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When a Bayesian network (BN) is modified, for example adding or deleting a node,
or changing the probability distributions, we usually will need a total recompilation
of the model, despite feeling that a partial (re)compilation could have been enough.
Especially when considering dynamic models, in which variables are added and removed
very frequently, these recompilations are quite resource consuming. But even further, for
the task of building a model, which is in many occasions an iterative process, there is a
clear lack of flexibility. When we use the term Incremental Compilation or IC we refer to
the possibility of modifying a network and avoiding a complete recompilation to obtain
the new (and different) join tree (JT). The main point we intend to study in this work
is JT-based inference in Bayesian networks. Apart from undertaking the triangulation
problem itself, we have achieved a great improvement for the compilation in BNs. We
do not develop a new architecture for BNs inference, but taking some already existing
framework JT-based for probability propagation such as Hugin or Shenoy and Shafer,
we have designed a method that can be successfully applied to get better performance,
as the experimental evaluation will show.

Keywords: Bayesian networks inference, maximal prime subgraphs, incremental compi-
lation, triangulation, join/junction trees.

1. Introduction

Methods for probabilistic inference have been known for centuries, but it is only

within the last two decades that these methods have matured into practical applica-

ble methods. The obstacle has been computational complexity. The joint probability

distribution for a set of discrete random variables can be represented by a table, but
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the size of such a table is the product of the number of states for each additional

variable. Thus it becomes impossible to represent the joint distribution of even

moderately-sized domains in practice. In the 1980s Pearl suggested representing

domains graphically and exploiting (in)dependence relations between variables in

the inference process,34 and his groundbreaking work led to a flourishing interest in

the area, resulting in modern tools and techniques for construction and execution

of Bayesian networks.

By inference in Bayesian networks we generally refer to the task of obtaining

the posterior probabilities for a set of interest variables XI ⊂ V given the evidence

e. That is to say, we wish:

P (Xi|e) ∀Xi ∈ XI (1)

There exist other inference tasks such as abductive inference,15, 33 where the aim

is to look for the most likely overall hypothesis or explanation accounting for the

current observations.

In both cases, the basic idea in modern techniques is to modularize the domain

in question and represent it by a set of tables, so that later procedures for their

interaction could be used rather than using one big table. This is achieved by

grouping variables according to their dependence relations and these groups of

variables are often organized in a tree structure. Variations of this idea were fostered

independently by Lauritzen and Spiegelhalter,25 and Shafer and Shenoy,35, 36 and

form the foundation for the Hugin architecture.19 More recent methods such as lazy

propagation,29 penniless propagation,5 lazy-penniless propagation,6 and methods

for stochastic simulation,7, 30 also take advantage of the modular representation.

The grouping of variables and the organisation of these groups in a tree structure

is typically performed offline through a process termed compilation. This process

operates with a Bayesian network as input and the resulting structure is called a

join tree. The efficiency of the resulting system is proportional to the size of the join

tree and therefore considerable effort is devoted to this task. Compilation makes big

demands on resources and its complexity increases considerably for large networks.

Once the join tree has been constructed future modifications over the network may

be necessary. In this case a whole re-compilation is needed. However, changes are

normally located in the same area, and if the network is large, a set of changes

will typically influence only a small part of the network. For this reason we started

working on a compilation that could be carried out partially.

Hence, incremental compilation tries to give an answer to the following ques-

tion: “When modifying a Bayesian network, is it absolutely necessary to recompile

it from scratch?”. We could guess that if this modification does not affect the net-

work globally, it might be possible to find a manner to save some time in obtaining

the associated tree. In this paper we expose the compilation process itself to mod-

ularization. We analyze the procedures and split the problem into subproblems,

thereby enabling online compilation or at least more efficient offline procedures.

Fig. 1 tries to illustrate this simple idea: let us assume that we have an initial
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Bayesian network BN and its associated join tree T , obtained by a compilation

process. Later, at a certain moment, a set of modifications have to be carried out

on this initial network, which will be transformed into a different network BN ′.

For this new network T will clearly not be a valid join tree, but there must be

another one, T ′, which is. The key to incremental compilation would then be to

find a way (obviously, quicker than a complete recompilation of BN ′) of obtaining,

from this new network, the/a new tree that corresponds to it. Thus, the question

we previously posed could be reformulated as follows: “If we know the modifications

performed on our network, and starting from the initial join tree corresponding to

the initial network (T ), could we obtain the new join tree (T ′)?”. This is precisely

the question represented by “?” in Fig. 1. And the answer is our concrete method

for carrying out this incremental compilation process.

BN

Compilation
- T

?
BN ′

(Re)Compilation
- T ′

?

?

Fig. 1. Scheme that represents the general idea for our approach for the incremental compilation
of a Bayesian network BN .

This issue has hardly been studied in BNs literature. In 1999, Olesen andMadsen

present an algorithm to obtain the so-called Maximum Prime subgraph Decompo-

sition (MPD) of a Bayesian network by using the join tree as the base structure.32

In that paper they enumerate a number of possible applications of their algorithm,

one of these being the study and development of MPD-based incremental compi-

lation. This was the seminal idea for our preliminary work on this topic where a

procedure for MPD-based Incremental Compilation of BNs was proposed.14

There is however some references in the literature that must be taken into

account. Before our preliminary work,14 little attention had been directed towards

incremental compilation in the literature: Darwiche considers dynamic generation

of join trees,8 but his aim is to produce efficient elimination orders for specific

queries posed to the model rather than modifications over the network. His method

is focused on efficient processing by online generation of specific join trees and it

does not take modifications of the structure of the underlying network into account;

A different study is carried out by Draper,9 whose main goal is to show how to build

join trees avoiding triangulation, or at least without explicitly considering it. To

do this, a family graph is initially computed and then transformed into a join tree

by using a set of heuristics. This approach can also be applied in case of dynamic

changes in the network structure where the same set of heuristics are applied to

dynamically maintain the join tree. A disadvantage of the method is that it is
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difficult to identify the relevant set of heuristics, and the resulting join trees are

often suboptimal.

Later in time Acar et al.1, 37 approached the problem of dealing with dynamic

changes in the graph, but taking factor graphs as original model instead of BNs.

They devise a procedure to accommodate dynamic changes over the current cluster

tree instead of constructing it from scratch from the modified factor graph. On the

other hand, graph decomposability has been also exploited in other tasks different

from inference, as it is the case of machine learning. Thus, Xiang and Lee propose

its use when learning undirected structures from data, in particular Decomposable

Markov Networks.41 The idea is to identify the subgraphs involved in an incre-

mental operation, e.g. adding a link, and restrict score computations only to those

subgraphs

Currently, there exist several studies which use our preliminarily proposedMPD-

based Incremental Compilation technique or which cite it as an important approach

to the modularity problem when compiling or learning BNs.3, 16, 17, 22 In this pa-

per we present an archival version of MPD-based incremental compilation,14 but

completing it with an in-depth experimental evaluation.

In the following sections, we will first introduce the basic definitions, processes

and associated notation (Sec. 2). In Sec. 3 we present Maximal Prime Subgraph

Decomposition, which will be necessary for the Incremental Compilation method

described in Sec. 4. The experimentation carried out for this study is explained in

Sec. 5, where the corresponding results are also analyzed. Finally we present the

general conclusions in Sec. 6.

2. Preliminaries

2.1. Notation and basic definitions

Definition 1. Bayesian Network. A Bayesian network is a formalism used in

probabilistic reasoning with two components:

• The qualitative side defined as a directed acyclic graph G = (V,E), V

being a set of variables and E a set of directed edges.

• And the quantitative side given by a probability distribution P over the

variables in V , where for every variable or node in the graph there is a

conditional probability distribution P (Xi|pa(Xi)), pa(X) being the parents

of X, that is those Zj s.t. Zj → X ∈ E.

The Bayesian network is a nice representation to constitute the Knowledge Base

for a probabilistic expert system, thanks to its graphical visualisation. However,

inference is usually carried out over a secondary structure free of (undirected) cycles.

One of the most extended techniques for inference in Bayesian networks is the use

of a tree of cliques (see Defs. from 2 to 5) known as join tree or junction tree.20

Definition 2. Subgraph. Let G′ = (V ′, E′) be a subgraph of G = (V,E) when
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V ′ ⊆ V and E′ contains all edges in E between two nodes Xi and Xj as long as

Xi ∈ V ′ and Xj ∈ V ′. This subgraph can also be denoted as G↓V ′

.

Definition 3. Complete undirected graph. Let G = (V,E) be a complete

graph iff for every pair Xi, Xj ∈ V , Xi −Xj ∈ E.

Definition 4. Clique. Let G be an undirected graph, then all the maximal com-

plete subgraphs in G are called cliques.

Definition 5. Join Tree. Let G be the set of cliques from an undirected graph,

and let the cliques of G be organised in a tree T . Then T is a join tree if for any

pair of clique nodes Ci, Cj all nodes on the path between Ci and Cj contain the

intersection Ci ∩ Cj.

As mentioned above a BN is represented by a directed acyclic graph whereas the

join tree is constructed from an undirected graph. Note that even if this structure

has been broadly used and referenced in BNs research, this concept had already

been broadly and previously used in graph literature.2 This is because the transfor-

mation from a BN to a corresponding and valid T needs a transformation process

called compilation where the original graph G is first moralised, giving rise to an

undirected graph that will subsequently be triangulated (Fig. 2).

Definition 6. Moral graph. Given a directed acyclic graph G, its corresponding

moral graph GM is formed by connecting nodes that have a common child, and then

making all edges in the graph undirected.

Definition 7. Triangulated graph. An undirected graph G is said to be trian-

gulated or chordal, GT , if any cycle of length greater than 3 has a chord.

A S

T L B

E

X D

A S

T L B

E

X D

A S

T L B

E

X D

(a) (b) (c)

Fig. 2. (a) The Asia network. (b) Moral graph for Asia. (c) Triangulated graph for Asia.

Therefore, the moral graph can be triangulated by adding new edges (called

fill-ins) until the necessary condition in Def. 7 holds. Triangulation is a key step,

since efficiency of probability propagation heavily depends on the quality of the

obtained triangulation, but finding the optimal triangulation is an NP-hard prob-

lem.40 It is quite usual to triangulate a graph using an elimination sequence σ or

ordering that contains all variables, this sequence being the input of a procedure
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able to provide the added fill-ins.13 This is why triangulation is sometimes consid-

ered as the task of finding the best elimination sequence, but the search space of all

possible permutations yields |V |! possibilities. In this study, we will use the set of

added links, or fill-ins, F . Finally, we present the concept of minimal triangulation

(see Def. 8), as it will be necessary in Sec. 3.

As an example, in Fig. 2(a) the graph representing the Asia network is de-

picted,25 leading to the moral graph in Fig. 2(b) and a possible triangulation is

shown in Fig. 2(c) where the added fill-in (F ={L-B}) is marked with a double

line.

Definition 8. Minimal Triangulation. Let F be the set of fill-ins added during

triangulation, for an undirected graph G, i.e. GT = (V,E ∪ F), F is said to be

minimal if ∃/ F ′ such that F ′ ⊂ F and F ′ is a valid triangulation for G. That is,

if we remove any edge from F , the resulting set F ′ is no longer a valid triangulation

for G.

Kjærulff proposed an efficient method called recursive thinning to transform

any triangulation containing redundant fill-ins into a minimal one.23

2.2. Compilation process

Most popular knowledge engineering tools for construction and execution of prob-

abilistic expert systems based on Bayesian networks (BNs), such as for example

HUGIN or NETICA,18, 31 work with two representations: (1) A direct representa-

tion of the BN as illustrated by the edit window in Fig. 3 and (2) A computational

structure known as the join tree (JT), illustrated by the run window in Fig. 3.

COMPILATION

AD

ABD

D

A B

C D

E F DF

CD

CDE

Edit Window

ACD

Run Window

Fig. 3. Two representations of a Bayesian network.

A BN is constructed or modified in the first representation and inference is

performed over the second one. Each time the knowledge engineer switches from

editing to execution, a compilation builds the join tree from scratch. If the network

is large, then the CPU time required to perform a new compilation will be consider-

able. Therefore, it is desirable that, once a join tree representation of the Bayesian

network has been generated, incremental changes in the network should produce

an update of the previous join tree, and not a new full compilation process. Apart
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from the efficiency reason, there could be more reasons for preferring incremental

compilation to total compilation. Draper emphasises stability of the join tree as a

desirable property of incremental compilation.9 It is anticipated that a considerable

effort will be made to produce an efficient join tree and that incremental changes

to an existing (near) optimal join tree will produce more stable results.

The method we propose for incremental compilation identifies the parts of the

join tree that are affected by changes in the BN, and reconstructs only these parts. It

also glues the new substructures into the original join tree instead of the outdated

parts. This approach ensures a stable and, most of the time, efficient resulting

join tree. The method builds on a third representation of the underlying BN, the

Maximal Prime subgraph Decomposition (MPD) tree.32

3. Maximal Prime Subgraph Decomposition (MPD)

Let us now formalise the concept of maximal prime subgraph, and the needed

preliminary definitions.

Definition 9. Graph decomposition. Let G = (V,E) be an undirected graph,

and let A and B be two sets of vertices in G, G can be decomposed into A and B

if and only if the following conditions are satisfied:

– A ∪B = V ,

– A \B 6= ∅,

– B \A 6= ∅,

– A \B and B \A are separated by A ∩B and

– A ∩B is a complete subset (called clique separator).

AB

DE

G

C

F

H

B

E

Fig. 4. Graph decomposition into {C,F,H,B, E} and {B,E,A,D,G}.

Definition 10. Decomposable graph. If a graph G and its subgraphs can be

decomposed recursively until all the subgraphs are complete, then the graph is de-

composable.

Notice that a graph could be decomposed without being decomposable, as in

Fig. 4. The concepts of triangulation and decomposition can easily be related from
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previously presented ideas, as triangulated graphs are guaranteed to be decom-

posable and that is to a certain extent the justification for the necessity for a

triangulation step in compilation.26 This is the reason why from here on, we will

refer to a decomposable graph as a triangulated graph.

A graph is then said to be reducible if it can be decomposed, that is, its

set of nodes contains a clique separator, otherwise the graph is said to be

irreducible/prime/non-separable. And this leads directly to the following concepts:

Definition 11. Maximal Prime Subgraph (MPS). A subgraph G(A) =

(V,E)↓A of a graph G is a Maximal Prime Subgraph of G if G(A) is irreducible and

G(B) is reducible ∀B such that A ⊂ B ⊆ V .

Definition 12. Maximal Prime Subgraph Decomposition (MPD). Let G =

(V,E) be an undirected graph. Its Maximal Prime Subgraph Decomposition is the set

of induced maximal prime subgraphs of G resulting from a recursive decomposition

of G.

It can be proved that this decomposition is unique for an undirected graph,32 as

it is the moral graph. In Fig. 5(c) we see how the Asia network is divided into five

Maximal Prime Subgraphs, which can also be structured into a tree (Fig. 5(b)).

fA
fT

fDfX

fS
fL
fB

fE

AT

EX

TLE LBE

DEB

LBS

LE

LB

EBE

T

AT

EX

TLE

DEB

LE

EB

LBES

E

T

A

T

L

E

T

X

E

E

S

BL

D

E

B

(a) (b) (c)

Fig. 5. (a) A JT for Asia. (b) MPD tree for Asia. (c) MPD for Asia.

When the decomposition obtains a set of solvable subgraphs, this is a suitable

tool for divide and conquer algorithms, which provide a global solution as the sum

of local solutions for smaller and independent graphs. In particular, we use the

MPDa of an undirected graph as an intermediate step in our new approach for

triangulation. This idea consists of working separately on different parts of the

initial graph.32 In our case, the task to do separately will be the triangulation for

each subgraph.

aAlso known as decomposition by clique separators.
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The decomposition of the graph of a Bayesian network into its maximal prime

subgraphs is integrated into the well known procedure for construction of join trees

for Bayesian networks. We know that the maximal prime subgraphs of GM are

formed by aggregating adjacent cliques of Tmin
b connected by a separator which

is incomplete in GM . Construct MPD Tree (Alg. 1c) performs this process

and returns a join tree TMPD, where the nodes represents the maximal prime

subgraphs.

Algorithm 1 Obtain the MPD Tree or TMPD from a JT.

1: function Construct MPD Tree(Join Tree T min,GM )
. Join Tree T min must have been obtained by a minimal triangulation.

. GM is the corresponding moral graph to the network.

2: T ′ ← Tmin

3: repeat

4: for all Separator S ∈ T ′, S connects clusters C1 and C2 do

5: if ¬(Complete Graph(G↓S
M )) then

6: Aggregate(C1,C2,T ′)
7: end if

8: end for

9: until ∀Sk ∈ T
′, Sk is complete

. Until All separators S in T ′ are complete for GM .

10: return T ′

11: end function

The resulting join tree for Asia network (see Fig. 2) is shown in Fig. 5 (a) and

a check of the separators in the moral graph yields the maximal prime subgraph

decomposition tree shown in part (b). Part (c) gives the MPSs of the Asia network.

The structure of the join tree is a refinement of the MPD tree (although con-

structed in the opposite order), where a node in the MPD tree may be expanded

into one or more cliques in the join tree. It is this structural correspondence that

is exploited in our method for incremental compilation.

Although other methods have been proposed to obtain the MPD of an undi-

rected graph,27, 38, 39 the one presented by Olesen and Madsen is especially inter-

esting for us, since it is based on the join tree constructed from a BN.32 The

decomposition of the graph into MPSs is returned by the form of a tree, which we

will call MPD Tree, sometimes denoted as TMPD.

bJoin tree constructed from a minimal triangulation.
cIn algorithms we use symbol . to indicate comments.
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The process for obtaining this tree is indicated in Alg. 2, Obtain MPDTree:

Algorithm 2 Obtain the MPD Tree or TMPD from a graph.

1: function Obtain MPDTree(Graph G)
. We assume this graph G is the graphical part for a Bayesian network BN = (G,P ).

2: GM ← Moralise Graph(G)
3: Triangulation T ← Triangulate Graph(G)

. GT
M will be the triangulated moral graph.

4: Tmin ← Make Minimal Triangulation(T )
. In our case we will use the algorithm called recursive thinning.

5: Tmin ← Construct Join Tree(GTmin

M
)

. This can be done for instance by means of the algorithms shown in11.
6: return Construct MPD Tree(Tmin,GM )

. Alg. 1 shows this process.

7: end function

Basically, if we guarantee that in the compilation process the JT T has been

obtained from a minimal triangulation, the corresponding TMPD can easily be found

by aggregating those separators which are not complete subgraphs in the moral

graph, as in Fig. 5(a), where separator (LB) is shaded because in 5(a) this set of

nodes does not yield a complete subgraph. Then, cliques (LBE) and (LBS) are

joined together into one Maximal Prime Subgraph (LBES) as shown in Fig. 5(b).

Since the tree of MPSs can be seen as an intermediate structure that is located

in between the moral graph and the triangulated graph, this feature can be useful

for both theoretical algorithms and implementation (data structures).

Two different (minimal) triangulations produce two different join trees, and

those trees could also differ in tree size.d Notice that in terms of tree topology the

same triangulation could also lead to distinct trees, although their total space size

will be exactly the same, since they present the same set of cliques. For example, in

Fig. 5(a), the clique (EX) could be connected either to (LBE) or (DEB) (instead

of (TLE)), thus producing other valid JTs that are topologically different from the

one depicted in the figure. This will also have an impact on the topology of the

MPD Tree obtained, since it is based on the initial JT. However, it should be noted

that this will not affect the decomposition because fill-ins are not considered in the

completeness of a separator, only the moral graph is now considered.

Figure 5 shows the construction (fusion of cliques into MPSs) for the join tree in

Fig. 5(a) regarding the moral graph in Fig. 2(b). Those cliques that can be fused are

(LBS) and (LBE), since the shaded separator is not complete in the moral graph

(Fig. 2(b)). Notice that [T ],[E] and [EB] induce completely connected subgraphs

in the moral graph, so they did not need any merging to form a maximal prime

subgraph.

dSummation of the space state size (i.e. probablity table size) of every clique.
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Among MPD properties we emphasize this: “If C is a clique of Tmin and all

separators connected to C are complete in GM , then C is a clique of GM .”.32 This

fact prevents any node in the tree subgraphs from producing fill-ins connecting

nodes not in this same subgraph.e

4. MPD-Based Incremental Compilation

4.1. The role of MPD within incremental compilation

The feasibility of reusing an already existing JT in order to obtain the new one

while considering only the modifications in the network had not really been studied

thoroughly before. In order to perform incremental compilation we propose the

recompilation of only those parts of the JT which may have been affected by the

network’s modifications. To do so, we exploit MPD in determining the minimal set

of subgraphs that have to be recompiled, and thereby the minimal subtree(s) of

the JT that should be replaced by new subtree(s). Changes are normally located in

the same area, and if the network is large, a set of changes will typically influence

only a small part of the network. These two reasons encouraged us to work on a

compilation that could be carried out partially.

If we guarantee that the triangulation to construct T is minimal, this T leads

us to a valid TMPD following the steps in Fig. 6.

BN
-

G
-

GM -
GTmin

T
q

�

TMPD
R

Unknown

Fig. 6. Graphical process that indicates how to reach the TMPD from a Bayesian network BN =
(G,P), using as an intermediate step the join tree T .

As Fig. 1 shows, we were searching for a way to go from T to the new tree T ′,

without requiring a full recompilation. And the MPD Tree TMPD can be understood

as an intermediate structure between the BN and the tree T , also bearing in mind

that (see Fig. 6) from this one (T ) TMPD can easily be constructed.

In Fig. 7, question marks refer to the two steps for which the execution is not

initially clear, while the rest has been described above (see Fig. 6). It is precisely

these two unknown points that our proposed algorithm will give an answer for.

eThis is the underlying idea of requiring a minimal triangulation for T .
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BN Compilation - T

)
TMPD

T ′
MPD

j

?

?
BN ′ (Re)Compilation - T ′

?

?

Fig. 7. Diagram that represents an overview of our Incremental Compilation process for a
Bayesian network BN by means of the MPD.

4.2. Possible modifications to be considered

The set of changes in an existing BN range from simple modifications, e.g. adjust-

ments to numerical parameters in the (conditional) distributions for variables, to

complex structural reorganisation of variables and their links, possibly altering large

parts of the BN. Below we will briefly describe the possible modifications we will

consider. There are two outstanding properties: first, we aim towards the generation

of a general (and efficient) method that could process all kinds of situations; and

second, we also want a method capable of dealing with more than one modification

at a time, that is, capable of processing a group of changes as well as single ones,

according to user preferences.

4.2.1. Modification of potentials

The simplest modification of a BN is altering the (conditional) probability distribu-

tion for a variable. Such a change is purely quantitative, and it is straightforward as

the structure of the join tree will remain unchanged. In this case we simply replace

the current table with the modified one.

4.2.2. Modification of the states of a variable

Changes in the state space of a variable can alter the structure of the optimal

join tree, because the triangulation typically takes the state space of variables into

account. Notice that these state variations will not have an effect when treewidth

(i.e. the size of a largest clique in a junction tree minus one) is considered. A

full treatment of incremental compilation should, of course, consider this class of

changes, but the overall efficiency of the resulting computational structure remains

roughly the same. We shall therefore disregard the structural implications of such

changes from further considerations in the present treatment of the subject. What

remains is then the modified structure of the potentials of the altered variable and
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its children and this is again taken care of by replacing old potentials with new ones

for the affected variables.

4.2.3. Modifying the graph structure

Removing an arc: Removal of an arc in a BN can be a straightforward change.

If, for example, two nodes without parents share a child which is not otherwise

connected, removal of an arc between them will not lead to changes in the moral

graph, as the link would appear here anyway due to moralisation. At the other

extreme the removal of an arc could break several loops in the BN and a considerably

simpler join tree could result from a retriangulation of the network. In such cases

it is beneficial to be able to identify a minimal part of the join tree that could be

affected by the change and concentrate on a retriangulation of only that part.

Adding an arc: As with removal of an arc, the addition of a new one is sometimes

straightforward. A simple situation is symmetric to the simple case above, where

two nodes without parents share a child which is not otherwise connected. Addition

of an arc between them will not lead to changes in the moral graph, as the link

would appear here anyway due to moralisation. At the other extreme, the addition

of an arc could create several cycles in the BN and in this case large parts of the

join tree could be affected. Sometimes a complete retriangulation of the network is

required, and again it is beneficial to be able to identify the minimal part of the

join tree that could be affected by the change and concentrate on a retriangulation

of only that part.

Removing a node: The removal of a node from the BN will include removal of all

arcs connected to that node. If all arcs are removed first, the removal of the node

is simple. If not connected to any other node, the node will constitute an island in

the BN and consequently it can simply be deleted. We should point out here that

we refer to the removal of a node graphically (edit mode) from the network. This

has nothing to do with other probabilistic techniques such as the removal of a node

by marginalisation.

Adding a node: The addition of a new node is similarly simple, if we connect it

to the BN afterwards, arc by arc. The node is simply added to the BN and the

procedure for adding arcs is called when it is linked with the existing BN.

This study is mainly focused on structural changes and this is the reason for not

considering modifications of type 1 and 2, since they do not affect the JT structure.

We shall therefore concentrate on the addition and deletion of nodes and arcs.

4.3. MPD as a tool for incremental compilation

The problem we investigate is summarised in Fig. 1, and partially answered in

Fig. 7. As mentioned above, modifications of the BN can result in everything from
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Fig. 8. Integrated overview of the MPD-based IC process. g and t refer to partial (affected) graph
and join tree.

trivial to very complex modifications of the join tree. We are therefore looking for

ways to limit the parts of the join tree that have to be recompiled.

It is known that the maximal prime subgraphs can be triangulated indepen-

dently.12, 32 Then, to attain our goals we can proceed as follows: Each time a BN

is recompiled we identify the set of MPSs affected by the modifications since the

last compilation, and only these MPSs will be re-triangulated. Our expectation is

that only a few subgraphs of TMPD will be influenced by the modifications, and

consequently only a small part of the graph will have to be re-triangulated. Thus,

the major part of the join tree remains unmodified and can be reused.

Let us suppose that the process starts with a user making modifications in the

edit window of Fig. 3. The result of this editing process is an updated version of

the BN (G′) (step (1) in Fig. 8). A list of the modifications is constructed during

this step. This list serves as input to IncrementalCompilation algorithm, that is

activated when the user decides to obtain a new join tree, that is, formally speaking,

when moving to the inference window.

Once the user decides to produce a join tree for the new network G′, the first

step of incremental compilation is to modify the moral graph (Step (2) in Fig. 8).

Notice that the moral graph plays a crucial role in TMPD construction. We will pay

special attention to this step in ModifyMoralGraph (Alg. 4).

As an example, let us suppose that in the network Asia (Fig. 2(a)) the user has

removed link L → E and has invoked the IC algorithm. Then, Fig. 9 shows the

modified BN and its corresponding moral graph in parts (a) and (b) respectively.

Note that the moral link T-L has also been removed.

Now, we proceed to step (3) in Fig. 8. This is the key point in our algorithm,

where we identify the minimal set of MPSs which may be affected by the modifi-

cations performed over the BN. Below we shall give details of this for the different

modifications, but for the moment, let us assume the existence of an algorithm

which marks the MPSs in TMPD affected by a modification. This algorithm marks

MPSs (TLE) and (LBES). In the example, there is only one connected marked

subtree (TLE)− [LE]− (LBES), but in general, when all modifications have been
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Fig. 9. MPD-based IC of Asia when removing L → E.

processed by the marking algorithm, there may be more connected parts of TMPD

that have been marked. As an example, consider the scenario in which the marking

algorithm marks MPSs: (AT ), (TLE) and (DEB); which gives rise to two marked

connected subtrees: (AT ) − [T ] − (TLE) and (DEB). For each of these marked

connected subtrees we proceed, in turn, with the following steps.

Let gM be the subgraph of G′M induced by the set of variables included in

a connected marked subtree of TMPD. Figure 9(c) shows gM as the projection of

GM over {T, L,E,B, S}. In step (4) in Fig. 8 we obtain a JT and a MPD tree

for gM . Join tree t is available by Obtain MPDTree (Alg. 2) but avoiding step

in line 1, since the graph is already moralised and the corresponding MPD tree

tMPD by Construct MPD Tree (Alg. 1). In the example, Fig. 9(d) shows both

structures, which is the same in this case since every MPS corresponds uniquely to

one clique.

Finally, during step (5) in Fig. 8 both T and TMPD are updated by using the

newly obtained structures t and tMPD. The process is completely analogous in

both cases and it only differs in the tree to which it is applied. For each separator

S connecting a marked subtree with an unmarked cluster we reconnect S to a

cluster of t (tMPD) having maximal intersection with S. Upon completion, the

marked clusters (and separators between them) are deleted. In the example, the
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separators connecting the marked connected subtree with the rest of TMPD are

[T ], [E] and [EB]. These separators are connected with the new graphical structure

as shown in part (e) of Fig. 9. Finally, part (f) of the same figure shows the final

structure, obtained after removing the outdated part of the tree (the markedMPSs).

Connect (Alg. 5) details this procedure.

4.4. Incremental compilation algorithm

IncrementalCompilation (Alg. 3) details the process described above:

Algorithm 3 Performs IC for a list of modifications in the BN.

1: procedure IncrementalCompilation (Modification list ModList)
2: for all Modificaction mod ∈ ModList do

3: L← ModifyMoralGraph(mod)
4: switch mod do

5: Case Add node X: AddNode(X)
6: Case Delete node X: RemoveNode(X,MX ,nil)
7: Case Delete link X → Y : RemoveLink(L,MY ,nil)
8: Case Add link X → Y : AddLink(L)
9: end switch

10: end for

11: for all Connected marked subtree TMPD ∈ TMPD do

12: T ← T corresponding to TMPD

13: for all Clique Ci ∈ T do MarkClique(Ci)
14: end for

15: C ← any cluster of T
16: M ← any cluster of TMPD

17: V ← {all variables included in TMPD}
18: t← ConstructJoinTree(gM )

. gM is the projection of the current graph GM over the set of variables included in

TMPD.

19: tMPD ← AggregateCliques(t)
20: T ← connect(t, C, nil)
21: TMPD ← connect(tMPD ,M, nil)
22: delete(T )
23: delete(TMPD)
24: end for

25: end procedure

In order to simplify the header of the algorithms presented in this section, we

suppose that the main graphical structures are accessible, that is, we will refer

to GM , T and TMPD without the need of passing them as a parameter to the

algorithms. Before we proceed we need some notation. The potential ofX is assigned

to a specific clique in T , which contains the family of X . In the following, we will

use CX to identify this clique and, likewise, MX will identify the MPS in TMPD

which has the family of X associated. In figures this will be indicated with a fX
next to the corresponding clique/MPS.
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The first loop of the algorithm iterates over all modifications. For each modifica-

tion we adjust the moral graph by ModifyMoralGraph, Alg. 4, which maintains

a list of all links that are affected by the current modification. This is relevant for

addition and deletion of arcs, and ModifyMoralGraph returns a list, L, with

the added (deleted) link and with the induced added (deleted) moral links.

Algorithm 4 Performs the corresponding modifications to the moral graph implied

by the mod which is being processed.

1: function ModifyMoralGraph(Modification mod)
. This function will also return the set of links relevant for the modification if that

applies.

2: L← Ø
. L will be a LinkList containing the relevant links in this operation.

3: switch mod do

4: Case Add node X: add a new (isolated) node X to GM

5: Case Delete node X: remove X from GM

. We assume that we are going to delete a disconnected node, if it presents edges they

will be removed by means of modification Delete link first.

6: Case Add link X → Y : add X → Y to L together with all
7: new links needed to make Y ∪ parents(Y ) a complete sub-graph.
8: Case Delete link X → Y :
9: if (children(X) ∩ children(Y ) = Ø) then

10: delete (X,Y ) from GM

11: add (X,Y ) to L

12: end if

13: for all Zi ∈ parents(Y ) \ {X} do
14: if ((children(Zi) ∩ children(X) = {Y }) and (Zi → X

15: or X → Zi) not in G) then
16: delete (X,Zi) from GM

17: add (X,Zi) to L

18: end if

19: end for

20: end switch

21: return L

22: end function

The list, L, returned by algorithm ModifyMoralGraph is passed on as ar-

gument to the relevant procedure, which marks affected Subgraphs in TMPD. This

result of steps 1-10 in IncrementalCompilation is an MPD-tree with (possibly

several) connected marked subtrees. In the second part of IncrementalCompi-

lation (lines 11-24) we iterate over these subtrees and adjust T and TMPD by

Connect (Alg. 5). The pattern for this algorithm may not be immediately trans-

parent. The recursive control structure acts on the two last parameters where the

former (the second parameter) is the cluster to which the algorithm is applied, and

the latter (the third parameter) is the caller. The structure traverses a marked sub-

tree, avoiding loops by a check that the caller is not re-visited. This pattern will be

also used in procedures for removing arcs and links.
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Algorithm 5 Performs connection between the new partial (JT or MPD) tree to

the old remaining part.

1: procedure Connect(Cluster Tree t, Cluster Ci, Cluster Cj)
2: for all Separator S between Ci and Ck 6= Cj do

3: if Ck is unmarked then

4: locate cluster C ∈ t such that C ∩ Ck is maximal
5: Connect C with Ck by S

6: if S == C then amalgamate C and Ck

7: end if

8: else Connect(t, Ck, Ci)
9: end if

10: end for

11: end procedure

We shall now go through the details of the marking of MPSs, that is, the pro-

cedures called from the first loop of IncrementalCompilation. It is silently

assumed that whenever an MPS is marked, the corresponding cliques in the join

tree will also be marked.

4.5. Removing a link

RemoveLink (Alg. 6) marks the MPSs affected by the removal of X → Y .

Algorithm 6 Marks subgraphs when deleting a link in the IC process.

1: procedure RemoveLink(LinkList L,MPS MY ,MPS MZ)
2: Mark MY . MY is the MPS containing family of variable Y

3: for all Neighbour MK 6= MZ of MY do

4: S ← separator between MY and MK

5: if L ∩ links(S) 6= ∅ then
6: RemoveLink(L,MK ,MY )
7: end if

8: end for

9: end procedure

Parameter L is the list of (induced) moral links (returned by ModifyMoral-

Graph). Notice, that when the algorithm is called the first time (from Incremen-

tal Compilation) then MZ = nil.

Let us suppose that the linkX → Y has been deleted fromG. ThenMY has been

affected and we have to investigate if more MPSs have to be re-triangulated due to

a side effect of the deletion of X → Y . Therefore, we should include the neighbours

of MY in the set of MPSs to re-triangulate, only if the separator between them is

no longer complete. To do this, we look to see if the disappearance of the link X−Y

or of any other induced link Z −X causes some separator to become incomplete in

G′M . Of course, if a new MPS is marked because of this search, then we have to

verify the same condition among their neighbours and so on.
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As a case of study, let us go back to the example used during the overview of

our IC method, that is, the removing of link L → E from the Asia network (Fig.

9). In this case, the parameters received by RemoveLink are L = {(L,E), (T, L)},

MY = (TLE) and MZ = nil. Therefore, MPS (TLE) is marked in step 2. Of the

three separators connected to (TLE), only [LE] will be considered, because the

other two contain only one variable. As [LE] contains one of the removed links, the

MPS (LBES) connected to (TLE) by this separator, is also marked by a recursive

call of RemoveLink. Therefore, in this case, the subtree (TLE)− [LE]− (LBES)

is marked by the algorithm.

4.6. Removing a node

RemoveNode (Alg. 7) marks all MPSs containing X , and also deletes X from all

MPSs and separators containing it in order to obtain the correct set V in step (c)

of the second loop of IncrementalCompilation (Alg. 3).

Algorithm 7 Marks subgraphs when deleting a node in the IC process.

1: procedure RemoveNode(Node X, MPS MX , MPS MY )
2: Delete X from MX

3: Mark MX

4: for all Neighbour MZ 6= MY of MX do

5: S ← separator between MX and MZ

6: if X ∈ S then

7: Delete X from S

8: RemoveNode(X,MZ , MX)
9: end if

10: end for

11: end procedure

As an example, let us consider the removal of variable D from the Asia network.

This operation results in the following list of modifications: (remove E → D, remove

B → D, remove D), which is passed to Alg. IncrementalCompilation from the

edit mode. Subsequently, the moral link (E → D) is removed during the first

loop of IncrementalCompilation algorithm. Then, in the second iteration of

the loop, the MPSs (DEB) and (LBES) are marked. In this case, the effect of

algorithm RemoveNode is just to remove D from (DEB). Therefore, we have to

re-triangulate G′M ({E,B,L, S}), see Fig.10(c). Part (d) of the same figure shows

the tree obtained from this graph. In part (e) the connecting process of the old

and new structure is shown, where marked clusters are highlighted by filling them.

Finally Fig. 10(f) shows the result obtained after absorbing non maximal cluster

(LE) into cluster (TLE).

4.7. Adding a node

This is a very simple operation. As X is a new variable, it will be an isolated node

in the network, so, the modification consists of the addition of a new MPS/clique
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Fig. 10. MPD-based incremental compilation of Asia when removing variable D.

containing only variable X . In order to maintain single structures (trees) rather

than sets (forests), we connect new clusters to the respective trees by taking any

existing cluster and connecting the new cluster by an empty separator. If that this

structure was used to propagate, this separator will have capacity 1 in order to

store the constant number to be passed from one cluster to the other (AddNode,

Alg. 8). The result of adding a new variable Z to the Asia network is shown in

Fig. 11.

Algorithm 8 Marks subgraphs when adding a node in the IC process.

1: procedure AddNode(Node X)
2: CX ← new created marked Clique containing only X

3: MX ← new created marked MPS containing only X

4: Connect CX to T by an empty separator
5: Connect MX to TMPD by an empty separator

6: end procedure

4.8. Adding a link

Finally, we will consider the addition of a new arc X → Y . This change will (at

least) modify MY . If X is already included in MY , then only this MPS has to be re-

triangulated. Otherwise, we have to look for an MPS, MX , in which X is included

(MX is not necessarily the MPS to which X originally was assigned). MX and MY

are marked and so are all the MPSs on the path between them.
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Fig. 11. MPD-based incremental compilation of Asia when adding a new variable Z.

This is the general idea of the method for adding a link. However, there is a

tricky point that should be discussed. Due to the presence of empty separators,

it is possible to modify the tree structure after having located MX , in order to

achieve a better (more efficient) structure for our goal. For example, if A → Z is

the link to be added to the structure in Fig. 11, then we will mark all the MPSs

in the tree except (EX). However, as MZ is connected to the tree by an empty

separator, we can connect it to MPS (AT ) instead. By using this new tree, only

MPSs {(AT ), (Z)} have to be re-triangulated, which leads to a (far) more efficient

process.

AddLink (Alg. 9) marks the MPSs affected by the addition of X → Y .

As an example, let us consider the addition of two new links, A → Z and Z → X

to the structure depicted in Fig. 11:

(1) Adding A → Z: as there is an empty separator in the path between (Z) and

(AT ), the tree is modified to the one depicted in Fig. 12(a). AddArc marks

MPSs (Z) and (AT ). Also, the separator is set to A.

(2) Adding Z → X : Now there is no empty separator along the path between (Z)

and (EX), so no modification is performed over the tree. The algorithm marks

(Z), (AT ), (TLE) and (EX) as the MPSs to be re-triangulated.

Algorithm 9 Marks subgraphs when adding a (set of) links in the IC process.

1: procedure AddLink(LinkList L)
2: for all Link X → Y ∈ L do

3: MX ← the nearest neighbour to MY containing X.
4: if ∃ an empty Separator S (S == ∅) on the path between MX and MY then

5: Disconnect TMPD and delete S

6: Connect MX to MY by an (artificial) Separator containing X

7: end if

8: Mark MX , MY

9: for all MZ on the path between MX , MY do Mark MZ

10: end for

11: end for

12: end procedure



March 23, 2011 14:29 WSPC/118-IJUFKS S0218488511006952

176 M. J. Flores, J. A. Gámez & K. G. Olesen
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Fig. 12. Incremental compilation of the structure in Fig. 11 when adding links {A → Z,Z → X}.

Note that the moral link Z − E has been added to G′M (by ModifyMoral-

Graph).

We get {(Z), (AT ), (TLE), (EX)} as the set of MPSs to be re-triangulated. The

subgraph of G′M induced by the set of variables in these MPSs ({Z,A, T, L,E,X})

yields the graph shown in part (b) of Fig. 12, and re-triangulating this we get the

tree depicted in part (c) of Fig. 12. Finally, the connecting process is illustrated in

Fig. 12(d) and the final result (after removing marked clusters) is shown in part (e)

of the same figure.

5. Experimentation and Results

The implementation of the method described above has been integrated into the

programming code of the Elvira project,f in which several universities participate.

The Elvira system is a Java tool (GUI + API) to construct probabilistic graphical

models and also to evaluate new algorithms (inference, learning, etc.).10

In this section we design a series of experiments in order to study the impact of

IC when modifying a BN. In most of them we restrict the compilation process to

only the symbolic part, that is, clique probability tables are not reconstructed. This

is enough to observe the gain provided by IC with respect to triangulation from

scratch. However, we also include an experiment (Sec. 5.7) in which full compilation

is carried out, in order to provide a real picture of the actual gain.

fhttp://leo.ugr.es/∼elvira
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5.1. Networks and designed experiments

We have tested our approach over two different kinds of networks:

• Ten real complex networks, most of them taken from the repositoryg of the

Machine Intelligence Group at Aalborg University, and another, prostanet,

taken from Lacave’s research.24

• A set of artificially generated networks. These networks have a slice-like struc-

ture (see Fig. 13(a)), as sometimes happens in temporal/dynamic and para-

metric Bayesian networks. What makes these networks interesting is the fact

that every two slices (i and i + 1) are completely separated by the MPS

{X4.i, X6.i, X3.(i+1), X5.(i+1)}. Thus, the lower bound for the number of MPSs

is 2s − 1, s being the number of slices in the network. In order to have more

complex network from the triangulation point of view (larger treewidth) we

add a number of arcs inside each slice (see Fig. 13(b)). Thus, each slice can

have different optimal triangulations because the intra-slice arcs are different

among them and also the number of states for each variable has been randomly

generated (by using a Poisson distribution of mean 4 and minimum of 2). We

generated ten random networks, termed as RbNxS, with N the number of vari-

ables in each slice and S the number of slices. In order to obtain dense networks,

the number of intra-slice arcs have been N − 1 when N ≤ 10 and 2N − 1 when

N > 10.
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Fig. 13. Basic structure for the artificially generated networks.

To prevent the reader from being overwhelmed by too many data and graphics,

we have made a selection of the most representative cases, since there is a common

trend. We only show here the experiments carried out over 4 real networks and 4

ghttp://bndg.cs.aau.dk/html/bayesian networks.html
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Table 1. Description of the networks.

Net #V µ(#St) #E #EM #S µ(#Vs) σ(#vs) S∗
v

Prostanet 47 2.21 81 116 28 3.71 2.88 17

Munin1 189 5.26 282 366 70 4.14 12.61 108

Pigs 441 3.00 592 806 227 3.68 10.09 155

Munin4 1041 5.42 1397 1843 498 3.51 15.40 342

Rb10× 5 50 2.50 103 166 23 5.17 1.43 9

Rb10× 10 100 2.41 208 327 37 5.54 1.82 9

Rb20× 20 400 2.54 1218 2276 66 9.80 6.03 19

Rb20× 50 1000 2.52 3048 5743 173 9.54 5.89 19

artificial ones. We have selected this subset in order to have networks with different

complexity (measured in terms of number of nodes and links). Table 1 shows some

information about the networks: their name [Net], the number of variables [#V],

the mean number of states per variable [µ(#St)] and the number of links/arcs in

the network [#E]. Table 1 also provides information of interest for the incremental

compilation process: the number of links/edges in the moral graph [#EM ], the num-

ber of Maximal Prime Subgraphs [#S], the mean number of variables per subgraph

[µ(#Vs)] (plus the standard deviation [σ(#vs)]), and the number of variables in

the largest subgraph [S∗
v].

5.2. General idea for the experimental suite

The scene where the IC plays its main role is as follows: a user modelling a BN that

has been previously compiled decides to make some changes to it. A real study with

users is not feasible, so, we have made a simulation where we consider some of the

possible situations. We carried out experiments according to the following criteria:

(1) The four basic modifications should participate in the simulation, that is, ad-

dition/deletion of nodes/arcs.

(2) The modifications should be realistic.

(3) Both the amount (ratio) of nodes/arcs changed and their relative positions

(whether they are located in the same area or not) should be studied.

5.3. Experiment 1: Random modifications

The immediate approach for generating modifications would be to randomly select

nodes and arcs to add to (or remove from) a network. However, this would probably

give rise to unrealistic modifications, such as linking nodes which are too far apart

in the graph. Because of this, to generate a list of realistic modifications, we propose

the procedure of choosing a set of nodes that will be firstly deleted (together with

their incident nodes) creating a deletion modification list, modListD, and later the

exactly same modifications in their inverse operation (addition) will be reversely
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applied to create modListA. The key point here is how to choose the nodes to be

modified. In this first experiment the selection of nodes has been done randomly.

Thus, we generate two modification lists which are close to being realistic, in the

sense that both come from the real network. Moreover, by modifying the network in

two steps, applying modListD followed by modListA, we get the original network.

Note that deleting/adding a node involves previously deleting/subsequently

adding the incident links (e.g. in Fig. 2(a), deleting the node L will provoke a

previous deletion of both S → L and L → E). So, even when selecting only a few

nodes, the impact of the modification over the network can be significant.

Finally, in this experiment 1 we get the corresponding join trees for the modified

networks in two phases: (1) when deleting, modifications in modListD and (2) when

adding, modifications in modListA. In both cases we perform compilation from

scratch and also incremental compilation, in order to compare their results.

In this experiment, the number of variables (nChangedVars) deleted/added is

controlled by the parameter n. Depending on the complexity of the network, n has a

different meaning: If #V ≤ 100 then nChangedVars=n, otherwise nChangedVars is

the n% of #V. Notice that even when n = 1, this could imply multiple modifications

that will depend on how many children and parents the corresponding nodes have.

In order to compare incremental compilation (IC) with traditional re-compilation,

we collect different data: time (seconds), number of nodes/links affected by the

modifications and size of the resulting join trees. In all the cases the same heuristic

have been used for triangulation: Cano and Moral.4

Tables 2 and 3 show the results obtained for n=1 and n=2. The data shown in

the table are: the ratio between the time required by re-compilation [tN ] and IC [tI ];

the time required by re-compilation [tN ]; the number of variables [V] and edges [E]

modified in the moral graph; the ratioh (re-compilation/IC) of variables [V r
N/V r

I ]

and edges [Er
N/Er

I ] involved in the triangulation process; and the ratio between the

join tree size obtained by using re-compilation TN and IC TI distinguishing between

addition and deletion modifications.

All the data are on average (µ(·)) over the number of runs carried out. For the

number of variables involved in the triangulation process the standard deviation is

also shown [σ(#V r
I )]. In our experiments 20 series were used, which gives rise to 40

runs, as every series produces two experiments (modListD and modListA).

From these results, with respect to CPU time, we can see that when modifica-

tions are selected randomly the gain provided by IC increases with the complexity

of the BN and the MPD (number of subgraphs and number of variables per sub-

graph), and decreases with the modified portion of the network (parameter n). Let

us postpone tree sizes details to next subsection, since conclusions are quite similar.

hNote that this ratio is in fact the fraction of the whole network which has to be triangulated in
Incremental Compilation.
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Table 2. Experiment 1 (Random), n = 1.

Network µ

(

tN

tI

)

µ(tN ) V E µ

(

V r

I

V r

N

)

µ

(

Er

I

Er

N

)

σ(#V r

I
) µ

(

|TN |

|TI |

)del

µ

(

|TN |

|TI |

)add

Prostanet 4.723 0.017 1 6.15 0.32 0.34 9.86 1.00021 1.01125

Munin1 2.654 0.095 2 9.25 0.55 0.63 23.16 1.10402 0.91866

Pigs 6.126 0.389 4 14.50 0.33 0.34 47.07 0.93279 1.05226

Munin4 1.499 1.688 10 37.41 0.37 0.43 30.50 1.10402 0.91866

Rb10× 5 5.477 0.017 1 8.10 0.20 0.16 2.22 1.00000 1.00000

Rb10× 10 7.711 0.044 2 13.65 0.19 0.15 5.20 1.00110 1.00000

Rb20× 20 25.714 1.260 4 57.70 0.19 0.17 8.28 1.00370 1.01389

Rb20× 50 35.322 9.601 10 139.50 0.18 0.16 20.68 1.00474 1.00751

Table 3. Experiment 1 (Random), n = 2.

Network µ

(

tN

tI

)

µ(tN ) V E µ

(

V r

I

V r

N

)

µ

(

Er

I

Er

N

)

σ(#V r

I
) µ

(

|TN |

|TI |

)

del

µ

(

|TN |

|TI |

)

add

Prostanet 3.410 0.015 2 10.85 0.42 0.43 9.95 1.00108 1.00602

Munin1 0.998 0.087 4 17.05 0.60 0.67 3.61 1.07774 0.97465

Pigs 1.393 0.401 9 33.69 0.39 0.39 8.09 1.45111 1.48491

Munin4 1.220 1.640 21 77.60 0.42 0.47 33.16 0.99447 0.99909

Rb10× 5 3.060 0.016 2 15.45 0.35 0.28 4.14 1.00048 1.00000

Rb10× 10 4.179 0.041 4 28.40 0.37 0.30 7.72 1.00027 1.00000

Rb20× 20 14.062 1.273 8 110.00 0.34 0.31 15.84 1.00562 1.02527

Rb20× 50 19.187 9.291 20 269.55 0.32 0.30 39.16 1.00714 1.01325

5.4. Experiment 2: Modifications closer to customary usage

Although the modifications carried out in Exp. 1 seem realistic, the random selec-

tion of nodes may not reflect reality. In fact, when a user or knowledge engineer

is creating or modifying a large network it is very difficult to have a broad under-

standing of it, or even to have the possibility of viewing the whole model. Thus,

s/he usually concentrates on a limited region of the model, exploring the nodes and

relations contained in that region.

To simulate this more realistic behaviour we have changed the manner in which

the nodes to be modified are selected. First, we randomly select a leaf node X1

from the network and all the nodes linked to it are included in a set N . This set,

which will incrementally receive new elements, is the container of the next nodes

which are candidates for selection. Then, at stage i, the next node Xi is randomly

selected from N , and all the neighbours of Xi are added to N . In this way all the

modifications are in the same region. We have labelled this experiment neighbour

while experiment 1 is termed random. Tables 4 and 5 show the results of this

experiment.
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Table 4. Experiment 2 (Neighbour), n = 1.

Network µ

(

tN

tI

)

µ(tN ) V E µ

(

V r

I

V r

N

)

µ

(

Er

I

Er

N

)

σ(#V r

I
) µ

(

|TN |

|TI |

)del

µ

(

|TN |

|TI |

)add

Prostanet 9.375 0.016 1 1.75 0.15 0.14 7.31 0.99408 0.99804

Munin1 1.961 0.085 2 9.15 0.57 0.65 17.35 1.08291 1.08660

Pigs 10.298 0.381 4 30.75 0.35 0.35 51.36 1.16503 1.86951

Munin4 12.590 1.703 10 31.75 0.22 0.26 149.43 1.00057 1.00164

Rb10× 5 7.443 0.016 1 4.10 0.15 0.11 2.70 1.00000 1.00000

Rb10× 10 12.755 0.045 2 12.20 0.10 0.07 2.73 1.00000 1.00000

Rb20× 20 63.503 1.256 4 51.70 0.06 0.05 7.95 1.00736 1.01189

Rb20× 50 125.137 9.787 10 102.35 0.03 0.02 14.47 0.99655 0.99768

Table 5. Experiment 2 (Neighbour), n = 2.

Network µ

(

tN

tI

)

µ(tN ) V E µ

(

V r

I

V r

N

)

µ

(

Er

I

Er

N

)

σ(#V r

I
) µ

(

|TN |

|TI |

)del

µ

(

|TN |

|TI |

)add

Prostanet 1.832 0.014 2 15.65 0.50 0.47 7.81 0.98297 0.99131

Munin1 1.000 0.082 4 16.35 0.59 0.67 4.08 1.02053 1.18165

Pigs 1.326 0.393 9 55.55 0.40 0.40 16.61 1.38006 0.84936

Munin4 10.616 1.654 21 67.65 0.24 0.27 158.85 1.00328 1.00036

Rb10× 5 5.596 0.015 2 9.5 0.18 0.14 2.53 1.00000 1.00000

Rb10× 10 9.781 0.040 4 22.25 0.12 0.09 4.46 1.00000 1.00000

Rb20× 20 47.287 1.259 8 87.25 0.06 0.05 12.27 1.00616 1.01626

Rb20× 50 79.440 9.288 20 163.95 0.04 0.03 17.28 1.00537 1.00087

We can then verify that with this realistic behaviour (neighbour), IC improves

efficiency vs compilation from scratch, and now the gain obtained by IC is indeed

greatly increased with respect to the random experiment. For example, with Munin4

and n = 2, even though a big fraction (' 25%) of the BN is affected by IC, our

method is more than 10 times faster than Non-IC.

As has been pointed out, the larger the network the bigger the gain. Moreover,

it is important to notice that it is precisely these large networks that require more

CPU time to be compiled. As an example, a speedup of 1.326 in Pigs means that

0.296s are needed instead of 0.393s while in Munin4 the speedup of 1.499 means that

less than 1.13s are needed instead of almost 1.7s. For this reason, larger networks

are the ideal target for IC. However, as experiment 5 will show, the gain when

considering tables construction is more relevant even for smaller networks.

When tree sizes are concerned, from experiments 1 and 2 we can see how the

speed-up introduced by IC does not affect the quality of trees. In artificial networks

the ratio between sizes is very close to 1.0 in all the cases. Regarding real networks,

in general IC obtain a better (averaged) result, that is, ratio is greater than 1.0.



March 23, 2011 14:29 WSPC/118-IJUFKS S0218488511006952

182 M. J. Flores, J. A. Gámez & K. G. Olesen

Anyway, in these cases the variation in size is more related with the use of the

triangulation heuristic than with the decision of using or not incremental compila-

tion. Thus, if we run 500 times the heuristic breaking ties randomly, we obtain the

following mean and sd for the corresponding join tree sizes: Prostanet (1772 ± 0),

Pigs (2614602± 1633493), Munin1 (243464098± 46393941) and Munin4 (39192069

± 117537). Below, experiment 6 will to study this factor in greater detail and will

show the evolution of the tree size when we start from a good triangulation.

5.5. Experiment 3: Impact of the number/size of modifications on

IC performance

In the above experiments we modified the network by using n = 1 and n = 2, which

in some cases produces a big impact on the resulting model. We also collected many

statistics about the process. In this experiment we ran the same process, but instead

of looking only the result after the whole process, we aim to observe the behaviour

of both (re-compilation) approaches gradually. Thus, we ran the experiment for

nChangedVars = 1, 2, . . . (that is, the parameter n is not used in this experimenti).

Figures 14 (real networks) and 15 (artificial networks) show the results ( tN
tI
) of this

experiment averaging over 10 different runs, where nChangedVars is represented on

axis X and the ratio tN
tI

is represented on axis Y . Note that a logarithmic scale has

been used on axis Y so as to offer a finer visualisation.

From the graphics in Figs. 14 and 15 we can observe a huge speedup when only a

few variables (and their links) are modified. Note that for large networks (Munin4)

even modifications based on up to 30 variables yields a considerable speedup, and

with 50 modifications, which are in fact too many, IC is still advantageous.

These graphics in Exp. 3 are also very useful to compare random and neighbour

modifications. As we can see, in general, IC works better when realistic changes are

performed.

5.6. Experiment 4: Addition vs Deletion changes for IC

In this experiment we wanted to compare the effect of the two types of modifications

(deletion and addition) when performing incremental compilation. To do this, we

based our study on experiments 1 and 2, but now we show the ratio tN/tI separately

for runs involving deletions (type D – modListD) and runs involving additions

(type A – modListA). Table 6 shows the results obtained for a representative subset

of the networks used in this paper, where we distinguish between random and

neighbour modes as usual. We should note that, due to the experiment design, in

the deleting (D) phase the network is decreasing incrementally in size, because

we are deleting elements (nodes together with their incident links) while in the

second phase (adding – A) the network will grow again until adopting the original

structure.

iNotice that for example in network Munin4 n = 1 implies nChangedVars = 10.
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Fig. 14. Impact of nChangedVars on the ratio tN /tI for the real networks.
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Fig. 15. Impact of nChangedVars over the ratio tN/tI for the rhombus networks.
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Table 6. Results for modifications of type: deletion (D) and addition (A).

Random Neighbour

D A D A

Network (n) µ

(

tN

tI

)

µ(tN ) µ

(

tN

tI

)

µ(tN ) µ

(

tN

tI

)

µ(tN ) µ

(

tN

tI

)

µ(tN )

Munin1 (1) 2.924 0.088 2.287 0.093 3.834 0.087 1.004 0.083

(2) 0.962 0.085 0.962 0.098 0.951 0.074 1.022 0.087

Pigs (1) 9.879 0.386 1.451 0.399 9.241 0.372 7.679 0.399

(2) 1.289 0.364 1.379 0.407 1.300 0.369 1.395 0.409

Rb20× 20 (1) 32.422 1.285 19.613 1.280 88.654 1.241 36.922 1.294

(2) 16.676 1.174 10.367 1.292 69.432 1.166 23.739 1.287

Munin4 (1) 1.566 1.705 1.459 1.719 17.364 1.693 8.307 1.744

(2) 1.377 1.692 1.237 1.742 15.395 1.714 6.184 1.750

Exp. 4 confirms that adding links (A) affects more MPSs than removing links

(D), so a bigger part of the network has to be retriangulated. To check this, just

compare D and A columns for both Random and Neighbour forms in all the cases.

This conclusion would be stronger when the network has a homogenous MPD, as

Rb20x20’s results prove.

5.7. Experiment 5: Influence of IC when creating potentials

Depending on the inference method, the meaning of an initialised join tree differs.

Thus, if Lazy Propagation is used,29 it is enough to build the join tree and to estab-

lish the assignment of the network probability families (conditional probabilities)

to the cliques in the join tree. This is the process we measured in experiments 1

to 4. However, if lazy propagation is not used (which is the case for most Bayesian

network tools), then the potentials associated to each clique have to be initialised as

the product of the probability families assigned to it. In this experiment we analyse

the effect of using IC when potentials are initialised as probability tables, the usual

representation.25 Table 7 shows the data for this experiment with n = 1 and n = 2.

Table 7. Results for experiments including probability tables (clique potentials) initialisation (n = 1
and n = 2).

Random Neighbour Random Neighbour

Network µ

(

tN

tI

)

µ(tN ) µ

(

tN

tI

)

µ(tN ) Network µ

(

tN

tI

)

µ(tN ) µ

(

tN

tI

)

µ(tN )

Prostanet (1) 5.290 0.024 11.358 0.024 Rb20× 20 (1) 23.068 12.194 255.876 13.040

(2) 4.064 0.026 2.319 0.024 (2) 10.985 13.567 125.006 15.206

Pigs (1) 16.687 1.219 25.931 1.250 Munin4 (1) 1.233 24.192 79.896 32.441

(2) 2.961 1.544 2.573 1.367 (2) 1.786 44.237 53.552 43.261
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In this case the measures times TN and TI include compilation (triangulation

+ JT construction) together with potentials initialisation.

In this experiment we focus on real networks, although we skipped Munin1

due to the high memory resource required by the large state space of its probability

tables. Of course, because of a small portion is re-triangulated in the slice-structured

artificially created networks a higher benefit is obtained. We only show the results

for one of these networks: Rb20x20.

In this experiment, we go beyond structure construction and we also initialise the

clique potentials. This procedure involves the multiplication of probability tables

which is a time consuming process for large tables such as in Munin4. That is

why when recompiling with n = 2 Munin4 needs 0.4s (IC) vs 32s (Non-IC). IC

also improves its speedup with respect to Non-IC in the Pigs network, but the

improvement is smaller than in Munin4. This is caused by the fact that in Pigs all

the probability tables are rather small (3 variables × 3 states, at most).

5.8. Experiment 6: Studying IC impact on join tree size stability

In the previous experiments our main focus has been to show that using IC is faster

than recompilating from scratch. We also provide data about the resulting join tree

size in order to show that the reduction in time does not punish the size of the

obtained join tree, that is, we do not obtain a more complex structure.

There is however a scenario that we have not tested yet. What happens if we have

previously devoted some effort to produce a good join tree, that is, one of minimal

size. In that case, it is clear that if we make some modification and recomplie from

scratch by using a fast triangulation method, then we loose all our previous work,

but we can also expect that if IC is used, then for those parts of the graph which

are not re-triangulated we maintain the good sub-structures in the resulting join

tree and so the tree size should be smaller.

The goal of this experiment is to test if our expectation actually holds. In order

to observe this behaviour gradually, we make an iterative application of compila-

tion, that is, compiling after deleting one node, then compiling again after deleting

a second one, and so until a top number (we chose 5) and then repeat the itera-

tive process but adding nodes again one by one and in the reverse order. Modi-

fications are generated as in previous experiments, therefore when we talk about

adding/deleting a node we refer to adding/deleting also its incident edges.

The starting structure is chosen as follows: each network is triangulated 500

times by using the following heuristics: minimum fill, minimum size, minimum

weight,23 and Cano Moral.4 Because of random tie breaking is used we obtain a

great number of different deletion sequences (and corresponding join trees). From

these 2000 triangulations we choose the one leading to the join tree with smallest

state space size as our starting point (σ∗).

In this experiment the results have been averaged over 10 independent runs,

distinguishing between random and neighbour behaviour. In this case we focus
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only on the four larger networks, being those which are more critical and variable

in terms of tree size.

Figures 16 and 17 plot the output of this experiment. Points 1 to 5 in the

x-axis correspond to deletion of the first, . . . , fifth variable, while points 6 to 10

corresponds to their addition in the reverse way. Thus, one should expect to see

something like an inverted bell in the plots, but this fact not always happens.
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Fig. 16. Expt 6. Impact of deleting/adding variables one by one on tree size (Random).

These Figs. 16 and 17 are quite useful to understand the performance of IC

from the join tree perspective, and we could analyse distinct aspects:

(1) For real networks, with a naturally less balanced MPD,j modifying the network

will affect strongly the tree structure, which is more evident for the Random

modifications. Note that the point 0 and 10 correspond to the same network

but the resulting tree size has been increased. Because of the size of the good

triangulations used (569835 for Pigs and 16409946 for Munin4) are too far from

the average size obtained by CanoMoral heuristic, we cannot see the expected

jAn MPD can be considered as completely balanced or uniformed when all subgraphs (MPSs)
have the same number of variables.
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Fig. 17. Expt 6. Impact of deleting/adding variables one by one on tree size (Neighbour).

inverted bell shape, but as we can observe IC provides trees of smaller size than

compilation from scratch due to the fact that we can re-use some good fractions

from the original join tree. This behaviour is more evident when modifications

are generated by using the neighbour approach (Fig. 17).

(2) For the artificially generated networks, the situation is clearer. In this case,

because the size of the starting good triangulation is closer to the average size

obtained by CanoMoral heuristic, we can observe the expected inverted-bell in

the plots. Thus, IC performs in a more stable way than Non-IC, even though

the second is more stable than in real nets (more clear in the Random case) due

to the simpler structure in the RbNxS nets. However, these results are really

relevant to be studied, since they show us the ideal case for IC, when MPD

decomposition is balanced and neighbour/random modifications have a clearly

different behaviour.

5.9. Global conclusions from results in experiments 1 to 6

From an examination of the results obtained we are in a position to draw the

following main conclusion: with respect to the parameters analysed in this study

(CPU time and join tree size), Incremental Compilation is always beneficial.
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When time is concerned, IC always provides better time results than compilation

from scratch. Moreover, its improvement is more noticeable when the number of

modifications is small, and more relevant in networks of large size. The speed-

up in time is even more evident when we try to simulate a realistic experiment

(Neighbour). Finally, if we consider the construction and itialisation of probability

tables, this enhancement is even much bigger.

Tree size has also been studied in experiments 1 and 2, but especially in exper-

iment 6. From the experiments, we can conclude that not only IC does not affect

negatively in join tree structures, but in fact it favours tree stability, which was

together with efficiency, one of our goals.

6. Main Conclusions and Further Work

We have developed a method for incremental compilation of Bayesian networks, as

we aimed at the beginning. This method is based on MPD decomposition. So, it

depends on a maximal prime subgraph representation of the graph of the Bayesian

network, which is easily obtainable from the join tree representation. The key point

is that the maximal prime subgraphs are the minimal subgraphs that can be trian-

gulated independently, and the method thereby ensures that no unnecessary com-

putations are carried out. Moreover, the method supports stability of the join tree

as existing parts are recycled and only the parts that have been affected by changes

in the BN are modified.

The method saves time in situations with frequently changing BNs. This is typ-

ically the case during construction and tuning of models, but also during learning

of BN models minor modifications are often systematically applied. In such pro-

cesses huge model spaces are searched and modifications will most often consist of

addition or removal of a single arc and we have verified that for small changes IC

provides a huge speedup.

In this paper, we have firstly described the technique algorithmically, and its

practical impact has been backed up by an experimental evaluation of IC on a set of

networks. From the analysis of the experiments carried out we can conclude that IC

is an advantageous method with respect to compilation from scratch, in particular

when the network is large and only slightly modified. But these two particular

conditions were the ones we were really interested in solving, since large networks

represent the problematic case for recompilation and the changes performed on

them (when modelling or other iterative tasks) are quite usually restricted to a

small proportion of the network located in a limited area.

Another reason that justifies its utility and interest is that several applications

and studies that have appeared recently use and/or refer to our Incremental Com-

pilation technique in tasks such as learning Bayesian Networks,16, 22 computation

for high-dimensional graphical models,21 and incremental Bayesian inference.28

We reckon that this method has proved of interest even in networks having a

(very) non-uniform MPD. As this is in the end a divide and conquer approach, its



March 23, 2011 14:29 WSPC/118-IJUFKS S0218488511006952

Incremental Compilation of BNs Based on Maximal Prime Subgraphs 189

efficiency should increase if the division is more balanced. It is for this reason that

the speedup increases enormously when the network has a nice MPD.

As future research, we would like to continue investigating this approximate ex-

tension in order to characterise when its use is necessary. Future work also includes

studying the possibility of extending this method from discrete Bayesian networks

to other kinds of graphical models, such as continuous models and influence dia-

grams.

Finally, we would like to point out that the Incremental Compilation task can

also be interpreted as a modular collaborative distribution of the network that

is obtained directly from it. That is, we partition the network into subgroups that

correspond to the MPSs. In the literature we find many attempts to do this modular

division from the opposite point of view, that is, by constructing a total and larger

network from smaller items that might be seen as subgroups or subnetworks. This

is another incremental perspective, where the elements are accumulated, connected

and integrated to form bigger structures. These conceptions are usually located

in the framework of Knowledge Engineering and the Object Oriented philosophy.

From this basis, we developed a study where the main proposals for diverse modular

structures and an analysis of the connections between them and IC is done,11 paying

special attention to its utility for certain purposes, such as the inference process.
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14. M. J. Flores, J. A. Gámez, and K. G. Olesen, Incremental compilation of Bayesian
networks, in UAI ’03, Proc. 19th Conf. Uncertainty in Artificial Intelligence, 2003,
pp. 233–240.
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