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To generate a 3D computer model of a free-form object, multiple range images (point
clouds) covering its entire surface are acquired from different viewpoints. These views
are then aligned in a common coordinate basis by minimizing the distance error between
their corresponding points. Establishing correspondences automatically is an inherently
challenging problem due to the lack of any type of information other than the geomet-
rical information extracted from the point clouds. Existing “automatic” correspondence
techniques achieve automatism at the expense of other important specifications namely,
applicability to free-form objects, accuracy, efficiency, robustness to resolution and sur-
face sampling, robustness to overlap, robustness to noise and finally their applicability
to simultaneous multiview correspondence. There is also a lack of a review paper that
describes and critically analyzes these techniques. In this paper, we present such an
extensive review and carry out the analysis of each technique according to the above
listed indispensable criteria. Our analysis shows that none of these techniques fully meets
these criteria and that there is still a need for the development of practical automatic
correspondence algorithms.

Keywords: 3D modeling; correspondence; registration; free-form object; range image; 3D
shape representation.

1. Introduction

There are numerous applications of three dimensional modeling in a wide range

of areas. These areas include medical diagnosis, reverse engineering, robotics, com-

puter graphics, computer games, preserving archaeological heritage, virtual reality

and the entertainment industry. The first step in generating a 3D computer model

of a free-form object3 is the acquisition phase during which the object’s surface is

scanned from various viewpoints with a range scanner (see the block diagram in

Fig. 1). This process results in a series of range images (also known as 2.5D images)

1
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Fig. 1. A block diagram showing different components of the 3D modeling process.

Fig. 2. (a) A point cloud of a view of the isis. (b) Three selected correspondences are marked
between two views of the isis. (c) The two views after registration. Notice that the contribution
of each view appears in a different gray shading. (d) The complete 3D model of the isis after
integration and reconstruction of its 33 registered views.

of the object’s surface in the form of point clouds (Fig. 2(a)). In the next step,

correspondences are established between overlapping views. Points on two different

views that correspond to the same point on the object are said to be corresponding

points (Fig. 2(b)). These correspondences can then be used to derive a rigid trans-

formation (rotation matrix R and translation vector t) that aligns the two views

(see Fig. 2(c)). R and t are estimated with the objective of minimizing the distance

error E between the corresponding pairs of points of the scene (S) and the model

(M) based on Eqn. 1.

E =
n
∑

i=1

‖SiR + t −Mi‖ (1)

This is a common objective used by most existing registration algorithms how-

ever they use different strategies to establish correspondences between the views.

Once all the views are registered in a single coordinate basis, they are integrated

and reconstructed to make a complete seamless 3D model (Fig. 2(d)). Fig. 1 shows
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the different components of the 3D modeling process and Fig. 2 illustrates the main

phases of the 3D modeling process.

One way around the correspondence problem is to track the movement of the

acquisition system and apply the reverse transformations to the views. However,

this makes the acquisition device expensive and may also restrict its freedom of

movement. Moreover, the accuracy of the registration is limited by the accuracy of

the tracking system used. Therefore, a more economical and practical approach is

to keep sufficient overlap between adjacent views and identify corresponding points

in their regions of overlap as per the diagram in Fig. 1.

All the components of the 3D modeling process of Fig. 1, excluding the cor-

respondence module, have already been automated and have reached a level of

maturity. Examples of automatic acquisition techniques include and are not re-

stricted to Ref. 5,35,46. For pairwise and simultaneous multiview registration,

we cite Ref. 2,4,7,34,37,43. Examples of automatic integration techniques include

Ref. 12,16,41 and finally, examples of automatic reconstruction techniques include

Ref. 15,21,22,29.

However, automatic correspondence is an ongoing research problem and inher-

ently challenging for the following reasons. First, each view of the object is defined

in a separate coordinate frame and there is no available information related to

the rotation and translation between the two coordinate frames. Consequently, the

views cannot be directly matched in order to establish correspondences between

them. Second, given that two views overlap, no information is available regarding

their region of overlap. Therefore, it cannot be ascertained as to which points in one

view have their corresponding points in the other view. Finally, in a more general

case, given a set of unordered views of an object, there is no information regarding

overlapping view pairs in that set.

In order to devise a fully automatic 3D modeling system, there is a need to

develop an automatic correspondence algorithm which meets certain crucial speci-

fications as listed below. We define an automatic 3D modeling system as one which

is capable of generating a 3D model of an object from its unordered views without

any user intervention. By unordered views, we mean that the order in which the

views were acquired is unknown and hence there is no a priori knowledge about

which view pairs overlap. The relative importance of these specifications depends

upon the type of application. However, these specifications must be fully satisfied

by a correspondence algorithm in order to be applicable in all practical scenarios.

These specifications are:

• Automatism of the whole pairwise correspondence process

• Applicability to free-form objects

• Accuracy

• Efficiency with respect to time

• Robustness to the range image resolution and surface sampling

• Robustness to the overlap between adjacent views
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• Robustness to the noise in the range images

• Applicability to multiview correspondence between unordered views

We define an automatic correspondence algorithm as one which requires no hu-

man intervention at any stage. A free-form object (also known as a sculpted object)

is defined as one which has a smooth surface with a well defined and continuous

surface normal everywhere except at vertices, edges and cusps3. No restrictions are

imposed on the shape of the object. Accuracy of correspondences is necessary for

accurate registration and 3D modeling. Efficiency with respect to time requires that

the algorithm must execute in a reasonable duration of time. Robustness to range

image resolution and surface sampling implies that an algorithm’s computational

complexity should not increase with the resolution of the views (number of data

points per view) and the matching process should not be sensitive to the varia-

tions in the surface sampling of the views. Robustness to overlap implies that the

correspondence algorithm should not require excessive overlap between adjacent

views and should not make any assumptions about their regions of overlap (for in-

stance the DARCES algorithm 6 assumes a rectangular block of overlapping regions

which is not always the case in practice, see Section 3.1). Finally, we define multi-

view correspondence as a simultaneous one-to-many correspondence approach. More

precisely, the correspondence algorithm should be able to simultaneously match a

single view with many views as opposed to matching two views at a time. A pairwise

correspondence algorithm is not practical in case the views are unordered because

the algorithm will have to make an exhaustive search for correspondences between

N(N − 1)/2 pairs of views (where N is the total number of views). The compu-

tational complexity of a pairwise algorithm in this case is O(N 2) which makes it

computationally expensive.

Few automatic correspondence techniques exist in the literature. However, as

will be demonstrated in this paper, all of these techniques are pairwise and achieve

automatism by compromising at least one or more of our remaining specifications

which limits their applicability. Moreover, there is a lack of a review paper which

analyzes these correspondence techniques according to the same set of criteria. On

this basis, we present in this paper, a taxonomy of these correspondence techniques

and an extensive review of each one of them. We will also perform their analysis

according to the above listed important criteria.

The rest of this paper is organized as follows. In Section 2, we give a taxonomy

of automatic correspondence techniques. From Section 3 to Section 6, we shall dis-

cuss some automatic correspondence algorithms belonging to each category of the

taxonomy. These Sections also include the analysis of these algorithms according

to our listed criteria. An interesting point to note about these algorithms is that

almost all of them rely on the Iterative Closest Point (ICP) algorithm4 or one of

its variants in order to verify the correspondences and refine their registration re-

sults. The ICP algorithm establishes correspondences between the nearest points

of two views and calculates the rigid transformation that would minimize the dis-
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tance between these corresponding points. This transformation is applied and the

process is repeated until the distance between the corresponding points cannot be

reduced any further or no further correspondences can be established between the

two views. The ICP algorithm however is not automatic because it requires an ini-

tial registration estimate for initialization. In Section 7 we review a complete 3D

modeling framework and perform its analysis according to our criteria. Finally, in

Section 8 we present our conclusions.

2. Taxonomy of Automatic Correspondence Techniques

Automatic correspondence techniques can be classified as per the taxonomy of Fig. 3

based on the different used approaches30. These techniques can be broadly divided

into two categories. The first category is based on an exhaustive search for corre-

sponding points whereas the second category extracts invariant features from the

views for the purpose of matching them. Exhaustive search is guaranteed to find the

best solution but these techniques are not efficient since the search space becomes

very large even for medium size data sets. To roughly estimate the complexity of

an exhaustive search algorithm, suppose we want to find correspondences between

two views with n data points each. A minimum of three non-collinear correspond-

ing point pairs are necessary to find a rigid transformation (rotation matrix and

translation vector) that will align the two views. Therefore, the entire search space

to find such pairs would be Cn
3 C

n
3 which has a complexity of O(n6).

The invariant feature matching category can be further subdivided into tech-

niques which extract local features and those which extract global features. Global

features have two limitations. First, they may not be fully contained inside the re-

gion of overlap of the views and second, global features may change from one view

to the other due to, for instance, different parts being occluded in the two views.

These limitations will result in the difficulty of finding the matching features and

hence the correspondences between the two views. Local features, however, have a

greater chance of lying fully inside the region of overlap. If a large number of local

features are extracted from the views, some of them will be guaranteed to fall inside

the region of overlap. Therefore, there are more chances that some local features

from one view will match with some of the local features of the other view.

The local feature extraction category is further divided into two sub-categories.

The first one extracts local invariant-features by defining a local coordinate basis

over the surface of the view while the second one extracts local invariant-features

without defining a coordinate basis. In the latter case, it is very challenging to ex-

tract invariant features from a view because most of the features that are defined in

the coordinates of one view change when transformed to the coordinates of another

view. By defining a local coordinate basis over the surface of the view, all of its

features (as defined in this coordinate basis) are invariant to rigid transformations.

However, the main challenge in this case is to define the local coordinate bases

consistently over different views in the presence of noise and variations in surface
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Fig. 3. Taxonomy of automatic correspondence techniques (Figure reproduced from Ref. 30).

sampling. Moreover, a minimum of three ordered points are required to uniquely

define a 3D coordinate basis. To ensure that a corresponding set of three points is

chosen in both the views, 3D bases must be defined from all possible combinations

of three points in each view. This leads to a total of P n
3 permutations per view.

Therefore, another challenge in this category is to devise a strategy that avoids this

combinatorial explosion.

3. Exhaustive Search Techniques

3.1. RANSAC-based DARCES

3.1.1. Description

RANSAC-based DARCES (Random Sample Consensus based Data Aligned Rigid-

ity Constrained Exhaustive Search)6 uniformly samples the scene surface to select

three reference points Sp (primary), Ss (secondary) and Sa (auxiliary) such that

they form a triangle. Every point in the model is a possible correspondence for Sp.

Once a point Mp in the model has been chosen to correspond to Sp, the search

for the point Ms as a corresponding point to Ss is constrained to a sphere of ra-

dius dps = ‖Sp − Ss‖ with its center at Mp (Fig. 4(b)). Similarly, once the point

Ms has been chosen the search for a corresponding point to Sa is restricted to a

circle with radius dqa and center at point Mq. dqa is the perpendicular distance of

point Sa from the line joining Sp and Ss. Mq is the corresponding point to Sq, the

perpendicular projection of point Sa on line SpSs (Fig. 4(c)).

Once the three corresponding points have been found, a rigid transformation

Tc is calculated and applied to all the reference points. Tc = (R, t), where R is

the rotation matrix and t is the translation vector that align the three scene points

(Sa, Sb, Sc) to their corresponding model points (Ma,Mb,Mc). This transforma-
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Fig. 4. (a) Triangle formed from the three control points. Sq is the orthogonal projection of Sa to
line SpSs and dqa is the orthogonal distance from it. (b) The search region for the corresponding
point to Ss is a sphere. (c) Mq is the corresponding point to Sq in the model. The search for
the corresponding point to Sa is restricted to this circle. (Fig. taken with permission from Ref. 6
c© IEEE 1991).

tion is then verified by calculating the distance of the reference points from the

model surface. The number of reference points for which this distance is smaller

than a threshold is called the overlapping number No. No is calculated for each

possible three point correspondence and the transformation with the largest No

is considered as the solution. Finally, the ICP algorithm4 is applied to refine the

registration. To improve the efficiency of the algorithm, more than 3 control points

denoted by Sp, Ss, Sa, S4, S5, . . . , Snc
are used. The primary control point is selected

at random and the remaining control points are selected such that they gradually

form a bigger triangle (Fig. 5(a)). Once Tc has been calculated it is applied to

the remaining control points one by one and the transformed point is checked for

alignment constraint. If the distance between the transformed scene point and the

nearest model point is greater than a preset threshold, Tc is rejected at an early

stage. The algorithm then seeks another set of correspondences for the first three

control points. To further improve the efficiency, a coarse to fine search scheme is

applied. The correspondence of Sp is first sought at the coarsest level which gives

the initial estimate for the next finer level. Once the correspondence of Sp has been

hypothesized, the correspondences of the remaining control points are sought at the

finest level. Different thresholds of correspondence distances are used for the three

levels of search.

To deal with the partially overlapping case, the DARCES algorithm ensures that

at least one primary point will be selected such that all the control points lie within

the overlapping region. For this purpose, the RANSAC technique is used to calculate

the minimum number of iterations required. Suppose the overlapping region (OR)

of two partially overlapping views is a square of length l in the index plane of the

scene (Figure 5(b)). If all of the control points are to lie inside OR, the primary

point must lie in the eroded overlapping region (EOR). The number of expected

times of random trials is E = 1/p. Where p = r · (l − d)2/l2 is the probability of
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Fig. 5. (a) Fifteen control points selected in the scene index plane. (b) Partially overlapping case.
Point Sp must lie in EOR for all the control points to lie inside the OR (Fig. taken with permission
from Ref. 6 c© IEEE 1991).

a primary point to lie inside the EOR. r is the overlap ratio (r = no/ns i.e. the

number of scene points in OR divided by the total scene points).

3.1.2. Analysis

RANSAC-based DARCES is applicable to free-form objects and is guaranteed to

find an accurate solution since it is based on an exhaustive search. However, this

makes the algorithm inefficient. For the primary scene point Sp, all points on the

model are possible correspondences. In case Sp does not lie inside EOR the entire

exhaustive search effort for its corresponding point will be futile. This algorithm is

also not robust to resolution and surface sampling. The computational complexity

of the algorithm grows exponentially with the increase in the resolution and will

very quickly get out of control for denser data sets. The algorithm is also sensitive

to variations in surface sampling since it matches scene and model points rather

than surfaces.

Another limitation of the RANSAC algorithm is that it assumes the overlapping

region to be continuous and to form a rectangular region in the image plane (Fig.

5(b)). In practice, the overlapping region is neither continuous nor as simple as

claimed. For instance, it may not be continuous and may include holes (areas of no

overlap) due to sensor error or self-occlusions. If one of the 15 control points falls

into such a region where the surfaces do not overlap, it will not find a corresponding

point in the model and the algorithm will reject a valid Tc on this basis. This is not

affordable in an exhaustive search. In the worst case, the two surfaces may overlap

in a fashion that it may not be possible to have any triangle of 15 points fully inside

a region of overlap. To overcome this situation, the size of the triangle should be

kept considerably small resulting in transformations that are very sensitive to noise.

This will also increase the number of iterations required before a solution is reached.
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The ability of the algorithm to handle noise was not discussed in the paper. We

believe that noise will adversely affect the performance of the algorithm since this

approach linearly matches the distance between points in the two views. Finally,

the DARCES algorithm is unable to perform multiview correspondence between

unordered views.

3.2. Graph Matching

3.2.1. Description

The graph matching technique8 is based on the principle of invariance of distance

measures under rigid transformations. By choosing three points P1, P2 and P3 on

one surface and calculating their distances d(P1, P2), d(P1, P3) and d(P2, P3), the

conservation of distances are used to find similar points on the second surface

that would make a similar triangle. In the simplest case of two surfaces having n

similar points, the n feature points at view 1 are connected to form a graph G1

e.g. a spanning tree, a polygon or a path. Next, an optimal matching graph G′ will

be derived from the second view by the matching algorithm. The corresponding

vertices of the two graphs form the corresponding points from which the rigid

transformation, that aligns the two surfaces, is calculated.

Let G1 = {P1, P2, ......, Pn} and d{Pi, Pi+1} be the distance of the ith edge of

G1. The first step of the algorithm is to find an edge QiQj in the second view whose

length is close to the first edge P1P2 of G1 (Eqn. 2).

‖d(Qi, Qj) − d(P1, P2)‖ ≤ ε (2)

If Eqn. 2 (where ε is a tolerance) is satisfied then there are two possibilities i.e. Qi

may correspond to P1 or P2. Both possibilities will be attempted for all matching

edges QiQj to generate a matching graph to G1. Consider the first case i.e. Qi

corresponds to P1, find recursively the third vertex Qk such that the edge QiQk is

close to P1P3 and QjQk is close to P2P3. This process is repeated till all the n points

have been considered. This will result in a candidate graph G′ = {Q′
1, Q

′
2, ......, Q

′
n}

of view 2. The candidate graph G′′ that has the minimum kth order error (defined

by Eqn. 4) from G1 will be considered as the solution.

‖G′′ −G1‖k ≤ ‖G′
i −G1‖k, for all i (3)

‖G′ −G1‖k =

i=n
∑

i=2

min(k,i−1)
∑

j=1

‖d(Q′
i, Qi−j) − d(Pi, Pi−j)‖ (4)

In Eqn. 3 and Eqn. 4, k can vary from 1 to n. Increasing the value of k lowers

the chances that a wrong correspondence will be included in the graph. However,

it will also increase the comparison time and the chances of rejecting a node. The

rejection of a single node means that the entire subtree that follows it will not have

to be visited resulting in an overall time improvement. Before a new point Ql is
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accepted as the (i + 1)st node to the candidate graph G′, two conditions must be

satisfied. First, the edge difference of the new edge should be less than ε. Second,

the accumulated kth order error must be less than the threshold δ = n(n − 1)ε/2

(where n is the number of nodes in G). If none of the remaining points satisfy these

two conditions, node Q′
i will also be deleted from G′ and the search will continue.

In the case of partially overlapping surfaces, there may not be a corresponding

point on the second surface for every feature point of the first surface. The algorithm

proceeds by considering that each point in view 1 may be an extra point and assigns

it to match a null point. The optimum solution is chosen from the candidate graphs

which has the maximum number of matched non-null points. In the case of a tie,

the decision is based on the least accumulated error. To achieve computational

efficiency, the data set is split into s subsets. The matching algorithm is applied

to each subset to find its corresponding matching graph. The corresponding data

points found for the first subset are removed once the matching graph for the second

subset is sought. This process continues till the matching graphs for all the subsets

have been found.

3.2.2. Analysis

The graph matching algorithm is applicable to free-form objects only if all the data

points are considered for building the graph. Extracting feature points will limit

its applicability to those objects which have the required features and the results

would also dependent upon the consistent extraction of feature points from the two

views. In case all points are considered for building the graph, the algorithm will

become inefficient since it is based on an exhaustive search. The algorithm also lacks

robustness to resolution since the search space for a matching graph in the second

view exponentially grows with an increase in its data points. This problem may be

solved to some extent by splitting the graph into subsets. However, a significant

gain in efficiency can only be achieved if the subset graphs are very small. In which

case, the accuracy of the algorithm will suffer. This algorithm is also sensitive to

variations in surface sampling because it is based on the matching of data points

as opposed to the matching of surface patches.

This technique is only suitable for low resolution data and in the case where one

surface is a subset of the other, which is generally not the case in the context of 3D

modeling. Although it provides a solution to handle partially overlapping surfaces,

the suggested solution does not clarify how many consecutive points and how many

total points in the graph G1 can be considered as extra points. Allowing too may

consecutive extra points may again adversely affect the efficiency and accuracy of

the algorithm. The authors of this algorithm do not provide any evidence regarding

the robustness of the algorithm to noise. We believe that noise will further reduce

the efficiency of the algorithm by increasing the number of points in G1 that should

be labeled as extra points. Finally, since the graph matching algorithm suffers from

inefficiency in the case of pairwise correspondence, it certainly cannot be applied
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to solve the multiview correspondence problem.

4. Matching Invariant Global Features

4.1. Bitangent Curve Matching

4.1.1. Description

Bitangent curve matching45 is based on the extraction of invariant characteristics

of bitangent curve pairs. Correspondence between these curve pairs gives a crude

estimate for an initial registration which is then further refined using the ICP

algorithm4. This technique is robust to the affine distortions introduced during an

uncalibrated scan as long as there is one calibrated scan available.

Bitangent points are defined as point pairs on a 3D surface having a common

tangent plane. Bitangent curves are those on which a bitangent plane (a plane

which is tangent to two points) can roll (Fig. 6(a)). These curves contain a series

of bitangent points. Bitangent points and curves are invariant under Euclidean,

affine and projective transformations. Bitangent curves are extracted efficiently by

finding the self intersection of a surface in dual space as follows. Tangent planes

are calculated for every point X on a surface. The equation of the tangent plane is

of the form aX + bY + cZ + d = 0 . Next a dual point Dx is calculated from the

tangent plane as follows. The vector [a b c]′ is scaled to constitute a unit vector

that corresponds to the surface normal. The value of d after scaling corresponds to

the distance of the plane from the origin. The dual point is the vector Dx = [a b d]′

after rescaling. Dx is calculated for every point on the surface and these Dx points

make up a new surface known as the dual surface. Since bitangent points have the

same tangent plane, they correspond to the self intersections of the dual surface45.

Fig. 7 shows the bitangent curves on the face of a statue with one pair highlighted

in Fig. 7(c). Bitangent curve pairs can have considerably varying lengths.

Invariant signatures are then extracted from the bitangent curve pairs. A single

parameterization is used at both points of the pair and for every value of a chosen

parameter, invariants are extracted from the coordinates and derivatives of the two

points. In the Euclidean case, an invariant is derived using the angle between the

tangent vectors to the bitangent curves. Another invariant is derived by expressing

the bitangent curves as a function of the arc length of the longest of the two curves

(see Ref. 45 for details).

To find correspondence between two surfaces, the invariant signatures of their

longest 15 bitangent curves are matched. It is possible for two matching surfaces to

contain only parts of their corresponding bitangent curves (in case of occlusion for

instance), the signatures are therefore divided into segments. A matching signature

segment corresponds to a pair of segments on the bitangent curve pair of each

surface. The endpoints of these curves give four points on one surface and their

corresponding four points on the other surface. This information is used to calculate

the Euclidean or affine transformation between the surfaces. The transformation is
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Fig. 6. (a) A rolling plane describing a pair of bitangent curves on a surface. (b) A view of a dual
surface (Fig. taken with permission from Ref. 45 c© IEEE 1999).

Fig. 7. (a) A 3D view of a face. (b) Bitangent curves on the face. (c) One pair of bitangent curves
shown in black (Fig. taken with permission from Ref. 45 c© IEEE 1999).

then applied and verified by calculating the closest point distance of the two surfaces

for a subset of points. If this distance is less than twice the resolution of the surfaces

for a large number of points, the transformation is accepted and finally refined with

the ICP algorithm4.

4.1.2. Analysis

Bitangent curve matching is applicable to free-form objects. The identification of

bitangent curves involves the calculation of tangent planes for every point on the

scene and model surface. The computational complexity of this process increases

linearly with the increase in the resolution of the surfaces. Once the bitangent curves

have been identified, the invariant signature extraction and matching would depend

upon the number of bitangent curves. A major limitation of this algorithm is that

bitangent curves are global features. Global features may not be fully contained

inside the region of overlap. In which case, one of the bitangent curves may not be

fully inside the overlapping region. This would result in erroneous correspondences.

To overcome this problem a lot of overlap must be kept between adjacent views.

Another limitation of this algorithm is that the extraction of bitangent curves and
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their invariants involve the calculation of derivatives which are sensitive to noise

and surface sampling. Therefore, heavy smoothing of the surface is required before

calculating the bitangent curves. Smoothing of the surface can itself result in the

loss of features (see Fig. 7(c)) leading to variations in the bitangent curves.

5. Matching Local Features Extracted without a Coordinate Basis

5.1. Spherical Attribute Image (SAI) Matching

5.1.1. Description

Spherical Attribute Images were initially developed as a representation scheme for

object recognition13,19. However, this approach has also been applied to find cor-

respondences between two partially overlapping surfaces20 by matching their SAI

representations. SAI matching falls into the invariant feature matching without lo-

cal coordinate basis category. This algorithm has two main phases, SAI formation

and SAI matching. During SAI formation, the surface data points are approximated

by tessellating an arbitrary surface into a semi-regular mesh. The tessellation is de-

formed repeatedly under three constraints. First, it should be as close to the original

surface as possible. Second, all vertices must have exactly three connected neigh-

bours. Third, the mesh should follow the regularity constraint i.e. if P is a node

of the tessellation with P1, P2 and P3 as neighbours, G is the centroid of the three

neighboring points and Q is the projection of point P on the plane defined by P1, P2

and P3 then Q and G must coincide(Fig. 8(a)). This regularity constraint ensures

that the distribution of the mesh nodes on the surface is invariant to rotation,

translation and scaling.

Next, the simplex angle is computed at each node. The simplex angle is a mea-

sure of curvature and is invariant to rotation, translation and scaling. The simplex

angle at P , denoted by g(P ), is computed as follows. The node P along with its

neighbours P1, P2 and P3 form a tetrahedron inside a sphere of radius r centered

at O (Fig. 8(b)). Z is a line passing through O and the center of the circle cir-

cumscribed to P1, P2 and P3
13. The cross-section of the tetrahedron with the plane

formed by point P and the line Z is a triangle (Fig. 8(c)). The simplex angle (ψ) is

the angle between the two edges of the triangle intersecting at P . ψ varies between

−π and +π. It is zero for a planar surface, positive for a convex surface and negative

for concave surfaces.

These simplex angles are calculated and mapped onto a unit sphere. A unique

index is associated with each node which defines a mapping h between the mesh

M and a reference mesh S on the surface of the unit sphere i.e. if P is a node

on S then h(P ) is the corresponding node on M . The mapping h is such that it

preserves connectivity. At each node of the unit sphere S, the simplex angle of the

corresponding node on the mesh is stored. This results in a spherical image known

as the SAI which is invariant to translation and scaling. Moreover, the SAIs of the

same surface are identical up to a rotation i.e. one is a rotated version of the other.
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Fig. 8. (a) For local regularity point Q should coincide with point G. (b) and (c) Definition of
simplex angle (Fig. reproduced from Ref. 13 c© IEEE 1993).

Parts of the original surface with missing data are interpolated by the mesh fitting

algorithm and the resulting nodes are marked as interpolated. Nodes are marked as

interpolated if their distance from the closest data point is more than a threshold.

A complete closed mesh is built even for partially visible surfaces. In such cases

the nodes are marked as visible or invisible depending upon their distance from

the closest data point. Interpolated and invisible points are not used for matching

purposes.

The SAI matching proceeds as follows. Let S and S ′ be the SAIs of two views

of a surface and R be the rotation that aligns the two SAIs. R is calculated by

minimizing the following cost function:

D(S, S′,R) =
∑

(g(P ) − g(RP ′))2 (5)

The above cost function is calculated for a valid list of correspondences (Pi, P
′
j)

between the nodes Pi of S and the nodes P ′
j of S′. Node P1 of S is put in cor-

respondence with node P ′
j1 of S′ and its two neighbours P2 and P3, are put in

correspondence with the neighbours of P ′
j1 i.e. Pj2 and P ′

j3 respectively. This set of

three correspondences define a unique rotation of the spherical image. All possible

rotations of the SAI are tried up to its resolution and the one giving a minimum

value of D is accepted as the optimum rotation. This rotation, however is not the

same as the rotation of the original surfaces and is used to identify corresponding

pairs of nodes in the two SAIs. These nodes when mapped back to the original

surfaces give the corresponding pairs of nodes on the original mesh. Using these

correspondences a transformation is calculated to align both meshes. This trans-

formation is further refined with the ICP algorithm4.

To compare the SAIs of different views of a surface, the number of nodes need to

be adjusted as the relative size of the visible area depends upon the viewing angle.

Let V1 and V2 be the two views to be merged and S1 and S2 be the number of nodes

visible from each viewing angle. Let A1 and A2 be their respective visible areas then

S2/S1 = A2/A1. This relationship is used to modify the SAIs of different views

so that the distribution of nodes in the visible area is consistent between views.
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To satisfy this equation some visible nodes have to be moved. The connectivity

conservation property of the SAI is used to establish correspondences between the

two views of the surface.

5.1.2. Analysis

The applicability of SAI matching is limited to only those surfaces which are free

of topological holes20. The original surface is approximated by a tessellating sur-

face. This approximation is not very accurate due to the regularity constraint and

may consequently lead to inaccurate correspondences and registration. The SAI

preserves relative simplex angle and connectivity information between the nodes,

however it does not preserve the relative distance between them. This represen-

tation could have been made unique, had the distance between the nodes been

recorded. An exhaustive search is carried out for the optimal rotation that would

align the two SAIs. This makes the matching process inefficient. The deformation of

the tessellating surface and the calculation of the simplex angle is a preprocessing

overhead that also affects the efficiency of the algorithm especially in the case of

complex surfaces. SAI matching is robust to resolution and surface sampling since

it does not match the data points but instead matches the nodes of the tessellating

mesh whose resolution and sampling can be controlled.

SAI was originally designed as a representation scheme for object recognition.

Therefore, it is not well suited to the partially overlapping case. For example, it

always approximates a surface with a closed mesh whether or not it is a closed

surface. It then marks each node as visible, invisible or interpolated. It also tries

to adjust the number of visible nodes present in the SAIs of different views by

marking certain visible nodes in one of the SAIs as invisible. Since there is no prior

knowledge of the region of overlap, it is difficult to decide which visible nodes should

be marked as invisible. All these factors may lead to an ambiguous representation.

The algorithm seems to be sufficiently robust to noise however no experimental

results to this effect have been given by the authors. Moreover, this algorithm

cannot be used for multiview correspondence between unordered views.

5.2. Roth’s Technique

5.2.1. Description

Roth36 proposed an alternate automatic correspondence technique which matches

feature points extracted from the intensity images corresponding to the range data.

This intensity information is recorded during the acquisition phase along with the

range information. The 3D points associated with these feature points extracted

from the intensity images are used to find correspondences between two sets of

range data. The 3D feature points are interpolated to form triangular meshes. All

possible pairs of triangles of the two range data sets are then matched to find

possible correspondences. Various rigidity constraints are then applied to prune
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incorrect correspondences. The correspondence that aligns the largest number of

interest points between two range images is considered as the solution.

A separate broadband camera can be used for a better intensity image since

the camera used in range scanners is tuned to the laser frequency. However, Roth

discovered that the intensity images provided by most scanners were acceptable

for the purpose of extracting feature points. These feature points are computed

by finding the local maxima of the intensity gradient40 followed by a selection of

points which are above a certain threshold. The number of interest points found

is a function of the threshold value and the texture of the object. Therefore, this

technique is restricted to textured objects. Corners make good interest points due to

their maximum intensity gradient in both directions. Figure 9(a) shows the interest

points in the intensity component of the range image of a duck.

The 3D points associated with the interest points in the intensity image are used

to define 3D triangles using a Delaunay Tetrahedrization (Fig. 9(b)). These trian-

gles are invariant to geometric transformations. If the extracted interest points are

the same in the overlapping region of the two range images, then the corresponding

triangles will also be the same. The interest points will differ somewhat in prac-

tice between images due to the presence of noise and the variations in the surface

sampling. However, this technique will succeed as long as there is a single matching

triangle in the overlapping region of the two range data sets. This is because one

pair of corresponding triangles is sufficient to derive a transformation between the

two views. If there are m model feature points and n scene feature points then

the number of possible correspondences will be Cm
3 C

n
3 . Since it is not feasible to

consider all these possible correspondences, a rigidity constraint is used to limit the

search space. Only those triangles which have approximately the same edge lengths

are considered as possible matches. This is done by first sorting the edge lengths of

each triangle in decreasing order and then quantizing them into k bits. k is chosen

such that the smallest bit corresponds to the resolution of the range image. Each

triangle can now be represented by a 3k bit string. Next, the bit strings of all the

triangles are sorted in each data set. All the triangles that have the same bit string

are put together in a linked list. This data structure is used to find all the triangles

with the same bit string in both views. Such pairs of triangles are considered as

potential matches.

A pair of matching triangles gives three sets of matching vertices i.e. 3D points.

Each 3D point has its associated normal. The angular difference between the nor-

mals of two points is invariant to rigid transformations. Therefore, for a pair of

triangles to be matching, the angle difference for their corresponding vertex pairs

should be the same. If a vertex pair of two matching triangles does not pass this

test, the match is treated as invalid.

Further filtering of incorrect triangle matches is done using the following rigidity

constraint. For all feature points in both data sets, the 3D distances of all other

feature points are computed. These distances are sorted and placed in a vector

called inter-feature distance vector. This inter-feature distance vector should be
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Fig. 9. (a) Feature points in the intensity image of a duck. (b) Delaunay tetrahedrization of the
3D coordinates of the feature points in the range image of the duck (Fig. taken with permission
from Ref. 36 c© IEEE 1999).

the same for two matching points. The level of compatibility of two feature points

will also depend upon their location in the overlapping region of the views. Points

that are in the middle of the overlapping region are likely to be more compatible.

Two points are considered to match if their inter-feature distance vectors match.

Two inter-feature distance vectors are considered to match if they have more than

a certain number of similar distances. Only those triangles whose corresponding

pairs of vertices pass this test are considered to match. The matching triangle

pairs are used, one by one, to calculate a 3D transformation that aligns them. The

transformation that aligns the maximum number of interest points of the two range

images is considered as the optimal transformation.

5.2.2. Analysis

This algorithm is only limited to those objects which have a significant amount of

texture on their surfaces. This is not true for all free-form objects. The success of

the algorithm is highly dependent upon the consistent extraction of features from

textured objects. This extraction needs to be invariant to the lighting conditions.

Moreover, the algorithm also assumes that the range images will be accompanied by

their corresponding intensity images from which the feature points are extracted.

Not all acquisition systems have this option e.g. imaging radars and laser time of

flight scanners. In such cases, a separate camera is required to capture the intensity

images of the object. The calibration of this camera with the acquisition system

will also require precision.

Apart from these limitations and assuming that the feature extraction is consis-

tent, the algorithm is likely to be accurate. The algorithm is also very efficient since

the search space is only limited to the extracted feature points. The algorithm is not

affected by the variations in resolution and surface sampling since it only matches

feature points and not the entire set of data points in the range images. The ro-

bustness of the algorithm to noise depends upon the robustness of the algorithm

used to extract the feature points. However, no experimental results were given by

the authors to this affect. Finally, this algorithm is for pairwise correspondence and
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cannot be used for multiview correspondence between unordered views.

6. Matching Local Features Defined in Local Coordinates

6.1. Matching Oriented Points (Spin Images)

6.1.1. Description

In this technique26,27 the invariant features are called spin images. Spin images are

extracted at each oriented point of the surface. An oriented point is defined as a

point along with its normal. A spin image at an oriented point is a 2D histogram of

the cylindrical coordinates of its surrounding points (Fig. 10(a)). Spin images are

matched using correlation.

The algorithm has two phases. A representation phase in which the spin images

are generated for the views and a matching phase during which the spin images

of two views are matched to find their correspondences. During the representation

phase, the input views are converted into triangular meshes. Normals are then

calculated for each vertex point. A spin image, being a 2D histogram of the vertices,

is not invariant to different mesh resolutions. Therefore, the mesh is optimized to a

uniform resolution. Spin images are then built for each vertex of the model view by

making a 2D histogram of the surrounding points within a support size (Fig. 10)

and stored in a spin image stack. The technique requires two parameters to be

selected, the support size and the bin size of the spin image. Johnson and Hebert27

chose a bin size equal to the mesh resolution and a support size equal to 15 × 15

bins.

During the matching phase, spin images are generated for a limited number of

randomly selected scene points and matched with all the spin images of the model

using normalized correlation coefficient. To handle clutter and occlusions the spin

images are compared only in bins where both spin images have data. To make

the correlation coefficient independent of the number of bins, the variance of the

correlation coefficient is included in the calculations. Eqn. 6 gives the similarity

measure between two spin images P and Q.

C(P,Q) = (tanh−1(R(P,Q)))2 − λ(
1

N − 3
) (6)

In Eqn. 6, R(P,Q) is the normalized linear correlation coefficient of spin im-

ages P and Q. λ is a weighting parameter which weights the variance against the

expected value of the correlation coefficient and is set to 3. N is the number of

overlapping bins used. Spin images of corresponding points have a high similarity

measure. The similarity measure between all the scene and model spin images are

inserted in a histogram (Fig. 11) and the model points which are upper outliers

are chosen as the possible corresponding points to each scene point. There are two

advantages to this approach. First, if there is no outlier then the scene point has a

spin image that is similar to all model spin images and should not be used for cor-

respondence. Second, if more than one outlier exists then this means that there is



April 26, 2005 17:42 WSPC/INSTRUCTION FILE mian˙ijsm˙final

Review of Automatic Correspondence Techniques 19

Fig. 10. (a) A triangular mesh with an oriented point p and its normal n. P is the tangent plane
at point p. α and β are the cylindrical coordinates of the point x. (b) Generation of a spin image
can be assumed as an image plane spinning about the normal of an oriented point and summing
points (light shaded region) as they pass through the bins of the image plane. (c) The resultant
spin image from (b). (Fig. taken with permission from Ref. 25 c© D. Huber 2002).

Fig. 11. Histogram of similarity measure between scene and model points (Fig. taken with per-
mission from Ref. 27 c© IEEE 1997).

more than one correspondence for the same scene point. All such model-scene corre-

spondences should be considered and the incorrect ones should be filtered out using

some other mechanism described below. Outlier correspondences are automatically

detected by detecting correspondences that have similarity measures greater than

the upper fourth plus three times the fourth spread (fs) of the histogram (Fig. 11).

The correspondences obtained from the above process contain many incorrect

ones which need to be filtered out. The filtration proceeds as follows. Correspon-

dences with similarity measures less than a pre-specified threshold are eliminated.

In the next filtering step, two sets of oriented point correspondences (s1,m1) and

(s2,m2) are taken and checked for geometric consistency (Eqn. 7 and Eqn. 8).

dgc(C1, C2) =
‖Sm2

(m1) − Ss2
(s1)‖

(‖Sm2
(m1)‖ + ‖Ss2

(s1)‖)/2
(7)

Dgc = max(dgc(C1, C2), dgc(C2, C1)) (8)
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dgc is the normalized distance between the correspondences C1 = (s1,m1) and

C2 = (s2,m2) . Sm2
(m1) represents the spin image coordinates (α, β) of the point

m1 with respect to the oriented point m2 . Dgc is the geometric consistency dis-

tance. To filter correspondences, Dgc(C1, C2) is calculated for each correspondence

pair C1 with every other correspondence pair. If Dgc(C1, C2) is less than a thresh-

old (0.25 in this case) for at least a quarter of the total correspondences, C1 is

accepted otherwise it is removed. The remaining correspondences are grouped into

geometrically consistent sets using a criterion Wgc (Eqn. 9 and Eqn. 10).

wgc(C1, C2) =
dgc(C1, C2)

1 − e−(‖Sm2
(m1)‖+‖Ss2

(s1)‖)/(2γ)
(9)

Wgc(C1, C2) = max(wgc(C1, C2), wgc(C2, C1)) (10)

Wgc is small for geometrically consistent correspondence pairs that are also far

apart. Spatially spread correspondences are desirable because they are less sensitive

to noise. γ is a normalizing factor and is set to four times the mesh resolution to

encourage correspondences that are more than four times the mesh resolution apart.

The grouping criteria for a correspondence C is given by Eqn. 11.

Wgc(C, {C1, ......, Cn}) = maxi(Wgc(C,Ci)) (11)

Given a list of correspondences L = {C1, C2, ..., Cn} the grouping proceeds as

follows. First, a seed correspondence is selected to initialize a group Gi = {Ci}.

Next a correspondence Cj is searched for in L for which Wgc(Cj , Gi) is minimum.

If Wgc(Cj , Gi) < Tgc then add Cj to Gi (Tgc is set to 0.25). This procedure is per-

formed for every correspondence in L. It is therefore possible for a correspondence

to appear in multiple groups using this algorithm. Once all the correspondences

have been distributed among geometrically consistent groups, plausible transfor-

mations are calculated for each group. The best transformation is identified by

applying the transformation and counting the closest point correspondences in the

registered views. The one which gives the maximum number of correspondences is

accepted and refined with a variant of ICP47.

6.1.2. Analysis

Spin image matching is applicable to free-form objects and is accurate. However, to

obtain accuracy it must pass the correspondences given by the spin images through

a large number of filtration steps. This is due to the fact that the spin image rep-

resentation is not unique and gives a large number of ambiguous correspondences.

The non-unicity of the spin images occurs due to the mapping of 3D points to 2D

images. This algorithm is inefficient since the large number of ambiguous matches

have to go through a number of filtration steps. The geometric consistency (filtra-

tion) test requires CN
2 pairs of correspondences to be tested (where N is the total

number of correspondences that are left after the last filtration step). Similarly the

correspondence grouping requires the calculation of Wgc between all possible pairs
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of correspondences. This process also requires CN
2 operations and may result in an

N number of geometrically consistent groups in the worst case. A rigid transfor-

mation needs to be calculated for each geometrically consistent group and verified.

This verification is computationally expensive because it involves the transforma-

tion of the scene view to the coordinates of the model view and the search for

neighbouring points between the two views.

Spin image matching is not robust to variations in the resolution and surface

sampling of the views. The complexity of the spin image matching increases linearly

with the size of the data sets. Moreover, the technique also requires a preprocessing

step of converting the meshes into uniform sampling. Apart from these limitations,

the algorithm appears to be robust to the amount of overlap between the two views

due to two main reasons. First, spin images are local features therefore some of

these spin images will lie inside the overlapping region. Second, spin images are

matched only in their overlapping bins to cater for occlusions. This algorithm also

seems robust to noise because it uses a statistical measure for matching. Statistical

measures generally perform better in the presence of noise as compared to lin-

ear measures. Finally, this algorithm cannot be used for multiview correspondence

between unordered views.

6.2. Three-Tuple Matching

6.2.1. Description

Three-tuple matching9 requires the computation of principal curvatures and their

direction vectors for the scene and model points. Correspondences are then estab-

lished between the scene and model points using curvature, distance and direction

constraints. The resulting transformations are then verified to identify the optimal

one.

The algorithm first selects seed points on the scene surface at which the principal

curvatures of the surface can be reliably calculated. Such points are located by

fitting a biquadratic polynomial over a N × N neighbourhood patch around the

point and examining the residual fit error. If the error is below a threshold, the

point is considered as “bi-smooth”. This process is repeated for all points on the

surface and the points are ordered according to the surface fit error. A set of reliable

seed points is then selected from this list by choosing the required number of best

points such that they are all at leastN neighbours away from each other.N is chosen

such that the seeds uniformly cover the entire scene surface. The total number of

seeds chosen is less than 25.

For each point in the set of reliable seeds say SR = {r1, r2, ......, rnr
}, the princi-

pal curvatures k1 and k2 and their directions t1 and t2 are calculated (see Ref. 9 for

the calculation of curvatures). The vectors n (normal), t1 and t2 form an orthog-

onal frame known as the Darboux frame Γ = [n t1 t2]. Next, three seed points

sα, sβ and sγ are chosen from this set and their corresponding points mα, mβ and

mγ are sought in the model. Ideally, a set of three corresponding points is sufficient
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to calculate the transformation from a scene to the model. sα is chosen such that it

is not umbilical i.e. points having approximately equal principal curvatures. sβ and

sγ are selected such that the three points form a maximum area triangle. The pos-

sible corresponding points of sα are sought in the model by applying the curvature

constraint (Eqn. 12).

‖kn(sp) − kn(mp)‖ ≤ εk n = 1, 2; p = α, β, γ (12)

For each association of sα and mα, a rotation matrix R can be derived by

aligning the coordinate frames of sα and mα (Eqn. 13).

R = Γ(mα)Γ>(sα) (13)

R is the rotation matrix that aligns the scene with the model coordinates. R

is prone to errors due to the presence of noise in the range scanner. However, R

can still be used to estimate the likely positions of mβ and mγ . This is done by

combining the distance (Eqn. 14 to Eqn. 16) and direction (Eqn. 17 to Eqn. 19)

constraints to limit the search region for these points. This technique is conceptually

explained in Fig. 12.

d1 = ‖d(sβ , sγ) − d(mβ ,mγ)‖ < εd (14)

d2 = ‖d(sα, sβ) − d(mα,mβ)‖ < εd (15)

d3 = ‖d(sα, sγ) − d(mα,mγ)‖ < εd (16)

n>(sα)p1 = n>(mα)q1 (17)

t>1 (sα)p1 = t>1 (mα)q1 (18)

t>2 (sα)p1 = t>2 (mα)q1 (19)

In Eqn. 17, Eqn. 18 and Eqn. 19, p1 and q1 represent the vectors from sα to sβ

and from mα to mβ respectively. To ensure that sα is selected from the region of

overlap, additional constraints are imposed on its selection. Only a subset of seed

points (SC
R ) present in SR will lie inside the overlapping region. However, SC

R cannot

be found exactly due to the lack of prior knowledge of the viewing directions of the

scene and model. One approach to this problem is to choose all the points one by

one as sα and find all the possible set of transformations for each association of sα.

However, such an exhaustive search will be inefficient and the set of transformations

found may be redundant. Instead of an exhaustive search, a minimal set of seeds

SN
R is identified from the SR from which sα can be chosen without resulting in

redundant transformations. SN
R is defined as the set of seeds that would give all

the possible transformations found in the set SR without redundancy. SN
R is chosen

such that at least one of its seeds is visible from any model viewing direction (see

Ref. 9 for details).

Once SN
R is identified, the seed points sα, sβ and sγ are selected from this set.

The corresponding points on the model are then hypothesized using the curvature,

distance and direction constraints. For each hypothesized transformation, a test
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Fig. 12. Point sα and mα are aligned. The search region for mβ and mγ is restricted by εθ , d2

and d3. (Fig. reproduced from Ref. 10 c© Kluwer Academic Publishers 1997).

is performed to verify whether or not the seed points are visible from the model

view point. If the seed points are not visible from the model viewing direction this

means that they are outside the overlapping region. Therefore, the hypothesized

transformation is rejected. Transformations are calculated for the correspondences

of all possible seed points that are visible from the model viewing direction. The

transformation that gives the best nearest neighbour correspondences for the over-

lapping points of the model and the scene is considered as optimal and is accepted.

Overlapping and non-overlapping points are distinguished by checking their visibil-

ity from both the model and the scene viewing direction. If a visible transformed

point does not satisfy the nearest neighbour constraint the transformation is re-

jected. The optimal transformation is further refined with the ICP4 or the Chen

and Medioni’s algorithm7.

6.2.2. Analysis

Three tuple matching is only limited to smooth surfaces since the algorithm calcu-

lates the principal curvatures for all points on the model surface. The algorithm is

not efficient since the search for reliable seed points in the scene and the calcula-

tion of principal curvatures of all the points in the model are both computationally

expensive. The algorithm is also sensitive to variations in resolution because its

computational complexity linearly grows with the resolution of the views. The al-

gorithm is also adversely affected by any variations in the surface sampling as it is

based on matching data points as opposed to surface patches.

This algorithm is not robust to noise since it requires the calculation of principal

curvatures which involve the calculation of first and second order derivatives. The

error in the calculation of p1 for example is likely to be large. Selecting a large

value for εθ will not reduce the search regions for mβ and mγ by any significant

amount. However, if a small value is selected for εθ, the corresponding points of sβ

and sγ may not lie inside the limited search region defined by εθ, in which case the

accuracy of the algorithm will suffer. The procedure for selecting SN
R points from
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the set of reliable seeds SR is complicated and unreliable. Once SN
R is identified

the algorithm relies on an exhaustive search and tries all possible combinations of

three seed points. The resulting hypotheses of possible transformations is likely to be

large and identification of the optimal transformation will again be computationally

expensive. Moreover, the 3-tuple matching algorithm is not applicable in the case

of multiview correspondence between unordered views.

6.3. Point Signatures

6.3.1. Description

Point signatures10 is a representation scheme developed for 3D object recognition.

It can however be adapted for automatic correspondence. A point signature is a one

dimensional signature that describes the surface surrounding a point. It is invariant

to rotations and translations and can therefore be used to establish correspondences

between two different views of an object.

The signature of a point p is extracted by placing a sphere of radius r centered

at p. The intersection of the sphere with the objects surface gives a 3D curve C.

The orientation of the curve can be defined by the normal n1, a “reference” vector

n2 and a cross-product of n1 and n2. This forms the coordinate frame of point p

(Γ = [n1 n2 n3]). n1 is the normal of a plane fitted to the space curve. This plane

is translated to the point p in the direction of the normal n1, forming a new plane

P ′. Next the curve C is projected perpendicularly to the plane P ′ forming a new

2D curve C ′. This projection of points from C to C ′ forms a signed distance profile,

the starting point of which is defined by the vector n2. n2 is defined as the unit

vector from p to c′ (c′ is a point on C ′ that gives the largest positive distance from

its corresponding point on C). This distance profile (represented by d(θ) where

0o ≤ θ ≤ 360o) is known as point signatures and is formed by representing every

point on C by the signed distance d from itself to the corresponding point C ′ and

a clockwise rotation of angle θ about n1 from the reference direction n2 (Fig. 13).

C is sampled at intervals of ∆θ (set to 15o) making the distance profile a discrete

set of values d(θi) for i = 1, 2, . . . , nθ (n is the number of samples).

The point signatures of two views are linearly matched to establish point cor-

respondences. In the simplest case, a constant tolerance of εtol can be used to deal

with noisy data. However, in practice there are two additional sources of errors

introduced due to the resolution of the sensor and the discrete sampling of the sig-

nature. Therefore, ε is chosen dynamically as the sum of all the three possible errors

(see Ref. 10 for details). The point signatures ds(θi) of a scene point is matched

with the point signatures dm(θi) of a model point according to Eqn. 20.

‖ds(θi − θj) − dm(θi)‖ ≤ εtol ∀ i = 1, 2, . . . , nθ (20)

In Eqn. 20, θj is an element of the set of discrete local maxima positions in case

ds(θi) has more than one point which is at maximum (and equal) distance from the

curve C. The two points are considered matching as long as there is one value of θj
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Fig. 13. (a) Contour of points at radius r (b) reference direction (c) point signature (Fig. taken
with permission from Ref. 10 c© Kluwer Academic Publishers 1997).

for which the above condition is satisfied. A more detailed correlation fit is applied

to these points by finding the θopt which gives the minimum error between the two

signatures. If θopt is non-zero, the reference vector n2 of the scene point has to be

rotated to n′
2 about the normal vector n1. The rotation matrix R, that aligns the

scene coordinates to the model coordinates is calculated using Eqn. 21.

R = Γ(m)Γ>(s) (21)

In Eqn. 21, Γ(m) and Γ>(s) are the matrices of coordinate frames of the model

and scene point respectively. If the scene point and the model point are correctly

associated and the extraction of point signatures is error free then R will correctly

represent the rotation matrix that transforms the scene to the model coordinates.

However, due to the presence of noise in the range scanner and the variations in

surface sampling, the signatures of corresponding points in two different views will

not be exactly similar. Due to this reason, R is only used as an estimate to limit

the search for other correspondence pairs as described in Section 6.2 (Fig. 12).

Due to the presence of symmetries in the object, a single point signature of

the scene may match with multiple signatures of the model. Consequently, the

resulting rotation matrices are all tried one by one. Points, which do not have

a well defined maximum of the distance profile of the curve C will result in an

ambiguous coordinate frame. Such points are only considered for matching and not

for extracting R to define search directions for other correspondence pairs. To speed

up the search, the model signatures are indexed by their maximum and minimum

values so that only those points that have approximately the same maxima and

minima are matched. To reduce the chances of incorrect matches, two signatures

are generated at two different radii for each point.

The matching algorithm proceeds as follows. First, point signatures are calcu-

lated for all the model points. Next, the point signature for a randomly selected

point sαp in the scene is calculated and the model points mαpq (q = 1, . . . , h; where

h is the total number of model points whose signature matched with that of sαp),

whose signatures match with that of sαp are extracted. For each association of sαp
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and mαpq , a rotation matrix R is derived (Eqn. 21) which is used to limit the search

region for the remaining correspondences. Two more seeds sβp and sγp are selected

from the scene within a threshold distance of td from sαp such that the three points

form a maximum area triangle. The three points are transformed to the model co-

ordinates using T. The search regions for the corresponding points of sβp and sγp

in the model are limited by a cone of tolerance εθ (see Fig. 12). More than one

set of correspondences (sαp, sβp, sγp) and (mαpq ,mβpq, mγpq) can be established.

The optimal transformation is identified by transforming the scene points to the

model coordinates and searching for nearest neighbour correspondences. The one

that gives the maximum number of correspondences is accepted.

6.3.2. Analysis

This algorithm is applicable to free-form objects but lacks accuracy. The main

drawback lies in the representation scheme used. The extraction of the second

coordinate basis n2 has three problems. First, it is not robust to noise. A single

outlier point (as a result of noise) can cause a maximum to be created at a wrong

location, resulting in a different signature. Second, it is ambiguous in the case of

planar and spherical regions. In which case, all the points on the curve C are at an

equal distance. Third, matching the signatures with a phase shift corresponding to

each possible value of n2 will make the matching process inefficient. Since n3 is the

cross product of n1 and n2, it inherits all the drawbacks from n2. Once a single set

of corresponding points is found, the search region for the correspondences of the

outstanding points is restricted to a cone by the rotation matrix R. In our opinion,

the rotation matrix R will be quite inaccurate due to the instability of n2 and n3.

Hence, the correspondences of the remaining two points may not exist in the search

cones defined by angle εθ.

This algorithm is sensitive to the resolution of the views because point signatures

must be computed for all the model points. The computational complexity of the

algorithm increases linearly with the resolution of the views. The algorithm is also

sensitive to variations in surface sampling as it matches data points of the two views

based on their spatial positions. The point signatures algorithm has not been used

for multiview correspondence between unordered views.

6.4. Geometric Histogram Matching

6.4.1. Description

Geometric histogram matching1 approximates each surface by a triangular mesh. A

geometric histogram is built for each facet of the two meshes which describes the re-

lationship of the facet with its surrounding facets within a specified neighbourhood.

Next, local correspondences are hypothesized between the scene and model facets

by matching their geometric histograms. Finally, a global surface correspondence

is sought by identifying consistent local hypotheses using a probabilistic Hough
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transform42. A more elaborated description of this algorithm is given below.

A surface S represented by a sample of points P = {p1, p2, ..., pN} is approxi-

mated by a triangular mesh S ′ = {t1, t2, ..., tM} where ti is a triangular facet of the

mesh. No assumptions are made about the actual distribution of the facets over the

surface as this is unlikely to be repeatable. In Ref. 1, the triangular meshes were

constructed using a reconstruction algorithm developed by Hoppe et al.23. These

meshes are then simplified using Garland’s mesh simplification algorithm17. Subse-

quently, a geometric histogram is constructed for each facet ti, which described its

relationship with the surrounding facets within a predefined neighbourhood. Fig-

ure 14(a) shows the relationship between two facets ti and tj . The relationship is

characterized by two measurements, the relative angle α between the normals of

the two facets and the distance d from the plane in which facet ti lies to all points

on facet tj . These measurements are weighted by the product of the areas of the

two facets and accumulated into a 2-D histogram (Fig. 14(b)). The weight of the

entry is spread along the distance axis in proportion to the area of tj at each dis-

tance. The entry is blurred with a Gaussian blurring function to compensate for

variations in measurements due to the mesh approximation. The coarseness of the

mesh defines the scale of the blurring function. These entries are accumulated for

all neighbouring facets to constitute the geometric histogram of facet ti.

The geometric histogram is invariant to rigid transformations and robust to clut-

ter and occlusions. It depends only on the surface shape and not on the placement of

the triangular facets over the surface. This property ensures that the same surface,

represented by different triangular meshes, should still have the same geometric his-

togram. Given two surface meshes S ′
A and S′

B , their geometric histograms hA
i and

hB
j are constructed for all their facets, tAi and tBj respectively. Pairwise matching

is then performed between the histograms of the two surfaces using the following

similarity metric.

Dij =
∑

α,d

√

hi(α, d)
√

hj(α, d) (22)

The facets whose histograms give the best match are considered as correspond-

ing facets. These pairs of corresponding facets are local correspondences and each

corresponding pair is used as a hypothesis for the global correspondence between

the two surfaces SA and SB . A transformation that aligns a pair of corresponding

facets can then be calculated. This transformation also provides a constraint on the

transformation that aligns the complete surfaces. The verification of the hypothesis

for global correspondence is performed using a probabilistic Hough Transform42.

The verification process proceeds as follows. First, the cumulative error (due to

noise and variations in sampling) is determined by statistically modeling the error

between the true surface and the facets. This error is then propagated through the

estimated transformation and is then integrated into the Hough accumulator.

Since the number of corresponding pairs of facets are very large, only a small

proportion of 2-tuples corresponding to the largest paired facets are selected. These
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Fig. 14. (a) Geometric relationship between two facets ti and tj . (b) The corresponding entry in
the geometric histogram of ti (Fig. taken with permission from Ref. 1 c© Springer-Verlag 1998).

2-tuples are used to estimate the rotation component of the transformation and

votes are placed in a 3D Hough transform. If a significant peak is found, then 3-

tuples are selected using the same criteria, to estimate the translational component

of the transformation. The transformation hypothesis which corresponds to a peak

in both the rotation and translation spaces is accepted as the optimal transforma-

tion for aligning the two views.

6.4.2. Analysis

Geometric histogram matching is applicable to free-form objects. The algorithm

lacks details about how the transformation hypothesis verification is exactly car-

ried out. Moreover, Hough transform is equivalent to an exhaustive search and is

therefore computationally expensive. Efficiency is gained by considering only a pro-

portion of the 2-tuples with the largest paired facets. However, details were not

provided on the exact basis on which this criterion was set. It is possible that the

best hypothesis for a transformation could be provided by a 2-tuple that does not

lie in the selected proportion. The algorithm does not mention anything about the

refinement of the registration results (using for instance an algorithm such as the

ICP4). From our experience, we have seen that the registration achieved by match-

ing triangular meshes at low resolution (when a mesh simplification algorithm is

used) is very crude and needs to be refined. Apart from these drawbacks, geometric

histogram matching is independent of the resolution and sampling of the model and

scene surfaces. The algorithm also seems to handle noise effectively. The authors

however did not provide any proof to this effect. Moreover, this algorithm cannot

be used for multiview correspondence between unordered views.

7. An Automatic 3D Modeling Framework

Recently Huber and Hebert24,25 proposed a framework for automatic 3D modeling

claiming that the framework is capable of automatically generating a 3D model of an

object from its unordered views. There are two phases of the framework (as shown
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Fig. 15. Block diagram of the automatic 3D modeling framework.

on the block diagram in Fig. 15), the local and the global phase. During the local

phase, surface matching is performed on all pairs of views. Since the input views

are unordered and a pairwise correspondence algorithm is used for this purpose, the

algorithm must exhaustively search for correspondences between N(N − 1)/2 pairs

of views (Fig. 15(a)). Next, these matches are refined using pairwise registration

(Fig. 15(b)). The output of these steps is a graph G of relative pose estimates,

some of which may be incorrect. Each node in the graph G represents a view and

each arc represents the relative pose between its end nodes. A local consistency

test (Section 7.3) is then applied to filter out the worst matches from this graph

resulting in another graph GLR (Fig. 15(c)). GLR only contains locally consistent

matches. However, some of these matches may still be globally inconsistent.

During the global phase, a connected sub-graph in GLR that contains only the

correct matches is sought. This phase comprises two different multiview surface

matching algorithms (Section 7.4). Each of these algorithms searches for a single

edge at a time in GLR, based on various local quality measures (Section 7.1) and

adds it to the model hypothesis sub-graph (Fig. 15(d)). Every time a new edge is

added to the model hypothesis, it is optimized through the simultaneous multiview

registration algorithm (Fig. 15(e)). Next, the model hypothesis is tested for global

consistency (Fig. 15(f), Section 7.3). If the newly added edge is globally consistent,

it is accepted otherwise it is rejected and another edge in the GLR is sought. This

process continues until a stopping condition is met. The output of the global phase

is a model graph (which is a spanning treea) containing the absolute poses of all

the views as a possible solution.

The framework relies on off-the-shelf algorithms for pairwise surface match-

ing, pairwise registration and simultaneous multiview registration (shaded blocks

of Fig. 15). A modified version of the spin images technique (Section 6.1) is used

for pairwise surface matching. However, any other automatic correspondence al-

gorithm can be used e.g. the ones discussed in this paper. This modified version

aA tree is a graph in which any two nodes are connected by exactly one path and a minimum
spanning tree is a minimum weight tree which includes all the nodes of the graph.
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builds spin images from the mesh faces instead of vertex points. The framework

uses Neughbauer’s algorithm31 for pairwise and simultaneous multiview registra-

tion. The surface matching algorithm and the registration algorithm are modular

components in the framework and can be replaced by better techniques.

In this section, we shall concentrate on the remaining part of the 3D model-

ing framework (the unshaded blocks of Fig. 15). This framework defines local and

global quality measures for surface match verification. Local consistency filtering

(Fig. 15(c)) is performed on the basis of local quality measures. The global quality

measures are used by the multiview surface matching algorithms for global consis-

tency test in order to filter out globally inconsistent matches (Fig. 15(d) and (f)).

We shall first report the local and global quality measures followed by the local

and global consistency tests. Finally, we will describe the two variants of multiview

surface matching algorithms which use these reported consistency tests to find a

solution model graph.

7.1. Local Quality Measures

The local quality measures are used for pairwise surface match verification and

filtering. The behavior of the system is modeled for a given sensor and scene type

by determining the statistical model of related training data. From these statistical

models, the probability of a correct match is estimated given a vector of local quality

measures. The local quality measure of a match between surfaces Si and Sj with

relative pose Tij is defined by the generic Eqn. 23.

QL = log

(

P (x|M+)P (M+)

P (x|M−)P (M−)

)

(23)

In Eqn. 23, M+ stands for a correct match and M− stands for an incorrect

match. The probability distributions are estimated from labeled training data and

are approximated using Gamma distributions. Three types of local quality measures

are used. The first one is based on overlap whereas the remaining two are based

on visibility consistency. The local quality measures are calculated as follows. Note

that we have used different abbreviations from Ref. 25 for the local quality measures

in order to make them more meaningful.

7.1.1. Overlap Quality Measure

This quality measure is based on the overlap fraction FOV and overlap distance

DOV (Eqn. 24). FOV is the maximum proportion of each surface that lies in the

overlapping region whereas DOV is the root mean square distance between a set of

closest point pairs in the overlapping region. These values are computed by sampling

K points each from the surface Si and Sj .

QLOV
= log

(

P (DOV |M+)P (FOV |M+)P (M+)

P (DOV |M−)P (FOV |M−)P (M−)

)

(24)
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7.1.2. Visibility Consistency-based Quality Measure

The quality measures which are based on visibility consistency are the free space vi-

olation (FSV ) and the occupied space violation (OSV ). FSV occurs when a region

of Sj blocks the visibility of Si from the sensor (Fig. 16(b)). An OSV occurs when

a region of Sj is not seen by the sensor whereas it should have been (Fig. 16(c)).

Both these measures are calculated twice. The first time by transforming surface

Si to the coordinate system of Sj and, vice versa, the second time. These measures

are then added up. FSV can only occur due to an incorrect match. However, an

OSV can also occur in cases of correct matches. For example, a sensor can miss a

point due to poor reflection or self occlusion.

Two quality measures are derived from the FSV . The first one FSVraw uses

the raw depth differences in the overlapping regions. If D = Di,j(1), . . . , Di,j(K)

constitutes the vector of depth differences between the merged surfaces Si and Sj ,

then FSVraw is defined by Eqn. 25.

QLFSV raw
= log

(

∏K
k=1 P (Di,j(k)|M

+)
∏K

k=1 P (Dj,i(k)|M
+)P (M+)

∏K
k=1 P (Di,j(k)|M−)

∏K
k=1 P (Dj,i(k)|M−)P (M−)

)

(25)

The second FSV quality measure is calculated in a similar manner to Eqn. 24

except that the distances are now calculated along the line of sight of the sensor.

Two measures are calculated, range overlap fraction FROV (Eqn. 26) and FSV

distance DFSV (Eqn. 27).

FROV =
AOV

A(Si)
(26)

DFSV =

√

∑

k∈Kij

wk(Di,j(k))2 (27)

In Eqn. 26, AOV is the visible overlapping area of the two surfaces and A(Si) is

the visible surface area of Si. In Eqn. 27, the weight wk = Az(k)/AOV . The FSV

local quality measure from the viewpoint of sensor i is calculated using Eqn. 28. A

similar quality measure is calculated from the viewpoint of sensor j and the results

are added up (Eqn. 29).

QL1FSV
(Si, Sj , Tij) = log

(

P (DFSV |M+)P (FROV |M+)P (M+)

P (DFSV |M−)P (FROV |M−)P (M−)

)

(28)

QLF SV
= QL1F SV

(Si, Sj , Tij) +QL1FSV
(Sj , Si, Tji) (29)

The final quality measure is defined by incorporating the OSV into Eqn. 28.

Any pixel that is defined in one range image and is undefined in the other range

image is known as an OSV unless it falls outside the sensor’s viewing volume.

Although even correct matches are expected to have some OSV s, incorrect matches

generate many more OSV s than the correct ones. An OSV based feature called

OSV fraction (FOSV ) is calculated using Eqn. 30. The FSV -OSV quality measure
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Fig. 16. (a) Both surfaces are close wherever they overlap (b) A case of FSV. Sj is violating
free space. (c) A case of OSV. Sj is violating open space. (Fig. reproduced with permission from
Ref. 25 c© D. Huber 2002).

from the viewpoint of sensor i is given by Eqn. 32. A similar quality measure is

calculated from the viewpoint of sensor j and the two are added.

FOSV =
AOSV

AOV
(30)

AOSV =
∑

k∈KOSV

Az(Sj , k) (31)

QL1FSV −OSV
= log

(

P (DFSV |M+)P (FROV |M+)P (FOSV |M+)P (M+)

P (DFSV |M−)P (FROV |M−)P (FOSV |M−)P (M−)

)

(32)

In Eqn. 31, KOSV is the set of OSV pixels from range image Rj and Az(Sj , k) is

the z-buffer depth value of pixel k in the z-buffer for Sj .

7.2. Global Quality Measures

The global quality measure is defined as the sum of the local quality measures of

all the views that are connected in the graph (Eqn. 33). The views may not be

adjacent.

QG1(G) =
∑

(i,j)∈Ec

QL(Vi, Vj , Tij) (33)

Ec is the set of connected edges in the graph. Each one of the local quality mea-

sures (overlap, FSVraw, FSV and FSV -OSV ) has a corresponding “sum-local”

global quality measure. The statistical quality model used for local quality mea-

sure cannot be applied in this case because of varying path lengths. Therefore, a

separate statistical model is learned for each path length. Moreover, since the prior

probabilities P (M+) and P (M−) can no longer be estimated from the data, they

are set to 0.5 each.

The effects of topological inference (see Fig. 15(d)) and multiview registration on

the statistical model are also taken into account. Topological inference establishes

new links in the model graph, thereby shortening the path lengths between non-

adjacent views. These new links are used by multiview registration to improve the
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alignment of all the views. A second global quality measure is also defined based

on a point-to-point multiview registration cost function (Eqn. 34).

QG2(G) = −
∑

(i,j)∈Vc

∑

k

((dijk)2 − λE[(dijk)2]) (34)

In Eqn. 34, dijk is the distance between the kth correspondence and E[(dijk)] is the

expected value of this distance which depends upon the sensor used. It is estimated

from multiview registration of a set of training values that are known to be correct.

λ ≥ 1 is a weighing parameter.

7.3. Local and Global Consistency Tests

For each quality measure a local consistency test is defined by Eqn. 35 (where λ is

a user defined threshold). The local consistency test is used to filter out matches

that are of very low quality giving out a model graph GLR. Similarly, the global

consistency test CG(G) for a model graph G is defined by Eqn. 36.

CL = true ifQL > logλ

= false otherwise (35)

CG(G) = true if ∀(i,j)∈Ec
CL(Vi, Vj , Tij) = true

= false otherwise (36)

7.4. Multiview Surface Matching

Multiview surface matching is performed during the global phase (Fig. 15(d), (e)

and (f)). Two different approaches are used to find the best model hypothesis from

the graph GLR, iterative addition algorithm and the iterative swapping algorithm.

The iterative addition algorithm starts with the model graph containing only nodes

and no edges and constructs a minimum spanning tree using the local quality

measures. The spanning tree is built with the Krushkal’s algorithm or the Prim’s

algorithm11. Once initialized with the best edge, both these algorithms connect

edges based on the local and global consistency measures. The major difference

between the two is that the former considers both adjacent and non-adjacent edges

whereas the latter only considers adjacent edges.

The iterative swapping algorithm uses the global quality measure of Eqn. 36 to

search for the best model hypothesis in GLR. It uses an additional edge called visibil-

ity. Hidden edges indicate division between parts. The algorithm begins by choosing

a globally consistent model hypothesis which is a spanning tree. Any spanning tree

can be chosen by initially labeling all the edges as hidden. However, a better ap-

proach was reported that uses the output of the iterative addition algorithm as an

input hypothesis for the swapping algorithm.

At each iteration, the swapping algorithm performs either an edge flip or an edge

swap. Edge flip chooses an edge and inverts its visibility state. Edge swap removes
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an existing edge from the hypothesis and adds another one (with visibility set to

true) which re-establishes the spanning tree. Topological inference is used to find

all overlaps and simultaneous multiview registration is applied to this augmented

graph. The graph is tested for global consistency as explained in Section 7.3 and if

it is globally consistent, its global quality measure is computed. If the new global

quality measure is better, the change (edge flip or swap) is accepted otherwise it is

rejected.

Two approaches can be applied to edge selection for flip or swap operation.

The first approach is greedy edge swapping which tries all edge flips first followed

by all edge swaps until no improvement can be found. This approach quickly gets

out of control for larger graphs. The second approach is a better one and uses

stochastic techniques to choose between flip or swap operations as well as which

edges to operate upon. Edges can be selected with uniform randomness or using

edge weights based upon edge quality. Moreover, simulated annealing is used in

order to avoid local minima. With simulated annealing, an update (edge flip or

swap) may be accepted even though it decreases the global quality measure. The

probability of accepting such an update is a function of the amount of change in

quality and the “temperature” T . Initially a large T is selected which is reduced

over time according to a “cooling schedule” (see Ref. 24 for more details).

7.5. Analysis

This framework is applicable to free-form objects. However, it requires an off-the-

shelf automatic pairwise correspondence algorithm for initialization. This algorithm

must exhaustively find correspondences between N(N − 1)/2 pairs of views which

has a complexity of O(N2) (N is the total number of views). The computational cost

resulting from this exhaustive search, is an extra overhead to the remaining compu-

tational cost of the framework. The number of possible edges E in the initial graph

is O(N2) and the complexity of the iterative addition algorithm is O(EN 3). This

makes the computational complexity of the iterative addition algorithm O(N 5).

For better results, the author suggests that a weighted random swap algorithm be

initialized with the output of iterative addition algorithm. This would make the

process even more computationally expensive.

Moreover, the multiview surface matching algorithms (iterative addition and

iterative swapping) of this framework are not equivalent to a multiview correspon-

dence algorithm according to our definition (Section 1). These algorithms search for

discrete edges (pairwise correspondences) in the graphGLR and then verify them af-

ter global registration. This contradicts our definition of multiview correspondence

i.e. a single view should be simultaneously matched with multiple views.

Another limitation of the framework is that it requires a learning stage in which

the behavior of the system is modeled with training data. The training data must

be in accordance with the actual scene being modeled e.g. modeling terrains will

require training data of terrains and small indoor objects will require training data

of small objects. Moreover, the same sensor used for the training data must be
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used for the actual scene. These factors limit the applicability of the system as the

learning process has to be repeated each time the type of scene or the sensor used is

changed. Sometimes it is required to register views acquired with different sensors.

In such cases, it will not be possible to train the system if all the sensors are not

available during the modeling phase.

Apart from these limitations, the framework is independent of the resolution

of the views and surface sampling as long as it uses a surface matching algorithm

instead of a point matching algorithm. The framework is also robust to noise since

it uses a probabilistic approach to derive its quality measures. The accuracy of

the algorithm depends upon its modular components. Any error in these modules,

particularly the initialization of the graph and the registration, will propagate to

the final stage of the modeling.

8. Conclusion

In this paper, we devised a taxonomy of automatic correspondence techniques. An

extensive review of some of the most important automatic correspondence tech-

niques belonging to each category in our taxonomy was also presented. These tech-

niques were analyzed according to a set of important and practical criteria. Table 1

summarizes the results of our analysis. Our analysis shows that none of the available

automatic correspondence techniques fully meets these important criteria (see Ta-

ble 1), which limits their practical applicability. Note that none of these algorithms

can be applied to solve the multiview correspondence problem between unordered

views. Although the framework discussed in Section 7 is claimed to have the ca-

pability of automatically generating 3D models from unordered views, it makes an

exhaustive search for correspondences between the unordered views ending up to be

computationally expensive. This review concludes that there is still room for work

in this area and the need for an automatic correspondence technique that meets all

our specifications in order to make the process of 3D modeling efficient and fully

automatic.

As it is not possible to cover all automatic correspondence techniques in our

survey, a list of additional techniques is provided for completeness. Krsek et al.28

used differential invariants for the automatic identification of correspondences be-

tween overlapping views. Godin et al.18 demonstrated the automatic registration of

rotationally symmetric objects based on the distribution of colour patterns. Similar

work was performed by Wyngaerd and Gool44 who used invariant texture regions

for automatic registration of symmetric objects. Silva et al.39 used a novel Surface

Interpenetration Measure (SIM) for automatic registration of range images with

small overlaps. It is also worthwhile to mention that pairwise registration refine-

ment techniques such as Ref. 4,7 and simultaneous multiview registration refinement

techniques such as Ref. 32,33,38 assume that the views are coarsely registered. These

techniques are not fully automatic and therefore outside the scope of our survey.
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Table 1. Analysis of Automatic Correspondence Techniques.
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