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The success of automated reasoning techniques over large natural-language texts heav-
ily relies on a fine-grained analysis of natural language assumptions. While there is a
common agreement that the analysis should be hyperintensional, most of the automatic
reasoning systems are still based on an intensional logic, at the best. In this paper, we
introduce the system of reasoning based on a fine-grained, hyperintensional analysis. To
this end we apply Tichy’s Transparent Intensional Logic (TIL) with its procedural se-
mantics. TIL is a higher-order, hyperintensional logic of partial functions, in particular
apt for a fine-grained natural-language analysis. Within TIL we recognise three kinds
of context, namely extensional, intensional and hyperintensional, in which a particular
natural-language term, or rather its meaning, can occur. Having defined the three kinds
of context and implemented an algorithm of context recognition, we are in a position
to develop and implement an extensional logic of hyperintensions with the inference
machine that should neither over-infer nor under-infer.

Keywords: transparent intensional logic; hyperintensional logic; natural language analy-
sis; context recognition; knowledge based system

1. Introduction

The family of automatic theorem provers, known today as HOL, is getting more

and more interest in logic, mathematics and computer science (see, for instance,
1,2,3). These tools are broadly used in automatic theorem checking and applied

as interactive proof assistants. As ‘HOL’ is an acronym for higher-order logic, the

underlying logic is usually a version of a simply typed λ-calculus. This makes it

possible to operate both in extensional and intensional contexts, where a value of

the denoted function or the function itself, respectively, is an object of predication.

1
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Yet there is another application that is gaining interest, namely reasoning over

natural language statements. There are large amounts of text data that we need

to analyse and formalize.4 Not only that, we also want to have question-answer

systems which would infer implicit computable knowledge from these large explicit

knowledge bases. To this end not only intensional but rather hyperintensional logic

(see 5) is needed, because we need to formally analyse natural language in a fine-

grained way so that the underlying inference machine is neither over-inferring (that

yields inconsistencies) nor under-inferring (that causes lack of knowledge). We need

to properly analyse agents’ attitudes like knowing, believing, seeking, solving, de-

signing, etc., because attitudinal sentences are part and parcel of our everyday

vernacular.

Since the substitution of logically equivalent clause for an attitude complement

can fail, as already Carnap in 6 knew, we need a fine-grained, hyperintensional

analysis here.a Thus the main reason for introducing hyperintensional contexts was

originally to block various invalid interences, and hyperintensional contexts were

defined in a negative way, namely as those contexts that do not validate the sub-

stitution of equivalent terms denoting the same object (see, e.g. 8). For instance,

if Tilman (explicitly) believes that the Pope is wise he does not have to believe

that the Bishop of Rome is wise, though both ‘the Pope’ and ‘the Bishop of Rome’

denote one and the same papal office. Or, when Tilman computes 2+5 he does not

compute
√
49 though both ‘2+5’ and ‘

√
49’ denote the same number 7. He is trying

to execute the procedure specified by the term ‘2+5’ rather than by ‘
√
49’.

Yet, there is the other side of the coin, which is the positive topic of which in-

ferences should be validated in hyperintensional contexts. For instance, if Tilman

computes Cotg(π) then there is a number x such that Tilman computes Cotg(x).

Our background theory is Transparent Intensional Logic, or TIL for short (see
9,10), with input transformed directly from natural language sentences by means

of the Normal Translation Algorithm 11. TIL definition of hyperintensionality is

positive rather than negative. Any context in which the meaning of an expression

is displayed rather than executed is hyperintensional. Moreover, our conception of

meaning is procedural. Hyperintensions are abstract procedures rigorously defined

as TIL constructions which are assigned to expressions as their context-invariant

meanings. This entirely anti-contextual and compositional semantics is, to the best

of our knowledge, one of rare theories that deals with all kinds of context, whether

extensional, intensional or hyperintensional, in a uniform way.b The same exten-

aCarnap in 6 says that the complements of belief attitudes are neither extensional not intensional.
The term ‘hyperintensional’ was introduced by Creswell 7 in order to distinguish hyperintensional
contexts from coarse-grained extensional or intensional ones. Before possible-world semantics oc-
cupied the term ‘intensional’ for extensionally-individuated functions with the domain in possible
world, the term ‘intensional’ was used in the same sense as the current term ‘hyperintensional’, in
particular in mathematics.
bFor the disquotation theory of attitudinal sentences see, for instance, 12, where general repre-
sentation scheme for embedded propositional content is presented. It is however just a scheme,
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sional logical laws are valid invariably in all kinds of context. In particular, there is

no reason why Leibniz’s law of substitution of identicals, and the rule of existential

generalisation were not valid. What differ according to the context are not the rules

themselves but the types of objects on which these rules are validly applicable. In

an extensional context, the value of the function denoted by a given term is an

object of predication; hence, procedures producing the same value are mutually

substitutable. In an intensional context the denoted function itself is an object of

predication; hence, procedures producing the same function are mutually substi-

tutable. Finally, in a hyperintensional context the procedure that is the meanings

itself is an object of predication; thus only synonymous terms encoding the same

procedure are substitutable. Due to its stratified ontology of entities organised in

a ramified hierarchy of types, TIL is a logical framework within which such an

extensional logic of hyperintensions has been introduced, see 13,14.

Reasoning over natural language is usually limited to the textual entailment task
15, which relies on lexical knowledge transfer and stochastic relations rather than

deriving logical consequences of facts encoded in these texts. In this paper, we are

going to fill this gap. We introduce a system for reasoning based on TIL with nat-

ural language input. The task of logical analysis of natural language sentences is

connected with advanced formalisms for natural language syntactic analysis, such as

the Head-driven Phrase Structure Grammar 16 or Combinatory Categorial Gram-

mars 17,18. Even though these formalisms make it possible to transform an input

sentence into a logical representation, the expressiveness of the logical formalism is

usually within limits of the first-order predicate logic or descriptive logic 19,20. In

this paper we introduce an algorithm that combines syntactic analysis with logical

analysis based on the procedural, i.e. hyperintensional semantics of TIL. This al-

gorithm exploits the TIL type lexicon of 10,500 verb-type assignments and about

30,000 logical schemata for verbs that serve for assigning correct types to verb ar-

guments thus making it possible to discover a fine-grained meaning encoded in the

form of a TIL construction. Furthermore, we make use of VerbaLex lexicon of Czech

verb valencies containing deep verb frames. These frames are then used to propose

TIL types assigned to verbs and verb logical schemata. In order to assign types to

verb arguments, we exploit the links to Princeton WordNet. Currently we have the

corpus of more than 6,000 TIL constructions that serve for computer-aided analysis

of language.

The rest of the paper is organised as follows. In Section 2 we introduce the basic

principles of TIL, the algorithm of context recognition, substitution method and

β-conversion ‘by value’. Last but not least, here we also deal with sentences that

come attached with a presupposition. Section 3 deals with the method of automatic

processing natural language texts. In Section 4 we introduce reasoning in TIL based

on a variant of the general resolution method and demonstrate its principles by a

simple example. Finally, concluding remarks are presented in Section 5.

without a full semantic theory.
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2. Fundamentals of TIL

The TIL syntax will be familiar to those who are familiar with the syntax of λ-calculi

with four important exceptions.c

First, TIL λ-terms denote abstract procedures rigorously defined as construc-

tions, rather than the set-theoretic functions produced by these procedures. Thus,

the construction Composition symbolised by [FA1...Am] is the very procedure of

applying a function presented by F to an argument presented by A1, ..., Am, and the

construction Closure [λx1x2...xnC] is the very procedure of constructing a function

by λ-abstraction in the ordinary manner of λ-calculi. Second, objects to be oper-

ated on by complex constructions must be supplied by atomic constructions. Atomic

constructions are one-step procedures that do not contain any other constituents

but themselves. They are variables and Trivialization. Variables construct entities

of the respective types dependently on valuation, they v-construct. For each type

(see Def. 2) there are countably many variables assigned that range over this type

(v-construct entities of this type). Trivialisation 0X of an entity X (of any type

even a construction) constructs simply X . In order to operate on an entity X , the

entity must be grabbed first. Trivialisation is such a one-step grabbing mechanism.d

Third, since the product of a construction can be another construction, construc-

tions can be executed twice over. To this end we have Double Execution of X , 2X ,

that v-constructs what is v-constructed by the product of X . Finally, since we work

with partial functions, constructions can be v-improper in the sense of failing to

v-construct an object for a valuation v.

2.1. Constructions and types

Definition 1. (constructions)

(i) Variables x, y, ... are constructions that construct objects (elements of their

respective ranges) dependently on a valuation v ; they v-construct.

(ii) Where X is an object whatsoever (even a construction), 0X is the construc-

tion Trivialization that constructs X without any change.

(iii) Let X, Y 1,...,Yn be arbitrary constructions. Then Composition [X Y 1...Yn]

is the following construction. For any v, the Composition [X Y 1...Yn] is v-

improper if some of the constructions X, Y 1,...,Yn is v -improper, or if X

does not v-construct a function that is defined at the n-tuple of objects

v-constructed by Y 1,...,Yn. If X does v-construct such a function then

[X Y 1...Yn] v-constructs the value of this function at the n-tuple.

(iv) (λ-)Closure [λx 1...xm Y ] is the following construction. Let x 1, x 2, ..., xm
be pair-wise distinct variables and Y a construction. Then [λx 1 ... xm Y ]

v -constructs the function f that takes any members B1,...,Bm of the re-

spective ranges of the variables x 1,...,xm into the object (if any) that is

cFor details see 9.
dIn our system Trivialization is implemented as a pointer to X.
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v(B1/x 1,...,Bm/xm)-constructed by Y, where v(B1/x 1,...,Bm/xm) is like v

except for assigning B1 to x 1, ..., Bm to xm.

(v) Where X is an object whatsoever, 1X is the construction Execution that

v-constructs what X v-constructs. Thus if X is a v-improper construction

or not a construction as all, 1X is v-improper.

(vi) Where X is an object whatsoever, 2X is the construction Double Execution.

If X is not itself a construction, or if X does not v-construct a construc-

tion, or if X v-constructs a v-improper construction, then 2X is v-improper.

Otherwise 2X v-constructs what is v-constructed by the construction v-

constructed by X.

(vii) Nothing is a construction, unless it so follows from (i) through (vi).

With constructions of constructions, constructions of functions, functions, and func-

tional values in our stratified ontology, we need to keep track of the traffic between

multiple logical strata. The ramified type hierarchy does just that. The type of first-

order objects includes all objects that are not constructions. The type of second-

order objects includes constructions of first-order objects. The type of third-order

objects includes constructions of first- and second-order objects. And so on, ad

infinitum.

Definition 2. (ramified hierarchy of types) Let B be a base, where a base is

a collection of pair-wise disjoint, non-empty sets. Then:

T1 (types of order 1).

i) Every member of B is an elementary type of order 1 over B.

ii) Let α, β1, ..., βm (m > 0) be types of order 1 over B. Then the collection

(α β1 ... βm) of all m-ary partial mappings from β1 × ... × βm into α is a

functional type of order 1 over B.

iii) Nothing is a type of order 1 over B unless it so follows from (i) and (ii).

Cn (constructions of order n)

i) Let x be a variable ranging over a type of order n. Then x is a construction

of order n over B.

ii) Let X be a member of a type of order n. Then 0X , 1X , 2X are constructions

of order n over B.

iii) Let X, X 1,..., Xm (m > 0) be constructions of order n over B. Then

[X X 1...Xm] is a construction of order n over B.

iv) Let x 1, ..., xm, X (m > 0) be constructions of order n over B. Then

[λx 1...xm X ] is a construction of order n over B.

v) Nothing is a construction of order n over B unless it so follows from Cn

(i)-(iv).
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Tn+1 (types of order n + 1)

Let ∗n be the collection of all constructions of order n over B. Then

i) ∗n and every type of order n are types of order n + 1.

ii) If m > 0 and α, β1,...,βm are types of order n + 1 over B, then (α β1 ... βm)

(see T1 (ii)) is a type of order n + 1 over B.

iii) Nothing is a type of order n + 1 over B unless it so follows from (i) and

(ii).

We model sets and relations by their characteristic functions. Thus, for instance, (oι)

is the type of a set of individuals, while (oιι) is the type of a relation-in-extension

between individuals. For the purposes of natural-language analysis, we are assuming

the following base of ground types:

o: the set of truth-values T, F;

ι: the set of individuals (the universe of discourse);

τ : the set of real numbers (doubling as discrete times);

ω: the set of logically possible worlds (the logical space).

Empirical expressions denote empirical conditions that may or may not be satis-

fied at some world/time pair of evaluation. We model these empirical conditions

as possible-world-semantic (PWS) intensions. PWS intensions are entities of type

(βω): mappings from possible worlds to an arbitrary type β. The type β is fre-

quently the type of a chronology of α-objects, i.e., a mapping of type (ατ). Thus

α-intensions are frequently functions of type ((ατ)ω), abbreviated as ‘ατω’. Ex-

tensional entities are entities of a type α where α 6= (βω) for any type β. Where

w ranges over ω and t over τ , the following logical form essentially characterizes

the logical syntax of empirical language: λwλt [...w...t...]. Examples of frequently

used PWS intensions are: propositions of type oτω, properties of individuals of type

(oι)τω, binary relations-in-intension between individuals of type (oιι)τω , individual

offices (or roles) of type ιτω, hyperintensional attitudes of type (oι∗n)τω.
Logical objects like truth-functions and quantifiers are extensional: ∧ (conjunc-

tion), ∨ (disjunction) and ⊃ (implication) are of type (ooo), and ¬ (negation) of

type (oo). Quantifiers ∀α, ∃α are type-theoretically polymorphous total functions

of type (o(oα)), for an arbitrary type α, defined as follows. The universal quantifier

∀α is a function that associates a class A of α-elements with T if A contains all

elements of the type α, otherwise with F. The existential quantifier ∃α is a function

that associates a class A of α-elements with T if A is a non-empty class, otherwise

with F.

Below all type indications will be provided outside the formulae in order not

to clutter the notation. The outermost brackets of the Closure will be omitted

whenever no confusion can arise. Furthermore, ‘X /α’ means that an object X is

(a member) of type α. ‘X →v α’ means that X is typed to v -construct an object

of type α, if any. We write ‘X → α’ if what is v -constructed does not depend on

a valuation v. Throughout, it holds that the variables w →v ω and t →v τ . If
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λwλt [0Calculatewt
0Tom 0[0Cot 0π]]

λw λt [[[0Calculate w ] t ] 0Tom 0[0Cot 0π]]

(((oι∗1)τ)ω) ω

((oι∗1)τ) τ

(oι∗1) ι ∗1
o

(oτ)

((oτ)ω) abbreviated as oτω.

Fig. 1. Analysis of the sentence “Tom calculates cotangent of the number π” and its type derivation
tree.

C →v ατω then the frequently used Composition [[C w ] t ], which is the intensional

descent (a.k.a. extensionalization) of the α-intension v -constructed by C, will be

encoded as ‘Cwt’. Whenever no confusion arises, we use traditional infix notation

without Trivialisation for truth-functions and the identity relation, to make the

terms denoting constructions easier to read.

A simple example of the analysis of the sentence “Tom calculates cotangent of

the number π” followed by its derivation tree with type assignment is presented in

Figure 1.

The resulting type is the type of the proposition that Tom calculates Cotangent

of π. The types of the objects constructed by 0π, 0Cot and [0Cot 0π], that is τ ,

(ττ) and τ , respectively, are irrelevant here, because these constructions are not

constituents of the whole construction. They occur only displayed by Trivialization
0[0Cot 0π], that is hyperintensionally. We are going to deal with this issue in the

next section.

2.2. Context Recognition

The algorithm of context recognition is based on definitional rules presented in 9.

Since these definitions are rather complicated, here we introduce just the main prin-

ciples which are quite simple. TIL operates with a fundamental dichotomy between

hyperintensions (procedures) and their products, i.e. functions. This dichotomy cor-

responds to two fundamental ways in which a construction (meaning) can occur,

to wit, displayed or executed. If the construction is displayed then the construction

itself becomes an object of predication (or an object to operate on); we say that it

occurs hyperintensionally. If the construction occurs in the execution mode, then it
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is a constituent of another construction, and an additional distinction can be found

at this level. The constituent presenting a function may occur either intensionally

or extensionally. If intensionally, then the whole function is an object of predica-

tion (or to operate on); if extensionally, then a functional value is an object of

predication (to operate on). The two distinctions, between displayed/executed and

intensional/extensional occurrence, enable us to distinguish between three kinds of

context:

• hyperintensional context : a construction occurs in a displayed mode though

another construction at least one order higher needs to be executed in

order to produce the displayed construction. In principle, constructions

are displayed by Trivialization. It is important to realize that all the sub-

constructions of a displayed construction occur also displayed.

• intensional context : a construction occurs in an executed mode in order to

produce a function but not its value; moreover, the executed construction

does not occur within another hyperintensional context

• extensional context : a construction occurs in an executed mode in order

to produce particular value of a function at a given argument; moreover,

the executed construction does not occur within another intensional or

hyperintensional context.

The basic idea underlying the above trifurcation is that the same set of logical

rules applies to all three kinds of context, but these rules operate on different

complements: procedures, produced functions, and functional values, respectively.

A substitution is, of course, invalid if something coarser-grained is substituted for

something finer-grained.

The mechanism to display a construction is Trivialisation that raises the context

up to the hyperintensional level. However, we have to take into account that Double

Execution decreases the context down, because 20C is equivalent to C in the sense

of v-constructing the same object (or being v-improper) for the same valuations v.

According to Def. 1 the Trivialisation 0C constructs just the construction C which

is afterwards executed. Thus 20C v-constructs the same object as does C, or both

constructions are v-improper. Moreover, a higher-level context is dominant over a

lower-level one. Thus, if C occurs in D hyperintensionally, then all the subcon-

structions of C occur hyperintensionally in D as well. If C occurs in the execution

mode as a constituent of D, then the object that C v-constructs (if any) plays the

role of an argument to operate on. In such a case, we have to distinguish whether

C occurs intensionally or extensionally. To this end we first distinguish between

extensional and intensional supposition of C. Since C occurs executed, it is typed

to v -constructs a function f of type (αβ1...βn), n possibly equal to zero. Now C

may be composed within D with constructions D1, ..., Dn which v-construct the

arguments of the function f, that is Composition [C D1...Dn] is a constituent of

D. In such a case we say that C occurs in D with extensional supposition. Oth-

erwise C occurs in D with intensional supposition that is intensionally. Yet this
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[[[0Calculate w ]t ] 0Tom 0[0Cot 0π]]

<Composition context=”INTENSIONAL”
construction=”[[[0Calculate w ] t] 0Tom 0[0Cot 0π]]”>

<Composition context=”EXTENSIONAL” construction=” [[0Calculate w ] t] ”>
<Composition context=”EXTENSIONAL” construction=” [0Calculate w ] ”>

<Trivialisation context=”EXTENSIONAL” construction=” 0Calculate ”/>
<Variable context=”INTENSIONAL” name=”w”/>

</Composition>
<Variable context=”INTENSIONAL” name=”t”/>

</Composition>
<Trivialisation context=”INTENSIONAL” construction=” 0Tom ”/>
<Trivialisation context=” INTENSIONAL” construction=” 0[0Cot 0π] ”>

<Composition context=”HYPERINTENSIONAL” construction=” [0Cot 0π] ”>
<Trivialisation context=”HYPERINTENSIONAL” construction=” 0Cot ”/>
<Trivialisation context=”HYPERINTENSIONAL” construction=”0π”/>

</Composition>
</Trivialisation>

</Composition>

Fig. 2. The result of automatic structural analysis of a construction with context-recognition.

is still not the whole story. If C occurs in D with extensional supposition, it may

still occur intensionally, because Composition and λ-Closure are dual operations.

While Composition decreases the context down, Closure raises the context up to

the intensional level. To take this issue into account, we define a λ-generic context

induced by a λ-Closure. Then C occurs extensionally within D if C occurs with

extensional supposition in a non-generic context.

Figure 2 shows an example of the result of automatic syntactic analysis of a

construction including context-recognition.

2.3. Substitution Method and β-Conversion by Value

Having defined the three kinds of context, we are in a position to specify an exten-

sional logic of hyperintensions that flouts none of the extensional logical principles

like Leibniz’s Law of substitution of identicals or the rule of existential generaliza-

tion. First, we have defined valid rules of substitution. In an extensional context,

substitution is validated by so-called v -congruent constructions that v-construct the

same value of (possibly) different functions. In an intensional context, equivalent

constructions (constructions that are v -congruent for every valuation v and thus v-

construct the same function) are substitutable. In a hyperintensional context where

the very construction occurs as an argument, substitution is validated by identi-

cal procedures that are procedurally isomorphic constructions. But operating in a

hyperintensional context requires the ability to operate directly on constructions,

which is technically not easy. To this end we have developed a well-tested method

based on substitution ‘by value’. The technical complications we are confronted
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with are rooted in displayed constructions. For instance, a variable occurring in a

hyperintensional context is displayed, i.e. Trivialization-bound, which means being

bound in a manner that overrides λ-binding. In particular, since a displayed con-

struction cannot at the same time be executed, valuation does not play any role in

such a context. Yet an argument of the form

Tom calculates the cotangent of π

Tom calculates the cotangent of something

is obviously valid. In order to validly infer the conclusion, we need to pre-process

the hyperintensional occurrence of the Composition [0Cot x ] and substitute the

Trivialization of π for x. Only then can the conclusion be inferred. In order to solve

the problem, we deploy the polymorphic functions Subn/(∗n∗n∗n∗n) and Trα/(∗nα)
that operate on constructions in this manner.

The function Sub when applied to constructions C 1, C 2 and C 3 returns as its

value construction D that results from C 3 by substituting C 1 for all occurrences of

C 2 in C 3. The function Tr returns as its value the Trivialisation of its argument.

For instance, let variable y range over type τ . Then [0Tr y] v(π/y)-constructs
0π. (Recall that v(π/y) is the valuation identical to v up to assigning the number

π to the variable y.) The Composition [0Sub [0Tr y] 0x 0[0Cot x ]] v(π/y)-constructs

the Composition [0Cot 0π].

It should be clear now how to validly derive that Tom calculates the cotangent

of something if Tom calculates the cotangent of π. The valid argument is this:

λwλt [[[0Calculate w ]t ] 0Tom 0[0Cot 0π]]

λwλt [0∃ λy [[[0Calculate w ]t ] 0Tom [0Sub [0Tr y] 0x 0[0Cot x ]]]]

Existential quantifier ∃ is here a function of type (o(oτ)) that associates non-empty

sets of numbers with the truth-value T. The complete set of rules for quantifying into

hyperintensional attitudinal contexts has been specified and their validity proved

in 8.

The substitution method is applied whenever we need to operate in a hyperinten-

sional context. But its application is much broader. In particular, it is also applied

in anaphora pre-processing (for details see 21) and the specification of β-conversion.

Though β-conversion is the fundamental computational rule of λ-calculi and

functional programming languages, it is underspecified by the commonly accepted

rule

[λx C (x ) A] ⊢ C (A/x ).

The problem is this. Procedure of applying the function constructed by λx C (x )

to the argument constructed by A can be executed in two different, mutually non-

equivalent ways, to wit (a) by value or (b) by name.e If by name then the procedure

A is substituted for all the occurrences of x into C. In this case there are two prob-

lems. First, conversion of this kind is not guaranteed to be a logically equivalent

eSee also 22,23,24 .
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transformation as soon as partial functions are involved. Second, it may yield loss

of analytic information of which function has been applied to which argument.f

Strangely enough, purely functional languages such as Clean and Haskell use con-

version by name. However, in our TIL-based system conversion by value is applied.

Its idea is simple. Execute the procedure A first, and only if A does not fail to

produce an argument value on which C is to operate, substitute this value for x.

The rule of β-conversion by value adapted to TIL is this.

[[λx 1...xn Y ] D1...Dn] →β
2[0Sub [0Tr D1]

0x 1 ... [0Sub [0Tr Dn]
0xn

0Y ]...]

This rule preserves logical equivalence, avoids the problem of loss of analytic infor-

mation, and moreover, in practice it is more efficient. The efficiency is guaranteed

by the fact that procedures D1, ..., Dn are executed only once, whereas if these

procedures are substituted for all the occurrences of the λ-bound variables they can

subsequently be executed more than once.

For these reasons in our system we apply β-conversion by value. The only excep-

tion is the so-called restricted β-conversion by name that consists in substituting

variables for λ-bound variables (ranging over the same type). This is a technical

simplification of a given construction rather than the procedure of applying a func-

tion to its argument. To adduce an example, we frequently apply the procedure of

extensionalization of an intension. For instance, the analysis of the sentence “The

Mayor of Ostrava is a computer scientist” comes down to two procedurally isomor-

phic constructions:

λwλt [[0Computer 0Scientist ]wt λw
′λt′ [0Mayor of w′t′

0Ostrava]wt]

λwλt [[0Computer 0Scientist ]wt [
0Mayor ofwt

0Ostrava]]

The latter construction is a β-reduced contractum of the former.

2.4. Partiality and presuppositions

TIL is one of the few logics that deal with partial functions, see also 26,24. Partiality,

as we all know well, yields technical complications. But we have to work with partial

functions, because in an ordinary vernacular we use non-denoting yet meaningful

terms like ‘the King of France’ or ‘the greatest prime’. And reducing the domain of

a partial function so that to obtain a total function is not applicable here, because

the domain reduction often cannot be specified in a recursive way and we would

end up with a non-computable explosion of domains. There are two basic sources

of improperness. Either a construction is a procedure of applying a function f to an

argument a such that f is not defined at a, or a construction is type-theoretically

incoherent. For instance, Composition [0Cotg 0π] is v-improper for any valuation v,

because the function cotangent is not defined at the number π in the domain of real

fFor the notion of analytic information see 25.
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numbers. Single Execution 1X is improper for any valuation v in case X is not a

construction, because non-procedural object cannot be executed.

Sentences often come attached with a presupposition that is entailed by the

positive as well as negated form of a given sentence. Thus, if a presupposition of

a sentence S is not true, the sentence S can be neither true nor false. We follow

Frege and Strawson in treating survival under negation as the most important

test for presupposition. Moreover, we take into account that there are two kinds

of negation, namely Strawsonian narrow-scope and Russellian wide-scope negation.

While the former is presupposition-preserving, the latter is presupposition-denying.

Anyway, when dealing with sentences that come attached with a presupposition,

we need a general analytic schema for such sentences that we are going to introduce

now.

A sentence S with a presupposition P encodes as its meaning this procedure:

In any 〈w, t〉-pair of evaluation,
if Pwt is true

then evaluate Swt to produce a truth-value,

else fail to produce a truth-value.

To formulate this schema rigorously, we need to define the If-then-else-fail function.

Here is how. The procedure encoded by “If P (→ o) then C (→ α), else D (→ α)”

behaves as follows:

a) If P v-constructs T then execute C (and return the result of type α, pro-

vided C is not v-improper).

b) If P v-constructs F then execute D (and return the result of type α, pro-

vided D is not v-improper).

c) If P is v-improper then no result.

Hence, If-then-else is seen to be a function of type (αo ∗n ∗n), and its definition

decomposes into two phases.

First, select a construction to be executed on the basis of a specific condition P.

The choice between C and D comes down to this Composition:

[0I* λc [[P ∧ [c = 0C ]] ∨ [¬P ∧ [c = 0D ]]]]

Types: P →v o v-constructs the condition of the choice between the execution of

C or D, C/∗n, D/∗n→v α; c →v ∗n; I*/(∗n(o∗n)): the singularizer function (‘the

only one’) that associates a singleton of constructions with the construction that

is the only element of this singleton, and is otherwise (i.e. if the set is empty or

many-valued) undefined.

If P v-constructs T then the variable c v-constructs the construction C, and if P

v-constructs F then the variable c v-constructs the construction D. In either case,

the set constructed by

λc [[P ∧ [c = 0C ]] ∨ [¬P ∧ [c = 0D ]]]



July 3, 2018 2:23 WSPC/INSTRUCTION FILE ijufks2018

Hyperintensional Reasoning based on NL Knowledge Base 13

is a singleton and the singularizer I* returns as its value either the construction C

or the construction D.g

Second, the selected construction is executed; therefore, Double Execution must

be applied:

2[0I* λc [[P ∧ [c = 0C ]] ∨ [¬P ∧ [c = 0D ]]]]

As a special case of P being a presupposition, no construction D is to be selected

whenever P is not satisfied. Thus the definition of the if-then-else-fail function of

type (αo∗n) is this:
2[0I* λc [P ∧ [c = 0C ]]]

Now we can apply this definition to the case of a presupposition. Let P/∗n→ oτω

be a construction of a presupposition of S/∗n→ oτω. Moreover, let c/∗n+1 →v ∗n,
2c →v o. Then the type of the if-then-else-fail function is (oo∗n) and its definition

is:

λwλt [0if-then-else-fail Pwt
0[Swt]] = λwλt 2[0I* λc [Pwt ∧ [c = 0[Swt]]]]

Gloss. In the first phase the construction Swt is selected, provided Pwt v-constructs

T. In the second phase Swt is executed. In case Pwt does not v-construct T, no

construction is selected and executed, hence 2[0I* λc [Pwt ∧ [c = 0[Swt]]]] is v-

improper and the so constructed proposition has a truth-value gap, as it should

have.

In what follows, instead of the above definition we will use this abbreviated

notation as the general analytic schema:

λwλt [if Pwt then Swt else fail ].

For illustration, let us analyse Strawson’s example 27

All John’s children are asleep.

If the topic of the sentence is ‘John’s children’ then there is a presupposition to the

effect that John has children.h Hence the truth-conditions of this reading can be

formulated like this:

If John has any children

then check whether each and every one of them is asleep

gNote that in this phase C and D are not constituents to be executed; rather they are merely
displayed as objects to be selected by the variable c. This is to say that in TIL constructions
themselves can be objects to be operated on, and without this hyperintensional approach we
would not be able to define the strict function if-then-else.
hHence the situation is this. We are talking about John’s children, and just want to know what
they are doing right now. The other option would be, for instance, the scenario of talking about
those who are asleep, and the sentence would be offered as an answer, “Among those who are asleep
are all of John’s children”. On this reading the sentence would merely entail but not presuppose
that John has children.
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else fail to produce a truth-value.

Thus, we have:

λwλt [if [0∃ [0Children ofwt
0John] then [[0All [0Children ofwt

0John]] 0Sleepwt]

else fail ]

Types: Children of ((oι)ι)τω : the empirical function (attribute) that dependently

on a state of affairs associates an individual with the set of those individuals who

are his or her children; John/ι; Sleep/(oι)τω ; ∃/(o(oι)); All/((o(oι))(oι)): restricted
quantifier that associates a set S of individuals with all the superset of S.

Remark. Here we use the restricted quantifier All, because we want to arrive at

the literal analysis of the sentence. Such an analysis follows Frege’s principle 28: It is

simply not possible to speak about an object without somehow denoting or naming

it.i If the unrestricted general quantifier were used the resulting construction would

be:

λwλt [if [0∃ [0Children ofwt
0John] then

[0∀λx [[[0Children ofwt
0John] x ] ⊃ [0Sleepwt x ]]] else fail ]

This is an equivalent construction producing the same proposition as the above

one, yet it is not the literal analysis of our sentence, because the truth-function of

implication is not mentioned in the sentence.j

3. Automated Processing of Natural Language Input

Applying the Normal Translation Algorithm (NTA 11) to natural language sentences

allows the system to exploit the full expressiveness of the natural language on the

input side. In this section, we first briefly describe the syntactic analysis part of the

NTA module, which builds the core of the logical analysis, then we show the main

components of the logical construction building process. Practically, the translation

from natural language to logical construction is implemented as a self-contained

tool denoted as ASTk 29, which can produce the logical analysis for different input

languages via specific language-dependent setup files.l

The semantic processing of a natural language sentence builds upon the result

of structural syntactic analysis or parsing. As a prevalent way of presenting the

hierarchical organization of the input sentence, most parsers are able to provide a

comprehensive representation in a form of a syntactic tree, which is also the form

processed by the AST tool.

The current version of the AST tool is able to process input in the form of

two basic types of syntactic trees – a phrasal tree and a dependency tree (see

iThe German original goes, “Überhaupt ist es nicht möglich von einem Gegenstand zu sprechen,
ohne ihn irgendwie zu bezeichnen oder benennen.”
jFor more details on the method of arriving at the best literal meaning of a sentence, see 9.
kAutomatic Semantic analysis Tool
lThe current implementation can handle the input in the Czech and English languages.
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Fig. 3. Syntactic (phrasal) tree for “The contractual system means that the client pays the company

a monthly lump sum.”

Figure 3 for an example). The employed parsers (the synt parser 30,31 and the

SET parser 32) are rule-based parsers with different approaches to analysis: one is

developed with the meta-grammar concept, the core of the parser uses a context-free

grammar with contextual actions and it performs a stochastic agenda-based head-

driven chart analysis. Its internal representation concentrates on fast processing of

very ambiguous syntactic structures. The parser is able to process sentences with

syntactic combinations resulting in potentially thousands of possible syntactic trees

ordered by a tree score with an average processing time of 0.07 s per sentence.

The second parser is also a rule-based one but it is based on straightforward

pattern-matching dependency rules. Its grammar consists of a set of pattern match-

ing specifications that compete with each other in the process of dependency anal-

ysis. From the best matches, the parser builds a full coverage syntactic dependency

tree of the input sentence. Currently, the system includes grammars for Czech, Slo-

vak and English, each with a few dozens of rules that sufficiently model the syntax

of the particular language, which is due to the expressive character of the formalism.

The logical analysis then proceeds in interlinked modules of AST, which pro-

cess the output of a syntactic analyser and build the resulting logical construction

in a bottom-up manner. The core of AST is language independent, but it needs
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rule_schema: 2 nterms, ’[#1,#2]’

1, 3, +np -> . left_modif np . @level 0

nterm 1: 1, 2, +left_modif -> . left_modifnl . @level 0, k2eAgNnSc4

TIL: 0contractual...((oι)τω(oι)τω)

nterm 2: 2, 3, +np -> . N . @level 0, k1gNnSc4

TIL: 0system...(oι)τω

Processing schema with params:

#1: 0contractual...((oι)τω(oι)τω)

#2: 0system...(oι)τω
Resulting constructions:

[0contractual/((oι)τω(oι)τω),
0system/(oι)τω]...(oι)τω

Fig. 4. Analysis of the expression “contractual system”

four specific lexicons covering the logical analysis of particular words and syntactic

structures.

3.1. The Syntactic-Semantic Grammar

The bottom-up processing is driven by the hierarchical structure of the input syn-

tactic tree provided by the syntactic parser and by a semantic extension of the actual

grammar used in the parsing process. To know which rule was used by the parser,

AST needs a semantic grammar specification, which contains the lists of semantic

actions that need to be done before propagation of particular node constructions

to the higher level in the syntactic tree. The semantic actions define what logical

functions correspond to each particular syntactic rule. For instance, the <np> node

(a noun phrase) in Figure 3 corresponds to the rule and action:

np -> left_modif np

rule_schema ( "[#1,#2]" )

which says that the resulting logical construction of the left-hand side np is obtained

as a (logical) application of the left modif (sub)construction to the right-hand side

np (sub)construction. An example of processing such grammar rule is in Figure 4.

3.2. Typology of Lexical Items

The second language dependent file defines lexical items and their TIL types. The

types are hierarchically built from four TIL ground types 9.

AST contains rules for deriving implicit types based on Part-of-Speech (PoS)

categories of the input words, so as the lexicon must prescribe the type only for cases

that differ from the implicit definition. The PoS categories are derived from the full
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morphological database Majka 33 and disambiguated with context-based stochastic

tagger Desamb 34. General approaches in this respect can exploit unsupervised

techniques such as 35, however, the required exact logical object specification in

AST makes use of detailed PoS category information determined by means of the

large word forms database of the respective language. A lexical item example for

the verb “(to) pay” is:

pay

/k5/otriv (((o(ooτω)(ooτω))ω)ιι)

The lexicon assigns the logical types based on PoS tag filters, i.e. the type can

differentiate for the exact category of the word within the context of the input

sentence. In this example, the verb (category k5) is assigned a logical object via the

object-trivialisation construction schema and the corresponding logical type (here

a verbal object with two ι-arguments meaning “to pay something to somebody”).

3.2.1. Verb Subcategorization Features

An important part of the predicate construction process consists in determining

the main verb and its arguments (subject, object, ...) within the sentence. In some

languages this process can be driven by the word order, but an authoritative resource

for this procedure always needs to lean on detailed information about particular verb

subcategorization features of verb valencies.

The next language dependent lexicon is thus a file that defines verb valencies

and schema and type information for building the resulting construction from the

corresponding valency frame. An example for the verb “(to) pay” is as follows

pay

hTc4-hPc3 :exists:V(v):V(v):and:V(v)=[[#0,try(#1),try(#2)],V(w)]

This record defines the valency of 〈somebody〉 pays 〈something〉 to 〈somebody〉, given
by the brief valency frame expressions hTc4 of the object (an inanimate noun phrase

in accusative) and hPc3 of the patient (an animate noun phrase in dative), and

the resulting construction of the verbal object (V(v)) derived as an application of

the verb (#0) to its arguments (the sentence objects) with possible extensification

(try(#1) and try(#2)) and the appropriate possible world variable (V(w)).

3.2.2. Phrasal and Sentence Combinatory Expressions

Last two lexicons involved in the AST logical analysis allow to specify semantic

schemata of combinations on the phrasal and sentence level. For example, in the case

of Czech the phrasal Combinatory expressions include a list of semantic mappings

of prepositional phrases to valency expressions based on the head preposition. The

file contains for each combination of a preposition and a grammatical case of the

included noun phrase all possible valency slots corresponding to the prepositional

phrase.
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λw1λt2(∃s1)
(

(∃x3)(∃i4)
(

[

Doesw1t2 , i4, [Impw1
, x3]

]

∧ x3 =

[mean, s1]w1
∧

∧
[

[contractual, system]w1t2 , i4
]

)

∧ s1 =

0

[

λw3λt4(∃x5)(∃i6)(∃i7)(∃i8)
(

[

Doesw3t4 , i8, [Impw3
, x5]

]

∧

[companyw3t4
, i6] ∧

∧
[

[

monthly, [lump, sum]
]

w3t4
, i7

]

∧ x5 = [pay, i6, i7]w3
∧

[clientw3t4 , i8]

)

])

. . . oτω

Fig. 5. An example of the resulting logical construction for the input sentence “The contractual

system means that the client pays the company a monthly lump sum.”

For instance, the record for the preposition “k” (to) is displayed as

k

3 hA hH

saying that “k” can introduce a datival prepositional phrase of a where-to direc-

tion hA (e.g. “k lesu” – ”to a forest”), or a modal how/what specification hH (e.g.

“k večeři” – “to a dinner”).

The combinatory expressions on the sentence level are used when the sentence

structure contains subordination or coordination clauses. The sentence schemata are

classified by the conjunctions used between clauses. An example for the conjunction

“but” is:

("";"but") : "lwt(awt(#1) and awt(#2))"

The resulting construction builds a logical conjunction (clause1 and clause2) of the

two clauses.

These lexicons and schema lists then drive the whole process of standard trans-

lation of a natural language sentence into a structured logical construction suitable

for processing by the TIL inference mechanism.

4. Reasoning in TIL

Having defined β-conversion by value, substitution method, the If-then-else-fail

function and the rules for existential quantification into hyperintensional contexts,

we were in a position to define the inference machine based on TIL. Tichý in 36,37

specified the deduction system for TIL by applying sequent calculus. Tichý’s ver-

sion was specified for pre-1988 TIL, i.e. TIL based on the simple theory of types.
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Duž́ı extended this version for TIL as of 2010, and formulated the results as an

extensional logic of hyperintensions in two papers 13,14. In our system of questions,

answers and reasoning over natural language texts we decided to apply the general

resolution method (GRM) adjusted for TIL. There are two main reasons for this

option. First, deduction by applying the resolution method is goal/question driven.

And second, more importantly, this method is specified in an algorithmic way and

thus easy to implement. The first version was implemented in Prolog 38 and later

extended to the general resolution.

The idea to implement intelligent reasoning in Prolog or more generally by the

resolution method is not a new one. For instance, Flach in 39 aims to make the

reader familiar with the implementation of the intelligent reasoning with natural

language using Prolog programs. Our novel contribution is both theoretical and

practical. From the theoretical point of view, the novelty consists in a fine-grained

logical analysis of natural language in TIL, as described above. In our opinion, in

a multi-agent world of the Semantic Web, information and communication tech-

nologies, artificial intelligence, and other such facilities, there is a pressing need for

a universal framework informed by one logic making all the semantically salient

features of natural language explicit. And TIL with its procedural semantics and

hyperintensional typing is such a universal framework. From the practical point of

view, we have been developing an inference machine that neither over-infers (which

yields inconsistences) nor under-infers (which yields a lack of knowledge).

The transition from TIL into GRM and vice versa has been specified in a near

to equivalent way, i.e., without the loss of important information encoded by TIL

constructions. The algorithm of transferring closed constructions that are typed to

construct propositions into the clausal form appropriate for GRM decomposes into

the following steps.

i) Eliminate the left-most λwλt : [λwλtC(w, t)] ⇒ C(w, t)

ii) Eliminate unnecessary quantifiers that do not quantify any variable

iii) Apply the rule of α-conversion so that different λ-bound variables have dif-

ferent names

iv) Eliminate truth functions ⊃ (implication) and ≡ (equivalence) by applying

these rules: [C ⊃ D] ⊢ [¬C ∨ D] and [C ≡ D] ⊢ [[¬C ∨ D] ∧ [¬D ∨ C]]

v) Apply de Morgan laws

vi) If the construction contains existential quantifiers, eliminate them by ap-

plying Skolemization

vii) Move general quantifiers to the left

viii) Apply distributive laws :

[[C ∧ D] ∨ E] ⊢ [[C ∨ E] ∧ [D ∨ E], [C ∨ [D ∧ E]] ⊢ [[C ∨ D] ∧ [C ∨ E]

The result is a construction in the clausal form proper for GRM.
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4.1. Example of Question Answering in TIL

Here is an example of the analysis of a few natural language sentences and answering

questions over this mini knowledge base.

Scenario. Tom, Peter and John are members of a sport club. Every member of

the club is a skier or a climber. No climber likes raining. All skiers like snow. Peter

does not like what Tom likes, and does like what Tom does not like. Tom likes snow

and raining.

Question: Is there in the club a sportsman who is a climber but not a skier? If so,

who is it?

Analysis.

Types. Tom, Peter, SC/ι; Member-of /(oιι)τω; Skier, Climber/(oι)τω ; Rain,

Snow/α; Like/(oια)τω .

a) λwλt [[0Member-ofwt
0Tom 0SC ] ∧ [0Member-ofwt

0Peter 0SC ] ∧
[0Member-ofwt

0John 0SC ]]

b) λwλt [0∀λx [[0Member-ofwt x
0SC ] ⊃ [[0Skierwt x] ∨ [0Climberwt x]]]]

c) λwλt [0∀λx [[0Climberwt x] ⊃ ¬[0Likewt x
0Rain]]]

d) λwλt [0∀λx [[0Skierwt x] ⊃ [0Likewt x
0Snow ]]]

e) λwλt [0∀λx [[[0Likewt
0Tom x] ⊃ ¬[0Likewt

0Peter x]] ∧
[¬[0Likewt

0Tom x] ⊃ [0Likewt
0Peter x]]]]

f) λwλt [[0Likewt
0Tom 0Snow ] ∧ [0Likewt

0Tom 0Rain]]

Q) λwλt [0∃λx [[0Member-ofwt x
0SC ] ∧ [0Climberwt x] ∧ ¬[0Skierwt x]]]

Solution.

1) eliminate left-most λwλt + α-conversion:

a) [[0Member-ofwt
0Tom 0SC ] ∧ [0Member-ofwt

0Peter 0SC ] ∧
[0Member-ofwt

0John 0SC ]]

b) [0∀λx [[0Member-ofwt x
0SC ] ⊃ [[0Skierwt x] ∨ [0Climberwt x]]]]

c) [0∀λy [[0Climberwt y] ⊃ ¬[0Likewt y
0Rain]]]

d) [0∀λz [[0Skierwt z] ⊃ [0Likewt z
0Snow ]]]

e) [0∀λu [[[0Likewt
0Tom u] ⊃ ¬[0Likewt

0Peter u]] ∧
[¬[0Likewt

0Tom u] ⊃ [0Likewt
0Peter u]]]]

f) [[0Likewt
0Tom 0Snow ] ∧ [0Likewt

0Tom 0Rain]]

Q) [0∃λq [[0Member-ofwt q
0SC ] ∧ [0Climberwt q] ∧ ¬[0Skierwt q]]]

2) negate the question Q)

G) [0∀λq [¬[0Member-ofwt q
0SC ] ∨ ¬[0Climberwt q ] ∨ [0Skierwt q]]]

3) eliminate ∀
a) [[0Member-ofwt

0Tom 0SC ] ∧ [0Member-ofwt
0Peter 0SC ] ∧

[0Member-ofwt
0John 0SC ]]
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b) [[0Member-ofwt x
0SC ] ⊃ [[0Skierwt x] ∨ [0Climberwt x]]]

c) [[0Climberwt y] ⊃ ¬[0Likewt y
0Rain]]

d) [[0Skierwt z] ⊃ [0Likewt z
0Snow ]]

e) [[[0Likewt
0Tom u] ⊃ ¬[0Likewt

0Peter u] ∧
[¬[0Likewt

0Tom u] ⊃ [0Likewt
0Peter u]]]

f) [[0Likewt
0Tom 0Snow ] ∧ [0Likewt

0Tom 0Rain]]

G) [¬[0Member-ofwt q
0SC ] ∨ ¬[0Climberwt q ] ∨ [0Skierwt q]]

4) eliminate ⊃ from b), c), d), e)

a) [[0Member-ofwt
0Tom 0SC ] ∧ [0Member-ofwt

0Peter 0SC ] ∧
[0Member-ofwt

0John 0SC ]]

b) [¬[0Member-ofwt x
0SC ] ∨ [[0Skierwt x] ∨ [0Climberwt x]]]

c) [¬[0Climberwt y] ∨ ¬[0Likewt y
0Rain]]

d) [¬[0Skierwt z] ∨ [0Likewt z
0Snow ]]

e) [[¬[0Likewt
0Tom u] ∨ ¬[0Likewt

0Peter u] ∧
[[0Likewt

0Tom u] ∨ [0Likewt
0Peter u]]]

f) [[0Likewt
0Tom 0Snow ] ∧ [0Likewt

0Tom 0Rain]]

G) [¬[0Member-ofwt q
0SC ] ∨ ¬[0Climberwt q ] ∨ [0Skierwt q]]

5) eliminate ∧ from a), e), f); and write down the clauses

A1) [0Member-ofwt
0Tom 0SC ]

A2) [0Member-ofwt
0Peter 0SC ]

A3) [0Member-ofwt
0John 0SC ]

B) [¬[0Member-ofwt x
0SC ] ∨ [0Skierwt x] ∨ [0Climberwt x]]

C) [¬[0Climberwt y] ∨ ¬[0Likewt y
0Rain]]

D) [¬[0Skierwt z] ∨ [0Likewt z
0Snow ]]

E1) [¬[0Likewt
0Tom u] ∨ ¬[0Likewt

0Peter u]]

E2) [[0Likewt
0Tom u] ∨ [0Likewt

0Peter u]]

F1) [0Likewt
0Tom 0Snow ]

F2) [0Likewt
0Tom 0Rain]

G) [¬[0Member-ofwt q
0SC ] ∨ ¬[0Climberwt q] ∨ [0Skierwt q]]

6) goal driven resolution

R1) ¬[0Climberwt
0Tom] ∨ [0Skierwt

0Tom] G + A1, 0Tom/q

R11) ¬[0Member-of wt
0Tom 0SC ] ∨ [0Skierwt

0Tom] R1 + B

R12) [0Skierwt
0Tom] R11) + A1)

R13) [0Likewt
0Tom 0Snow ] R12 + D, 0Tom/z

R14) ¬[0Likewt
0Peter 0Snow ] R13) + E1), 0Snow/u

R2) ¬[0Climberwt
0Peter ] ∨ [0Skierwt

0Peter ] G + A2, 0Peter/q

R21) ¬[0Member-of wt
0Peter 0SC ] ∨ [0Skierwt

0Peter ] R2 + B

R22) [0Skierwt
0Peter ] R21 + A2)

R23) [0Likewt
0Peter 0Snow ] R22 + D, 0Peter/z

YES R14 + R23
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Second Question; Who?

[λq[[0Likewt q
0Snow ] ∧ ¬[0Likewt q

0Snow ]] 0Peter ] λ-abstraction of Yes, q =0Peter

Answer. Yes, there is a sportsman in the club who is a climber but not a skier.

He is Peter.

5. Conclusions

In this paper, we described the hyperintensional system of reasoning over natural

language texts. The system makes use of a close cooperation between computational

linguistics and logic. We concentrated on two main issues, which to the best of our

knowledge are not satisfactorily dealt with in current reasoning systems. First, a

fine-grained linguistic and logical analysis of questions and underlying texts is a

necessary condition for a high-quality reasoning and answering over the texts. To

this end we have applied the Normal Translation Algorithm (NTA), which is a

method that integrates logical analysis of sentences with the linguistic approach

to semantics. The result of NTA is a corpus of 6,272 TIL constructions analyzed

from newspaper text sentences that serve as an input for TIL inference machine.

We have applied the procedural approach of TIL together with the algorithm of

context recognition in order to implement TIL extensional logic of hyperintensions

so that to be able to derive inferential knowledge from explicit knowledge encoded

in a wide-range of natural-language resources.

The work is still in progress and the direction for future research is clear. We

plan to extend the coverage of the obtained techniques for two languages, Czech and

English so that to obtain a bi-lingual system. Here we make use of the definition

of procedural isomorphism. Since we explicate structured meanings procedurally,

any two terms or expressions, even in different languages, are synonymous when-

ever they are furnished with procedurally isomorphic constructions as meanings.

Yet the clarity of this direction does not imply its triviality. The complexity of

the work going into building such a system is almost certain to guarantee that

complications we are currently unaware of will crop up. For instance, the rule of

co-hyperintensionality, hence of synonymy, has been formulated only conditionally.

We define a series of criteria for procedural isomorphism partially ordered according

to the degree of their being permissive with respect to synonymy, from the strongest

(most restrictive) to the weakest (most liberal), depending on the area and language

under scrutiny. Furthermore, we provide good reasons for each of these criteria and

specify conditions under which this or that criterion is applicable, for details, see
40.
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13. Duž́ı, M. 2012a. Extensional logic of hyperintensions, Lecture Notes in Computer Sci-

ence, Vol. 7260, pp. 268–290.
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19. Ceylan, İ. İ., and Peñaloza, R. 2017. The Bayesian Ontology Language BEL. Journal

of Automated Reasoning, vol. 58(1), pp. 67–95.
20. Martinez-Santiago, F., Dı́az-Galiano, M. C., Garcia-Cumbreras, M. A., and Montejo-



July 3, 2018 2:23 WSPC/INSTRUCTION FILE ijufks2018
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