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Data envelopment analysis (DEA) is a non-parametric method for measuring the efficiency of peer 

operating units that employ multiple inputs to produce multiple outputs.  Several DEA methods have 

been proposed for clustering operating units. However, to the best of our knowledge, the existing 

methods in the literature do not simultaneously consider the priority between the clusters (classes) and 

the priority between the operating units in each cluster. Moreover, while crisp input and output data are 

indispensable in traditional DEA, real-world production processes may involve imprecise or ambiguous 

input and output data. Fuzzy set theory has been widely used to formalize and represent the 

impreciseness and ambiguity inherent in human decision-making.  In this paper, we propose a new fuzzy 

DEA method for clustering operating units in a fuzzy environment by considering the priority between 

the clusters and the priority between the operating units in each cluster simultaneously. A numerical 

example and a case study for the Jet Ski purchasing decision by the Florida Border Patrol are presented 

to illustrate the efficacy and the applicability of the proposed method. 

Keywords: Data envelopment analysis; clustering; priority, ranking; fuzzy input and output data; Florida 

border patrol. 
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1. Introduction  

Data envelopment analysis (DEA) is a methodology for measuring the relative efficiency 

of a set of operating units that use multiple inputs to produce multiple outputs. Originally 

proposed by Farrell,
1
 Charnes et al.

2
 popularized the non-parametric frontier analysis 

when they proposed the first DEA model for constant returns to scale.  Numerous 

developments to both theory and application have been proposed over the past three 

decades. Some of the pioneering work in DEA include: the Russell measure originated by 

Färe and Lovell
3
 and later enhanced by Pastor et al.,

4
 the free disposal hull model 

originated by Deprins et al.
5
 and Tulkens,

6
 the cross efficiency originated by Sexton       

et al.,
7
 the window analysis introduced by Charnes et al.,

8
 the absolute multiplier 

restrictions proposed by Roll et al.,
9
 the application of chance constrained programming 

in DEA by Thore
10

 and Land et al.,
11 ,12

 the Malmquist productivity index by Färe et al.,
13

 

the network DEA by Färe and Grosskopf,
14

 the range adjusted measure as a non-radial 

model by Cooper et al.,
15

 and the slacks-based measure by Tone.
16

 

The most widely used extensions of DEA models include those of the variable returns 

to scale model (Banker et al.
17

), the additive model (Charnes et al.
18

), the fuzzy DEA 

(Sengupta
19

), the imprecise model (Cooper
 
et al.

20
), the robust DEA (Shokouhi et al.

21
), 

the assurance region  model (Thompson et al.
22

), the cone ratio model (Charnes et al.
23

), 

the super-efficiency model (Li et al.
24

), and the chance-constrained and stochastic models 

(Cooper et al.
25

). A detailed review and taxonomy of various DEA models can be found 

in Cook and Seiford
26

 and Emrouznejad and De Witte.
27

 

One limitation of the conventional DEA methods is the need for accurate 

measurement of both the input and the output data. While crisp input and output data are 

fundamentally indispensable in the conventional DEA models, input and output data in 

real-world problems are often imprecise or ambiguous.  Imprecise evaluations may be the 

result of unquantifiable, incomplete and non-obtainable information. Numerous fuzzy 

methods have been proposed to deal with this impreciseness and ambiguity in DEA since 

the original study by Sengupta.
19

  In general, fuzzy DEA methods can be classified into 

four primary categories, namely, the tolerance approach (Sengupta
19

), the α-level based 

approach (Kao and Liu,
28

 Saati et al.,
29

 Hatami-Marbini et al.
30

), the fuzzy ranking 

approach (Guo and Tanaka
31

) and the possibility approach (Lertworasirikul et al.
32

).  An 

exhaustive review and taxonomy of various fuzzy DEA models can be found in Hatami-

Marbini et al.
33

  

Clustering is the process of organizing a set of objects (operating units) into a useful 

set of mutually exclusive clusters such that the similarity of the objects within a cluster is 

maximized while the similarity of the objects between different clusters is minimized 

(e.g., Jain et al.,
34

 Okazaki,
35

 Rai et al.,
36

 Samoilenko and Osei-Bryson,
37

 Wallace           

et al.
38

).  Generally, clustering methods are grouped into hierarchical, learning network, 

and distance-based clustering. 

Hierarchical clustering groups the objects by creating a cluster tree called 

dendrogram. Clusters are then formed by either the agglomerative approach or the 

divisive approach (Johnson,
39

 Kaufman and Rousseeuw
40

). Agglomerative methods 
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assume that each object is its own cluster and then these clusters are combined to form 

larger clusters with each step of the process.  Eventually, these clusters are combined to 

form a single cluster. Divisive methods assume a single cluster encompassing all the 

objects within the sample and then proceeds to divide this cluster into smaller dissimilar 

clusters. 

Learning network clustering is a neural network based unsupervised clustering where 

high dimensional data is mapped into a discrete one or two-dimensional space. Learning 

network clustering performs clustering through a competitive learning mechanism (Bu   

et al.,
41

 Choi and Yoo,
42

 Harb and Chen,
43

 Kohenen
44

). 

Distance-based clustering is a partitioning method which creates an initial cluster and 

then uses an iterative relocation technique to maximize total similarity or minimize total 

dissimilarity by moving objects from one cluster to another. K-means (McQueen
45

), 

fuzzy c-means (Yang,
46

 Wu and Yang
47

) and possibilistic c-means (Krishnapuram and 

Keller
48

)  are various forms of distance-based clustering.  

The integration of clustering with DEA is not novel (Lemos et al.,
49

 Marroquin         

et al.,
50

 Meimand et al.,
51

 Po et al.,
52

 Samoilenko and Osei-Bryson,
53,37

 Schreyögg and 

von Reitzenstein,
54

 Sharma and Yu,
55

 Shin and Sohn
56

). In general, clustering is 

integrated with DEA in two different ways. In the first approach the clustering results are 

applied to the results of DEA to construct multiple reference subsets from the original set 

of DMUs (Meimand et al.
51

). In the second approach, the efficiency score of a DMU is 

defined not by its peer group (an efficient subset of all DMUs) but by an efficient subset 

of its peer subgroup. Consequently, this approach will results in isolation of the multiple 

homogeneous subsets in the presence of scale heterogeneity of the sample and then each 

DMU is compared only with the appropriate subset consisting of its peers within the 

subset. 

Samoilenko and Osei-Bryson
53

 proposed a solution for performing DEA of a scale 

heterogeneous data set and their method did not require (1) explicit partitioning of the 

sample of DMUs into multiple peer groups; (2) a large data set; or (3) any data external 

to DEA as suggested by Dyson et al.
57

 and used by Sarrico and Dyson.
58

 Instead, their 

method took into consideration the presence of heterogeneous subsets without actually 

dividing the sample. As a result, their approach was not incongruent with one suggested 

in Dyson et al.,
57

 where grouping of DMUs into homogenous subsets was based on 

management information. 

In this paper, we propose a new DEA method for clustering operating units in a fuzzy 

environment by considering the priority between the clusters and the priority between the 

operating units in each cluster simultaneously. The proposed clustering-based DEA 

model defines the group of operating units that are similar to the operating unit under 

evaluation. This clustering process results in clusters with homogenous members. In 

addition, we present a numerical example and a case study for the Jet Ski purchasing 

decision by the Florida Border Patrol to illustrate the efficacy and the applicability of the 

proposed method. 
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This paper is organized into eight sections.  In Sec. 2, we provide some basic 

definitions of fuzzy sets.  In Section 3, we present an overview of DEA and the fuzzy 

DEA framework followed by the DEA-based clustering method proposed in this study   

in Sec. 4.  In Sec. 5 we present a numerical example to illustrate the efficacy of the 

proposed method and in Sec. 6 we present the Florida Border Patrol case study. We 

compare the proposed clustering algorithm with other methods in Sec. 7. In Sec. 8 we 

summarize with our conclusions and future research directions. 

2. Fuzzy Background  

Fuzzy sets were introduced by Zadeh
59

 as a means of representing and manipulating 

imprecise and inexact data associated with human cognitive processes (such as thinking 

and reasoning) with fuzzy numbers. The conventional approaches to knowledge 

representation lack the means to represent fuzzy numbers. As a consequence, the 

approaches grounded in first order logic and classical probability theory cannot provide 

an appropriate conceptual framework for dealing with commonsense knowledge 

representation since such knowledge is both lexically imprecise and non-categorical. In 

the following section we review several basic definitions of fuzzy sets (Zimmermann,
60

 

Dubois and Prade,
61

 Kauffman and Gupta
62

). 
 

Definition 2.1. (Fuzzy set): Let X be a nonempty set. A fuzzy set Aɶ  in X is characterized 

by its membership function 

 ( ) [0,1]
A

xµ →ɶ   

and ( )
A

xµ ɶ  is interpreted as the degree of membership of element x in fuzzy set  for 

each x X∈ . 

It is clear that  is completely determined by the set of tuples 

 ( ){ }, ( ) |
A

A x x x Xµ= ∈ɶ
ɶ .  

Definition 2.2. (α -cut): An α -level set of a fuzzy set  of X is a non-fuzzy set denoted 

by A
α
ɶ  and is defined by 

 
{ | ( ) }

(sup )

A
x X x

A
cl A

α

µ α ∈ ≥
= 


ɶɶ ,  

where cl(sup A) denotes the closure of the support of . 

Definition 2.3. (Fuzzy number): A fuzzy number  is a fuzzy set of the real line with a 

normal, (fuzzy) convex and continuous membership function of bounded support 

whereby its normality and convexity can be defined as follows: 

Convexity:                                                                                                    , 

 

Normality: , ( ) 1
A

x X xµ∃ ∈ =ɶ . 

Aɶ

Aɶ

Aɶ

Aɶ

Aɶ

( (1 ) ) min( ( ), ( )), , , [0,1]
A A A

x y x y x y X+ − ≥ ∀ ∈ ∀ ∈
ɶ ɶ ɶ

µ λ λ µ µ λ
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Fig. 1. A trapezoidal fuzzy number. 

Definition 2.4. (Generalized trapezoidal fuzzy number): A fuzzy number  =

( , , , )l m n ua a a a , is called a generalized trapezoidal fuzzy number with membership 

function ( )
A

xµ ɶ  and has the following properties: 

• ( )
A

xµ ɶ is a continuous mapping from R to the closed interval [0, 1], 

• ( ) 0
A

xµ =ɶ  for all  ( , ]
l

x a∈ −∞ , 

• ( )
A

xµ ɶ is strictly increasing on [
la , 

ma ], 

• ( ) 1
A

xµ =ɶ for all [ , ]
m n

x a a∈ , 

• ( )
A

xµ ɶ is strictly decreasing on [
na , 

ua ], and 

• ( ) 0
A

xµ =ɶ for all [ , )
u

x a∈ +∞ . 

The membership function ( )
A

xµ ɶ  of  can be defined as follows: 

 

( ), ,

1, ,
( )

( ), ,

0, .

l m

A

m n

A n u

A

f x a x a

a x a
x

g x a x a

Otherwise

 ≤ ≤

 ≤ ≤

µ = 
≤ ≤




ɶ

ɶ

ɶ

 (1) 

where : [ , ] [0,1]
l n

A
f a a →ɶ  and : [ , ] [0,1]

m u

A
g a a →ɶ . 

Particularly, a special type of trapezoidal fuzzy number, plotted in Fig. 1, with a 

membership function ( )
A

xµ ɶ  can be expressed as: 

                                

, ,

1, ,
( )

, ,

0, .

l
l m

m l

m n

A u
n u

u n

x a
a x a

a a

a x a
x

a x
a x a

a a

Otherwise

 −
≤ ≤

−
 ≤ ≤

µ = 
−

≤ ≤ −


ɶ                                (2) 

Aɶ

Aɶ
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Fig. 2. A triangular fuzzy number. 

 

If 
l ma a=  and 

n ua a= , then  is called a crisp or simple interval. The trapezoidal 

fuzzy number = ( , , , )l m n ua a a a  is reduced to a real number A if l m n u
a a a a= = = . In 

an opposite way, a real number A can be written as a trapezoidal fuzzy number = (a, a, 

a, a).  If Mi m n
a a a= = , then, = ( , , )l Mi ua a a is called a triangular fuzzy number shown 

in Fig. 2. A triangular fuzzy number has the following membership function: 

 

, ,

( ) , ,

0, .

l
l Mi

Mi l

u
Mi u

A u Mi

x a
a x a

a a

a xx a x a
a a

Otherwise

 −
≤ ≤

−
 −µ =  ≤ ≤

−




ɶ  (3) 

For the sake of simplicity and without loss of generality, we assume that all fuzzy 

numbers used throughout the paper are triangular fuzzy numbers.  
 

Definition 2.5. (Linguistic variables): Linguistic variables are represented in words or 

sentences or artificial languages, where each linguistic value can be modeled by a fuzzy 

set. For example, “very low”, “low”, “medium”, “high”, or “very high” are linguistic 

variables because their values are represented by verbal phrases rather than numerical 

values. It should be noted that there are several methods for representing linguistic 

variables. The representing method used in practice depends on the application and the 

domain experts’ preferences.  The concept of a linguistic variable is useful in dealing 

with settings that are too complex or too ill-defined to be reasonably described with 

quantitative values. Linguistic values can also be represented by fuzzy numbers. 
 

Definition 2.6. (Fuzzy arithmetic operation): In fuzzy linear programming, the min T-

norm is usually applied to assess a linear combination of fuzzy quantities. Therefore, for 

Aɶ

Aɶ

Aɶ

Aɶ
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a given set of trapezoidal fuzzy numbers ( , , , ), 1,...,l m n u
j j j j ju u u u u j n= =ɶ  and 0jλ ≥ , 

1

n

j jj
uλ

=∑ ɶ  can be expressed as follows: 

 

1 1 1 1 1

, , ,

n n n n n
l m n u

j j j j j j j j j j

j j j j j

u u u u uλ λ λ λ λ
= = = = =

 
 =
 
 

∑ ∑ ∑ ∑ ∑ɶ  (4) 

where 
1

n

j jj
uλ

=∑ ɶ  denotes the combination 1 1 2 2 n nu u uλ λ λ⊕ ⊕ ⊕ɶ ɶ ɶ… . 

3. DEA and Fuzzy DEA Framework  

DEA was initially developed as a fractional linear program to assess the comparative 

efficiencies of operating units that use multiple inputs to produce multiple outputs. Based 

on the economic notion of Pareto optimality, the DEA methodology states that a decision 

making unit (DMU) is considered to be inefficient if another DMUs can produce at least 

the same amount of output with less of the same resource input and not more of any other 

resource.  Otherwise, a DMU is considered to be Pareto efficient. Assume that there are n 

DMUs to be evaluated where every DMUj ( 1, ...,j n= ) produces the same s outputs in 

various amounts, 
rj

y ( 1,...,r s= ), using the same m inputs, 
ij

x  ( 1,...,i m= ), also in 

various amounts. The relative efficiency of the DMUp can be obtained by using the 

following CCR model proposed by Charnes et al.
2
: 

 

1

1

1

1

max

. . 1, ,

, 0, , .

s

r rp

r
p m

i ip

i

s

r rj

r

m

i ij

i

r i

u y

v x

u y

s t j

v x

u v r i

θ =

=

=

=

=

≤ ∀

≥ ∀

∑

∑

∑

∑
 (5) 

where 
r

u  and i
v  are the weights assigned to the rth output and ith input, respectively. 

The interpretation of the DEA model (5) is a ratio of a weighted sum of outputs to a 

weighted sum of inputs where the weights for both inputs and outputs are to be selected 

in a manner that calculates the efficiency of the evaluated unit. Model (5) can be solved 

using a linear form as shown below by performing the Charnes–Cooper
63

 transformation: 
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1

1

1 1

max

. . 1

0, ,

, 0, , .

s

p r rp

r

m

i ip

i

s m

r rj i ij

r i

r i

u y

s t v x

u y v x j

u v r i

θ
=

=

= =

=

=

− ≤ ∀

≥ ∀

∑

∑

∑ ∑

 (6) 

Note that the DMUs with 
* 1pθ = , are called [technically] efficient units, and those 

units with *
1pθ ≠  are called [technically] inefficient units.  It is generally helpful for 

decision makers only to focus on the efficient DMUs. However, decision makers always 

face the problem of how to carry out additional comparisons among the efficient DMUs. 

The following duality form of model (6) also provides information about the contraction 

of resources or expansion of outputs for the DMUs to move from inefficiency to 

efficiency. 

 
1

1

min

. . , ,

, ,

0, .

p

n

j ij ip

j

n

j rj rp

j

j

s t x x i

y y r

j

θ

λ θ

λ

λ

=

=

≤ ∀

≥ ∀

≥ ∀

∑

∑
 (7) 

Model (7) is referred to as the envelopment or primal problem, and (6) the multiplier 

or dual problem. In the original DEA and its extensions, all the inputs and outputs assume 

the form of specific numerical values.  In many real-world problems, however, the data 

can be imprecise or vague or described by qualitative terms. How to deal with the 

imprecise and ambiguous data has been widely discussed in the DEA literature. Fuzzy 

logic and fuzzy sets can represent imprecise or ambiguous data in DEA by formalizing 

inaccuracy in decision making (Hatami-Marbini et al.
33

). A generic fuzzy CCR model 

and its dual are given as: 

 

1

1

1 1

max

. . 1

0, ,

, 0, , .

s

p r rp

r

m

i ip

i

s m

r rj i ij

r i

r i

u y

s t v x

u y v x j

u v r i

θ
=

=

= =

=

=

− ≤ ∀

≥ ∀

∑

∑

∑ ∑

ɶ

ɶ

ɶ ɶ

 (8) 
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1

1

min

. . , ,

, ,

0, .

p

n

j ij ip

j

n

j rj rp

j

j

s t x x i

y y r

j

θ

λ θ

λ

λ

=

=

≤ ∀

≥ ∀

≥ ∀

∑

∑

ɶ ɶ

ɶ ɶ

  

Note that in the multiplier form of the fuzzy CCR model (8) the right hand sides of 

the constraints are assumed to be crisp values because they are similar to the original 

CCR model used for normalization of the value of the efficiency in the objective 

function. The fuzzy DEA model can be used to cope with all kinds of fuzzy number 

shapes.  In this study we use triangular fuzzy numbers to develop our model.  However, 

our model is adaptable to other types of fuzzy numbers. The following model, therefore, 

can be obtained when fuzzy coefficients in model (8) are assumed to be triangular fuzzy 

numbers denoted as ( , , )
l m u

ij ij ij ijx x x x=ɶ  and ( , , )
l m u

rj rj rj rjy y y y=ɶ : 

 

1 1 1

1 1 1

1 1 1 1 1 1

1

max ( , , )

. . ( , , ) 1,

( , , ) ( , , ) 0, ,

, 0, , .

min

. . (

s s s
l m u

p r rp r rp r rp

r r r

m m m
l m u

i ip i ip i ip

i i i

s s s m m m
l m u l m u

r rj r rj r rj i ij i ij i ij

r r r i i i

r i

p

n

j i

j

u y u y u y

s t v x v x v x

u y u y u y v x v x v x j

u v r i

s t x

θ

θ

λ

= = =

= = =

= = = = = =

=

=

=

− ≤ ∀

≥ ∀

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑
1 1

1 1 1

, , ) ( , , ), ,

( , , ) ( , , ), ,

0, .

n n
m l u m l u
j j ij j ij ip ip ip

j j

n n n
m l u m l u

j rj j rj j rj rp rp rp

j j j

j

x x x x x i

y y y y y y r

j

λ λ θ θ θ

λ λ λ

λ

= =

= = =

≤ ∀

≥ ∀

≥ ∀

∑ ∑

∑ ∑ ∑

 (9) 

The above models cannot be solved by a standard linear program solver program 

because of the fuzzy numbers. In the recent fuzzy DEA survey, Hatami-Marbini et al.
33

  

classified the existing approaches to solve models (9) into four general categories: (1) the 

tolerance approach, (2) the α-level based approach, (3) the fuzzy ranking approach, and 

(4) the possibility approach. The α-level-based approach is probably the most popular 

fuzzy DEA model among the aforementioned approaches (Hatami-Marbini et al.
33

). 

Therefore, the α-level-based approach is utilized here to consider the fuzzy data in 

performance assessment. 
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4. Fuzzy DEA-based Clustering Method  

The purpose of the clustering methods is to identify partitions of data with respect to 

some form of similarity. The partitions of the set are called clusters. In other words, the 

predefined features such as color, quality, distance, number of observations and so on can 

be often utilized to categorize observations into various groups. In most conventional 

methods, the distance feature is used for classification of the observations that it is known 

as an absolute feature. Moreover, even though all data in the conventional DEA model 

are known precisely or given as crisp values, under many conditions, crisp data are 

inadequate or insufficient to model a real-life evaluation problem. In this section, we will 

propose an alternative DEA-based clustering algorithm to classify a set of evaluated 

DMUs when imprecise input-output data are characterized with fuzzy numbers. In order 

to cluster DMUs we will use the observations’ ranking criterion in our method which is a 

rational feature. The proposed approach, in addition to the ranking of DMUs in the 

imprecise environment, considers the priority among classes and the priority among 

DMUs in each cluster. Suppose that we have n DMUs, DMUj ( = 1, , )j n… , each using 

different amounts of m inputs to produce s outputs. Let ( , , )l m u

ij ij ij ij
x x x x=ɶ  ( 1, 2, ..., )i m=  

and ( , , )l m u

rj rj rj rj
y y y y=ɶ  ( 1, 2,..., )r s=  be the fuzzy triangular inputs and outputs, 

respectively, for DMUj ( = 1, , )j n… , where 0
ij

x ≥ɶ , 0
ij

y ≥ɶ , 0
ij

x ≠ɶ , and 0
ij

y ≠ɶ . In the 

first step, we rank the DMUs based on the ranking method proposed by Saati et al.
29

:  

 

min

s.t: ( (1 ) ) ( (1 ) ), ,

(1 ) ( (1 ) ), ,

0, .

p

m l m u

p ip ip j ij ij

j J

m u m l

rp rp j rj rj

j J

j

x x x x i

y y y y r

j

θ

θ α α λ α α

α α λ α α

λ

∈

∈

+ − ≥ + − ∀

+ − ≤ + − ∀

≥ ∀

∑

∑
 (10) 

Saati et al.
29

 developed model (10) to rank the efficient DMUs in a fuzzy 

environment using the concept of α-cut. In their model, the best part of a DMU which is 

the lower and upper levels of inputs and outputs, respectively, are compared with the 

inner part of efficiency frontier. It is clear that in this case the efficient DMU increases its 

efficiency score to more than unity since the projection is made outside of the possibility 

production set. Consequently, after running model (10), the DMUs whose objective 

function values are greater than or equal to one are placed in the first cluster. Moreover, 

the DMUs placed in the first cluster can be ranked easily by their objective function 

values obtained from (10). In other words, the DMU with the greater θ  has priority over 

the remaining DMUs. In the next step, we remove the DMUs that are assigned in the last 

step and solve model (10) for the remaining DMUs again. Accordingly, the DMUs whose 

objective function values are greater than or equal to one lie in the second cluster and, 

similarly, we can determine the priority among these selected DMUs. Likewise, we 

remove the assigned DMUs in the preceding step and the same method is applied until 

one DMU remains.  It is important to note that in this DEA clustering method we cannot 

define the number of clusters before implementing the proposed algorithm and the 

number of clusters can be determined after applying the algorithm. It is also important to 

note that the importance of the first cluster is more than the second cluster, the 



 

importance of the second cluster is more important than the third cluster and so on. The 

following 10-step algorithm depicted in Fig

 

Step 1. Assume a set of DMUs index (

Step 2. Set 0k =  as

Step 3. Set M = ∅  

Step 4. Consider k k= +
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importance of the second cluster is more important than the third cluster and so on. The 

step algorithm depicted in Fig. 3 summarizes the entire process: 

Assume a set of DMUs index ( {1, 2, , }J n= … ), 

 as the cluster number, 

 as an index of clustered DMUs, 

1k k= + , 

Fig. 3. The flowchart for the proposed algorithm. 

Operating Units 39

importance of the second cluster is more important than the third cluster and so on. The 
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Table 1. The numerical example of Saati et al. (2002). 

DMU 
Inputs  Outputs 

1 2  1 2 

A (6, 7, 8) (29, 30, 32)  (35.5, 38, 41) (409, 411, 416) 

B (5.5, 6, 6.5) (33, 35, 36.5)  (39.5, 40, 43) (478, 480, 484) 

C (7.5, 9, 10.5) (43, 45, 48)  (32.5, 35, 38) (297, 299, 301) 

D (7, 8, 10) (37.5, 39, 42)  (28, 31, 31) (347.5, 352, 360) 

E (9, 11, 12) (43, 44, 45)  (33, 35, 38) (406, 411, 415) 

F (10, 10, 10) (53, 55, 57.5)  (36, 38, 40) (282, 286, 289) 

G (10, 12, 14) (107, 110, 113)  (34.5, 36, 38) (396, 400, 405) 

H (9, 13, 16) (95, 100, 101)  (37, 41, 46) (387, 393, 402) 

I (12, 14, 15) (120, 125, 131)  (24, 27, 28) (400, 404, 406) 

J (5, 8, 10) (35, 38, 39)  (48, 50, 51) (470, 470, 470) 

 

Step 5. Utilize the proposed model (10) for the DMUs which consists of the J  

index, 

Step 6. Assign the DMUs whose objective function values (obtained from step 5) are 

greater than or equal to one to the k
th

 cluster, 

Step 7. Rank the DMUs obtained from step 6 according to their objective function 

values,  

Step 8. Add the index of the DMUs in the k
th

 cluster to the set of M, 

Step 9. Consider J J M= − , 

Step 10. Stop the algorithm if J = ∅ , otherwise, return to step 4. 

5. Numerical Example  

In this section, we illustrate the applicability and efficacy of the proposed algorithm with 

a numerical example taken from Saati et al.
29

 This example includes two triangular fuzzy 

inputs and two trapezoidal fuzzy outputs with 10 DMUs as shown in Table 1. 

A performance evaluation problem in the real world often consists of precise and 

imprecise data. Therefore, we can observe some crisp data as well as fuzzy data in    

Table 1. Note that the crisp data are described by triangular fuzzy numbers with equal 

medium, lower and upper values. 

We first assume that α = 0.5. The proposed algorithm is executed to cluster 10 DMUs 

and the procedure is briefly described here:  
 

Step 1. We evaluate the following 10 DMUs in this clustering example: 

{ , , , , , , , , , }J A B C D E F G H I J= . 

Steps 2 and 3. k = 0 (the first cluster) and M ϕ= . 

 

The first iterate/cluster 

Step 4. =k 1. 

Step 5. Model (10) for ten DMUs is executed to obtain the objective function values 

presented in Table 2. 
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Table 2. The objective function values of model (10) for the ten DMUs in the first iteration. 

DMU  A B C D E F G H I J 

Objective function value 1.10 1.14 0.73 0.71 0.72 0.64 0.53 0.63 0.41 1.24 

Selected DMUs in the 1st 

cluster 
* * 

 
* 

Rank 3 2 1 

Table 3. The objective function values of model (10) for the seven DMUs in the second iteration. 

DMU C D E F G H I 

Objective function value 1.23 1.25 1.14 1.07 0.99 1.12 0.80 

Selected DMUs in the 2nd cluster * * * * 
 

* 
 

Rank 2 1 3 5 4 

Table 4. The objective function values of model (10) for the two DMUs in the third iteration. 

DMU G I 

Objective function value 1.24 1.09 

Selected DMUs in the 3rd cluster * * 

Rank 1 2 

 

Step 6. As shown in Table 2, the objective function values for A, B and J are bigger than 

one. Therefore, these DMUs are placed in the first cluster. 

Step 7. Rank the DMUs A, B and J presented in the last row of Table 2. 

Step 8. { , , }.M A B J=  

Step 9. { , , , , , , }.J C D E F G H I=  

Step 10. .J ≠ ∅  
 

The second iterate/cluster 

Step 4. 2k = .  

Step 5. Model (10) for the remaining seven DMUs, { , , , , , , }J C D E F G H I= , is executed 

to obtain the objective function values presented in Table 3. 

Step 6. , , ,C D E F and H shown in Table 3 are placed in the second class. 

Step 7. Rank the DMUs , , ,C D E F and H presented in the last row of Table 3. 

Step 8. { , , , , , , , }.M A B C D E F H J=  

Step 9. { , }.J G I=  

Step 10. .J ≠ ∅  
 

The third iterate/cluster 

Step 4. 3.k =  

Step 5. The objective function values of model (10) for the two remaining DMUs, 

{ , },J G I=  are shown in Table 4.  

Step 6. G and I shown in Table 4 are placed in the third cluster. 

Step 7. Rank the DMUs G and I presented in the last row of Table 4. 

Step 8. { , , , , , , , , , }.M A B C D E F G H I J=  

Step 9. .J = ∅  

Step 10. .J = ∅  
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   Table 5. The clustering results. 

DMU Ranking 

Within Clusters 

Clusters 

1st Cluster 2nd Cluster 3rd Cluster 

1 

2 

3 

4 

5 

DMU J 

DMU B 

DMU A 

DMU D 

DMU C 

DMU E 

DMU H 

DMU F 

DMU G 

DMU I 

 

 

Table 5 presents the results for the DEA-based clustering algorithm proposed in this 

study.  As shown in this table, ten DMUs are grouped into three clusters (1
st
, 2

nd
 , and 3

rd
 

clusters) and the priority of the DMUs within each cluster is shown as: J B A≻ ≻  in the 

1
st
 cluster, D C E H F≻ ≻ ≻ ≻  in the 2

nd
 cluster, and G I≻  in the 3

rd
 cluster (where “

≻ ” means “is better than”). 

6. The Purchasing Decision at the Florida Border Patrol  

The Florida Border Patrol plans to purchase 250 water jet skis for border protection and 

homeland security.  They are evaluating 45 jet skis using a DEA model with four input 

variables and three output variables. The input variables include: Fuel Consumption 

(LPH), Weight (KG), Cost (USD) and Reliability Rating. The output variables include: 

Power (HP), Noise Level (dBA), and Emission Rating.  The associated data are reported 

in Table 6.  

The Reliability Rating among the inputs and Emission Rating among the outputs 

were measured with linguistic variables and the associated the trapezoidal fuzzy numbers 

are presented in Table 7.  

Generally, the goal in efficiency theory is to maximize output while minimizing 

input.  This goal is also pursued in DEA where multiple outputs are maximized while 

multiple inputs are minimized. We use the concept of “bad input-bad output” to 

maximize bad inputs and minimize good input. Lower input values are preferred to 

higher input values.  However, higher bad input values are preferred to lower bad input 

variables and since the goal in efficiency theory is to minimize inputs, we must first 

invert the bad inputs.  Similarly, higher output values are preferred to lower output 

values.  However, lower bad output values are preferred to higher bad output variables 

and since the goal in efficiency theory is to maximize outputs, we must first invert the 

bad outputs.  Bad inputs and outputs are the reciprocal of the inputs with higher desirable 

values and outputs with lower desirable values, respectively.  In this case study, Noise 

Level (dBA) is a bad output and its inverse value is used in the model.  

Using the above input and output data, we implemented the algorithm proposed in 

this study to evaluate 45 jet skis under consideration by the Florida Border Patrol with 

respect to α = {0,0.25,0.5,0.75,1}  (see Fig. 3). The selected jet skis for each cluster at a 

given α-cut are shown in Tables 8-12 along with their respective ranking in each cluster. 
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Table 6.  The input and output data for the jet skis. 

 

 

Jet 

Ski 

INPUTS  OUTPUTS 

Fuel Consumption 

(LPH) 

Weight  

(KG) 

Cost  

(USD) 

Reliability 

 Rating 
 

Power  

(HP) 

Noise Level (dBA) 

(BAD OUTPUT) 

Emission 

 Rating 

S01 48 262 4310 MH  110 80 H 

S02 40 268 4250 L  88 85 L 

S03 47 280 4020 MH  90 65 ML 

S04 42 320 5810 VH  120 94 M 

S05 55 350 5200 M  88 76 L 

S06 54 366 5050 L  86 84 VL 

S07 46 350 5500 VH  112 69 M 

S08 42 280 5200 MH  95 94 ML 

S09 38 310 4900 VH  110 96 H 

S10 58 330 5620 MH  112 92 H 

S11 54 288 4850 ML  98 78 MH 

S12 56 292 4500 M  96 62 H 

S13 58 320 4760 L  88 89 M 

S14 44 312 4650 ML  94 93 M 

S15 38 276 5320 MH  92 95 H 

S16 42 267 5410 M  78 79 M 

S17 46 296 5520 M  82 96 M 

S18 40 294 5400 VH  84 89 H 

S19 38 269 5380 L  92 84 VL 

S20 40 330 4320 VH  106 76 M 

S21 42 308 4820 M  110 84 M 

S22 51 265 4530 L  95 97 MH 

S23 43 286 4610 ML  98 94 VH 

S24 38 302 5310 VH  86 68 M 

S25 42 276 4530 VH  92 74 H 

S26 58 320 4480 ML  96 92 MH 

S27 60 322 4720 H  104 86 M 

S28 54 306 4980 VH  106 90 H 

S29 42 283 5320 M  92 82 VL 

S30 38 276 5410 L  80 86 MH 

S31 38 286 5670 L  88 88 H 

S32 46 298 5430 VH  86 86 ML 

S33 44 284 4980 ML  94 92 ML 

S34 55 322 4680 M  94 92 ML 

S35 54 269 5240 ML  88 82 VL 

S36 48 296 5460 M  86 88 H 

S37 46 274 5500 M  93 85 VL 

S38 44 286 5380 M  95 81 L 

S39 45 306 5760 MH  105 88 VH 

S40 52 314 5310 MH  112 78 M 

S41 49 305 4820 VH  97 68 VL 

S42 39 285 4320 M  102 75 L 

S43 44 295 4210 H  106 84 MH 

S44 52 312 5220 M  110 92 M 

S45 50 315 5680 MH  105 95 L 
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Table 7.  The linguistic variables and their associated trapezoidal fuzzy numbers used in this study. 

Linguistic variable Trapezoidal fuzzy number 

Very low (VL) (0, 0, 10, 20) 

Low (L) (10, 20, 20, 30) 

Medium low (ML) (20, 30, 40, 50) 

Medium (M) (40, 50, 50, 60) 

Medium high (MH) (50, 60, 70, 80) 

High (H) (70, 80, 80, 90) 

Very high (VH) (80, 90, 100, 100) 

 

Table 8. The clustering, objective function values (OFVs) and the ranking results (Alpha = 0). 

1st Cluster  2nd Cluster 

Jet ski OFV Rank  Jet ski OFV Rank 

S31 

S22 

S30 

S19 

S06 

S02 

S13 

S23 

S11 

S26 

S35 

S14 

S33 

S12 

S09 

S15 

S01 

S18 

S25 

S39 

S36 

S21 

S42 

S43 

S03 

S24 

S20 

S04 

S28 

S10 

S44 

S16 

S40 

S07 

3.8571 

3.4286 

3.4286 

3.0388 

3.0279 

3.0149 

2.9686 

2.1429 

1.7143 

1.7143 

1.5505 

1.5333 

1.5172 

1.3982 

1.2730 

1.2730 

1.2360 

1.2094 

1.1986 

1.1961 

1.1700 

1.1547 

1.1361 

1.1199 

1.1196 

1.1144 

1.0885 

1.0534 

1.0515 

1.0306 

1.0301 

1.0149 

1.0026 

1.0005 

1 

2 

2 

3 

4 

5 

6 

7 

8 

8 

9 

10 

11 

12 

13 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

S17 

S34 

S05 

S38 

S27 

S29 

S37 

S08 

S45 

S32 

S41 

2.2500 

1.8750 

1.6948 

1.6402 

1.6215 

1.5396 

1.5256 

1.5000 

1.3925 

1.2640 

1.1820 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

   

 

 



 A Fuzzy Data Envelopment Analysis for Clustering Operating Units 45

Table 9.  The clustering, objective function values (OFVs) and the ranking results (Alpha = 0.25). 

1st Cluster  2nd Cluster 

Jet ski  OFV Rank  Jet ski OFV Rank 

S31 

S22 

S30 

S19 

S06 

S02 

S13 

S23 

S11 

S26 

S12 

S35 

S14 

S33 

S09 

S15 

S01 

S39 

S25 

S18 

S21 

S42 

S03 

S24 

S20 

S36 

S43 

S04 

2.6552 

2.3698 

2.3517 

2.2240 

2.2171 

2.2057 

2.1707 

1.6927 

1.3741 

1.3477 

1.2824 

1.2615 

1.2355 

1.2327 

1.2016 

1.2002 

1.1762 

1.1582 

1.1458 

1.1402 

1.1116 

1.0997 

1.0986 

1.0851 

1.0689 

1.0664 

1.0656 

1.0409 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S10 

S16 

S44 

S17 

S34 

S05 

S38 

S40 

S29 

S37 

S28 

S07 

S08 

S27 

S41 

S45 

1.7816 

1.6286 

1.5860 

1.5274 

1.3942 

1.3916 

1.3609 

1.3518 

1.3198 

1.3000 

1.2889 

1.1548 

1.1302 

1.1042 

1.0995 

1.0529 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

3rd Cluster 

Jet ski OFV Rank 

S32 2.5589 1 

 

 

The results showed that the number of classes change with different α-cuts. In other 

words, we have two clusters for α = 0 while we find three clusters for larger α-cuts.  

Table 13 presents the number of jet skis for each cluster with respect to various α-cuts. 

As shown in Table 13, the number of jet skis in the 1
st
 cluster has an indirect 

relationship with the α-cut. In other words, as we increase the α-cut from 0 to 1, the 

number of jet skis in the 1
st
 cluster decreases from 34 to 23.  On the other hand, the 

number of jet skis in the 2
nd

 cluster slightly increases from 11 to 18 as we increase our α-

cut from 0 to 1. Finally, the number of jet skis in the 3
rd

 cluster increases from 1 to 4 as 

we increase our α-cut from 0 to 1. A close look at the results also reveals that the 1
st
 

cluster constitutes the largest (34) and the smallest (23) number of jet skis when α = 0 

and α = 1, respectively. Furthermore, when α = 1, we have 23 jet skis with declining α-

cuts in the 1
st
 cluster. Inversely, the 2

nd
 and the 3

rd
 clusters consist of the biggest and the 

smallest number of jet skis when α = 1 and α = 0, respectively. Therefore, the jet skis 

which are selected in the 2
nd

 cluster for a given α-cut are also selected in the 2
nd

 and/or 3
rd

 

cluster for larger α-cuts. For example, the 16 jet skis placed in the 2
nd

 cluster for α = 0.75, 

are placed in the 2
nd

 and 3
rd

 clusters for α = 1.  We should also point out that the first 

cluster formed is preferred to the 2
nd

 cluster which in turn is preferred to the 3
rd

 cluster. 

For example, in Table 8, when α = 0, we have two clusters where the first one is 
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preferred to the second one. It is also possible to have an identical objective function 

value for model (10) for some jet skis under consideration. In such cases, we assign an 

identical ranking order to all jet skis with equal objective function values. For instance, in 

Table 8, the objective function value for jet skis S11 and S26 is equal to 1.7143 and both 

jet skis share a common 8
th

 place ranking. 

A review of the DEA literature shows different views or interpretations of α-cuts 

(Kao and Liu,
28

 Guo and Tanaka,
31

 Lertworasirikul et al.
32

). In the decision sciences 

context, the α-cut concept is often used for incorporating the DMs’ confidence level. 

Accordingly, the higher the α-value, the lower is the degree of uncertainty and in 

contrast, the lower the α-value, the higher is the degree of uncertainty.  In this study, we 

provided the DMs with a compromise solution based on different α-values (i.e., 0, 0.25, 

0.50, 0.75, and 1.00). Logically, the highest level of uncertainty α = 0 implies the lowest 

discriminatory power with the highest number of fully efficiency units. As the 

uncertainty is decreased, i.e. an increase in α, the average efficiency score is decreased 

and the reference set can be decomposed in additional clusters. As a result a jet ski may 

be ranked differently with different α-cuts. For example when α is 0, 0.25 and 0.5, S31 is 

ranked first because of the highest objective function value while S22 is ranked second 

for α = 0.75 and 1.00. This phenomenon is attributed to the intrinsic fuzzy character of 

the input and output data in combination with the DEA definition of the efficient frontier. 

 
Table 10. The clustering, objective function values (OFVs) and the ranking results (Alpha = 0.5). 

1st Cluster  2nd Cluster 

Jet ski OFV Rank  Jet ski OFV Rank 

S31 

S22 

S30 

S19 

S06 

S02 

S13 

S23 

S11 

S26 

S12 

S09 

S15 

S39 

S01 

S25 

S03 

S18 

S21 

S42 

S24 

S14 

S20 

S35 

S43 

S04 

S33 

1.8889 

1.7688 

1.7023 

1.6818 

1.6772 

1.6673 

1.6400 

1.5260 

1.2084 

1.2070 

1.1784 

1.1324 

1.1316 

1.1242 

1.1234 

1.0952 

1.0779 

1.0754 

1.0717 

1.0650 

1.0564 

1.0509 

1.0500 

1.0343 

1.0315 

1.0306 

1.0210 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S36 

S44 

S16 

S05 

S10 

S38 

S29 

S37 

S28 

S34 

S40 

S17 

S07 

S41 

S08 

S27 

1.3852 

1.2892 

1.2583 

1.2441 

1.2329 

1.2181 

1.1935 

1.1744 

1.1641 

1.1598 

1.1261 

1.1044 

1.0819 

1.0804 

1.0653 

1.0571 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

3rd Cluster 

Jet ski OFV Rank 

S32 

S45 

2.1176 

1.9152 

1 

2 
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Table 11. The clustering, objective function values (OFVs) and the ranking results (Alpha = 0.75). 

1st Cluster  2nd Cluster 

Jet ski OFV Rank  Jet ski OFV Rank 

S23 

S31 

S22 

S30 

S19 

S06 

S02 

S13 

S11 

S39 

S12 

S26 

S01 

S15 

S09 

S03 

S25 

S24 

S21 

S20 

S42 

S04 

S18 

S43 

S14 

1.3826 

1.3687 

1.3443 

1.3063 

1.2951 

1.2922 

1.2836 

1.2619 

1.1028 

1.0915 

1.0847 

1.0837 

1.0805 

1.0648 

1.0647 

1.0578 

1.0477 

1.0375 

1.0346 

1.0318 

1.0318 

1.0230 

1.0117 

1.0103 

1.0049 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

20 

21 

22 

23 

24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S33 

S35 

S36 

S44 

S10 

S16 

S28 

S40 

S05 

S41 

S07 

S29 

S34 

S38 

S08 

S27 

S37 

1.6794 

1.6211 

1.1766 

1.1351 

1.1314 

1.1182 

1.0874 

1.0839 

1.0657 

1.0634 

1.0556 

1.0550 

1.0525 

1.0484 

1.0317 

1.0295 

1.0163 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

3rd Cluster 

Jet ski OFV Rank 

S17 

S45 

S32 

1.2216 

1.1897 

1.0792 

1 

2 

3 

 

 
Table 12. The clustering, objective function values (OFVs) and the ranking results (Alpha = 1.00). 

1st Cluster  2nd Cluster 

Jet ski OFV Rank  Jet ski OFV Rank 

S23 

S22 

S39 

S01 

S03 

S24 

S30 

S09 

S04 

S25 

S20 

S19 

S11 

S26 

S06 

S43 

S15 

S02 

S12 

S13 

S21 

S31 

S42 

1.2581 

1.1018 

1.0602 

1.0416 

1.0381 

1.0256 

1.0249 

1.0246 

1.0169 

1.0147 

1.0143 

1.0119 

1.0073 

1.0049 

1.0042 

1.0034 

1.0025 

1 

1 

1 

1 

1 

1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

18 

18 

18 

18 

18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S35 

S33 

S14 

S10 

S41 

S40 

S18 

S07 

S28 

S29 

S08 

S37 

S05 

S16 

S27 

S36 

S38 

S44 

1.3649 

1.336 

1.3333 

1.0579 

1.0458 

1.0389 

1.0294 

1.0289 

1.0272 

1.0092 

1.0091 

1.0013 

1 

1 

1 

1 

1 

1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

13 

13 

13 

13 

13 

3rd Cluster 

Jet ski OFV Rank 

S34 

S45 

S32 

S17 

1.1289 

1.0821 

1.0504 

1 

1 

2 

3 

4    
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Table 13. The number of DMUs for each cluster with respect to various α-cuts. 

 
α-cut 

0 0.25 0.5 0.75 1 

No. (1st Cluster) 34 28 27 25 23 

No. (2nd 

Cluster) 
11 16 16 17 18 

No. (3rd 

Cluster) 
 1 2 3 4 

 

Table 14. The final ranking of the jet skis.  

DMU 
Sum of the 

ranking scores 

Average 

ranking score 
Final ranking 

S22 11 2.2 1 

S30 19 3.8 2 

S31 23 4.6 3 

S23 25 5 4 

S06 35 7 5 

S02 42 8.4 6 

S19 44 8.8 7 

S13 46 9.2 8 

S11 48 9.6 9 

S26 54 10.8 10 

S01 63 12.6 11 

S09 63 12.6 12 

S12 63 12.6 13 

S15 73 14.6 14 

S25 78 15.6 15 

S03 83 16.6 16 

S24 92 18.4 17 

S21 96 19.2 18 

S42 100 20 19 

S20 103 20.6 20 

S04 108 21.6 21 

S43 112 22.4 22 

 
Table 15. Fuzzy input-output data for the comparison example 2 in Guo and Tanaka.31 

DMU 
Inputs  Outputs 

1 2  1 2 

A (3.5, 4.0, 4.5) (1.9, 2.1, 2.3)  (2.4, 2.6, 2.8) (3.8, 4.1, 4.4) 

B (2.9, 2.9, 2.9) (1.4, 1.5, 1.6)  (2.2, 2.2, 2.2) (3.3, 3.5, 3.7) 

C (4.4, 4.9, 5.4) (2.2, 2.6, 3.0)  (2.7, 3.2, 3.7) (4.3, 5.1, 5.9) 

D (3.4, 4.1, 4.8) (2.2, 2.3, 2.4)  (2.5, 2.9, 3.3) (5.5, 5.7, 5.9) 

E (5.9, 6.5, 7.1) (3.6, 4.1, 4.6)  (4.4, 5.1, 5.8) (6.5, 7.4, 8.3) 
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In order to narrow down the list of 50 alternative jet skis, we focused on the DMUs 

placed in the 1
st
 cluster for all five α-cuts. We then ranked the DMUs according to an 

average ranking score calculated by averaging the five α-cuts associated with each 

product. The results presented in Table 14 shows lower average ranking scores for jet 

skis with better performance. As a result, the Florida Border Patrol selected the top-eight 

jet skis: S22, S30, S31, S23, S06, S02, S19 and S13 for further consideration and invited 

the manufacturers of theses eight jet skis to make their product available for further 

testing.   

 

7. Discussion  

In this section, we use a commonly used numerical example, first introduced by Guo and 

Tanaka,
31

 to compare our results with three popular methods in the fuzzy DEA literature. 

In this example, presented in Table 15, we consider five DMUs, two fuzzy inputs and 

two fuzzy outputs. Lertworasirikul et al.
32

 and Saati et al.
29

 have also used this example 

to illustrate the effectiveness of their methods.  

Guo and Tanaka
31

 developed a fuzzy CCR model in which fuzzy constraints were 

transformed into crisp forms by predefining a possibility level.  According to Guo and 

Tanaka,
31

 a DMU is α-possibilistic efficient if the maximum value of the fuzzy efficiency 

at that α level is greater than or equal to 1.  The set of all possibilistic efficient DMUs is 

called the α-possibilistic non-dominated set. By means of the possibility approach in 

fuzzy set theory, Lertworasirikul et al.
32

 proposed a fuzzy CCR model where a DMU 

becomes α-possibilistic efficient if its objective value is greater than or equal to 1 at the 

specified α level. Saati et al.
29

  also suggested a fuzzy CCR model as a possibilistic 

programming problem and converted it into an interval programming problem using an 

α-cut based approach. In their method, Saati et al.
29

 call a DMU efficient if its efficiency 

score is one. The solutions from Guo and Tanaka
31

 (GT), Lertworasirikul et al.
32

 (L), 

Saati et al.
29

 (S) and the proposed method (PM) in this study for four different α values 

are summarized in Table 16.  In this table, the cluster of each DMU for four different α 

levels is presented in the parentheses and the rank order of each DMU is present with 

italic numbers.  

In the case of α = 0, DMU A is classified as dominated and the remaining DMU as 

non-dominated with the Guo and Tanaka’s method whereas all units are 0-

possibilistically efficient with the Lertworasirikul et al.’s method and efficient with the 

Saati et al.’s method.  According to the method proposed in this study, all DMUs are 

included in the 1
st 

group with the highest priorities, similar to the other three methods.  In 

addition, our method provides information about the ranking of the DMUs in each cluster 

(i.e., D E B C A≻ ≻ ≻ ≻ ).  

In the case of α = 0.5, B and D are in the non-dominated set according to Guo and 

Tanaka’s method whereas B, C, D and E are 0.5-possibilistically efficient with the 

Lertworasirikul et al.’s method and efficient with the Saati et al.’s method. As it is shown 

in the Table 2, five DMUs are clustered into two clusters (1
st
 and 2

nd
 clusters) according 

to our method in which the first cluster is preferred to the second cluster. The priority of 

the DMUs within each cluster is shown as: D E B C≻ ≻ ≻  in the 1
st
 cluster and A in the 

2
nd

 cluster. It is interesting that the efficiency scores for the Lertworasirikul et al.’s 

method and the method proposed here are identical for the four DMUs B, C, D and E.   
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Table 16. Results for the comparison example for the proposed method (PM) and the methods in Guo and 

Tanaka31 (GT), Lertworasirikul et al.32 (L), and Saati et al.29 (S). 

α 

M
et

h
o

d
 

DMU 

A B C D E 

0 

GT (0.66,0.81,0.99) (0.88,0.98,1.09) (0.60,0.82,1.12) (0.71,0.93,1.25) (0.61,0.79,1.02) 

L 
1.11  1.24 1.28 1.52 1.30 

5 4 3 1 2 

S 
1  1 1 1 1 

1 1 1 1 1 

PM 
1.03 (1st) 1.17 (1st) 1.15 (1st) 1.39 (1st) 1.23 (1st) 

5 3 4 1 2 

0000....5555 

GT (0.75,0.83,0.92) (0.94,0.97,1.00) (0.71,0.83,0.97) (0.85,0.97,1.12) (0.72,0.82,0.93) 

L 
0.96 1.11 1.04 1.26 1.16 

5 3 4 1 2 

S 
0.95 1 1 1 1 

5 1 1 1 1 

PM 
1.22 (2nd) 1.11 (1st) 1.04 (1st) 1.26 (1st) 1.16 (1st) 

5 3 4 1 2 

0000....77775555 

GT (0.80,0.84,0.88) (0.96,0.99,1.02) (0.77,0.83,0.90) (0.92,0.98,1.05) (0.78,0.83,0.89) 

L 
0.90 1.06 0.93 1.13 1.10 

5 3 4 1 2 

S 
0.90 1 0.93 1 1 

5 1 4 1 1 

PM 
1.11 (2nd) 1.06 (1st) 1.14 (2nd) 1.13 (1st) 1.10 (1st) 

5 3 4 1 2 

1111 

GT 0.86 1 0.86 1 1 

L 
0.86 1 0.86 1 1 

4 1 4 1 1 

S 
0.86 1 0.86 1 1 

4 1 4 1 1 

PM 
1 (2nd) 1 (1st) 1 (2nd) 1 (1st) 1 (1st) 

4 1 4 1 1 

 
In the case of α = 0.75, DMUs B and D are considered non-dominated with Guo and 

Tanaka’s method while B, D and E are 0.75-possibilistically efficient with the 

Lertworasirikul et al.’s method and efficient with the Saati et al.’s method. Similar to the 

results from Lertworasirikul et al. and Saati et al., DMUs B, D and E are placed in the 

highest priority cluster (1
st
 class) according to our method. We here point out that the 

discriminatory power of the methods proposed by Lertworasirikul et al. and Saati et al. is 

weak since three of the five DMUs under consideration are efficient when α = 0.75.  

However, our approach first takes into account these units in the 1
st
 cluster and then 

determines their rankings in each class to increase the discriminatory power. Finally, in 

the case of α = 1, the results from all four methods are qualitatively almost identical. 

We also applied a Spearman's rank correlation coefficient for the four various α to 

measure the correlation between the rankings proposed in this study with the rankings of 

Lertworasirikul et al.
32

 and Saati et al.
29

 The Spearman’s rank correlation coefficient 

between the rankings of the method proposed by Lertworasirikul et al.
32 

and our method 

is 0.9 for α = 0, 1 for α = 0.5, 1 for α = 0.75, and 1 for α = 1. The Spearman’s rank 

correlation coefficient between the rankings of the method proposed by Saati et al.
29

 and 
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our method is 0.5 for α = 0, 0.75 for α = 0.5, 0.9 for α = 0.75, and 1 for α = 1. The 

Spearman’s rank correlation coefficients show the similarity between the rankings of the 

method proposed in this study with the rankings of the methods proposed by 

Lertworasirikul et al.
32

 and Saati et al.
29

 The rankings of the DMUs for different α (see 

the italic rankings in Table 17) confirms the rank-order convergence of the three 

methods. 

 In summary, the results for the methods proposed by Lertworasirikul et al.
32

 and 

Saati et al.
29

 are similar to those obtained by our algorithm. However, as shown here, the 

method proposed in this paper offers additional performance information compared with 

the other three competing methods, i.e. simultaneous inter-cluster and intra-cluster 

performance assessment. In certain settings where a complete ordering among the DMU 

is desired, this feature is preferred. 

8. Conclusions and Future Research Directions 

The field of DEA has grown exponentially since the pioneering work of Charnes et al.
2
  

DEA measures the relative efficiency of an operating unit by comparing it against a peer 

group. One limitation of the conventional DEA methods is the need for accurate 

measurement of the inputs and output data. However, input and output data in real-world 

problems are often imprecise or ambiguous. Numerous fuzzy methods have been 

proposed to deal with this impreciseness and ambiguity in DEA.   

In this study, we proposed a new fuzzy DEA method for clustering operating units in 

a fuzzy environment by considering the priority between the clusters and the priority 

between the operating units in each cluster simultaneously. The proposed clustering-

based DEA model defined the group of operating units that were similar to the operating 

unit under evaluation. This clustering process resulted in clusters with homogenous 

members. The contribution of this paper is threefold: (1) we consider ambiguous, 

uncertain or imprecise input and output data in DEA; (2) we propose a new fuzzy DEA 

method for clustering operating units in a fuzzy environment; and (3) we consider the 

priority between the clusters and the priority between the operating units in each cluster 

simultaneously. 

The framework developed in this study can potentially lend itself to many practical 

applications. However, there are a number of challenges involved in the proposed 

research that provide a great deal of fruitful scope for future research.  For example, there 

is no mechanism in the proposed algorithm to identify the number of clusters prior to the 

implementation of the algorithm. Another potential for future research is the integration 

of the proposed algorithm into other ranking methods such as the tolerance, fuzzy 

ranking, and possibility approaches.  We also hope that the concepts introduced here 

provides the groundwork for comparing our clustering method with the other clustering 

methods commonly used in the literature such as hierarchical, K-means, possibilistic, and 

learning network clustering. 
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