminorms coincide is again in accordance with a more general result in de
Cooman2,?, stating that when a fuzzy integral is coherent, it is equal to the Shilkret
integral.

(c) Properties of fuzzy T–possibilities. An arbitrary upper prevision P which
avoids sure loss but is not coherent may have some unpleasant features, like lack



30th October 2003 15:54 WSPC/INSTRUCTION FILE ”Fuzzy Possiilities
rivista”

of internality or of monotonicity. Fuzzy T–possibilities avoid some of these short-
comings, in particular it is easy to verify that ∀ F ∈ F , ΠT (F ) ∈ [minF,max F ]
(internality) and, using isotonicity of T–(semi)norms, that if F1 ≤ F2 then ΠT (F1) ≤
ΠT (F2) (monotonicity).

As for the closure properties of fuzzy T–possibilities, they are not guaranteed
for every T–norm, but continuity of T is a sufficient condition for them to hold.
This ensues from the next proposition and the subsequent example.

Proposition 7. (a) Let PΓ = {ΠTγ}γ∈Γ be a given family of fuzzy T–possibilities
on F(Ω), where Ω is arbitrary. If T is continuous, the upper envelope Π∗T of PΓ,
Π∗T (F ) = supγ∈Γ{ΠTγ(F )},∀ F ∈ F , is a fuzzy T-possibility.

(b) Let Ω be finite and let {Πn
T }n∈N+ be a sequence of fuzzy T-possibilities on F(Ω),

which converges pointwise to a function ΠT on F , i.e. Πn
T (F )→ΠT (F ), ∀ F ∈ F .

If T is continuous, ΠT is a fuzzy T-possibility.

Proof. The restriction ΠT |F0,1 of a fuzzy T–possibility ΠT to the set F0,1 of all 0-1
valued F ∈ F is just an ordinary possibility. In fact, let F ∈ F0,1. When F (ω) = 0,
T (π(ω), F (ω)) = 0 by (e) in definition 4, when F (ω) = 1, T (π(ω), F (ω)) = 1 by
(a’) in definition 4. Therefore ΠT (F ) = maxω∈Ω{T (π(ω), F (ω))} = maxω∈A{π(ω)},
where A is the event in P(Ω) made up of those ω such that F (ω) = 1 (if F ≡ 0,
A = ∅ and ΠT (∅) = 0 is assumed).

Proof of (a). From what just noted above and proposition 1, π∗(ω) = Π∗T |F0,1(ω),
∀ ω ∈ Ω, is a possibility (Π∗T |F0,1 = supγ∈Γ{ΠTγ

|F0,1}). The proof is then analogous
to that of proposition 6 (a), using continuity of T instead of continuity of min.

Proof of (b). Similarly to (a), note first that Πn
T |F0,1 is a possibility, hence π(ω) =

limn→∞Πn
T |F0,1(ω), ∀ ω ∈ Ω, is a possibility distribution by proposition 3. The

proof continues like that of proposition 6 (b) (min is replaced by T ).

Example 1.
The T–norm Z (drastic product) recalled in (13) is clearly not continuous. Let

now Ω = {ω1, . . . , ωk}, and {ΠZn
} be a sequence of fuzzy Z–possibilities, generated

by the following distributions:

πn(ωi) =
{

1, if i = 1
1− 1

n otherwise

Choose F ∈ F such that 0 < F (ω1) < maxi=1,...,k{F (ωi)} < 1. Then

ΠZn(F ) = max
ωi∈Ω

{
Z(πn(ωi), F (ωi))

}
= F (ω1),

and consequently ΠZ(F ) = limn→∞ΠZn(F ) = F (ω1).
From this, and since limn→∞ πn(ωi) = 1, ∀ ωi ∈ X,

ΠZ(F ) = F (ω1) < max
ωi∈Ω

{F (ωi)} = max
ωi∈Ω

{Z(π(ωi), F (ωi))}.
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This implies that proposition 7 (b) does not hold for the T–norm Z.
Nor does 7 (a) hold for Z, as follows from

Π∗Z(F ) = supn∈N maxωi∈Ω

{
Z(πn(ωi), F (ωi))

}
= F (ω1)

< maxωi∈Ω{F (ωi)} = maxωi∈Ω

{
Z(π(ωi), F (ωi))

}
.

6. Conclusions

Fuzzy possibilities may be seen as a way of extending ordinary possibilities to up-
per previsions, and may therefore be interpreted as upper previsions themselves.
From this, it is natural to investigate their consistency properties within the well–
established theory of imprecise probabilities (previsions). This kind of analysis seems
necessary if we wish to give a behavioral explanation to the usage of tools from fuzzy
set theory in a number of practical decision problems, like the one mentioned in the
Introduction.

It turns out that fuzzy possibilities satisfy the weaker consistency requirement
of avoiding sure loss, but generally not the stronger coherence condition, hence
they are a weakly consistent model in this framework. However they preserve some
closure properties of ordinary possibilities, and it is possible to correct them to
coherent evaluations using the natural extension, which we determine explicitly.

It is also natural to generalize fuzzy possibilities replacing min with a T–
(semi)norm in their definition. This does not alter the consistency properties, and
the natural extension remains the same too, while it appears that the closure proper-
ties hold when T is continuous, not necessarily otherwise. Among all T–(semi)norms,
the drastic product Z is the closest to the natural extension, while min behaves in
the opposite way. However we saw that the closure properties do not hold for Z.
Hence no T–(semi)norm appears to be uniformly preferable, but any continuous
one performs at least as well as min.

Finally, when viewing fuzzy T–possibilities as instances of fuzzy integrals, this
paper may be seen as a further contribution to prior work on the consistency of
fuzzy integrals as imprecise previsions.
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