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Abstract

Media theory is a new branch of discrete applied mathematics originally

developed in mid-nineties to deal with stochastic evolution of preference

relations in political science and mathematical psychology. The theory

focuses on a particular semigroup of ‘messages’ acting as transformations

of a set of ‘states’, called a ‘medium’, whose axioms are both strong and

natural. The term ‘medium’ stems from a particular application in which

the transformations formalize the effects, on an individual, of ‘tokens’ of

information delivered by the environment—that is, the ‘medium’. How-

ever, many different types of examples can be found, ranging from learning

spaces to hypercube computers, suggesting that this concept is ubiquitous.

The paper presents very basic concepts and results of media theory and

is aimed at a wide body of researchers in discrete applied mathematics.

1 Introduction

The term ‘media theory’ was coined by Jean-Claude Falmagne in his founding
paper [1] where basic concepts and results were introduced. That paper was
followed by papers [2] and [3] in which the theory was further advanced.

A medium is an algebraic structure describing a mathematical, physical, or
behavioral system as it evolves from one ‘state’ to another, in a set of such
states. Each set is characterized by a collection of binary features, and differs
from some other neighbor state by just one of those features. This structure
is formalized as an ordered pair (S,T) consisting of a set S of states and a set
T of tokens and specified by constraining axioms (see Section 3). Tokens are
transformations of the set S; strings of tokens are messages of the medium.
States, tokens, and messages are three fundamental notions of media theory.

The set P of all partial orders on a given finite set X is an example of a set
of states that can be casted as medium. For any two distinct partial orders P
and Q, one can ‘walk’ in P from P to Q by adding or removing a single ordered
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pair of elements of X . The transformations of P consisting in the addition or
removal of some pair are tokens of the medium on P. In terms of media theory,
there is a concise message producing Q from S. There are many other families of
partial orders that can be casted as media, including linear orders, weak orders,
semiorders, and interval orders [1, 3, 4]. Additional examples of media include
learning spaces [5] and hyperplane arrangements [4, 6].

Various stochastic applications of media theory have been made in the con-
text of opinion polls and related situations [1, 7, 8, 9, 10]. Effective algorithms
for visualization [12] and enumeration [13] of media have been developed.

The paper presents a concise introduction to basic concepts and results of
media theory. Our exposition differs, in some details, from those given in [1,
3] and [2]. Most notably, we use a system of just two constraining axioms
instead of four original ones. This new system is equivalent to the old one but
makes the underlying concepts more consistent. Naturally, all the results of
media theory remain valid. This approach is also employed in the forthcoming
monograph [11]. We also include some new results from graph theory (Section 6)
that are crucial in establishing fine properties of messages and media.

In Sections 2 and 3 basic definitions and axioms are introduced and in-
dependence of the two constraining axioms is established. Some fundamental
properties of tokens and messages are presented in Section 5, which is pre-
ceeded by Section 4 where an important and in some sense ‘generic’ example
of a medium is given. Graphs are important tools in studying and representing
media. Necessary facts from graph theory are presented in Section 6; graphs
of media are introduced in Section 7. We then proceed by establishing many
properties of messages and media in Sections 9–11. Graphs representing media
are characterized as partial cubes and mediatic graphs in the last section of the
paper.

2 Token systems

Let S be a set of states. A token is a transformation τ : S 7→ Sτ . By definition,
the identity function τ0 on S is not a token. Let T be a set of tokens. The pair
(S,T) is called a token system. To avoid trivialities, we assume that |S| ≥ 2 and
T 6= ∅.

Let V and S be two states of a token system (S,T). Then V is adjacent to
S if S 6= V and Sτ = V for some token τ ∈ T. A token τ̃ ∈ T is a reverse of a
token τ if for all distinct S, V ∈ S, we have

Sτ = V ⇐⇒ V τ̃ = S.

Two distinct states S and V are adjacent if S is adjacent to V and V is adjacent
to S.

Remark 2.1. In both examples of Figure 3.2, the state V is adjacent to the
state S, but these two states are not adjacent in either example.

2



Remark 2.2. It is easy to verify that if a reverse of a token exists, then it is
unique and the reverse of a reverse is the token itself; that is, ˜̃τ = τ , provided
that τ̃ exists. In general, a token of a token system (S,T) does not necessarily
have a reverse in (S,T). For instance, the token τ in Example [M1] of Figure 3.2
does not have a reverse in T. It is also possible for a token to be the reverse of
itself. For example, let S = {S, V }, T = {τ} where τ is the function defined by
Sτ = V and V τ = S. Clearly, τ̃ = τ .

A message of a token system (S,T) is a string of elements of the set T. We
write these strings in the form m = τ1τ2 . . . τn. If a token τ occurs in the string
τ1τ2 . . . τn, we say that the message m = τ1τ2 . . . τn contains τ .

A message m = τ1τ2 . . . τn defines a transformation

S 7→ Sm = ((. . . ((Sτ1)τ2) . . .)τn)

of the set of states S. By definition, the empty message defines the identity
transformation τ0 of S. If V = Sm for some message m and states S, V ∈ S,
then we say that m produces V from S or, equivalently, that m transforms S
into V . More generally, ifm = τ1 . . . τn, then we say that m produces a sequence
of states (Si), where S0 = S and Si = Sτ1 . . . τi for 1 ≤ i ≤ n.

If m and n are two messages, then mn stands for the concatenation of
the strings m and n. We denote by m̃ = τ̃n . . . τ̃1 the reverse of the message
m = τ1 . . . τn, provided that the tokens in m̃ exist. If n = mpm

′ is a message,
with m and m

′ possibly empty messages, and p non empty, then we say that
p is a segment of n.

The content of a message m = τ1 . . . τn is the set C(m) = {τ1, . . . , τn} of its
distinct tokens. The content of the empty message is the empty set. We write
ℓ(m) = n to denote the length of the message m and assume that the length of
the empty message is zero. It is clear that |C(m)| ≤ ℓ(m) for any message m.

A message is consistent if it does not contain both a token and its reverse,
and inconsistent otherwise. A message m = τ1 . . . τn is vacuous if the set of
indices {1, . . . , n} can be partitioned into pairs {i, j}, such that τi and τj are
mutual reverses.

A message m is effective (resp. ineffective) for a state S if Sm 6= S (resp.
Sm = S) for the corresponding transformation m. A message m = τ1 . . . τn
is stepwise effective for S if Sk 6= Sk−1, 1 ≤ k ≤ n, in the sequence of states
produced by m from S. A message is said to be concise for a state S if it is
stepwise effective for S, consistent, and any token occurs at most once in the
message. A message is closed for a state S if it is stepwise effective and ineffective
for S. When it is clear from the context which state is under consideration, we
may drop a reference to that state.

If m and n are two concise messages such that Sm = V and V n = S for
some states S and V , we call mn a 2-gon for S.

Some properties of the concepts introduced in this section are listed below.
These properties are straightforward and will be used implicitly in this paper.

1. One must distinguish messages from transformations defined by these mes-
sages. For instance, for any token τi, the two distinct messages m = τiτi
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and n = τi of the token system displayed in Figure 3.1 define the same
transformation of the set of states S.

2. A consistent message may not contain a token which is identical to its
reverse. Clearly, this also holds for concise messages.

3. The length of a vacuous message is an even number.

4. The reverse m̃ of a concise message m producing a state V from a state
S is a concise message for V , provided that m̃ exists.

5. Let m = τ1 . . . τn be a stepwise effective message for a state S. For any i,
the state Si+1 is adjacent to the state Si in the sequence of states produced
by m. In general, there could be identical states in this sequence; a 2-gon
mm̃ is an example (we assume that m̃ exists).

6. Any segment of a concise message is a concise message for some state.

7. If m is a concise message for some state, then ℓ(m) = |C(m)|.

8. A 2-gon for a state S is closed for S.

3 Axioms for a Medium

Definition 3.1. A token system (S,T) is called a medium (on S) if the following
axioms are satisfied.

[M1] For any two distinct states S and V in S there is a concise message
transforming S into V .

[M2] A message which is closed for some state is vacuous.

A medium (S,T) is finite if S is a finite set.

TWV

S X

τ1

τ2

τ5

τ6

τ6

τ5

τ3
τ3τ4

τ4

Figure 3.1: Digraph of a medium with set of states S = {S, V,W,X, T } and set
of tokens T = {τi}1≤i≤6.
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Example 3.1. Figure 3.1 displays the digraph of a medium with set of states
S = {S, V,W,X, T } and set of tokens T = {τi | 1 ≤ i ≤ 6}. It is clear that
τ̃1 = τ2, τ̃3 = τ4, and τ̃5 = τ6. We omit loops in digraphs representing token
systems.

Theorem 3.1. The axioms [M1] and [M2] are independent.

Proof. Each of the two digraphs in Figure 3.2 defines a token system with the
set of states {S, V,W} satisfying one of the two axioms defining a medium. The
axiom labeling each digraph indicates the failing axiom. Indeed, in Example
[M1] of Figure 3.2, there is no message producing W from any other state, so
Axiom [M1] fails; Axiom [M2] holds vacuously. In Example [M2] of the same
figure, the message τ1τ2τ3 is stepwise effective for S and ineffective for S, but
is not vacuous. Thus, Axiom [M2] does not hold. Clearly, Axiom [M1] holds in
this case.

τ

W

S V
τ1

W

S V

τ2
τ3

[M1] [M2]

Figure 3.2: Digraphs of two token systems. Each digraph is labeled by the
unique failing Axiom.

4 A ‘canonical’ example of a medium

Let X be a set and F be a family of subsets of X such that |F| ≥ 2. For every
x ∈ ∪F \ ∩F, we define transformations γx and γ̃x of the family F by

γx : S 7→ Sγx =

{
S ∪ {x}, if S ∪ {x} ∈ F,

S, otherwise,

and

γ̃x : S 7→ Sγ̃x =

{
S \ {x}, if S \ {x} ∈ F,

S, otherwise,

respectively, and denote GF the family of all these transformations. We say
that the family F is connected if, for any two sets S, T ∈ F, there is a sequence
S0 = S, S1, . . . , Sn = T of sets in F such that d(Si, Si+1) = |Si △ Si+1| = 1 for
all i.

Lemma 4.1. If F is connected, then (F,GF) is a token system.
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Proof. We need to show that γx 6= τ0 and γ̃x 6= τ0 for any given x. Since
x ∈ ∪F \ ∩F, there are S, T ∈ F such that x /∈ S and x ∈ T . Let (Si) be
a sequence of sets in F such that S0 = S, Sn = T , and d(Si, Si+1) = 1 for
all i. Clearly, there is k such that x /∈ Sk and x ∈ Sk+1. It follows that
Sk+1 = Sk+{x}, so Skγx = Sk+1. Therefore, γx 6= τ0. Evidently, Sk+1γ̃x = Sk,
so γ̃x 6= τ0.

Remark 4.1. The converse of the lemma does not hold. For X = {a, b, c, d},
let F = {{a}, {b}, {a, b}, {c}, {d}, {c, d}}. The family F is not connected, but
(F,GF) is a token system.

Definition 4.1. A family F of subsets of a set X is well-graded (a wg-family)
if, for any two distinct subsets S, T ∈ F with d(S, T ) = n, there is a sequence
S0 = S, S1, . . . , Sn = T such that d(Si, Si+1) = 1 for all 0 ≤ i < n.

Remark 4.2. A family F of finite subsets of X is well-graded if and only if the
induced graph 〈F〉 is an isometric subgraph of the cube H(X), that is, 〈F〉 is a
partial cube on X (see 6).

We will need the following result.

Lemma 4.2. Let (S0, S1, . . . , Sn) be a sequence of subsets of X such that

d(S0, Sn) = n and d(Si−1, Si) = 1 for 1 ≤ i ≤ n.

Then d(Si, Sj) = |i− j|, for all 0 ≤ i, j ≤ n.

Proof. We may assume that i < j. By the triangle inequality,

n = d(S0, Sn) ≤ d(S0, Si) + d(Si, Sj) + d(Sj , Sn)

≤ (i− 0) + (j − i) + (n− j) = n.

It follows that d(Si, Sj) = j − i.

Theorem 4.1. (F,GF) is a medium if and only if F is a wg-family.

Proof. (Necessity.) Let S and T be two distinct sets in F. By [M1], there is a
concise message m = τ1 . . . τn transforming S into T . Let (Si) be a sequence
of sets produced by m from S, so S0 = S and Sn = T . Each τi is either γxi

or γ̃xi
for some xi. Since m is a concise message, all elements xi are distinct.

Suppose first that τi = γxi
for some i. Then Si = Si−1 + {xi}. Since m is a

concise message, we must have xi ∈ Sj for all j ≥ i and xi /∈ Sj for all j < i.
Hence, xi ∈ T \S. Suppose now that τi = γ̃xi

for some i. Then Si = Si−1 \{xi}.
Arguing as in the previous case, we obtain xi ∈ S \ T . Therefore, xi ∈ S △ T
for any i. On the other hand, it is clear that any element of S△T is one of the
xi’s. Thus S △ T = ∪i{xi}, so d(S, T ) = n. Clearly, we have d(Si−1, Si) = 1,
for all i. It follows that F is a wg-family.

(Sufficiency.) Let F be a well-graded family of subsets of some set X . By
Lemma 4.1, (F,GF) is a token system. It is clear that the tokens γx and γ̃x are
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mutual reverses for any x ∈ ∪F \ ∩F. We need to show that Axioms [M1] and
[M2] are satisfied for (F,GF).

Axiom [M1]. Let S and T be two distinct states in the wg-family F, and
let (Si) be a sequence of states in F such that S0 = S, Sn = T , d(S, T ) = n,
and d(Si−1, Si) = 1. By the last equation, for any i, there is xi such that
Si−1 △ Si = {xi}. Suppose that xi = xj for some i < j. We have

(Si−1 △ Sj)△ (Si △ Sj−1) = (Si−1 △ Si)△ (Sj−1 △ Sj) = {xi} △ {xj} = ∅.

Hence, Si−1 △ Sj = Si △ Sj−1, so, by Lemma 4.2,

j − (i− 1) = d(Si−1, Sj) = d(Si, Sj−1) = (j − 1)− i,

a contradiction. Thus, all xi’s are distinct. Since Si−1 △ Si = {xi}, we have
Si−1τi = Si, where τi is either γxi

or γ̃xi
. Clearly, the message τ1 . . . τn is concise

and produces T from S.
Axiom [M2]. Let m = τ1 . . . τn be a stepwise effective message for a state

S which is ineffective for S. As before, (Si) stands for the sequence of states
produced by m from S, so S0 = Sn = S. Since Sm = S, for any occurrence
of τ in m there must be occurrence of τ̃ in m. Suppose that we have two
consecutive occurrences of a token τ = τi = τj = γx in m. Then x ∈ Si and
x /∈ Sj−1. Therefore we must have an occurrence of τ̃ = γ̃x between this two
occurrences of τ . A similar argument shows that there is an occurrence of a
token between any two consecutive occurences of its reverse, so occurrences of
token and its reverse alternate in m. Finally, let τi be the first occurrence of
τ in m. We may assume that there are more than one occurrence of τ in m.
The message n = τi+1 . . . τnτ1 . . . τi is stepwise effective and ineffective for Si.
By the previous argument, occurrences of τ and its reverse alternate in n. It
follows that the number of occurrences of both τ and τ̃ in m is even, so m is
vacuous.

Theorem 4.1 justifies the following definition.

Definition 4.2. Let F be a wg-family of subsets of a set X . The medium
(F,GF) is said to be the representing medium of F.

We will show later (Theorem 12.2) that any medium is isomorphic to the rep-
resenting medium of some wg-family of sets. This is why (F,GF) is a ‘canonical’
example of a medium.

The representing medium (B(X),GB(X)) of the family of all finite subsets of
X has a rather special property:

For any state S and any token γ, either γ or γ̃ is effective for S.

Any medium satisfying this property is said to be complete.
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5 Tokens and messages of media

The two axioms defining a medium are quite strong. We derive a few basic
consequences of these axioms. In what follows we assume that a medium (S,T)
is given.

Lemma 5.1. (i) Any token of a medium has a reverse. In particular, if S is
adjacent to V , then S and V are adjacent.

(ii) No token can be identical to its own reverse. In particular, a single token
τ is a concise message for any state S such that Sτ 6= S.

(iii) For any two adjacent states, there is exactly one token producing one
state from the other.

Proof. (i) and (ii). Let τ be a token in T. Since τ 6= τ0 (recall that τ0 stands
for the identity transformation of S and is not a token), there are two distinct
states S and V in S such that Sτ = V . By Axiom [M1], there is a concise
message m producing S from V . The message τm is stepwise effective for S
and ineffective for that state. By Axiom [M2], this message is vacuous. Hence,
the message m contains a reverse of τ . It follows that there is a reverse of τ in
T. If τ = τ̃ , then m contains both τ and τ̃ . This contradicts the assumption
that m is a concise message.

(iii) Suppose that Sτ1 = Sτ2 = V , so V is adjacent to S. By (i), the message
τ1τ̃2 is stepwise effective and ineffective for S. By Axiom [M2], it is vacuous,
that is, {τ1, τ̃2} is a pair of mutually reverse tokens. Therefore, τ1 = ˜̃τ2 = τ2.

Let τ be a token of a medium. We define

Uτ = {S ∈ S | Sτ 6= S}. (5.1)

Note that Uτ 6= ∅, since τ is a token.

Lemma 5.2. For any given τ ∈ T we have

(i) (Uτ )τ = Uτ̃ .

(ii) Uτ ∩Uτ̃ = ∅.

(iii) The restriction τ |
Uτ

is a bijection from Uτ onto Uτ̃ with τ |−1
Uτ

= τ̃ |
Uτ̃

.

(iv) τ is not a one-to-one transformation.

Proof. (i) We have

T ∈ (Uτ )τ ⇔ Sτ = T (S 6= T ) ⇔ T τ̃ = S (S 6= T ) ⇔ T ∈ Uτ̃ .

(ii) If S ∈ Uτ ∩ Uτ̃ , then there exist T 6= S such that Sτ = T and V 6= S
such that Sτ̃ = V , so V τ = S. If V = T , then, by [M2], the message ττ is
vacuous, so τ̃ = τ , which contradicts Lemma 5.1(ii). If V 6= T , then, by [M1],
there is a concise message m producing V from T . By [M2], the message ττm
is vacuous, so we must have two occurrences of τ̃ in m a contradiction, since m
is a concise message. It follows that Uτ ∩ Uτ̃ = ∅.

(iii) and (iv) follow immediately from (i) and (ii).

8



Lemma 5.3. If m is a concise message for some state S, then m is effective
for S.

Proof. If Sm = S, then, by Axiom [M2], m must be vacuous, which contradicts
our assumption that m is a concise message.

Lemma 5.4. A vacuous message m which is stepwise effective for a state S is
ineffective for S.

Proof. Suppose that T = Sm 6= S, and let n be a concise message producing S
from T . By Axiom [M2], the message mn is vacuous, so n must contain a pair
of mutually reverse tokens, a contradiction. Hence, Sm = S.

Lemma 5.5. Let S, V , and W be three states of the medium (S,T) and suppose
that V = Sm, W = V n for some concise messages m and n, and S = Wp

where p is either a concise message or empty (see the diagram in Figure 5.1).
There is at most one occurrence of each pair of mutually reverse tokens in the
closed message mnp.

m

p

n
S

V

W

Figure 5.1: Diagram for Lemma 5.5.

Proof. Let τ be a token in C(m). Since m is a concise message, there is only
one occurrence of τ in m and τ̃ /∈ C(m). By Axiom [M2], the message mnp

is vacuous, so we must have τ̃ ∈ C(n) ∪ C(p). Suppose that τ̃ ∈ C(n) (the case
when τ̃ ∈ C(p) 6= ∅ is treated similarly). Since n is a concise message, there are
no more occurences of τ̃ in n and τ 6∈ C(n). Thus there is only one occurrence
of the pair {τ, τ̃} in the message mn. The pair {τ, τ̃} cannot occur in p, since
p is a concise message. The result follows.

Corollary 5.1. Let m and n be two concise messages producing V from S.
Then the string n is a permutation of the string m. In particular, ℓ(m) = ℓ(n).

One can say more in the special case when p = τ is a single token.

Lemma 5.6. Let S, V and W be distinct states of a medium and suppose that

V = Sm, W = V n, S = Wτ

for some concise messages m and n and a token τ (see Figure 5.2). Then

τ /∈ C(n), τ /∈ C(m),
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and either

τ̃ ∈ C(m), nτ is a concise message, C(nτ) = C(m̃), ℓ(m) = ℓ(n) + 1,

or

τ̃ ∈ C(n), τm is a concise message, C(τm) = C(ñ), ℓ(n) = ℓ(m) + 1.

Accordingly,
|ℓ(m)− ℓ(n)| = 1. (5.2)

m

n

τ

S

V

W

Figure 5.2: For Lemma 5.6.

Proof. By Lemma 5.5, τ /∈ C(n), τ /∈ C(m), and τ̃ occurs either in m or in
n. Suppose that τ̃ ∈ C(m). By the same lemma, neither τ not τ̃ occurs in n.
Therefore, nτ is a concise message. The equality C(nτ) = C(m̃) also follows
from Lemma 5.5. Since m is a concise message, we have

ℓ(m) = |C(m)| = |C(m̃)| = |C(nτ)| = ℓ(n) + 1.

The case when τ̃ ∈ C(n) is treated similarly.

Remark 5.1. In each of two mutually exclusive cases of Lemma 5.6 there are
2-gons constructed from concise messages m, n, and τ . For instance,

if τ̃ ∈ C(m), then mnτ is a 2-gon for S,
if τ̃ ∈ C(n), then τmn is a 2-gon for W .

Remark 5.2. Equation (5.2) also follows from Lemma 6.1.

The results of Lemma 5.5 suggest an interpretation of the length function
on messages. First, by Corollary 5.1, we have ℓ(m) = ℓ(n) for any two concise
messages m and n producing a state V from a state S. Therefore the function

δ(S, V ) =

{
ℓ(m), if Sm = V ,

0, otherwise,
(5.3)

where m is a concise message, is well-defined. Since ℓ(m̃) = ℓ(m), the function
δ is symmetric.

Second, for the messages in Figure 5.1 we have

|C(p)| ≤ |C(n)|+ |C(m)|,
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by Lemma 5.5. Indeed, for any token in C(p) we have a unique matching
reverse either in C(m) or in C(n). Since the length of a concise message equals
the cardinality of its content, we have the triangle inequality

δ(S,W ) ≤ δ(S, V ) + δ(V,W ).

It is easy to verify that this inequality holds for any choice of states S, V,W ∈ S.
We obtained the following result.

Theorem 5.1. The function δ(S, V ) defined by (5.3) is a metric on S.

6 Bipartite graphs and partial cubes

Some useful properties of media can be derived from metric properties of their
graphs. First, we formulate two well-known characterization properties of bi-
partite graphs (see, for instance, [14]). In what follows, δ stands for the graph
distance.

Theorem 6.1. A graph G is bipartite if and only if it contains no closed walk
of odd length.

Theorem 6.2. A connected graph is bipartite if and only if for every vertex T
there is no edge {S, V } such that δ(T, S) = δ(T, V ).

Lemma 6.1. Let {S, V } be an edge of a connected bipartite graph G and W be
a vertex of G. Then

|δ(W,S)− δ(W,V )| = 1. (6.1)

Proof. By the triangle inequality,

|δ(W,S)− δ(W,V )| ≤ 1.

By Theorem 6.2, δ(W,S) 6= δ(W,V ). Since values of the function δ are whole
numbers, we have (6.1).

S

T

Q

P

1

1

Figure 6.1: Two edges of a graph. Note that δ(S, T ) = δ(P,Q) = 1.
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Theorem 6.3. Let G be a connected bipartite graph and {S, T } and {P,Q}
be two distinct edges of G(see Figure 6.1). There are six mutually exclusive,
exhaustive cases:

Case 1: δ(T, P ) = δ(S,Q) = δ(S, P ) + 1 = δ(T,Q)− 1
Case 2: δ(T, P ) = δ(S,Q) = δ(S, P )− 1 = δ(T,Q) + 1
Case 3: δ(S, P ) = δ(T,Q) = δ(T, P ) + 1 = δ(S,Q)− 1
Case 4: δ(S, P ) = δ(T,Q) = δ(T, P )− 1 = δ(S,Q) + 1
Case 5: δ(S, P ) = δ(T,Q) = δ(T, P ) + 1 = δ(S,Q) + 1
Case 6: δ(S, P ) = δ(T,Q) = δ(T, P )− 1 = δ(S,Q)− 1

Proof. By applying the result of Lemma 6.1 to ‘triangles’ PST , PQT , PSQ,
and STQ, we obtain four equations:

|δ(S, P )− δ(T, P )| = 1 (6.2)

|δ(T,Q)− δ(T, P )| = 1 (6.3)

|δ(S, P )− δ(S,Q)| = 1 (6.4)

|δ(T,Q)− δ(S,Q)| = 1, (6.5)

It is helpful to regard the absolute values in these equations as distances on the
number line.

Suppose that δ(S, P ) 6= δ(T,Q). Then, 2δ(T, P ) = δ(S, P )+δ(T,Q), by (6.2)
and (6.3), and 2δ(S,Q) = δ(S, P ) + δ(T,Q), by (6.4) and (6.5). Therefore,
δ(T, P ) = δ(S,Q). There are two mutually exclusive possibilities in this case:

Case 1: δ(T, P ) = δ(S,Q) = δ(S, P ) + 1 = δ(T,Q)− 1
Case 2: δ(T, P ) = δ(S,Q) = δ(S, P )− 1 = δ(T,Q) + 1
Suppose that δ(S, P ) = δ(T,Q) and δ(T, P ) 6= δ(S,Q). The same argument

as above, applied to equations (6.2), (6.4) and (6.3), (6.5), shows that there are
again two mutually exclusive possibilities:

Case 3: δ(S, P ) = δ(T,Q) = δ(T, P ) + 1 = δ(S,Q)− 1
Case 4: δ(S, P ) = δ(T,Q) = δ(T, P )− 1 = δ(S,Q) + 1
Finally, suppose that δ(S, P ) = δ(T,Q) and δ(T, P ) = δ(S,Q). Obviously,

we have either
Case 5:

δ(S, P ) = δ(T,Q) = δ(T, P ) + 1 = δ(S,Q) + 1 (6.6)

or
Case 6:

δ(S, P ) = δ(T,Q) = δ(T, P )− 1 = δ(S,Q)− 1 (6.7)

It is clear that the six cases are mutually exclusive and exhaustive.

In the first four cases we obtain the identities:
Case 1: δ(T,Q) = δ(S, P ) + 2.
Case 2: δ(S, P ) = δ(T,Q) + 2.
Case 3: δ(S,Q) = δ(T, P ) + 2.

12



Case 4: δ(T, P ) = δ(S,Q) + 2.
It follows that in these four cases the edges {S, T } and {P,Q} belong to a

shortest path in G (see Figure 6.2).
The remaining two cases are depicted in Figure 6.3. In these two cases, the

four vertices do not belong to any shortest path in G. It is natural to call the
configuration defined by these vertices a ‘rectangle’—the opposite ‘sides’ are
equal as well as the two ‘diagonals’.

edge { S, T }
edge { P, Q }

Figure 6.2: A path for Cases 1–4 containing edges {S, T } and {P,Q}.

S

T P

Q

Q

P

T

S

1 1 1 1

Case 5 Case 6

Figure 6.3: Two ‘rectangles’ for Cases 5 and 6.

It is easy to verify that the first four cases can be distinguished from the last
two by the following conditions:

δ(T, P ) + δ(S,Q) = δ(S, P ) + δ((T,Q) in Cases 1–4,

δ(T, P ) + δ(S,Q) 6= δ(S, P ) + δ((T,Q) in Cases 5 and 6.

Let us recall [15, 16] thatWinkler’s relation Θ is a binary relation on the set
of edges E defined by

{S, T }Θ{P,Q} ⇐⇒ δ(S, P ) + δ(T,Q) 6= δ(S,Q) + δ(T, P ).

We established, in particular, the following result (cf. [15, Lemma 2.2]).

Theorem 6.4. Two edges of a connected bipartite graph stand in Winkler’s
relation Θ if and only if they do not belong to the same shortest path.

Definition 6.1. A cube on a set X , H(X), has the set B(X) of all finite subsets
of X as the set of vertices; {S, T } is an edge of H(X) if |S △ T | = 1. A partial
cube is a graph that is isometrically embeddable into some cube H(X).

Definition 6.2. Let G = (V,E) be a connected graph and δ be the graph
distance on G. For any {S, T } ∈ E, the sets

WST = {P ∈ V | δ(V, S) < δ(V, T )}

are called semicubes of G. The semicubes WST and WTS are called opposite
semicubes of G.

13



It is easy to prove (see [17]) that a graph G is bipartite if and only if the
opposite semicubes WST and WTS form a partition of V .

The following theorem (Theorem 2.10 in [15]) summarizes two major char-
acterizations of partial cubes due to Djoković [18] and Winkler [16].

Theorem 6.5. For a connected graph G = (V,E) the following statements are
equivalent:

(i) G is a partial cube.

(ii) G is bipartite and for every edge {S, T } the semicube WST induces a convex
subgraph of G.

(iii) G is bipartite and Θ is an equivalence relation on E.

We give another useful characterization of partial cubes.

Theorem 6.6. A graph G = (V,E) is a partial cube if and only if it is possible
to label its edges by elements of some set J such that

(i) Edges of any shortest path of G are of different labels.

(ii) In each closed walk of G every label appears an even number of times.

Proof. (Necessity.) Without loss of generality, we may assume that G = (F,E)
is an isometric subgraph of a cube H(J) such that ∩F = ∅ and ∪ F = J for
a wg-family F. For any edge {S, T } of G there is an element j ∈ J such that
S △ T = {j}, so we can label edges of G by elements of J .

(i) Let S0 = S, S1, . . . , Sn = T be a shortest path from S to T in G. For
every i, we have S ∩ T ⊆ Si ⊆ S ∪ T . Therefore,

{ji} = Si−1 △ Si ⊆ S △ T.

Since (Si) is a shortest path, |S△ T | = d(S, T ) = n. It follows that all labels ji
are distinct.

(ii) Let S0, S1, . . . , Sn = S0 be a closed walk W in G and let Ep = {Sp−1, Sp}
be the first edge inW labeled by j, so Sp−1△Sp = {j}. We assume that j /∈ Sp−1

and j ∈ Sp; the other case is treated similarly. Since Ep is the first edge of W
labeled by j, we must have j /∈ S0. Since the walk W is closed and j ∈ Sp, we
must have another occurrence of j in W . Let Eq = {Sq−1, Sq} be the next edge
of W labeled by j. We have j ∈ Sq−1 and j /∈ Sq. By repeating this argument,
we partition the occurrences of j in W into pairs, so the total number of these
occurrences must be even.

(Sufficiency.) Let S0 be a fixed vertex of G. For any vertex S ∈ V and a
shortest path p from S0 to S, we define

JS = {j ∈ J | j is a label of an edge of p},

and JS0
= ∅. The set JS is well-defined. Indeed, let q be another shortest path

from S0 to S and q̃ be its reverse, so pq̃ is a closed walk. By (i) and (ii), JS
does not depend on the choice of p.

14



The correspondence α : S 7→ JS defines an isometric embedding of G into
the cube H(J). Indeed, for S, T ∈ V , let p (resp. q) be a shortest path from S0

to S (resp. T ) and let r be a shortest path from S to T . By (ii) applied to the
closed walk prq̃ and (i), we have

j ∈ JS △ JT ⇐⇒ j is a label of an edge of r,

so δ(S, T ) = |JS △ JT | = d(JS , JT ).

7 The graph of a medium

Definition 7.1. The graph of a medium (S,T) has S as the set of vertices; two
vertices of the graph are adjacent if and only if the corresponding states are
adjacent in the medium.

By Lemma 5.1, for any two adjacent states S and T of a medium (S,T)
there is a unique token τ such that Sτ = T and T τ̃ = S. Thus, a unique pair
of mutually reversed tokens {τ, τ̃} is assigned to each edge {S, V } of the graph
of (S,T).

Let (S,T) be a medium and G be its graph. If m = τ1 . . . τm is a stepwise
effective message for a state S producing a state V , then the sequence of vertices
(Si) of G produced by m, is a walk in G; the vertex S0 = S is a tail of this
walk and the vertex Sm = V is its head. On the other hand, if the sequence
of vertices S0 = S, S1, . . . , Sm = V is a walk in G, then edges {Si−1, Si} define
unique tokens τi such that Si−1τi = Si. Then m = τ1 . . . τm is a stepwise
effective message for the state S producing the state V . Thus we have a one-
to-one correspondence between stepwise effective messages of the medium and
walks in its graph. In particular, a closed message for some state produces a
closed walk in G.

A deeper connection between media and their graphs is the result of the
following theorem.

Theorem 7.1. Let (S,T) be a medium and G be its graph. If m = τ1 . . . τm
is a concise message producing a state V from a state S, then the sequence of
vertices (Si) produced by m forms a shortest path connecting S and V in the
graph G. Conversely, if S0 = S, S1, . . . , Sm = V is a shortest path in G, then
the corresponding message is a concise message of G.

Proof. (Necessity.) Let P0 = S, P1, . . . , Pn = V be a path in G joining S
to V and n = µ1 . . . µn be the (stepwise effective) message of the medium
corresponding to this path. By Axiom [M2], the message mñ is vacuous, so
ℓ(m) ≤ ℓ(ñ) = ℓ(n), since m is a concise message for S. Thus the sequence
(Si) is a shortest path in G.

(Sufficiency.) Let S0 = S, S1, . . . , Sm = V be a shortest path in G and let
m = τ1 . . . τm be the corresponding stepwise effective message of the medium.
By Axiom [M1], there is a concise message n producing V from S. By the
necessity part of the proof, the walk defined by n is a shortest path from S to
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V , so ℓ(n) = ℓ(m). By Axiom [M2], the message mñ must be vacuous. Since
the message n is concise and ℓ(n) = ℓ(m), the message m must be concise.

Let G be the graph of a medium. By Axiom [M1], G is connected. Let
S0 = S, S1, . . . , Sn = S be a closed walk. By Axiom [M2], the corresponding
message of the medium is vacuous. Therefore it must be of even length. It
follows (see 6) that the graph of a medium is bipartite. Note that not every
connected bipartite graph is the graph of some medium.

Example 7.1. The simplest counterexample is the complete bipartite graph
K2,3 shown in Figure 7.1. Suppose that this graph is the graph of a medium
and let τ be a token producing T from S. By Axiom [M2], the closed message
producing the sequence of states (S, T, P, V, S) must be vacuous and therefore
contain an occurrence of τ̃ . We cannot have T τ̃ = P or V τ̃ = S, since tokens
are functions. Therefore, P τ̃ = V , so V τ = P . The same argument applied to
the closed message producing the sequence (V, P,Q, S, V ) shows that Sτ = Q.
Thus Sτ = T and Sτ = Q, a contradiction.

S

T

P

QV

Figure 7.1: Complete bipartite graph K2,3.

It follows from Theorem 7.1 that the metric δ on the set of states of a medium
is the graph distance on the graph of that medium.

8 Contents

Definition 8.1. Let (S,T) be a medium. For any state S, the content of S is

the set Ŝ of all tokens each of which is contained in at least one concise message
producing S. The family Ŝ = {Ŝ |S ∈ S} is called the content family of S.

Lemma 8.1. The content of a state cannot contain both a token and its reverse.

Proof. Suppose that Sm = Wn = V for two concise messages m and n and let
p be a concise message producing S from W , if W 6= S, and empty, if W = S.
By Lemma 5.5, there is at most one occurrence of any token τ in the message
mñp. Therefore we cannot have both τ ∈ C(m) and τ̃ ∈ C(n).

Theorem 8.1. For any token τ and any state S, we have either τ ∈ Ŝ or τ̃ ∈ Ŝ.
Consequently, |Ŝ| = |V̂ | for any two states S and V .
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Proof. Since τ is a token, there are two states V and W such that W = V τ .
By Axiom [M1], there are concise messages m and n such that S = Vm and
S = Wn. By Lemma 5.6, there are two mutually exclusive options: either
τ̃ ∈ C(n) or τ ∈ C(m).

Theorem 8.2. If S and V are two distinct states, with Sm = V for some
concise message m, then V̂ \ Ŝ = C(m).

Proof. Let τ be a token in C(m), so τ̃ ∈ C(m̃). Thus, τ ∈ V̂ and τ̃ ∈ Ŝ. By

Theorem 8.1, τ /∈ Ŝ. It follows that τ ∈ V̂ \ Ŝ, that is, C(m) ⊆ V̂ \ Ŝ.

If τ ∈ V̂ \ Ŝ, then τ ∈ V̂ and τ /∈ Ŝ, so, by Theorem 8.1, τ̃ ∈ Ŝ. Since τ ∈ V̂ ,
there is a concise message n producing the state V from some state W such
that τ ∈ C(n), so τ̃ ∈ C(ñ). Let p be a concise message producing S from W
(or empty if S = W ). By Lemma 5.5, there is exactly one occurrence of the pair

{τ, τ̃} in the message mñp. Since τ̃ ∈ Ŝ, we have τ /∈ C(p). Hence, τ ∈ C(m).

In both cases we have V̂ \ Ŝ ⊆ C(m). The result follows.

Theorem 8.3. For any two states S and V we have

S = V ⇔ Ŝ = V̂ .

Proof. Suppose that Ŝ = V̂ , S 6= V , and let m be a concise message producing
V from S. By Theorem 8.2,

∅ = V̂ \ Ŝ = C(m),

a contradiction. Thus, Ŝ = V̂ ⇒ S = V . The implication S = V ⇒ Ŝ = V̂ is
trivial.

Theorem 8.4. Let m and n be two concise messages transforming some state
S. Then Sm = Sn if and only if C(m) = C(n).

Proof. (Necessity.) Suppose that V = Sm = Sn. By Theorem 8.2,

C(m) = V̂ \ Ŝ = C(n).

(Sufficiency.) Suppose that C(m) = C(n) and let V = Sm and W = Sn.
By Theorem 8.2,

V̂∆Ŝ = C(m) ∪ C(m̃) = C(n) ∪ C(ñ) = Ŵ∆Ŝ,

which implies V̂ = Ŵ . By Theorem 8.3, V = W .

Definition 8.2. Let τ be a token of a medium (S,T). The subset

Wτ = {S ∈ S | τ ∈ Ŝ}

of S is called a semicube of the medium (S,T). Semicubes Wτ and Wτ̃ are called
opposite semicubes.
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By Theorem 8.1, we have

Wτ ∩Wτ̃ = ∅ and Wτ ∪Wτ̃ = S,

so opposite cubes form a bipartition of the set S. It is also clear that

Uτ ⊆ Wτ̃ for any τ ∈ T,

where Uτ is defined by equation (5.1).

Lemma 8.2. Let S and T be two distinct states in Wτ and m = τ1 . . . τn be a
concise message transforming S into T . All states in the sequence (Si) produced
by m from S belong to the set Wτ .

Proof. Suppose to the contrary that there are states in (Si) that belong to the
semicube Wτ̃ . Let j be the first index such that Sj ∈ Wτ and Sj+1 ∈ Wτ̃ , so

τ ∈ Ŝj and τ̃ ∈ Ŝj+1. By Theorem 8.1, τ̃ /∈ Ŝj , and, by Theorem 8.2, τj+1 = τ̃ ,
since Sjτj+1 = Sj+1. Let now k be the first index such that Sk ∈ Wτ̃ and
Sk+1 ∈ Wτ . By repeating the previous argument, we obtain τk+1 = τ , which
contradicts our assumption that m is a concise message.

By Theorem 7.1 and previous lemma, we have the following result.

Theorem 8.5. Let G be the graph of a medium (S,T). For any token τ ∈ T,
the subgraph induced by the semicube Wτ is convex.

The semicubes of a medium can be metrically characterized as follows.

Theorem 8.6. Let (S,T) be a medium. For any τ ∈ T and S, T ∈ S such that
Sτ = T ,

Wτ = {V ∈ S | δ(V, T ) < δ(V, S)}.

Proof. Let m and n be concise messages producing S and T , respectively, from
V ∈ Wτ . We have τ ∈ V̂ , which implies τ̃ /∈ V̂ . Similarly, T ∈ Wτ implies
τ ∈ T̂ and τ̃ /∈ T̂ . Therefore, τ, τ̃ /∈ T̂ \ V̂ = C(n). It follows that nτ̃ is a
concise message producing S from V . By Theorem 8.4, C(nτ̃ ) = C(m). It
follows that δ(V, T ) = ℓ(m) < ℓ(n) = δ(V, S). A similar argument shows that
δ(V, S) < δ(V, T ), if V ∈ Wτ̃ . The result follows.

If G is the graph of a medium, then Wτ = WST for any two states S and
T such that Sτ = T . (WST is the semicube of the graph G; see 6.) Clearly, in
this case, Wτ̃ = WTS . By Theorem 8.5, the semicubes of G are convex.

9 Closed messages of media

The structure of a 2-gon mn for a state S is determined by the result of Corol-
lary 5.1—the string ñ is a permutation of the string m and therefore the concise
messagesm and ñ have the same content. Note that the message nm is a 2-gon
for the state V = Sm.
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In this section, we are concerned with closed messages of a medium (S,T)
that can be constructed by using a small number of concise messages. A 2-gon
is an example of such a closed message. Another example is the closed message
mnp (3-gon) in Figure 5.1. The structure of this closed message is described
in Lemma 5.5.

S

T Q

P

m

n

m‘

n‘

τ µ

Figure 9.1: Four states and six concise messages.

We apply the results of Theorem 6.3 in 6 to media and consider four distinct
states S, T , P , and Q and six concise messages τ , µ, m, m′, n, and n

′ such
that

Sτ = T, Pµ = Q, Tm = Sm′ = Q, and Sn = Tn′ = P

(see Figure 9.1).
Since the graph of a medium is connected and bipartite, we have the following

result. (In the proof we use the results of Theorem 7.1.)

Theorem 9.1. There are six mutually exclusive, exhaustive cases for the dia-
gram in Figure 9.1:

Case 1: τ̃nµ is a concise message for T with C(τ̃nµ) = C(m).
Case 2: τmµ̃ is a concise message for S with C(τmµ̃) = C(n).
Case 3: τn′µ is a concise message for S with C(τn′µ) = C(m′).
Case 4: τ̃m′µ̃ is a concise message for T with C(τ̃m′µ̃) = C(n′).

Accordingly, τ 6= µ, τ 6= µ̃, C(m) 6= C(n), and ℓ(m) + ℓ(n) = ℓ(m′) + ℓ(n′) in
all four cases listed above.

Case 5: τn′, n′µ, τ̃m′, m′µ̃ are concise messages satisfying conditions

C(m) = C(n′µ) = C(τ̃m′) and C(n) = C(τn′) = C(m′µ̃).

Accordingly, τ = µ̃, C(m) = C(n), and ℓ(m) + ℓ(n) = ℓ(m′) + ℓ(n′) + 2.
Case 6: τm, nµ, τ̃n, mµ̃ are concise messages satisfying conditions

C(m′) = C(τm) = C(nµ) and C(n′) = C(mµ̃) = C(τ̃n). (9.1)

Accordingly,

τ = µ, C(m) = C(n), and ℓ(m) + ℓ(n) + 2 = ℓ(m′) + ℓ(n′). (9.2)
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Proof. Clearly, the six cases of the theorem are mutually exclusive and exhaus-
tive. The proofs for the first four cases are straightforward and omitted. The
proofs of the two remaining cases are very similar, so we prove only the last
case.

Since δ(S,Q) = δ(T,Q)+1, the path corresponding to the stepwise effective
message τm is a shortest path. It follows that τm is a concise message produc-
ing Q from S. Since Sm′ = Q, we have C(m′) = C(τm). Similar arguments
show that nµ, τ̃n, and mµ̃ are concise messages satisfying equations (9.1).

Suppose that τ 6= µ. By the first equation in (9.1), τ ∈ C(n), which is
impossible because τ̃n is a concise message. Hence, τ = µ. The remaining
equations in (9.2) follow immediately from (9.1).

τ τ

ν

ν

τ τ

S

T

P S

T Q

A B

Q

P

ν

ν

Figure 9.2: A Case 6. B Case 5, “twisted” Case 6.

Example 9.1. Cases 6 and 5 are illustrated by drawings A and B, respectively,
in Figure 9.2.

S T

P Q

ν ν ν

τ

τ

µ

µ

Figure 9.3: A medium on six states with m = µν̃ and n = ν̃τ .

Corollary 9.1. The four following conditions are equivalent:
(i) ℓ(m) + ℓ(n) 6= ℓ(m′) + ℓ(n′) and µ 6= τ̃ ;
(ii) τ = µ;
(iii) C(m) = C(n);
(iv) ℓ(m) + ℓ(n) + 2 = ℓ(m′) + ℓ(n′).
Any of these conditions implies that τmµ̃ñ is a 2-gon for S. The converse

does not hold.

Proof. We clearly have Case 6 of Theorem 9.1. Therefore, the four conditions
are equivalent and τmµ̃ñ is a 2-gon for S. A counterexample is shown in
Figure 9.3. It is easy to verify that the token system in Figure 9.3 is a medium.
For m = µν̃ and n = ν̃τ we have Sτm = Snµ = Q, so τqµ̃w̃ is a 2-gon, but
τ 6= µ. The medium in Figure 9.3 illustrates Case 3 of Theorem 9.1.
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Theorem 9.2. The assignment τ 7→ Wτ defines a one-to-one correspondence
between T and the family of semicubes of the medium (S,T).

Proof. Suppose that Wτ = Wµ for some tokens τ, µ ∈ T. There are states
S, T , P , and Q such that Sτ = T and Pµ = Q, so S, P ∈ Wτ̃ = Wµ̃ and
T,Q ∈ Wτ = Wµ. There are three possible cases:

(i) S = P , T 6= Q. Let m be a concise message transforming Q into T . Since

T,Q ∈ Wτ , neither τ not τ̃ are in C(m) = T̂ \ Q̂ in contradiction to Lemma 5.6.
(ii) S 6= P , T = Q. Let m be a concise message transforming P into S. As

in the previous case we have a contradiction with Lemma 5.6.
(iii) S 6= P , T 6= Q. As in case (i), neither τ not τ̃ are in C(m) for a concise

message m transforming Q into T . Thus we have Case 6 of Theorem 9.1. It
follows that τ = µ.

10 Regular circuits

Let m = τ1 . . . τ2n be a closed message for a state S of a medium (S,T). (Note
that, by Axiom [M2], m is vacuous and therefore must have an even length.)
This closed message produces a cyclic sequence of states (Si) with S0 = S2n = S.
For any given 0 ≤ i < 2n, the message mi = τi+1 . . . τ2n . . . τi is closed for Si.
(Note that m0 = m.) Thus we have 2n closed messages with the same cyclic
sequence of states (Si).

S

V

W

τ1

µ1

τ2 τ3

µ2
m n

p

Figure 10.1: For Example 10.1.

Example 10.1. The set of states of the token system in Figure 10.1 are all
vertices of the 4 × 3-grid. Tokens indicated by parallel arrows are identical
and only partly labeled. Reverse tokens are not shown. It can be verified that
this token system is a medium. Let us define m = µ1τ1µ2τ2, n = µ̃2τ3, and
p = µ̃1τ̃3τ̃2τ̃1. These messages are concise with Sm = V , V n = W , and
Wp = S (cf. Figure 5.1). The message mnp is a closed message for S of length
10 indicated by bold arrows in Figure 10.1. As in the preceeding paragraph, one
can produce nine more closed messages from mnp. It can be checked directly
that none of these ten closed messages is a 2-gon.
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Example 10.1 is an extreme instance of a closed message that does not define
any 2-gons. Another extreme case requires a definition. In what follows, (Si) is
the sequence of states produced by a given message.

Definition 10.1. Let m = τ1 . . . τ2n be a closed message for a state S. For
1 ≤ i ≤ n, the two tokens τi and τi+n are called opposite. The closed message
m is a regular circuit if the message τi . . . τi+n−1 is concise for the state Si−1

for all 1 ≤ i ≤ n.

Theorem 10.1. Let m = τ1 . . . τ2n be a 2-gon for a state S. The following
three conditions are equivalent:

(i) m is a regular circuit for S.
(ii) For any 1 ≤ i ≤ 2n− 1, the message τi . . . τ2n . . . τi−1 is a 2-gon for the

state Si−1.
(iii) The opposite tokens of m are mutual reverses.

Proof. (i) ⇒ (ii). Since m is a regular circuit, the message p = τi . . . τi+n−1 is
concise for the state Si−1. The length of the message q = τi+n . . . τ2n . . . τi−1 is
n, so we have δ(Si−1, Si+n−1) = ℓ(p) = ℓ(q). By Theorem 7.1, q is a concise
message for Si+n−1. Thus pq is a 2-gon for Si−1.

(ii) ⇒ (iii). Since the message τi . . . τ2n . . . τi−1 is a 2-gon for the state Si−1,
the messages p = τi . . . τi+n−1 and q = τi+n . . . τ2n . . . τi−1 are concise for the
states Si−1 and Si+n−1, respectively. Thus, for 1 ≤ i < n and

S = Si−1, T = Si, Q = Si+n−1, P = Si+n, τ = τi, µ = τ̃i+n,

we have Case 6 of Theorem 9.1 (see Figure 9.1). Hence, τi = τ̃n+i.
(iii) ⇒ (i). Let p = τi . . . τi+n−1 and q = τi+n . . . τ2n . . . τi−1. By Lemma 5.5,

for any 1 ≤ j ≤ n, there is only one occurrence of the pair {τj , τ̃j} in the 2-gon
m. Since τ̃j = τj+n and ℓ(p) = ℓ(q) = n, there are no occurrences of {τj, τ̃j}
in p or q, so they are concise messages for Si−1 and Si+n−1, respectively. Thus
pq is a 2-gon for Si−1 and the result follows.

As the following example illustrates, it is essential that the closed message
m in Theorem 10.1 is a 2-gon for some state.

Example 10.2. The message m = τ ν̃τ̃ ντ ν̃τ̃ ντ ν̃τ̃ ν is closed for the state S of
the medium shown in Figure 9.3. The opposite tokens in m are mutual reverses.
Clearly, m is not a regular circuit. Moreover, none of the 12 circuits defined by
m for the produced states Si is a 2-gon.

11 Embeddings and isomorphisms

The purpose of combinatorial media theory is to find and examine those prop-
erties of media that do not depend on a particular structure of individual states
and tokens. For this purpose we introduce the concepts of embedding and iso-
morphism for token systems.
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Definition 11.1. Let (S,T) and (S′,T′) be two token systems. A pair (α, β) of
one–to–one functions α : S → S′ and β : T → T′ such that

Sτ = T ⇔ α (S)β (τ) = α (T )

for all S, T ∈ S, τ ∈ T is called an embedding of the token system (S,T) into the
token system (S′,T′).

Token systems (S,T) and (S′,T′) are isomorphic if there is an embedding
(α, β) from (S,T) into (S′,T′) such that both α and β are bijections.

Clearly, if one of two isomorphic token systems is a medium, then the other
one is also a medium.

If a token system (S,T) is a medium and Sτ1 = Sτ2 6= S for some state S,
then, by Lemma 5.1(iii), τ1 = τ2. In particular, if (α, β) is an embedding of a

medium into a medium, then β(τ̃ ) = β̃(τ). Indeed, for a given τ there are two
distinct states S and T such that Sτ̃ = T . Then

α(S)β(τ̃ ) = α(T ) ⇔ Sτ̃ = T ⇔ Tτ = S ⇔

⇔ α(T )β(τ) = α(S) ⇔ α(S)β̃(τ) = α(T ),

so β(τ̃ ) = β̃(τ). We extend β to the semigroup of messages by defining

β(τ1 . . . τk) = β(τ1) . . . β(τk).

Clearly, the image β(m) of a concise message m for a state S is a concise
message for the state α(S).

Let (S,T) be a token system and Q be a subset of S consisting of more than
two elements. The restriction of a token τ ∈ T to Q is not necessarily a token
on Q. In order to construct a medium with the set of states Q, we introduce the
following concept.

Definition 11.2. Let (S,T) be a token system, Q be a nonempty subset of S,
and τ ∈ T. We define a reduction of τ to Q by

SτQ =

{
Sτ if Sτ ∈ Q,

S if Sτ /∈ Q,

for S ∈ Q. A token system (Q,TQ) where TQ = {τQ}τ∈T \ {τ0} is the set of all
distinct reductions of tokens in T to Q different from the identity function τ0 on
Q, is said to be the reduction of (S,T) to Q.

We call (Q,TQ) a token subsystem of (S,T). If both (S,T) and (Q,TQ) are
media, we call (Q,TQ) a submedium of (S,T).

Remark 11.1. A reduction of a medium is not necessarily a submedium of a
given medium. Consider, for instance, the medium shown in Figure 11.1. The
set of tokens of the reduction of this medium to Q = {P,R} is empty. Thus this
reduction is not a medium.
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Figure 11.1: The reduction of this medium to {P,R} is not a submedium.

The image (α(S), β(T)) of a token system (S,T) under embedding (α, β) :
(S,T) → (S′,T′) is not, in general, the reduction of (S′,T′) to α(S). Indeed, let
S′ = S, and let T be a proper nonempty subset of T′. Then the image of (S,T)
under the identity embedding is not the reduction of (S,T′) to S (which is (S,T′)
itself).

On the other hand, this is true in the case of media as the following theorem
demonstrates.

Theorem 11.1. Let (α, β) : (S,T) → (S′,T′) be an embedding of a medium
(S,T) into a medium (S′,T′). Then the reduction (α(S),T′

α(S)) is isomorphic to

(S,T).

Proof. For τ ∈ T, we define β′(τ) = β(τ)α(S), the reduction of β(τ) to α(S).
Let Sτ = T for S 6= T in S. Then α(S)β(τ) = α(T ) for α(S) 6= α(T ) in α(S).
Hence, β′ maps T to T′

α(S).

Let us show that (α, β′) is an isomorphism from (S,T) onto (α(S),T′
α(S)).

(i) β′ is onto. Suppose τ ′α(S) 6= τ0 for some τ ′ ∈ T′. Then there are P 6= Q

in S such that α(P )τ ′α(S) = α(P )τ ′ = α(Q). Let Q = Pm where m is a concise
message. We have

α(Q) = α(Pm) = α(P )β(m) = α(P )τ ′,

implying, by Theorem 8.2, β(m) = τ ′, since β(m) is a concise message. Hence,
m = τ for some τ ∈ T. Thus β(τ) = τ ′, which implies

β′(τ) = β(τ)α(S) = τ ′α(S).

(ii) β′ is one–to–one. Suppose β′(τ1) = β′(τ2). Since β′(τ1) and β′(τ2) are
tokens on α(S) and (S′,T′) is a medium, we have β(τ1) = β(τ2). Hence, τ1 = τ2.

(iii) Finally,
Sτ = T ⇔ α (S)β′ (τ) = α (T ) ,

since
Sτ = T ⇔ α (S)β (τ) = α (T ) .

This completes the proof.

We conclude this section with an example of a submedium.

Example 11.1. Let F be a wg-family of finite subsets of a set X . The repre-
senting medium (F,GF) of F is clearly the reduction of the complete medium
(B(X),GB(X)) to F. Thus, (F,GF) is a submedium of (B(X),GB(X)) for any
wg-family F.
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12 Media and partial cubes

Let G be the graph of a medium (S,T). As we observed before, G is a connected
bipartite graph, but not any connected bipartite graph is a graph of a medium
(see Example 7.1). By Theorems 8.5, 8.6, and 6.5, the graph G is a partial cube:

Theorem 12.1. The graph G of a medium (S,T) is a partial cube.

We give two more proofs of this important result. The first proof utilizes
the concept of Winkler’s relation Θ (see 6).

Proof. The four vertices S, T , P , and Q of two edges {S, T } and {P,Q} that
stand in Winkler’s relation Θ form a ‘rectangle’ described by Cases 5 and 6 of
Theorem 6.3 (see Figure 6.3 and the text following that figure). Since edges
of the graph G correspond to pairs of mutually reverse tokens, it follows from
Theorem 9.1 that two edges of G stand in the relation Θ if and only if they
represent the same pair of mutually reversed tokens. Thus the relation Θ is an
equivalence relation on the set of edges of G. By Theorem 6.5, G is a partial
cube.

The second proof is based on the result of Theorem 6.6.

Proof. The edges of G are labeled by elements of the set J = {{τ, τ̃}}τ∈T. Since
the shortest paths of G correspond to the concise messages of (S,T), condition
(i) of Theorem 6.6 is satisfied. A closed walk W in G defines a closed message
m for a vertex of W . By Axiom [M2], the message m is vacuous. Thus every
label appears an even number of times in the walk W . The result follows from
Theorem 6.6.

Let (S,T) be a medium and G be its graph. By Theorem 12.1, G is a partial
cube, so there is an isometric embedding α of G into the cube H(X) for some
set X . The set α(S) is a wg-family F of finite subsets of X . Let (F,GF) be the
representing medium of this wg-family. These objects are schematically shown
in the diagram below, where 〈F〉 is an isometric subgraph of H(X) induced by
the family F.

(S,T)
graph

−−−−−→
of (S,T)

G
α
−−→ 〈F〉

representing
−−−−−−−→

medium
(F,GF) (12.1)

Theorem 12.2. The media (S,T) and (F,GF) are isomorphic.

Proof. Clearly, α is a bijection from S onto F. By Theorem 8.6 and Defini-
tion 6.2, the semicubes of (S,T) and G (resp. (F,GF) and 〈F〉) are defined in
terms of the metric δ on S (resp. the metric d on F). Since α is an isometric
embedding, it defines a one-to-one correspondence between semicubes of G and
〈F〉. By Theorem 9.2, τ 7→ Wτ (resp. γ 7→ Wγ) is a bijection from T (resp. GF)
onto the family of semicubes of the medium (S,T) (resp. (F,GF)). The above
bijections define a bijection β : T → GF:

β : T → {Wτ}τ∈T
α
−→ {Wγ}γ∈GF

→ GF
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Since a pair of opposite semicubes form a partition of the set of states of a

medium, we have β(τ̃ ) = β̃(τ). Suppose that Sτ = T for S 6= T . Then S ∈ Wτ̃

and T ∈ Wτ . Therefore,

α(S) ∈ Wβ(τ̃) = W
β̃(τ)

and α(T ) ∈ Wβ(τ),

so α(S)β(τ) = α(T ). Hence,

Sτ = T ⇒ α(S)β(τ) = α(T ),

for S 6= T . A similar argument shows that the converse is also true. It follows
that (α, β) is an isomorphism from (S,T) onto (F,GF).

Remark 12.1. The representing medium (F,GF) in (12.1) is not defined uniquely
because there are many possible embedding α of the partial cube G into a cube.
Each of these embeddings defines a particular wg-family F and these families
are quite different. On the other hand, as it follows from Theorem 12.2, all
representing media defined by (12.1) are isomorphic. The correspondence

medium (S,T) 7→ graph of (S,T)

defines a bijection from the set of media on the set of states S onto the set of
partial cubes with the vertex set S.

Remark 12.2. If the graph of a token system is a partial cube, it does not
mean necessarily that the token system itself is a medium (see Figure 12.1).

τ τν
T PQS

τ τν
~ ~ ~

Figure 12.1: This token system is not a medium since there is no concise message
producing the state P from the state S. Its graph is a partial cube.

As Winkler’s relation Θ combines Cases 5 and 6 of Theorem 6.3 (see the
second proof of Theorem 12.1), the relation L is defined on the set of arcs
(ordered pairs of adjacent vertices) of a graph by using equations (6.7) from
Case 6 of Theorem 6.3:

(S, T )L (P,Q) ⇔ δ(S, P ) = δ(T,Q) = δ(T, P )− 1 = δ(S,Q)− 1.

By Theorem 9.1 (Case 6), the relation L is transitive on the set of arcs of the
graph of a medium. Clearly, L is reflexive and symmetric, so it is an equivalence
relation in the case of the graph of a medium. Connected bipartite graphs for
which L is an equivalence relation are called mediatic in [11, 19], so we have
the following result.

Theorem 12.3. The graph of a medium is mediatic.
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It can be shown that the class of partial cubes coincides with the class of
mediatic graphs.

Remark 12.3. Note that, unlike in Case 6, the equations in (6.6) (Case 5) do
not define a transitive relation on the set of arcs of G. This is illustrated by the
drawing in Figure 12.2.

τ τ

S

T Q

V

ν

ν

P

U

υ

υ

τ

Figure 12.2: Intransitivity of the relation defined by equations in (6.6).
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