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Interval-valued fuzzy set theory is an increasingly popular extension of fuzzy set theory
where traditional [0, 1]-valued membership degrees are replaced by intervals in [0, 1]
that approximate the (unknown) membership degrees. To construct suitable graded
logical connectives in this extended setting, it is both natural and appropriate to “reuse”
ingredients from classical fuzzy set theory. In this paper, we compare different ways of
representing operations on interval-valued fuzzy sets by corresponding operations on
fuzzy sets, study their intuitive semantics, and relate them to an existing, purely order-
theoretical approach. Our approach reveals, amongst others, that subtle differences in
the representation method can have a major impact on the properties satisfied by the
generated operations, and that contrary to popular perception, interval-valued fuzzy set
theory hardly corresponds to a mere twofold application of fuzzy set theory. In this way,
by making the mathematical machinery behind the interval-valued fuzzy set model fully
transparent, we aim to foster new avenues for its exploitation by offering application
developers a much more powerful and elaborate mathematical toolbox than existed
before.

Keywords: Interval-valued fuzzy sets; L-fuzzy sets; graded logical connectives;
representability.

1. Introduction

In 1965, Zadeh published his seminal work1 embodying the commonsense observa-

tion that real “objects” can possess a given property to a certain degree; therefore,

the property is described by a [0, 1]-valued membership function attributing to

all objects a degree of membership in a fuzzy set. Since that time, the formal-

ism has opened up a vast array of opportunities to intelligent control applications,

flexible decision aid systems, approximate reasoning engines, . . . As a tool for mod-

elling vagueness, fuzzy logic has become synonymous with high-quality, low-cost

solutions to problems whose inherent complexity defies the use of exact, “crisp”
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methods. While the sky seems to be the limit, it is clear at the same time both

from theoretical observations and from an awareness of realistic application needs,

that if fuzzy set theory wants to pursue its trendsetting role in dealing with impre-

cise knowledge, proper extensions of the original concept should be considered. For

instance, within the current information society, embodied by the World Wide Web

(WWW), robust tools are needed for dealing flexibly with facets of incompleteness

and inconsistency (i.e., missing and contradictory information) that haunt a lot of

typical data collections.

Many generalizations of fuzzy sets are available. For instance, membership de-

grees can be drawn not just from the unit interval [0, 1], but more generally from

any complete lattice L, as happens in Goguen’s L-fuzzy sets2; alternatively, they

can be fixed only partially e.g. by specifying subsets of the evaluation set to which

the exact membership degree is supposed to belong (see e.g. Gargov3). Going one

step further, we can even allow fuzzy sets in [0, 1] as membership degrees: this is

the setting of type 2 fuzzy set theory (see e.g. John4). Still another approach is to

consider apart from the membership degree also a not necessarily complementary

degree of non-membership, as is the practice in Atanassov’s intuitionistic fuzzy set

theory5 as well as in bilattice theory (see e.g. Arieli et al.6).

Interval-valued fuzzy sets, which were apparently first studied by Sambuc7 and

which are characterized by a couple (µl
A, µr

A) of a left and a right membership

function such that µl
A ⊆ µr

A, take a very special place among these extensions.

Formally, they are a special case of both L-fuzzy sets8 and of type 2 fuzzy sets

(called “interval type 2 fuzzy sets” in that context, see e.g. Mendel9) and they are

even equivalent to intuitionistic fuzzy sets10. Moreover, they are straightforward to

interpret: they serve to capture a feature of uncertainty w.r.t. the assignment of

membership degrees in that the intervals may be understood to contain the true,

incompletely known membership degree. Also, their manipulation does not pose

the same computational barriers as encountered with general type 2 fuzzy sets.

However, this perceived simplicity is also rather deceptive. Most authors (and,

indeed, most practical applications) represent operations on interval-valued fuzzy

sets simply by a twofold application of a corresponding fuzzy set operation (i.e.,

applied once to the left and once to the right membership function, see e.g. Gehrke

et al.8 and Jenei11). While there is definitely something to say in favour of this sim-

plest and most intuitive approach, it reveals only a small tip of the iceberg while

much more remains hidden beneath the surface. Recent worka has indicated the

existence of operations not satisfying the mentioned representation, and has even

demonstrated, in some cases, their superiority over the usual ones; some of them

have several extremely useful properties which the representable operations can

never meet. This observation calls for our closer attention. Is the sacrifice of these

properties a price worth paying to preserve the illusion that one is working with

aIn particular, an order-theoretical exposition to the definition of graded logical connectives in
interval-valued/intuitionistic fuzzy set theory (see e.g. Cornelis et al.12 and Deschrijver et al.13).
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parallel and independent applications of classical fuzzy set concepts? We believe

not. Incidentally, as we will show in the remainder of this paper, most of the impor-

tant “non-representable” operations, which may seem complicated at first glance,

can be reduced to prototypical forms which still have a corresponding [0, 1]-valued

operation at their basis. Concretely, we present and evaluate a comprehensive ty-

pology of representation methods for graded logical connectives. This typology aims

to make people more aware of the available alternatives and their respective seman-

tics, and hence to foster new avenues of exploitation for the interval-valued fuzzy

set model by offering application developers a more powerful and elaborate toolbox

than existed before.

The rest of this paper is organized as follows: Section 2 provides some important

background material regarding L-fuzzy sets in general and interval-valued fuzzy sets

in particular. After covering interval-valued negators in Section 3.1, Section 3.2 re-

views and interprets the most important representation methods for t-norms and

t-conorms in interval-valued fuzzy set theory. The representation of interval-valued

implicators (which is influenced by interval-valued t-(co)norms as well as by impli-

cators on ([0, 1],≤)) is covered in Section 3.3, while in Section 3.4 we evaluate the

various representation schemes w.r.t. desirable properties inspired by L-fuzzy set

theory. In Section 4, we round up the paper with some concluding remarks.

2. Preliminary Definitions

2.1. L-fuzzy set theory

We set the scene by recalling the definition of L-fuzzy sets, which will serve as the

mathematical basis for an order-theoretical development of interval-valued fuzzy

sets (henceforth abbreviated to IVFSs).

Definition 1. (L-fuzzy set)2 Let L = (L,≤L) be a complete lattice, and U a

non-empty set called universe. An L-fuzzy set in U is defined as a U → L mapping.

For each u in U , A(u) represents the degree (in L) to which u satisfies A. If, for

u, v in U it holds that A(u) ≤L A(v), we say that v satisfies A at least as much as

u. Sometimes neither A(u) ≤L A(v) nor A(v) ≤L A(u); in that case, we say that u

and v are incomparable w.r.t. A and write A(u) ‖L A(v).

When L = ([0, 1],≤), where ≤ represents the usual order on the unit interval,

it is clear that we obtain classical fuzzy sets. Many important concepts in fuzzy set

theory are defined in terms of the order ≤ on [0, 1], so it comes as no surprise that

these concepts have straightforward extensions to L-fuzzy sets. The most relevant

for our purposes are graded logical connectives, which model, respectively, negation,

conjunction, disjunction and implication.b

bFrom a set-theoretical perspective, the first three model the complement, intersection and union
of L-fuzzy sets.
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Definition 2. (Connectives in L-fuzzy set theory) Let L = (L,≤L) be a

complete lattice, such that 0L and 1L are the smallest, resp. greatest, elements

of L.

• A negator on L is an L-decreasing L → L mapping N that satisfies N (0L) = 1L

and N (1L) = 0L. It is involutive if N (N (x)) = x for all x in L.

• A t-norm on L is an L-increasing, commutative, associative L2 → L mapping T

that satisfies T (1L, x) = x for all x in L.

• A t-conorm on L is an L-increasing, commutative, associative L2 → L mapping

S that satisfies S(0L, x) = x for all x in L.

• An implicator on L is an L2 → L mapping I that is L-decreasing in its first,

and L-increasing in its second component, and that satisfies I(1L, x) = x and

I(0L, x) = 1L for all x in L.

It is clear that each member of the thus defined classes of connectives is a faith-

ful extension of its counterpart from classical, two-valued logic. Which particular

member to choose for a particular application depends on the specific properties

required of the extension.

Based on de Morgan laws, t-norms and t-conorms can be related through an

involutive negator N on L; indeed, to each t-norm T on L corresponds its N -dual

t-conorm T N defined by, for x, y in L, T N (x, y) = N (T (N (x),N (y))), and vice

versa. Implicators are often derived from the other types of connectives. For our

purposes, we consider S- and R-implicators: let T be a t-norm, S a t-conorm and

N a negator on L. Then the S-implicator IS,N and the R-implicator IT are defined

by, for x, y in L,

IS(x, y) = S(N (x), y),

IT (x, y) = sup{γ | γ ∈ L and T (x, γ) ≤L y}.

We say that a t-norm T on L satisfies the residuation principle if, for all x, y, z in

L,

T (x, y) ≤L z ⇔ y ≤L IT (x, z).

The residuation principle, which allows to construct a residuated lattice on top of

L, is of quintessential importance to approximate reasoning and formal deduction

applications. It is well known that a t-norm T can only satisfy the residuation

principle if the implicator involved is the R-implicator generated by T .14

2.2. Interval-valued fuzzy set theory

When we define

LI = {[x1, x2] | (x1, x2) ∈ [0, 1]2 and x1 ≤ x2},

[x1, x2] ≤LI [y1, y2] ⇔ (x1 ≤ y1 and x2 ≤ y2),

it is easy to verify that LI = (LI ,≤LI ) is a complete lattice, and also that the

class of IVFSs is isomorphic to that of LI -fuzzy sets. Hence, an IVFS (µl
A, µr

A)
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emerges, syntactically, as a specific kind of L-fuzzy set, in the sense that, for every

u in U , [µl
A(u), µr

A(u)] ∈ LI . Thus, the lattice LI gives us an elegant and compact

environment in which to calculate with IVFSs. A graphical representation of LI is

shown in Figure 1. The smallest element of the lattice is 0LI = [0, 0], the greatest

1LI = [1, 1]. The hypothenuse D of the triangle in Figure 1 contains the elements

x = [x1, x2] of LI such that x1 = x2. Hence, D represents the values in LI about

which there is no indeterminacy and can be identified with the unit interval [0, 1]

from (classical) fuzzy set theory.

x2

[0, 0] x1

[0, 1] [1, 1]

x = [x1, x2]

Fig. 1. The lattice LI .

By virtue of the interval order ≤LI
, graded logical connectives in IVFS theory

can be constructed as instances of Definition 2. By contrast, it is also possible

to generate connectives by applying [0, 1]-valued operations to the left, resp. right

membership functions µl and µr, which are, after all, fuzzy sets. In Section 3, we

will put these two approaches side by side and unravel their relationship. As a tool

for guiding our analysis, we will frequently use so-called extended modal operators

(after Atanassov15):

Definition 3. (Extended modal operators) Let α ∈ [0, 1]. Then the extended

modal operator Dα is an LI → [0, 1] mapping defined by, for x = [x1, x2] in LI ,

Dαx = x1 + α(x2 − x1) .

Extended modal operators are in particular useful for transforming an IVFS into a

fuzzy set. Intuitively, the interval [µl
A(u), µr

A(u)] represents an array of possible val-

ues for the “real” membership degree of u to A, and α acts a parameter of optimism

in resolving that indeterminacy. Clearly, D0A(u) = µl
A(u) (minimal membership)

and D1A(u) = µr
A(u) (maximal membership) represent the two extremes w.r.t. the

transformation. In the sequel, after Atanassov15, we will also denote, for x = [x1, x2]

in LI , D0x = x1 by �x (necessity) and D1x = x2 by ♦x (possibility).
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3. Representation Methods for Graded Logical Connectives

In this section, we discuss in detail generation techniques for IVFS connectives,

using [0, 1]-valued ingredients and extended modal operators as our key tools. Our

first and foremost goal is to shine a bright light on what has been achieved in earlier

works, and to convey a kind of “IVFS literacy” to a general audience interested in

working with IVFSs. Hence, in order not to harm the clarity of the exposition, the

emphasis is not necessarily on the most general representation methods, but rather

on the most practically useful ones. For the interested reader wishing to learn more

about the precise mathematical details, technical notes and/or references to the

literature are provided.

Negators, briefly covered in Section 3.1, are our first focus. The pivotal con-

structs in this study, however, are t-norms and t-conorms (Section 3.2). Implicators,

as “derived” connectives, are studied in Section 3.3, while a critical evaluation of the

presented representation methods w.r.t induced properties is given in Section 3.4.

For ease of notation, in this section we assume that an element x of LI is always

of the form [x1, x2].

3.1. Representation of negators

From the point of view of representation, negators are the simplest and most

straightforward kind of connective, so their treatment serves as a very gentle intro-

duction to the main exposition. Briefly, given a negator N on ([0, 1],≤), it is easy

to verify that the mapping NN : LI → LI defined by, for all x in LI ,

NN (x) = [N(x2), N(x1)] = [N(♦x), N(�x)] (1)

is a negator on LI . Moreover, since for each α in [0, 1], N(♦x) ≤ N(Dαx) ≤ N(�x),

it holds that

{N(Dαx) | α ∈ [0, 1]} ⊆ NN (x), (2)

so it is justified to say that the interval NN (x) “includes all possible situations

that could occur if the uncertainty in x were to be expelled.” Note that if N is

continuous, then from the mean-value theorem follows that equality holds in (2).

Definition 4. A negator N on LI is called n-representable if there exists a negator

N on ([0, 1], ≤) such that N = NN , where NN is given by (1). The negator N is

then called the representative of N .

Note 1. In a more general setting, [N(x2), N(x1)] can be replaced by

[N1(x2), N2(x1)], where N1 and N2 are negators on ([0, 1],≤) such that N1 ≤ N2.

Example 1. The standard negator Ns on LI , given by Ns(x) = [1−x2, 1−x1], is

n-representable. This does not hold in general; take for instance N defined by, for

all x in LI ,

N (x) =

{

1LI , if x = 0LI ,

0LI , otherwise.
(3)
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The following proposition recalls an important result about the representation

of involutive negators on LI which will be needed in the sequel:

Proposition 1. 13 A negator N on LI is involutive if and only if there exists an

involutive negator N on ([0, 1],≤) such that N = NN .

Note 2. This representation is a special case of a more general result8 that shows

that all anti-automorphisms of LI are representable.

3.2. Representation of t-norms and t-conorms

3.2.1. t-Representability

Given a t-norm T on ([0, 1],≤), a straightforward way to generate a corresponding

connective on LI is by defining, for x, y in LI (see also Gehrke et al.8 and Jenei11)

TT (x, y) = [T (x1, y1), T (x2, y2)] = [T (�x, �y), T (♦x,♦y)]. (4)

Since it holds that for all α, β in [0, 1], T (�x, �y) ≤ T (Dαx, Dβy) ≤ T (♦x,♦y), it

also holds, if T is continuous, that

TT (x, y) = {T (Dαx, Dβy) | α, β ∈ [0, 1]}. (5)

Hence, the interval TT (x, y) indeed includes all possible situations that can occur if

the uncertainty vanishes from x and y, just like we observed for NN (x). Similarly,

from a t-conorm S on ([0, 1],≤) we can naturally construct an associated t-conorm

SS on LI with an analogous interpretation.

Definition 5. (t-representability) Given a t-norm T and a t-conorm S on

([0, 1],≤), the (LI)2 → LI mappings T r
T and Sr

S defined by, for x, y in LI ,

T r
T (x, y) = [T (x1, y1), T (x2, y2)] = [T (�x, �y), T (♦x,♦y)], (6)

Sr
S(x, y) = [S(x1, y1), S(x2, y2)] = [S(�x, �y), S(♦x,♦y)]. (7)

are a t-norm, resp. a t-conorm on LI that are called the t-representable t-norm

(resp. t-conorm) on LI with representative T (resp. S)c.

Example 2.

• Let TM be the minimum t-norm on ([0, 1],≤), then T r
TM

(x, y) = [min(x1, y1),

min(x2, y2)] for x, y in LI . Note that T r
TM

equals the infimum on LI . Analogously,

for SM the maximum t-conorm on ([0, 1],≤), Sr
SM

equals the supremum on LI .

• Let TW be the  Lukasiewicz t-norm on ([0, 1],≤), that is, TW (x, y) = max(0, x +

y−1) for x, y in [0, 1]. Then T r
TW

(x, y) = [max(0, x1 +y1−1), max(0, x2 +y2−1)],

for x, y in LI . For notational ease, we abbreviate T r
TW

to T r
W and call it the t-

representable  Lukasiewicz t-norm on LI . Analogously, for SW the  Lukasiewicz

cA slightly more general definition of t-representability, using two different t-(co)norms on ([0, 1],
≤), appears in the work of Deschrijver et al.13
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t-conorm on ([0, 1],≤), that is, SW (x, y) = min(1, x + y) for x, y in [0, 1], Sr
SW

is

abbreviated to Sr
W and called the t-representable  Lukasiewicz t-conorm on LI .

3.2.2. Pseudo-t-representability

Not all t-norms on LI are t-representable; this was first noted by Cornelis et al.16

Deschrijver et al.17 introduced a non-t-representable t-norm and its Ns-dual t-

conorm which have interesting properties that no t-representable t-(co)norm satis-

fies. Deschrijver et al.13 and Deschrijver and Kerre18 generalized these observations

by characterizing several classes of t-norms on LI meeting various properties. The

purpose of this paragraph is to investigate these classes from the point of view of

representation by connectives on ([0, 1],≤).

Example 3. The non-t-representable t-norm TW introduced by Cornelis et al.16

is defined by, for all x, y in LI ,

TW (x, y) = [max(0, x1 + y1 − 1), max(0, x1 + y2 − 1, x2 + y1 − 1)]

= [TW (�x, �y), max(TW (�x,♦y), TW (♦x, �y))].

Looking at its structure, this t-norm has the same lower bound as the t-

representable  Lukasiewicz t-norm T r
W , but differs from it by its upper bound: instead

of taking the “optimum” value TW (♦x,♦y), the second component is obtained by

taking the maximum of TW (�x,♦y) and TW (♦x, �y). Hence it is not guaranteed

that the interval TW (x, y) contains all possible values TW (Dαx, Dβy) for α, β in

[0, 1]. Rather,

TW (x, y) = {TW (Dαx, �y) | α ∈ [0, 1]} ∪ {TW (�x, Dβy) | β ∈ [0, 1]}.

What this representation enforces is that, in eliminating the uncertainty from x

and y, we have to impose for at least one of them the “worst” possible value (�x,

resp. �y). Therefore, this could be called a pessimistic approach to the definition

of a t-norm on LI . A dual phenomenon occurs for the Ns-dual t-conorm SW of TW ,

given by, for all x, y in LI ,

SW (x, y) = [min(1, x1 + y2, x2 + y1), min(1, x2 + y2)]

= [min(SW (�x,♦y), SW (♦x, �y)), SW (♦x,♦y)].

Here, the adapted lower bound reflects an optimistic inclination. Indeed,

SW (x, y) = {SW (Dαx,♦y) | α ∈ [0, 1]} ∪ {TW (♦x, Dβy) | β ∈ [0, 1]}.

On the other hand, it can be verified that the formulas

T ′
W (x, y) = [min(TW (�x,♦y), TW (♦x, �y)), TW (♦x,♦y)],

S ′
W (x, y) = [SW (�x, �y), max(SW (�x,♦y), SW (♦x, �y))],

for x, y in LI , define a t-norm and a t-conorm on LI that reflect optimism and

pessimism, respectively.
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The above strategy can be turned into a productive mechanism for generating

optimistic and pessimistic pseudo-t-representable t-norms and t-conorms on LI

from corresponding connectives on ([0, 1],≤). This is formalized by the following

definition.

Definition 6. (Pseudo-t-representability) Given a t-norm T and a t-conorm

S on ([0, 1],≤), the (LI)2 → LI mappings T p
T and Sp

S defined by, for x, y in LI ,

T p
T (x, y) = [T (x1, y1), max(T (x1, y2), T (x2, y1))]

= [T (�x, �y), max(T (�x,♦y), T (♦x, �y))], (8)

Sp
S(x, y) = [S(x1, y1), max(S(x1, y2), S(x2, y1))]

= [S(�x, �y), max(S(�x,♦y), S(♦x, �y))], (9)

are a t-norm, resp. a t-conorm on LI that are called the pessimistic t-norm (resp.

t-conorm) on LI with representative T (resp. S). Analogously, the (LI)2 → LI

mappings T o
T and So

S defined by, for x, y in LI ,

T o
T (x, y) = [min(T (x1, y2), T (x2, y1)), T (x2, y2)]

= [min(T (�x,♦y), T (♦x, �y)), T (♦x,♦y)], (10)

So
S(x, y) = [min(S(x1, y2), S(x2, y1)), S(x2, y2)]

= [min(S(�x,♦y), S(♦x, �y)), S(♦x,♦y)], (11)

are a t-norm, resp. a t-conorm on LI which are called the optimistic t-norm (resp.

t-conorm) on LI with representative T (resp. S). A t-(co)norm on LI is called

pseudo-t-representable if it is either optimistic or pessimistic.

Note 3. A class of t-norms generalizing both the t-representable t-norms and the

pessimistic t-norms can be introduced. Let T be a t-norm on ([0, 1],≤), and t ∈ [0, 1].

Then the mapping TT,t : (LI)2 → LI defined by, for all x, y in LI ,

TT,t(x, y) = [T (x1, y1), max(T (t, T (x2, y2)), T (x1, y2), T (x2, y1))],

is a t-norm on LI . The usage of this class is, that it allows the user to define

T ([0, 1], [0, 1]) = [0, t] arbitrarily. This can be useful in applications where in some

situations one needs to impose that the conjunction of two completely unknown

propositions is also unknown (e.g. “the sun will shine tomorrow” and “Olga has

black hair”), while in other situations it would be more appropriate that the con-

junction of two unknown statements is false (e.g. “Olga has blond hair” and “Olga

has black hair”). If t = 0, then we obtain the pessimistic t-norms, if t = 1 then we

find the t-representable t-norms. Clearly, since the lower bound of TT,t is indepen-

dent of x2 and y2, the optimistic t-norms T o
T do not belong to this class as soon

as T 6= min. In Section 3.4.3 a more thorough discussion on possible extensions of

(pseudo-)t-representable t-norms will be given.
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The following proposition relates the representability of a t-norm on LI to the

representability of its N -dual. In a completely similar way the representability of a

t-conorm on LI can be related to the representability of its N -dual.

Proposition 2. Let T r
T be a t-representable t-norm on LI with representative T ,

and let NN be an involutive negator with representative N , then the NN -dual of T r
T

is the t-representable t-conorm on LI with representative the N -dual of T , i.e.

(T r
T )NN = Sr

T N .

Let T p
T be a pessimistic t-norm on LI with representative T , and let NN be an

involutive negator with representative N , then the NN -dual of T p
T is the optimistic

t-conorm on LI with representative the N -dual of T , i.e.

(T p
T )NN = So

T N .

Let T o
T be an optimistic t-norm on LI with representative T , and let NN be an

involutive negator with representative N , then the NN -dual of T o
T is the pessimistic

t-conorm on LI with representative the N -dual of T , i.e.

(T o
T )NN = Sp

T N .

Proof. The first part is shown by Deschrijver et al.13 We prove the second part.

The third part is proven similarly.

Let T p
T be a pessimistic t-norm on LI with representative T , and let NN be an

involutive negator with representative N (such a representative exists by Proposi-

tion 1). Then, for all x, y in LI ,

(T p
T )NN (x, y) = N ([T (N(x2), N(y2)), max(T (N(x2), N(y1)), T (N(x1), N(y2)))])

= [min(T N(x2, y1), T N(x1, y2)), T N (x2, y2)]

= So
T N (x, y).

3.3. Representation of implicators

Similarly as for t-(co)norms we can introduce a kind of direct representability for

implicators on LI , as well as two kinds of pseudo-representability, by means of

implicators on ([0, 1],≤).

3.3.1. i-Representability

Definition 7. (i-representability)d Given an implicator I on ([0, 1],≤), the

(LI)2 → LI mapping Ir
I defined by, for x, y in LI ,

Ir
I (x, y) = [I(x2, y1), I(x1, y2)] = [I(♦x, �y), I(�x,♦y)] (12)

dAgain, a slightly more general definition of i-representability can be obtained using two different
implicators I1 and I2 on ([0, 1],≤), such that I1 ≤ I2.
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is an implicator which is called the i-representable implicator on LI with represen-

tative I .

By the fact that for continuous Ir
I it holds that

Ir
I (x, y) = {I(Dαx, Dβy) | α, β ∈ [0, 1]},

it is clear that i-representability is on a par with n-representability and t-

representability.

3.3.2. Pseudo-i-representability

Definition 8. (Pseudo-i-representability) Given an implicator I on ([0, 1],≤),

the (LI)2 → LI mappings Ip
I and Io

I defined by, for x, y in LI ,

Ip
I (x, y) = [I(x2, y1), max(I(x1, y1), I(x2, y2))]

= [I(♦x, �y), max(I(�x, �y), I(♦x,♦y))], (13)

Io
I (x, y) = [min(I(x1, y1), I(x2, y2)), I(x1, y2)]

= [min(I(�x, �y), I(♦x,♦y)), I(�x,♦y)], (14)

are implicators on LI which are called the pessimistic, resp. optimistic implicator

on LI with representative I . An implicator on LI is called pseudo-i-representable

if it is either optimistic or pessimistic.

3.3.3. Links with t-(co)norms

Implicators on LI can also be generated in a different way: from t-(co)norms and

negators as S-implicators and R-implicators. In this paragraph, we study the rela-

tionship of these constructs to i-representability and pseudo-i-representability.

For S-implicators and i-representability, the situation is rather straightforward

and can be summed up by the following result which is shown (in a slightly more

general form) by Baczyński.19

Proposition 3. A mapping I : (LI)2 → LI is an S-implicator generated by a

t-representable t-conorm and an involutive negator on LI if and only if there exists

an S-implicator IS,N generated by a t-conorm S and an involutive negator N on

([0, 1],≤) such that, for all x, y in LI ,

I(x, y) = [IS,N(x2, y1), IS,N (x1, y2)].

So, S-implicators on LI generated by a t-representable t-conorm and an involu-

tive negator are i-representable implicators having an S-implicator on ([0, 1],≤)

as their representative. For R-implicators, no such transparent relation with i-

representability exists.

Proposition 4. No R-implicator on LI is i-representable.
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We discuss now how optimistic and pessimistic implicators can be related to

optimistic and pessimistic t-norms through the construction of the corresponding

R- and S-implicators.

Proposition 5. Let T p
T be a pessimistic t-norm on LI . Then the R-implicator

generated by T p
T is given by the optimistic implicator with representative IT , i.e.

IT p

T
= Io

IT
.

Proposition 6. Let T o
T be an optimistic t-norm on LI . Then its residual implica-

tor is given by, for all x, y in LI ,

IT o
T

(x, y) = [min(IT (x1, y1), IT (x2, y2)), IT (x2, y2)].

This formula resembles the one corresponding to optimistic implicators. How-

ever, the upper bound involves x2 instead of x1, so contrary to optimistic implicators

this bound does not correspond to the highest possible value of I(Dαx, Dβy), where

α, β in [0, 1]. Obviously, IT o
T

is not a pessimistic implicator either. Moreover, it is

equal to the R-implicator generated by the corresponding t-representable t-norm.

Proposition 7. Let T r
T be a t-representable t-norm on LI . Then its residual im-

plicator is given by, for all x, y in LI ,

IT r
T

(x, y) = [min(IT (x1, y1), IT (x2, y2)), IT (x2, y2)].

Deschrijver and Kerre18 have shown that if a t-norm T on LI satisfies the

residuation principle, then the first component of T (x, y) is independent of x2 and

y2. From this follows:

Proposition 8. Optimistic t-norms for which the representative is not the mini-

mum t-norm TM do not satisfy the residuation principle.

Proof. If T 6= TM , then there exists an element a ∈ [0, 1] such that T (a, a) < a. Let

x = [a, a] and x′ = y = [a, 1] be elements of LI . Then we obtain for the optimistic

t-norm with representative T that �T o
T (x, y) = min(a, T (a, a)) = T (a, a) < a =

�T o
T (x′, y), so �T o

T (x, y) is not independent of x2.

On the other hand, if T is a left-continuous t-norm, then the t-representable t-

norm T r
T and the pessimistic t-norm T p

T both do satisfy the residuation principle.18

For the S-implicators corresponding to pessimistic and optimistic t-conorms we

obtain the following.

Proposition 9. Let Sp
S be a pessimistic t-conorm on LI with representative S, and

let NN be an n-representable negator with representative N . Then the S-implicator

generated by Sp
S and NN is the pessimistic implicator with representative IS,N , i.e.

ISp

S
,NN

= Ip
IS,N

.
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Let So
S be an optimistic t-conorm on LI with representative S, and let NN be an

n-representable negator with representative N . Then the S-implicator generated by

So
S and NN is the optimistic implicator with representative IS,N , i.e.

ISo
S

,NN
= Io

IS,N
.

Proof. Let Sp
S be a pessimistic t-conorm on LI with representative S, and let NN

be an n-representable negator with representative N . Then, for all x, y in LI ,

ISp

S
,NN

(x, y) = Sp
S(NN (x), y)

= [S(N(x2), y1), max(S(N(x2), y2), S(N(x1), y1))]

= [IS,N(x2, y1), max(IS,N (x2, y2), IS,N (x1, y1))]

= Ip
IS,N

(x, y).

The second part is proven similarly.

We see that pessimistic t-norms generate optimistic R-implicators, but opti-

mistic t-norms do not generate pessimistic implicators. The R-implicators generated

by optimistic t-norms coincide with the R-implicators generated by t-representable

t-norms. However, no intuitive interpretation of these R-implicators can be given.

On the other hand, for S-implicators the situation is clearer: pessimistic t-conorms

generate pessimistic S-implicators, optimistic t-conorms generate optimistic S-

implicators and t-representable t-norms generate i-representable S-implicators.

3.3.4. Overview

Table 1. Relationship between the representability of
the t-norm and the representability of the implicator.

t-norm S-implicator R-implicator

t-representable i-representable none

pessimistic optimistic optimistic

optimistic pessimistic none

In Table 1, the relationship between the different kinds of representability for

t-norms and the representability of the implicators that are generated by these t-

norms is shown. Taking into account Proposition 2, t-representable t-norms have a

t-representable N -dual t-conorm which generates an i-representable S-implicator.

So, in this sense, a t-representable t-norm generates an i-representable S-implicator.

Similarly, a pessimistic (optimistic) t-norm generates an optimistic (resp. pes-

simistic) S-implicator. We see that only the pessimistic t-norms generate an R-

implicator and S-implicator that can both be represented by one of our types of

representability.
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3.4. Evaluation of representation methods

In Section 3 we have already seen that the class of pessimistic t-norms is the only

one which generate both R- and S-implicators that belong to one of the classes of

representable implicators which we discussed before. The superiority of the pes-

simistic t-norms goes even further as we will see below.

3.4.1. Smets-Magrez axioms

The Smets-Magrez axioms, a set of natural and commonly imposed criteria for

implicators on the unit interval, were extended to LI by Cornelis et al.12 Briefly,

an implicator I on LI is said to satisfy the Smets-Magrez axioms if for all x, y, z in

LI ,

I(NI(y),NI(x)) = I(x, y) (contrapositivity)

I(x, I(y, z)) = I(y, I(x, z))) (exchange principle)

I(x, y) = 1LI ⇔ x ≤LI y (confinement principle)

I is a continuous (LI)2 → LI mapping (continuity)

where NI is defined by NI(x) = I(x, 0LI ) for x in LI .

It has been shown by Cornelis et al.12 that an implicator I on LI for which

I(D, D) ⊆ D satisfies all Smets-Magrez axioms if and only if there exists a con-

tinuous increasing permutation Φ on LI with increasing inverse such that I is the

Φ-transform of ITW
, i.e.,

I(x, y) = Φ−1(ITW
(Φ(x), Φ(y)))

for all x and y in LI . It was later shown20 that this means that all implicators I

for which I(D, D) ⊆ D and which satisfy all Smets-Magrez axioms are necessarily

of the form of equation (14), i.e. they are optimistic implicators!

3.4.2. Arithmetical operations

As many connectives in fuzzy set theory are expressed by means of arithmetical

operations (+,−,×,÷) on [0, 1], it is useful to extend them to LI as well.

Definition 9. (Arithmetical operators on L
I)21 The addition, subtraction,

multiplication and division of two elements x = [x1, x2] and y = [y1, y2] in LI can

be defined by

x ⊕LI y = [min(x1 + y2, x2 + y1), x2 + y2],

x 	LI y = [x1 − y2, max(x1 − y1, x2 − y2)],

x ⊗LI y = [x1y1, max(x1y2, x2y1)],

x �LI y =

[

min

(

x1

y1

,
x2

y2

)

,
x2

y1

]

, if y1 6= 0 6= y2.
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Note that the result of these operations is not necessarily an element of LI . Using

these operations, the  Lukasiewicz t-norm TW on LI (see Example 3) can be written

similarly as TW :21 for x, y in LI ,

TW (x, y) = sup(0LI , x 	LI (1LI 	LI y)).

Remarkably, also the optimistic t-norm T ′
W on LI with representative TW can be

written in a similar way as TW : for x, y ∈ LI ,

T ′
W (x, y) = sup(0LI , (x ⊕LI y) 	LI 1LI ) = sup(0LI , x ⊕LI (y 	LI 1LI )).

So, both the optimistic and the pessimistic t-norm with representative TW can be

written in a similar way as TW itself. While on ([0, 1],≤) both expressions are equal

to each other, this is not the case on LI .

Similarly, the optimistic and the pessimistic t-norm on LI with representative

the product t-norm TP on ([0, 1],≤) can be written in a similar way as TP : for x, y

in LI ,

T p
TP

(x, y) = TP (x, y) = x ⊗LI y,

T o
TP

(x, y) = x �LI (1LI �LI y) = y �LI (1LI �LI x).

Again, the two formulas are equal to each other on ([0, 1],≤), but not on LI .

3.4.3. A general class of t-(co)norms

In Section 3.2.2 we have seen that t-representable t-norms and pessimistic t-norms

are special cases of the class of t-norms TT,t defined by, for all x, y in LI ,

TT,t(x, y) = [T (x1, y1), max(T (t, T (x2, y2)), T (x1, y2), T (x2, y1))],

and that the optimistic t-norms T o
T do not belong to this class as soon as T 6= min.

Other attempts to generalize the pessimistic or optimistic t-norms however give

no interesting results. For instance, a symmetrically shaped formula given by, for

x, y in LI ,

MT,t(x, y) = [min(T (t, T (x1, y1)), T (x1, y2), T (x2, y1)), T (x2, y2)]

= [T (t, T (x1, y1)), T (x2, y2)].

does not yield a t-norm as soon as t < 1. So the class of optimistic t-norms cannot

be generalized in a similar way as the pessimistic t-norms.

The formulas for pseudo-t-representable t-(co)norms cannot be extended us-

ing two different t-(co)norms on ([0, 1],≤), since e.g. T (x, y) = [T1(x1, y1),

max(T2(x1, y2), T2(x2, y1))] is not associative as soon as T1 6= T2. On the other

hand, the mixed mapping M, given by, for x, y in LI ,

M(x, y) = [min(T (�x,♦y), T (♦x, �y)), max(T (�x,♦y), T (♦x, �y))] (15)

is not a t-norm on LI for any t-norm T 6= min on ([0, 1],≤) because there exist

x1, z1 ∈ [0, 1] such that T (x1, z1) < min(x1, z1), so M([x1, 1],M([z1, 1], [0, 1])) =
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M([x1, 1], [0, z1]) = [0, T (x1, z1)] 6= [0, min(x1, z1)] = M(M([x1, 1], [z1, 1]), [0, 1]),

thus M is not associative.

From the above it is clear that from the point of view of induced properties

the most interesting connectives are the pessimistic t-norms together with their

(optimistic) residual implicators.

4. Conclusion

In this paper we have discussed several ways of representing negators, t-(co)norms

and implicators on LI . The most obvious way to represent these operators is com-

ponentwise (for t-(co)norms we obtain the so-called t-representable t-(co)norms);

this is the approach of most authors which investigate t-norms and related oper-

ators in interval-valued fuzzy set theory. Moreover, some of them8,11 even dismiss

the idea of non-t-representable t-(co)norms by including t-representability in the

definition of t-(co)norms. However it was shown by Deschrijver et al.13 that not

all t-norms on LI can be represented that way. Classes of non-t-representable t-

norms have been introduced18,20 and it is demonstrated that they satisfy more

interesting properties, which shows that restricting the definition to representable

connectives is a bad choice. In this paper we developed a comprehensive typol-

ogy of representation methods for connectives in interval-valued fuzzy set theory.

We have pointed out that one prototypical form of non-representable connectives,

namely the pessimistic t-(co)norms and their respective S- and R-implicators, have

the highest number of desirable properties. This observation is very important to

the development of future applications of interval-valued fuzzy set theory.
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