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In this paper a technique is proposed to tolerate missing values based on a system of
fuzzy rules for classification. The presented method is mathematically solid but never-
theless easy and efficient to implement. Three possible applications of this methodology
are outlined: the classification of patterns with an incomplete feature vector, the com-
pletion of the input vector when a certain class is desired, and the training or automatic
construction of a fuzzy rule set based on incomplete training data. In contrast to a static
replacement of the missing values, here the evolving model is used to predict the most
possible values for the missing attributes. Benchmark datasets are used to demonstrate
the capability of the presented approach in a fuzzy learning environment.
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1. Introduction

Pattern classification applications often involve incomplete information; that is,
some parts of the input vector are missing. This may be due to unrecorded infor-
mation or occlusions of features, for example in vision applications. Therefore the
classifier f has to deal with an input vector # = (¢, 7) with some known part ¢. In
this context three different scenarios can be of interest:

e classification with missing values; that is, the model is used to predict the

most likely class of the incomplete input vector:
f,7)=... (1)

Liu et al* discuss several methods to deal with this problem, where the fo-
cus lies on techniques that are based on decision trees. These methods are,

however, time consuming to use.
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e completion of input vectors. If the set of fuzzy rules is used to describe the
behaviour of a system, then it is often of interest to find good values for all or
part of the input features when a certain outcome is desired. This is similar
to finding an inverse function of the model:

F@,. )=k (2)

e training with incomplete data. The last issue concerns training of a set of
fuzzy rules when some or all of the training data is incomplete. To use as
much of the available information as possible during training, it is desirable
to make use of incomplete training vectors as well:

(F) =k (3)

In this paper we concentrate on classifiers which are based on fuzzy rules!®!! in
contrast to the work presented by Tresp and his co-workers™®. This simplifies the
resulting math and allows to estimate the best guess for the missing values efficiently.
Few restrictions on the type of fuzzy system are assumed; that is, rules have to
be normalized and standard min/max-inference is required. For most practical
applications these restrictions are of no relevance.

This paper is organized as follows. In the next section the used terminology will
be established. Thereafter a way to classify patterns with incomplete features will
be presented. Then this method will be extended to find the most likely value for
these features. After that it is described how automatic learning of fuzzy rules can
be adapted to tolerate missing values in the training data, followed by a section

describing experimental results.

2. Fuzzy Rule Based Classifiers

A fuzzy rule based classifier!! consists of a set of rules RF for each class k with
1<k <e 1<i<my, where ¢ denotes the number of classes and m;, indicates the
number of rules for class &:

RE IF  x; is Ail and --- and X, is Ain THEN class k  (4)

(3

The feature space is thus of dimensionality n; each feature vector ¥ consists of n at-
tributes: &= (x1,---, 2, -, &n), z; € R (R denotes the domain of the attributes,
usually the real numbers). A rule’s activity uf(#) (1 < i < my) indicates the degree
of membership of the pattern Z to the corresponding rule RY:

n {45200} 6

pi (8) = R

Using the normal notation of fuzzy rules, where each rule can be decomposed into n
individual one-dimensional membership functions, corresponding to the fuzzy sets
A?,j~ Thus /15]» represents the projection of u¥ onto the j-th attribute. In addition,
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we assume normalized, one-dimensional membership functions for all rules ¢ of all
classes k:

Vej € R - 0<pf;(e;) <1 and 3oy € R :opfj(ey) =1 (6)
The degree of membership for the entire class is then computed using:

@) = max {pf(@)] (7)

3. Classification with Missing Values

For the case of missing input values; that is, attributes where no information about
their true value is available, the feature vector can be written as: & = (¥, 7), where
¢ = (v1,...,0n,) represents the part of the vector with the known values and ?
replaces @ = (uy, ..., up,), the vector of unknown attributes (n, + n, = n). The

“best possible” activation of one rule can then be obtained through:

. o .5 .
@D = sup (kD)L min () sw G ®)
TER™u 121357?3 uER

Since we are dealing with normalized fuzzy rules (equation 6), /Jfl will have a

maximum value of 1 somewhere on R, and this equation can be simplified to:
N . E o, _ . E o,
pE (@) = min (), 1} = min {pg;(0)} (9)
independent of u; that is, it is sufficient to compute the activation of each rule
in the projection of R™ on R"™v. This means that only the activation for each
one-dimensional membership function of the known attributes has to be computed.
The results obtained here are similar to the results obtained by Ahmad and
Tresp! for Gaussian Basis Functions but are more efficient to compute. In the
case of fuzzy rules the only assumption made is the fact that the rule’s activity is
composed of one-dimensional normalized activation functions.

4. Input Vector Completion

If the input-output pattern (Z, k) (input #, class k) has missing values the same
notation as above can be used: ¥ = (¥,d). Usually finding the best guess for @
is computationally expensive since the maximum of the model-function has to be
found in R*. In the case of fuzzy rules it becomes easier, the maximum of p* (%, @)

in respect to « has to be found:

by— — eq.7 k= =
ZeRms @ = seR {1212?:(% % (v’u)}}
— iz o
=z L, e}
L max {pf(@7) (10)

1<i<my
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This results in the rule with the highest degree of membership being selected:

. _ JA 6&9 . k
imax = argmax {15 (,7)} = ?E%?ﬁf{lg»“g% {F‘i,j(vj)}} (11)
In the case of several maxima one of them can be chosen arbitrarily. The restriction
¥ on the best rule leads to a not necessarily normalized fuzzy rule in R™* with a
subspace Apax(#|¥) of maximal degree of membership under the condition @

Amax (4|0) = {U | Vo € R ﬂfmx({f, d) > ﬂfmx({f, 117)} (12)
Using equation 8 this can be simplified to:
Anmax(@7) = {i@ | i, (T, > i, (3,7)] (13)

and pf (7, 7) is the activation of the rule using the missing values (see equation 9).
Amax(@|¥) describes a hyper-rectangle in n,-dimensional space that is equal to the
a-cut of minlslsm{ufmx(ul)} using o = ufmax(ff, ?) and therefore easy to obtain.

Now the “best” vector (¥, émax) can be computed, using a typical defuzzification
technique, for example the Center of Gravity:

Tmax
N TE Amax
= 14
fmax f /'Lzmax({;a ﬁ) du ( )
TE Amax

Figure 1 illustrates this procedure using a two dimensional example with one known
and one unknown attribute. For the activation function a trapezoidal membership
function is used, featuring a core- (u = 1) and a support-region (0 < pu < 1)2.

5. Training with Missing Values

Training with missing values is usually being done by substituting the mean or
another fixed value for each missing attribute. Tresp et al® demonstrate how this
can lead to severe problems during training. More sophisticated methodologies can
be used, but for practical applications an efficient implementation is also required,
especially in the case of large datasets. The approach presented here uses the rule
model that evolves during training to predict the most possible value for each of
the missing attributes. As was shown above this is computationally uncritical, only
the rule with the highest activation has to be found and from its core-region the
value of Uax can be quickly extracted.

A training vector with missing values is thus handeled in two steps, first the best
guess iy for the vector of missing attributes i is determined, based on the known
values for ¥. Then normal training is executed using the best guess for « together
with the known values of the input ¢ resulting in a complete & = (¥, timax)-

In practice there are two possible ways to implement this type of training, de-
pending on the underlying rule learning algorithm. If the algorithm operates itera-
tively and the evolving rule set is meaningful during intermediate presentations of
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support

core

Figure 1: The proposed way to find a best guess for a missing value. The attribute v
has the value a, u is unknown. Using the described method u(?,a) can be obtained
resulting in an area of maximum activity Apax. The “best guess” for u is found
using the Center of Gravity method resulting in up .

training patterns, the current rule set can be used to replace the missing values.
If the algorithm on the other hand is batch oriented; that is, the rule set 1s only
meaningful after training is finished, the rule set of the previous epoch is used to
replace the missing values. In the following the later approach has been used. At
the beginning all missing values were replaced with the mean of the corresponding
attribute (which is the “best guess” when no rule set is present). Then, after train-
ing using this dataset was finished, the constructed rule set was used to replace the
missing values in the training data. With this new dataset the next training was
performed, resulting in a new rule set, etc.

6. Experimental Results

To demonstrate the usefulness of the proposed method, an existing algorithm to con-
struct a set of fuzzy rules from training data was adapted using the described tech-
nique to tolerate missing values during training. The underlying training algorithm?
uses a set of training data points (7, k) to iteratively construct a set of locally inde-
pendent fuzzy rules, in contrast to numerous other algorithms that build a global
grid of rules®%7? The resulting rules only depend on relevant attributes, which is
extremely beneficial when using a high-dimensional feature space. The algorithm
is easy to use and trains fast. In addition its termination can be proven.

Two datasets from the StatLog-archive® have been used. This archive evolved
during a european ESPRIT-project and contains a number of real world datasets
together with results of over 20 different classifiers. Both used datasets are based on



176

real data and contain a large number of examples. The SatImage dataset was chosen
because of its complexity (high number of attributes, high remaining generalization
error), the Shuttle dataset because of its size (about 60,000 examples).

Since the used training algorithm does not require a validation dataset, training
could be performed on the entire training set and the testing data was used to
estimate the generalization capability of the constructed fuzzy rule set. Different
levels of distortion were used to erase randomly chosen values from the training data,
thus simulating different amounts of missing values. To estimate the quality of the
resulting models, the remaining test data was used without distortion. In addition
to the presented fuzzy based replacement of missing values, a static substitution
using mean and zero was also used to compare the obtained results.

6.1. Results on the SatImage Benchmark

The SatImage dataset contains 4,435 training cases divided into 6 classes in a 36-di-
mensional feature space. Testing is done on 2,000 patterns. This dataset was used
first to demonstrate how using the evolving ruleset to replace the missing values
leads to a new rule set with better generalization. Table 1 shows the obtained

results.

percentage of | proposed method | replace w. mean | replace w. zero

missing values | error Ftrules error Ftrules | error Ftrules
0% 12.96% 506 12.96% 506 12.96% 506
1% 12.41% 526 12.86% 529 13.86% 645
5% 14.11% 532 14.51% 645 17.26% 966
10% 13.76% 501 15.86% 745 2751% 1285
20% 15.31% 400 15.41% 843 43.12% 1444
40% 16.11% 303 16.66% 950 51.33% 1353
60% 16.96% 165 18.01% 1121 | 41.98% 1314

Table 1: Results on the SatImage dataset with different levels of missing values.

Obviously for this dataset the replacement with zero is disastrous, the replace-
ment with the mean produces much better results. This illustrates clearly how the
static substitution using a constant value can be harmful. The proposed method,
however, finds the “best guess” dynamically, using the evolving rule set. This way
to compute individual estimates for the missing values leads to rule sets with better
generalization. Additionally the size of the constructed rule set grows slower with
an increase in distortion. After a certain level of distortion (> 5% missing values)
the size of the rule set even decreases, due to the increasing amount of freedom to
choose a replacement for the missing values.

6.2. Results on the Shuttle Benchmark

The Shuttle data was used because of its size: 43,314 training cases, 3 classes?, 9

%Three other classes from the original dataset were ignored because their occurrence was < 1%.
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dimensions, and 14,442 patterns to test generalization. Table 2 shows results for
the Shuttle dataset, where the difference in required number of rules between the
different methodologies is even more drastic.

percentage of | proposed method | replace w. mean | replace w. zero

missing values | error Ftrules error Ftrules | error Ftrules
0% 0% 14 0% 14 0% 14
10% 0% 28 0% 183 0% 347
20% 0% 31 0% 449 0% 971
30% 0% 25 0.035% 934 0% 1730
40% 0% 23 0.035% 1616 | 0.160% 2704
60% 0% 6 0.160% 3481

Table 2: Results on the Shuttle dataset with different levels of missing values.

At a level of 60% missing values, only 6 rules are required, while both other
approaches need several thousand rules. With this dataset it is even more appearant
how the rule-based, dynamic replacement of missing values reduces the number of
required rules without loosing performance. In contrast, compared to the other
methods the generalization performance is even marginally better.

7. Conclusions

A methodology was proposed to deal with missing values for classification, comple-
tion of inputs, and training using sets of fuzzy rules under the usual assumptions;
that is, max/min-inference and normalized rules are used. A computationally very
efficient way was derived, to compute the output of a fuzzy rule set when parts
of the input vector are unknown. In addition the input vector can be completed,
computing the so-called “best guess”. During incremental training, the evolving set
of fuzzy rules can also be used to compute the completed input vector, followed by
a conventional training algorithm. Experimental results show that the presented
methodology outperforms standard static replacement techniques.
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