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INCONSISTENCY MANAGEMENT
FROM THE STANDPOINT OF
POSSIBILISTIC LOGIC*

Didier Dubois and Henri Prade
IRIT-CNRS, Université Paul Sabatier, 31062 Toulouse Cedex 09, France

December 15, 2015

Abstract:Uncertainty and inconsistency pervade human knowledge. Possibilis-
tic logic, where propositional logic formulas are associated with lower bounds of a
necessity measure, handles uncertainty in the setting of possibility theory. More-
over, central in standard possibilistic logic is the notion of inconsistency level of a
possibilistic logic base, closely related to the notion of consistency degree of two
fuzzy sets introduced by L. A. Zadeh. Formulas whose weight is strictly above this
inconsistency level constitute a sub-base free of any inconsistency. However, several
extensions, allowing for a paraconsistent form of reasoning, or associating possibilistic
logic formulas with information sources or subsets of agents, or extensions involving
other possibility theory measures, provide other forms of inconsistency, while enlarg-
ing the representation capabilities of possibilistic logic. The paper offers a structured
overview of the various forms of inconsistency that can be accommodated in possi-
bilistic logic. This overview echoes the rich representation power of the possibility
theory framework.

Keywords : inconsistency; fuzzy set; possibility theory; possibilistic logic.

1 Introduction

The intersection of two fuzzy sets may not be normalized. This state of fact may
have several readings. In his founding paper, Lotfi Zadeh[35] already introduces the



notion of degree of separation of two (convex) fuzzy sets A and B, as the complement
to 1 of the height! of their min-based intersection. At that time, a fuzzy set was
understood conjunctively as a collection of elements gathered into a class having an
unsharp (gradual) boundary. Later, when Zadeh proposes to use fuzzy sets as a
basis for representing possibility distributions[37], the understanding of a fuzzy set
becomes disjunctive as an elastic restriction on the possible values of a single-valued
variable. Then in this latter perspective, Zadeh[38] defines the consistency of two
fuzzy sets as the height of their min-based intersection, without making an explicit
use of it. However, in the same year, he defines the possibility of a fuzzy event[37],
which is nothing but the degree of consistency between the fuzzy event and the
possibility distribution representing what is known.

This idea of consistency is in full agreement with the classical logic notion of
consistency between two propositions, which requires the existence of at least one
common model for the two propositions. In such a case, Zadeh’s consistency degree
is equal to 1, but his proposal extends the classical view by making it a matter of
degree as soon as at least one of the two propositions is associated with a fuzzy set
of models. Such a situation is encountered in possibilistic logic[20, 18, 24] where
possibilistic logic formulas are semantically represented by means of a special type
of possibility distributions. Moreover, the introduction of a consistency degree was
also mentioned in relation with Zadeh’s theory of approximate reasoning[39] based
on the combination / projection of possibility distributions, which encompasses pos-
sibilistic logic inference[15, 16]. As it turned out, the degree of inconsistency, which
is the complement to 1 of the degree of consistency, of a possibilistic logic knowledge
base (made of a conjunction of possibilistic logic formulas) plays a great role in the
possibilistic logic capability to handle inconsistency.

It can be observed that, in practice, a set of pieces of information is often incon-
sistent. Inconsistency often comes from the fact that the information is provided by
different sources, but information provided by a person can be inconsistent as well.
It may plainly take place between two opposite statements that are simultaneously
held as certain. There are two basic ways to get around this problem: either one may
restore consistency by isolating and mending parts of the information base judged
to be responsible for the inconsistency; or one may alter the standard inference no-
tion so as to make it more cautious, in order to preserve a consistent set of derived

!The notion of height of a fuzzy set (defined as the supremum of the membership degrees)
was first introduced by Zadeh in his work on similarity relations[36] where he observes that for a
max — min transitive fuzzy relation, the height of the intersection of the fuzzy equivalence classes
of two elements x; and z; is less or equal to their degree of similarity. This expresses that the more
the equivalence classes overlap, the more similar their elements.



conclusions.

However more subtle situations of inconsistency exist; for instance, if the repre-
sentation setting is rich enough, an inconsistency may occur between the fact that
something is known, while at the same time it is believed that it is not possible to
know it. One may also have situations where apparently contradictory statements
are in fact consistent once they are properly represented, as the statements “the
museum is open in the morning”, and the “the museum is open from 2 to 5 p.m”. In
any case, two contradictory statements cannot be simultaneously accepted as true.
Then, rather than concluding, like in mathematics, that anything follows from a con-
tradiction (the famous ez falso quodlibet sequitur), it is more useful to understand
the origin and the nature of the inconsistency, and try to derive safe conclusions that
overcome it.

Possibilistic logic[20, 18, 24] associates classical propositional formulas (and more
generally first order logic formulas) with weights which may be lower bounds of dif-
ferent types of confidence evaluations making sense in possibility theory [37, 19]. The
fact that possibility and necessity are graded provides additional power for handling
inconsistency. This framework is expressive enough to represent various types of
information, and may account for different situations of inconsistency. The paper
surveys the existing works in possibilistic logic from an inconsistency-handling point
of view. We first restate standard possibilistic logic where formulas are associated
with lower bounds of necessity measures, before considering its extension to formulas
having a graded paraconsistency level, or coming from different sources. We then
additionally introduce formulas associated with lower bounds of weak or strong vari-
ant of possibility measures. This paper borrows some material from two conference
papers[22, 26], and then merges it in an expanded overview.

2 Possibility Theory and Possibilistic Logic

In the following, formulas of a finite propositional language £ will be denoted by
Greek letters such as ¢, or . T and L stand for tautology and contradiction
respectively. For simplicity, we denote by () the set of interpretations of £ that
describe possible worlds; w = ¢ denotes the satisfaction of ¢ by interpretation w,
then called a model of ¢. The set of models of ¢ is denoted by [p]. The negation
of ¢ is =p. We also use conjunction and disjunction symbols A, V. Finally classical
syntactic inference is denoted by Foy.



2.1 Necessity and possibility measures

A possibility distribution is a mapping 7 from a set of possible worlds €2 to the
interval [0, 1], which is viewed as a totally ordered bounded ordinal scale. Given
a possible world w € Q, m(w) represents the degree of compatibility of w with the
available information (or beliefs) about the real world. 7(w) = 0 means that w
is impossible, and 7(w) = 1 means that nothing prevents w from being the real
world. When 7(wy) > 7(ws), wy is preferred to wy as a candidate for being the real
state of the world. The less 7(w), the less plausible w, or the less likely it is the
real world. A possibility distribution 7 is said to be normalized if Jw € €, such
that m(w) = 1, in other words, if at least one possible world is a fully plausible
candidate for being the actual world. In that case, the knowledge represented by 7 is
considered to be consistent. Interpretations w where 7(w) = 1 are considered to be
normal (they are not at all surprising). A sub-normalized possibility distribution 7
(such as height(m) = max,ecq m(w) < 1) is considered self-conflicting to some extent
(since the existence of at least one fully possible interpretation is not acknowledged).
The case where Vw, m(w) = 0 encodes a full contradiction. A consistent epistemic
state is thus always encoded by a normalized possibility distribution.

Given a possibility distribution 7, the possibility degree of proposition ¢ is defined
as:

() = max{r(w) : w k= ¢}

It evaluates to what extent ¢ is consistent with the possibility distribution 7. Note
that by definition if ¢ = v then II(y) = II(4), since [p] = [¢)]. A necessity measure
N is always associated by duality with a possibility measure II, namely

N(p)=1-1(~y)

where 1 — (.) is the order-reversing map of the scale. The necessity measure N () =
min{l — 7(w) : w [~ ¢} evaluates to what extent there does not exist a highly
plausible interpretation that violates ¢, in other words to what extent ¢ can be
deduced from the underlying possibility distribution 7. Hence N(¢) is a measure of
the certainty of ¢.

The duality between possibility and necessity extends the one in modal logic: it
expresses that the impossibility of = entails the certainty of p. A necessity measure
N is a function from the set of logical formulas to the totally ordered bounded scale
[0, 1], which is characterized by the axioms:



iii) if ¢ =1 then N(p) = N(¢),
iv) N(p A ) = min(N(p), V().

Axiom (iv) expresses that ¢ A ) is as certain as the least certain of ¢ and . It
follows from the axioms of necessity measures that having both N(p) > 0 and
N(—¢) > 0 forms a contradiction. In other words, one cannot be both somewhat
certain of a proposition and of its negation. Moreover, one may have both II(p) = 1
and II(—=p) = 1 without contradiction; it just acknowledges a state of (complete)
ignorance about the truth value of ¢.

2.2 Possibilistic logic: Syntax

We now recall the main features of possibilistic logic, before discussing some para-
consistent and multiple source extensions thereof in Sections 3 and 4. An atomic
possibilistic logic formula[20] is a pair (¢, a) made of a classical logic formula ¢ and
a positive real in (0, 1]. The weight a is interpreted as a lower bound for a necessity
degree, i.e., the possibilistic logic formula (¢, a) is semantically understood as the
constraint N(¢) > a, where N is a necessity measure. Note that formulas of the
form (y,0) do not contain any information (since for all ¢, N(¢) > 0 always holds)
and are not part of the language of possibilistic logic.

The min-decomposability of necessity measures allows us to work with weighted
clauses without lack of generality, since N(A,_, i) > a & Vi, N(p;) > qa, ie,

(Nizix pis @) & Nz (00, @)

The proof system of propositional possibilistic logic consists of axioms of proposi-
tional logic with weight 1, and the following weighted modus ponens rule of inference:

(0, a), (¢ V4, b) (¢, min(a, b)).

where = denotes the syntactic inference in possibilistic logic. The following derived
inference rules are valid in possibilistic logic:

o (mpV,a), (pVpb)E (¢¥Vp min(a,b)) (resolution)
e Vb<a(pa)k (pb) (weight weakening)
o if ptcp ¥, then (p,a) F (¥,a) (logical weakening)

o (907 a)v (‘P, b) + (907 max(a, b)) (wezght fUS’iO?l)



where ¢, denotes the classical logic entailment. Classical inference is retrieved
when the weights are equal to 1. Moreover K F (¢, a) if and only if K, Fcr ¢, where
K, is a classical logic base that is the a-level cut of the possibilistic logic base K,
defined by K, = {¢ | (p,b) € K with b > a}.

Finally, proving (¢, a) from a possibilistic logic base K also amounts to adding
(=, 1), put in clausal form, to K, and using the resolution rule repeatedly in order
to show that K U {(—-¢, 1)} F (L, a).

2.3 Possibilistic logic: Semantics

From a semantic viewpoint, a possibilistic logic base K = {(y;, a;)}iz1,. m is asso-
ciated with a possibility distribution 7x representing the fuzzy set of models w of
K:

mr(w) = min max(pp)(w), 1 - a;) (1)
where pi,,,) is the characteristic function of the sets of models of ¢;. It can be shown
that 7 is the largest possibility distribution such that Nx(¢;) > a;, Vi = 1,m, i.e.,
the possibility distribution that allocates the greatest possible possibility degree to
each interpretation in agreement with the constraints induced by K (where N is
the necessity measure associated with 7 ), namely

Ni(p) = min (1 — mg(w))).
weE[~¢]

Thus, a possibilistic logic base is associated with a fuzzy set of models. It repre-
sents the set of more or less plausible states of the world (according to the available
information), when dealing with uncertainty. A possibility distribution which rank-
orders possible states is thus semantically equivalent to a possibilistic logic base. The
semantic entailment is then defined by

K |= (g, a) if and only if Nk () > a.

It is also equivalent to Vw 7x(w) < 7y (w) = max(py)(w),l — a). Indeed,
Nk (@) > a is easily rewritten as mx(w) < 1 —a if w E —p. It is worth notic-
ing that mr < 7y(,q)) 18 nothing but the entailment principle in Zadeh’s approach
to approximate reasoning[39].

The syntactic inference machinery of possibilistic logic, using resolution and refu-
tation, has been proved to be sound and complete with respect to the semantics[18].
Soundness and completeness are expressed by:

K+ (p,a) & K = (p,a)



2.4 Inconsistency level

An important feature of possibilistic logic is its ability to deal with inconsistency.
The level of inconsistency of a possibilistic logic base is defined as

inc(K) =max{a | K+ (L,a)}

(by convention max () = 0). We can explain this inconsistency level with the a-cuts:
the inconsistency level of a base is the greatest value a such that the corresponding
a-cut is classically inconsistent. Clearly, any entailment K F (¢, a) with a > inc(K)
can be rewritten as

Jeons,a (907 a),

where
Kot = {(p;, a;) € K™ with a; > a}

and
Jeons — | \ {((10“ ai) with a; S ZTLC(K)}

K is the set of formulas whose weights are above the level of inconsistency.
Thus they are not affected by the inconsistency, since more entrenched. Indeed,
inc(K°™) = 0, and more generally, inc(K) = 0 if and only if the skeleton K* =
{¢i | (¢i,a;) € K)} of K is consistent in the usual sense. Moreover, it can be shown
that

inc(K)=1- mftwa(w) =1 — height(nk). (2)

It is important to observe that formulas ¢ derived from K with a level at most inc(K)
are drowned in the sense that (—p,inc(K)) can be derived as well. They cannot be
inferred nor be used in a valid proof. It includes formulas ¢ in K whose declared
certainty level is smaller or equal to inc(K'), which cannot be sufficiently increased by
deduction from K (even if these formulas ¢ do not belong to any minimal inconsistent
subset of K*). A way to partially escape the drowning effect is presented in the next
section.

Lastly, let us also observe that if a possibilistic logic base K contains two (fully)
consistent sub-bases C' and C’ (i.e., C C K, C" C K, inc(C) = inc(C") = 0)), such
that C' (p,a) and C" = (=, d’), then inc(K) > 1 —max(l —a, 1 —a’) = min(a, d’).
Thus, inc(K) > 0 reveals the existence of consistent arguments in K in favor of
contradictory statements with certainty levels at least equal to inc(K).



3 Handling Inconsistency in Possibilistic Logic

One may take advantage of the certainty weights for handling inconsistency in infer-
ences, while avoiding the drowning effect (at least partially). We briefly survey two
ways to cope with this problem.

3.1 Degree of paraconsistency and safely supported-consequences

An extension of the possibilistic inference has been proposed for handling inconsis-
tent information and getting safely supported consequences|8] only. It requires the
definition of a “paraconsistent completion” [15] of the considered possibilistic logic
base K, as a first step. For each formula ¢ such that (p,a) is in K, we extend the
language and compute triples (y,b,¢) where b (resp. c¢) is the highest degree with
which ¢ (resp. =) is supported in K. More precisely, ¢ is said to be supported in
K at least at degree b if there is a consistent sub-base of (K;)* that entails ¢, where
Ky = {(pi,a;)|a; > b}. Let K° denote the set of bi-weighted formulas thus obtained.
K° is called the paraconsistent completion of K.

We call paraconsistency degree of a bi-weighted formula (¢, b, ¢) the value min(b, c).
In particular, the formulas of interest are such that b > ¢, i.e. the formula is at least
as certain as it is paraconsistent. In particular, formulas such as ¢ = 0 are safe from
any inconsistency in K. They are said to be free[8] in K.

Example 1 Take
K = {(,0.8), (=9 V 1,0.6), (=¢,0.5), (=€,0.3), (€,0.2), (=€ V1, 0.1)}.
Note that inc(K) = 0.5.
Then, K° is the set of bi-weighted formulas:
{(,0.8,0.5), (=, 0.5,0.8), (=€, 0.3,0.2), (€,0.2,0.3), (o \Vab, 0.6, 0), (=€ Vb, 0.6, 0) }.
Consider for instance (=& V 1,0.6,0). From (p,0.8) and (- V 1,0.6) we infer
(1,0.6) (by modus ponens), which implies (—&V 1, 0.6,0) (by logical weakening); note
that in this case this inference only uses formulas above the level of inconsistency
(0.5). Besides, there is no way to derive =) (nor ¢ A = consequently) from any
consistent subset of K*; so ¢ =0 for =£ V1. U

Remark 1 One may think of extending the paraconsistent completion L° to the
whole language L of K, in the spirit of the proposal made by Arieli[3] in the “flat”
case (where the only certainty degrees are 1 and 0): Vo € L:

e ¢ € Lr if and only if there is a consistent subset of K that entails ¢ and none
that entails —¢; and we can write (¢,1,0) € LC.



e ¢ € L if and only if there is a consistent subset of K that entails ~¢ and none
that entails ¢; and we can write (¢,0,1) € L°.

e ¢ € Ly if and only if there is no consistent subset of K that entails ¢ nor any
that entails —¢; and we can write (¢,0,0) € LC.

o ¢ € L if and only if there is a consistent subset of K that entails ¢ and another
one that entails —¢; and we can write (¢,1,1) € L°.

In the above definition one can restrict to maximal consistent subbases of K. These
four sets of formulas Ly, Lp, Ly, L partition the language. It can be checked that
K° C L°. One can view the four annotations by pairs of Boolean values as akin to
Belnap[7] epistemic truth-values, TRUE, FALSE, NONE and BOTH respectively. How-
ever, Belnap logic comes down to computing epistemic statuses of atomic proposi-
tions based on information from various sources, then obtaining the epistemic sta-
tus of other formulas via truth-tables extending the usual ones to four values. See
Dubois[12] and Dubois and Prade[25] for further discussions.

Clearly the formulas of the form (y,b,0) in K° have an inconsistency level equal
to 0, and thus lead to safe conclusions. However, one may obtain a set of consistent
conclusions from K, which is larger than the one that can be obtained from K™ U
K free (where K™ denotes the set of formulas strictly above the inconsistency level,
and K. the set of free formulas), as explained now.

Defining an inference relation from K° requires two evaluations:

- the undefeasibility degree of a consistent set A of formulas:

UD(A) =min{b | (p,b,c) € K’ and ¢ € A}
- the unsafeness degree of a consistent set A of formulas:
US(A) = max{c|(¢,b,c) € K° and ¢ € A}

We say that A is a reason for ¢ if A is a minimal (for set inclusion) consistent subset
of K that implies v, i.e.,

e ACK

A" Feor L
A*Ferp Y
VB C A, B* /o v



Then, let
UD(¢) =max{UD(A) : A is a reason for ¢};

US(¢) = min{US(A) : A is a reason for ¢, UD(A) =UD(¢)}.

The set of triples (A,UD(A),US(A)) such that A is a reason for ¢ is denoted by
label (). Then, (v, UD(¢),US(¢)) is said to be a DS-consequence of K¢ (or K),
denoted by K° Fpg (¢, UD(¢),US(¢)), if and only if UD(¢) > US(¢) [8]. It can be
shown that Fpg extends the entailment in possibilistic logic.

Example 2 (Ezample 1 continued): In the above example, label(v) = {(A,0.6,0.5),(B,0.2,0.3)}
with A = {(¢,0.8,0.5), (mpV1,0.6,0)} and B = {(£,0.2,0.3), (—=&V1,0.6,0)}. Then,
K°Fps (1,0.6,0.5).

If we first minimize US(A) and then mazimize UD(A"), the entailment would
not extend the possibilistic entailment. Indeed in the above example, we would select
(B,0.2,0.3) but 0.2 > 0.3 does not hold, while K + (¢,0.6) since 0.6 > inc(K) = 0.5.
Note that Fps is more productive than the possibilistic entailment, as seen on the
example, e.g., K° Fpg (—¢,0.3,0.2), while K F (=¢,0.3) does not hold since 0.3 <
inc(K) = 0.5.

An entailment denoted by Fgg, named safely supported-consequence relation, less
demanding than tpg, is defined by K° Fgg v if and only JA € label(v)) such that
UD(A) > US(A). It can be shown that the set {¢) | K° Fgg 1} is classically
consistent[8].

This kind of inference can be also understood in terms of minimal inconsis-
tent subsets[26]. Let S be a minimal inconsistent subset in K*, and let inc(S) =
min{a; | (p;,a;) € K,p; € S} be the level of inconsistency of S. Then, observe that

inc(K) =max{a | K+ (L,a)} = max inc(S),

S,minimal inconsistent subset of K
Moreover, it turns out that if (p;, m;,v;) € K°, we have

_ inc(C
i k :p; ECk,Ckminima{rilI%:}énsistent subset of K ch( k)
with inc(Cy) = min{a; | (p;,a;) € K, p; € Cy}.
In fact, we have the following result: The safely supported entailment from K
coincides with the possibilistic entailment from the consistent possibilistic logic base



K% obtained from K by deleting, in all minimal inconsistent subsets S of K, the

max

formulas with a certainty level equal to inc(S). Namely

Ko = K\ {(pi,a;) € S : S minimal inconsistent subset of K, a; = inc(S)}.

max

and we have
Kbtgs ¢ <= (K2) For .

max

3.2 From quasi-classical logic to quasi-possibilistic logic

Besnard and Hunter[10, 29] have defined a kind of paraconsistent logic, called quasi-
classical logic. This logic has several nice features, in particular the connectives
behave classically, and when the knowledge base is classically consistent, then quasi-
classical logic gives almost the same conclusions as classical logic.? Moreover, the
inference in quasi-classical logic has a low computational complexity.

The basic ideas behind this logic is to use all rules of classical logic proof theory,
but to forbid the use of resolution after the introduction of a disjunction (it allows us
to get rid of the ex falso quodlibet sequitur). So the rules of quasi-classical logic are
split into two classes: composition and decomposition rules, and the proofs cannot
use decomposition rules once a composition rule has been used. Intuitively speaking,
this means that we may have resolution-based proofs both for ¢ and —¢. We also
have as additional valid consequences the disjunctions build from the previous con-
sequences (e.g. —p V 1). But it is forbidden to reuse such additional consequences
for building further proofs[29].

It is clear that while possibilistic logic takes advantage of its weights for handling
inconsistency, there are situations where possibilistic logic offers no useful answers,
while quasi-classical logic does. This is when formulas involved in inconsistency have
the same weight, especially the highest one, 1. For instance, consider the example
K ={(p,1),(mp V1, 1), (mp, 1)}, where quasi-classical logic infers ¢, =g, ¥ from
K*, while everything is drowned in possibilistic logic, and nothing is obtained by the
safely supported-consequence relation. This has led to propose a quasi-possibilistic
logic[14] which has still to be further developed.

It would also have to be related to the simple generalized inference rule, applicable
to formulas in K°,

(mp Vo, b,0) (v &, ) (¢ V€ min(b, b), max(c, ),

proposed by Dubois et al.[15]. Note that in the above example, we would obtain
(p,1,1), (-, 1,1) and (¢, 1,1), as expected, by applying this rule. This rule can be

2In fact only tautologies or formulas containing tautologies cannot be recovered.



viewed as the counterpart of the fact that in approximate reasoning the combination
/ projection principle provides, as consequences, fuzzy subsets whose height is the
minimum of the heights of the fuzzy sets involved in the inference.

4 Inconsistency Handling in Multiple Source In-
formation

In multiple source possibilistic logic[17], each formula is associated with a set (a fuzzy
set more generally) which gathers the labels of sources according to which the for-
mula is (more or less) certainly true. This leads to a simple extension of possibilistic
logic, where propositions are associated not only with certainty levels, but also with
the corresponding sources.

Consider, for instance, the following multi-source knowledge base where the in-
formation comes from sources si, S, S3.

Example 3 K = {(=p V¢, {1/s1,1/s2}),(mp V £,{0.7/51,0.2/52}),
(m Vv £,{0.4/51,0.8/52,0.4/s5}), (o V =&, {0.3/53}),
(p,{0.5/51,0.8/59,0.5/53}), (¢, {0.8/51,0.9/52}), (£,{0.6/s2})}.

Then by resolution and combination applied for each source, we can compute the
multi-source certainty attached to &, for example. We obtain N (&) D {0.5/s1,0.8/s2}
(where D denotes fuzzy set inclusion, i.e. it means Ny(£) > 0.5, Na(€) > 0.8), where
N; is the ordinary necessity measure associated with source ¢, while N is now a fuzzy
set-valued extended necessity measure[17]. We can also prove N(=¢§) O {0.3/s3},
ie. N3(=¢) > 0.3. Thus, the source sz is in conflict with {s;, sy} with respect
to & But, by distinguishing between the sources, we avoid a global inconsistency
problem. This idea can be further elaborated in connection with formal concept
analysis[4] in order to associate subsets of sources to combination results obtainable
from consistent subsets of pieces of information in an information merging process.

The idea of associating formulas with the sources that support them to some
degree has been more systematically investigated in recent papers[21, 5], where for-
mulas of the form (p, a/A) express that at least all agents in subset A believe that ¢
is true at least with certainty level a. Such formulas can be handled in a multi agent
possibilistic logic where both the certainty levels a and the subsets A of agents are
combined in the inference process. This enables us to distinguish between inconsis-
tencies shared by some subsets of agents, and inconsistencies between beliefs held by
disjoint subsets of agents.



5 Inconsistency with respect to Ignorance

Standard possibilistic logic handles constraints of the form N(¢) > a. Constraints
of the form TI(¢) > a can be also considered, although they represent poorer pieces
of information. Indeed N(¢) > a < II(—p) < 1—a expresses partial certainty about
¢, hence partial impossibility of =, while TI(¢) > a only expresses that ¢ true is
somewhat possible. In particular, the state of (complete) ignorance about the truth
value of ¢ can be represented by II(¢) = 1 = II(—¢), which states that both ¢ and
—p are fully possible.

Here appears another form of inconsistency between a statement of the form
N(p) > a expressing that a proposition is somewhat certain, and a statement of the
form II(—p) > b (equivalently, N(¢) < b) expressing that the opposite proposition is
somewhat possible, when the strict inequality b > 1 — a holds between the degrees.

This situation is at work in the following cut rule[20], which mixes the two types
of lower bound constraints on Il and N, namely

N(=p V1) >aIl(pVE) > b (Y VE) > akb

with a&b = 0if a <1 —b and a&b = b if a > 1 — b. This type of inconsistency is
of a higher level. It is a statement not dealing with the real world (e.g. claiming
that one is sure that something is and is not), but a statement about epistemic
states of external agents (agent 1 having reasons to believe that agent 2 is sure
of something, and having reasons to believe that agent 2 is ignorant about this
thing). This kind of knowledge can be expressed in generalized possibilistic logic[27],
since one handles negations and disjunctions of standard possibilistic formulas, which
allows contradictions of the form N(p) > a and a > b > N(y).

6 Inconsistency in Bipolar Information

The representation capabilities of possibilistic logic can be also enlarged in the bipolar
possibilistic setting[13, 9]. It allows the separate representation of both negative and
positive information. Negative information reflects what is not (fully) impossible
and remains potentially possible. It induces (prioritized) constraints on where the
real world is (when expressing knowledge), which can be encoded by necessity-based
possibilistic logic formulas. Positive information expressing what is actually possible,
is encoded by another type of formula based on a set function called guaranteed (or
actual) possibility measure (which is to be distinguished from “standard ”possibility
measures that rather express potential possibility (as a matter of consistency with the



available information). This bipolar setting is of interest for representing knowledge
and observations, and also for representing positive and negative preferences.

Positive information is represented by formulas denoted by [¢, d], which expresses
the constraint A(¢) > d, where A denotes a measure of strong (actual) possibility[19]
defined from a possibility distribution § by A(y) = ming,0(w). This contrasts
with a measure of (weak) possibility II which is maz-decomposable, rather than
min-decomposable (as A is) for disjunction.

Thus, the piece of positive information [y, d] expresses that any model of ¢ is at
least possible with degree d.

Let D ={[p,,d;]|j =1,k} be a positive possibilistic logic base. Its semantics is
given by the possibility distribution

Op(w) = maxdy,, ) (w)
with 0, 4(w) = 0 if w | —;, and 0, 4(w) = d; if w = @;. Thus, dp is obtained
as the max-based disjunctive combination of the representation of each formula in
D. This is in agreement with the idea that observations accumulate and are never
in conflict with each other. Such a situation was already encountered in Mamdani
and Assilian’s fuzzy controllers[31, 23|, where a weighted union of the contributions
of each fuzzy rule that is fired, is performed.

A positive possibilistic knowledge base D = {[p;,d;]|j = 1,k} is inconsistent
with a negative possibilistic knowledge base K = {(¢;,a;)|[i = 1,m} as soon as the
following fuzzy set inclusion is violated:

Vw, dp(w) < mr(w).

This violation occurs when something is observed while one is somewhat certain
that the opposite should be true. Such an inconsistency should be handled by giving
priority either to the positive or to the negative information|[34].

7 Concluding Remarks

This overview has outlined the different forms of inconsistency that are expressible
in possibility theory, when representing different types of information in a logical
format. It is important to notice that the inconsistency, more precisely the con-
tradictions here (see [11] on this point) may take place between different graded
modalities. First, the same source cannot be certain at a positive degree of both ¢
and —, i.e. contradictions between formulas is mirrored at the epistemic level in
terms of necessity degrees. Two other forms of contradiction, either between asserted
ignorance and certainty, or between what is reputed as being not possible and what



is observed, involve two types of modalities. Contradictions can also take place in
generalized possibilistic logic[27] at another level, since one handles negations and
disjunctions of standard possibilistic formulas, as already seen above. Thus, the way
inconsistency has to be managed depends not only from the application perspective
(artificial intelligence inference systems vs. handling of dirty data in information
systems[32, 30]), but also of the nature of the inconsistency.

The paper has also pointed out the filiation existing between Zadeh’s approxi-
mate reasoning theory and possibilistic logic. Although the two settings highly rely
on possibility theory, it is interesting to notice that they have been developed in
different directions and to try to understand why. Approximate reasoning theory
mainly exploits the notion of possibility distribution and anticipates the represen-
tation of reasoning problems in terms of constraints (soft, in this case) which is at
the basis of the constraint satisfaction problems that started to be investigated in
artificial intelligence a decade later. The purpose of approximate reasoning follow-
ing Zadeh was to represent and reason with pieces of fuzzy knowledge expressed
in natural language, and encoded by possibility distributions on proper universes.
Approximate reasoning is also closely related to fuzzy rule-based systems, but not
so much to Mamdani’s approach, since in this latter work, information is no longer
viewed as constraints to be combined conjunctively, but rather as clues to be com-
bined disjunctively[28]. But this important difference has remained almost unnoticed
for a long time. Thus, approximate reasoning theory was based on possibility distri-
butions and to some extent on possibility measures, while the other set functions of
possibility theory (necessity, guaranteed possibility) were absent.?

On its side, possibilistic logic, while keeping a semantics in terms of possibility
distributions (now defined on a set of interpretations, rather than on the domain of
a linguistic variable) is much closer to classical logic; it is based on necessity mea-
sures and makes an extensive use of the degree of (in)consistency, whose expression
formally appears in the first paper on fuzzy sets under the form of a separation de-
gree between fuzzy sets, while generalized possibilistic logic accommodates all the
modalities expressed by the set functions of possibility theory. Possibilistic logic is
usually restricted to classical logic formulas, although there exist extensions to fuzzy
propositions such as the one developed by Alsina and Godo[l, 2]. As in any logical

3This was partially counterbalanced by the introduction of the sophisticated notion of compat-
ibility[6, 38, 39] of a fuzzy set G with respect to a fuzzy set F, defined as the fuzzy set of the
possible values of the membership degree to G of an element fuzzily restricted by F, which gives
birth to the ideas of fuzzy truth values and fuzzy truth qualification. In fact, the compatibility
both encompasses the consistency of F' and G (or if we prefer the possibility of G given F'), and
the necessity of G given the fuzzy restriction expressed by F[33].



setting, inconsistency is a key notion in standard or generalized possibilistic logics,
and may take various forms here due to the richness of the representation setting.
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