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Most real world objects consist of non-uniform materials; as a result, during defor-
mation the bending and shearing are distributed non-uniformly and depend on the local
stiffness of the material. In the virtual environment there are three prevalent approaches
to model deformation: purely geometric, physically driven, and skeleton based.

This paper proposes a new approach to model deformation that incorporates non-
uniform materials into the geometric deformation framework. Our approach provides
a simple and intuitive method to control the distribution of the bending and shearing
throughout the model according to the local material stiffness. It also provides a rich,
flexible and intuitive user interface. Thus, we are able to generate realistic looking,
material-aware deformations at interactive rates. Our method works on all types of
models, including models with continuous stiffness gradation and non-articulated models
such as cloth. The material stiffness across the surface can be specified by the user with an
intuitive paint-like interface or it can be learned from a sequence of sample deformations.
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1. Introduction

Mesh deformation is an important task in the modeling and the animation of dig-
ital models for computer graphics. Since most real world objects are made up of
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Fig. 1. Material-aware deformation. The stiffness of the tentacle is set to be proportional to its
girth (left) resulting in a spiral like shape (right and bottom).

non-uniform materials, their behavior during deformation varies across the surface
depending on the local material properties. Ideally, a mesh deformation tool should
satisfy the following key requirements: physical plausibility of the results, ease of
control, efficiency, and high degree of automation. Existing deformation approaches
typically satisfy only a sub-set of these requirements. For example, physics based
methods provide accurate model behavior, but they are often not intuitive to con-
trol and are usually relatively slow. Skeleton deformations are simple to control and
can be implemented efficiently, but their range is typically limited to only a sub-
set of models. Purely geometric deformation techniques are general, efficient and
intuitive to control; however they usually ignore the properties of the underlying
materials, and thus make it difficult to generate physically plausible deformations.

In this paper we introduce material-aware mesh deformation, a novel technique
that uses material properties to guide geometric deformations. We use these prop-
erties to characterize the stiffness of the surface, and hence to provide continuous
fine control of the surface behavior during deformation, while maintaining the ef-
ficiency, simplicity and control specific to geometric methods. The stiffnesses with
respect to bending and shearing are represented as scalar fields over the surface.
We use these scalar fields within the geometric deformation framework to distribute
the deformation according to the local material properties to yield realistic-looking
results (Figure 1). Often materials may exhibit anisotropic stiffness, for instance ar-
ticulated models often have joints with only one degree of freedom. We support such
anisotropic behavior by allowing three different scalar fields for the three orthogonal
axes of rotation. We are the first, to our knowledge, to support this feature.



October 22, 2006 10:56 WSPC/INSTRUCTION FILE ijsm˙paper

Paper’s Title 3

To control the deformation, users can specify the material properties using an
intuitive paint-like interface. By simply marking a horse’s head as stiff (Figure 2(c)),
we direct the deformation to the neck of the horse and achieve more realistic results
than in Figure 2(b) where the deformation is distributed uniformly. Although some
existing geometric methods are capable of achieving similar results, typically they
require more user effort to guide the deformation.

In many situations, physically or anatomically correct deformation samples of
a given model may be available. In such cases our method can automatically learn
the material properties from the sample set, thereby allowing users to create new
deformations which are consistent with the sample set. Each of the deformed sam-
ple poses contains implicit knowledge of a subset of the material properties. By
combining the information from all samples, we are able to reconstruct the scalar
fields across the surface. For additional control, we also allow users to refine the
acquired fields in specific areas of interest where the desired behavior differs from
that of the sample poses.

A simple and intuitive modeling metaphor is an important feature of any mesh
deformation tool. We provide a flexible and intuitive user interface that allows the
user to choose between simplicity and control. The user can choose between a simple
drag and drop interface to position vertices, and a more sophisticated user interface
where the user has more control over the deformation behavior.

Our main contribution is the introduction of a compact representation for the
local stiffness of a surface, and the integration of this material stiffness into the
geometric deformation framework. We extend our previous work 1 by introducing
a new mechanism which provides the user with a more flexible and intuitive user
interface without increasing the asymptotic complexity of the formulation. Our
method is linear, it is simple to use and control, and it creates realistic looking
deformations as discussed in the results section.

The rest of this paper is organized as follows: Section 2 reviews previous work on
deformation techniques. Sections 3 and 4 describe our deformation algorithm. Sec-
tion 5 extends the formulation to allow positional constraints on vertices. Section 6
explains how we extend the method to support anisotropic behavior. Section 7 de-
scribes how material properties may be learned by example. Section 8 presents some
example results. Finally, Section 9 summarizes our work.

2. Previous work

Researchers have addressed the problems of mesh editing and deformation for over
twenty years, creating an impressive body of literature and generating several dis-
tinct approaches to the problem. One of the first, yet still actively researched mesh
deformation frameworks is that of space warping deformations 2,3,4,5. Since space
deformation techniques transform the underlying space, rather than the vertices
themselves, it is not possible to incorporate model specific properties such as ma-
terials into these techniques.
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(a) (b) (c)

Fig. 2. Turning a horse’s head: (a) original model; (b) deformation using uniform material; (c)
material-aware deformation using two degrees of stiffness.

Another common approach is to use physical simulation methods 6,7,8,9. These
methods naturally incorporate the material properties and provide physically ac-
curate behavior; however, they are often computationally intensive, and since their
control parameters are typically derived from physical equations, they lack intuitive
means of controlling the results.

For articulated models, it is common to use a skeleton in order to simplify the
task of defining the deformation 10,11,12. Most skeleton based deformation methods
do not generalize to non-articulated models and often provide only binary gradation
of stiffness, thus limiting the type of deformations created. In contrast, our method
is not restricted to a particular type of models and supports continuous control over
the stiffness of the mesh providing finer control of the deformation.

Geometric deformation techniques 13,14,15,16,17,18,19,20,21,22,23,24,25 that operate
directly on the meshes have become increasingly popular in recent years. These
methods are both efficient and intuitive to control. However, existing geometric
techniques do not capture the material properties of the models . Our method
uses a geometric deformation approach but introduces material awareness, into
the framework to provide greater physical plausibility. The geometric deformation
methods most related to our work are those of Yu et al. 17, Zayer et al. 21 and
Igarashi and Moskovitc 18. Yu et al. 17 perform 3D mesh deformation by means of
gradient manipulation. First, the positions of some anchor vertices are manually
modified by the user. Next, the resulting local triangle transformations are prop-
agated to the rest of the mesh according to geodesic distances. Finally, the new
vertex positions are computed using the Poisson equation. Zayer et al. 21 show that
propagation of the transformations according to geodesic distances is sub-optimal
and suggest using harmonic fields as an alternative. Neither method considers ma-
terial properties in their formulation. Igarashi and Moskovitc 18 deform 2D meshes



October 22, 2006 10:56 WSPC/INSTRUCTION FILE ijsm˙paper

Paper’s Title 5

using a formulation based on an earlier morphing technique 26. They manipulate
the triangles independently and then compute common vertex positions. They show
early research results for using material stiffness to control the deformation. A di-
rect extension of their method to 3D would require a volumetric mesh, thus they
acknowledge that such an extension may be difficult.

It is often tedious and difficult to define the exact physical properties of an
object. One alternative, presented by two recent techniques 28,29, is to create
realistic-looking deformations by mimicking existing physically correct example de-
formations. James and Twigg 28 automatically deduce the skeleton of an articulated
model from a sample set of deformed models. Using the estimated skeleton and es-
timated blending weights they are able to create new deformations consistent with
the sample set. Sumner et al. 29 use the set of sample models to create feature
vectors that span the space of meaningful deformations. Using our method, we are
able to use a set of sample poses as a source for automatically learning the stiffness
of the mesh. The learned stiffness is used to create new poses consistent with the
samples. In our setting the material properties are derived explicitly, therefore it
is very easy for artists to modify and refine those if desired.

Most of the geometry deformation techniques that have linear formula-
tions 14,15,20,21 are limited to a modeling metaphor that requires the user to provide
rotational as well as positional constraints to obtain natural looking results. In our
method, the user still has the choice of specifying both positional constraints and
rotational constraints. But the user also has the choice to only specify positional
constraints, in which case our system will compute appropriate rotations for the
triangles in the mesh. The user can chose among several criteria to compute these
rotations depending on the desired behavior. This way we provide a richer and more
flexible front-end to our formulation. Moreover, the method in which the system
computes the rotational component is generic and, therefore, can be applied to
other methods that suffer from this limitation.

3. Method overview

We present a two-step method for 3D mesh deformation that takes into account the
intrinsic material properties of the model. To generate the deformation users select
a small set of triangles, called anchor triangles (Figure 3(a)) and apply the desired
transformations using a click and drag motion. We support anchor transformations
that include any combination of rotations and uniform scales. We then calculate
transformations for the remaining triangles of the mesh based on the anchor trans-
formations. The calculation takes into account the material properties of the model
which are described as follows.

Material properties — To describe the impact of the material on the defor-
mation we define the stiffness of the material with respect to bending and shearing.
These stiffnesses are described by separate scalar fields defined across the mesh.
Since materials often bend differently with respect to different directions, we also
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Fig. 3. Algorithm flow.

allow users to define anisotropic bending stiffness fields. The user can define these
scalar fields using a paintbrush-like tool (Figure 3(b)).

We also introduce a data-driven approach for defining the stiffnesses by au-
tomatically learning them from a set of example deformations (Figure 3(c)). By
examining the shearing of each individual triangle and the difference in the trans-
formations undergone by adjacent triangles within the entire sample set, we are able
to identify degrees of stiffness and flexibility across the mesh, and thus reconstruct
the stiffness fields (Figure 3(d)).

Next, we explain how these stiffness scalar fields, together with the user defined
transformations at anchor triangles, are used in our algorithm.

Transformation extrapolation — The first step of the algorithm is to prop-
agate automatically the transformations from the anchors to the remaining triangles
in the mesh. Finding optimal transformations for each triangle is non-trivial since
these must comply with a number of constraints. First, the transformations must
be continuous across the surface to yield a smooth looking deformation. Next, the
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transformations must also be as-rigid-as-possible in order to maintain the details
of the original surface 17. Finally, in our setting we add one new constraint — the
transformations must be consistent with the material properties. This final require-
ment is the one that ensures our deformations behave as desired.

We suggest that each triangle transformation be a weighted sum, or blend,
of anchor transformations. Thus, our challenge is to find appropriate weights for
blending that comply with the previous requirements. We formulate this as a linear
optimization problem where the variables are the blending weights. The stiffness
fields are introduced into the formulation to ensure that the deformation is dis-
tributed correctly throughout the model. Since the solution depends only on the
selection of anchors, we need to solve the resulting system only once. To perform
the actual blending we use the transformation algebra defined by Alexa 30. For a
discussions on the optimality of this method, see Appendix A

Vertex repositioning — It is easy to see that applying the resulting trans-
formations to each of the triangles in the mesh independently will break the mesh
connectivity, since adjacent triangles are not necessarily assigned identical transfor-
mations (Figure 3(e)). Therefore we apply a second step in which we calculate opti-
mal vertex positions such that each triangle is transformed as closely as possible, in
the least squares sense, to the previously calculated transformations (Figure 3(f)).
We incorporate the shearing stiffness field into the formulation to ensure that most
of the resulting shearing is concentrated in the flexible areas of the mesh.

Figure 3 summarizes our algorithm, and the following three sections describe it
in detail: Section 4 explains how transformations are propagated and then optimal
vertex positions are found, Section 6 explains how the method is extended to sup-
port anisotropic stiffnesses, and Section 7 explains how the material stiffnesses are
estimated from sample deformations.

4. Method details

We begin this section by describing exactly how our material properties are defined
(Section 4.1). Next, we define the gradient transformations and explain how these
are propagated from anchor triangles (Section 4.2). Finally, we explain how optimal
vertex positions are found (Section 4.3).

4.1. Material properties

We formulate our material properties in terms of material resistance to bending
and shearing. This resistance is described by bending and shearing stiffness scalar
fields defined across the mesh. This approach allows a high degree of control with
smooth variations of stiffness across the mesh.

• The bending stiffness is associated with the mesh edges, reflecting the bend-
ing flexibility of each edge. Thus the bending scalar field is defined by a set
of values ϕij defined on the mesh edges (i, j). This field is used to propagate
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Fig. 4. Twisting, bending, and stretching a bar using two anchor triangles: (a), (c) uniform mate-
rial; (b), (d), (e) non-uniform material.

the anchor transformations across the mesh (Equation 1).
• The shearing stiffness is associated with the mesh faces reflecting the resis-

tance to shearing of each individual face. The shearing stiffnesses ψi defined
for the mesh faces are used to find optimal vertex positions (Equation 3).

The bending stiffness often depends on the rotation axis. For example, articu-
lated models often have joints with a limited number of axes of rotation. Therefore,
we support anisotropic stiffness by specifying separate bending stiffness fields for
three orthogonal axes of rotation.

We support both user-driven and data-driven methods for defining the material
properties. In the user-driven setting we provide a simple paintbrush like tool to
define the different degrees of stiffness. The users can paint two separate fields for
bending and shearing. To simplify the interface, since often the two are linked,
we allow the user to specify only one field and derive the other one from it. For
instance, if the user specifies the shearing stiffness ψi, we obtain the bending stiffness
by simply setting ϕij = (ψi +ψj)/2. We use this simplified interface in most of our
examples. Figure 4 demonstrates painting areas with different degrees of stiffness
on a 3D bar and the resulting deformations.

For the data-driven approach, we estimate the material properties from a sample
set of deformations automatically. Additionally, our formulation naturally supports
user-intervention after the data-driven material estimation step. This property is
important in a production setting where animators require simple user controls to
fine-tune automatically generated results.

4.2. Transformation extrapolation

After the material properties and anchor transformations are defined we are ready
to create the deformation. The entire mesh deformation can be expressed as a set of
affine transformations (Ax+ b) of local coordinate frames defined per triangle. The
deformation gradient of each transformation is the matrix A, which encapsulates the
triangle transformation up to the translational component. Since the three vertices
of a triangle do not determine a local frame, we augment the three vertex positions
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with a fourth point found by offsetting one of the vertices by the triangle normal 31.
Labeling the vertices of a given triangle as v1, v2 and v3 and the additional vertex
as v4, the three vectors that define the local coordinate frame are (v4 − v1, v4 −
v2, v4 − v3).

After the user specifies the transformations for each of the anchor triangles the
first step of our algorithm propagates the deformation gradients defined at the
anchor triangles to the remaining triangles of the mesh. We achieve this by using
a weighted blending of anchor transformations. As previously noted, our challenge
is to find appropriate weights for this blending, subject to the material properties.
In our setting, this implies that triangles in areas which are more resistant to
bending should be assigned more similar transformations. In the isotropic setting,
we formulate this as a linear optimization problem:

min
ωi∈Rk

∑
(i,j)∈E

ϕij ‖ ωi − ωj ‖2
2, (1)

where the unknowns are ωi ∈ Rk the blending weights for face i. Each ωi is a vector
(ω1

i , ω
2
i , . . . , ω

k
i ) where ωa

i denotes the relative influence of anchor transformation
a. k is the number of anchor triangles, E is the set of edges (excluding edges shared
by two anchor triangles and boundary edges) and ϕij are the bending stiffness
values associated with each edge. The anisotropic setting is slightly different, and
is explained in Section 6.

When ϕij is large, ωi and ωj will have similar values; thus, the resulting trans-
formations of the two adjacent triangles i and j will also be similar, and the mesh
may be considered as locally stiff. Similarly, the converse argument can be made
for small ϕij .

Note that in this formulation, the weights ωi depend only on the connectivity
of the mesh and on the selection of anchor triangles. Therefore, the weights need to
be computed only once per selection of anchors. Also, note that, since our anchor
coefficients have exactly one non-zero entry, our weights are barycentric coordinates
with respect to the anchors. As a result our method does not suffer from propagation
problems noted by Zayer 21 encountered when using weights based on geodesic
distances 17. This formulation resembles that of 21, however in our formulation we
added non-uniform stiffness support.

In order to perform the actual blending we use the commutative transformation
matrix algebra defined by Alexa 30. By defining two new operations denoted by ⊕
and �, the blended transformations Ti with weights ωi are computed as:

Ti =
k⊕

a=1

ωa
i � Ta. (2)

Details on these operators are found in the Appendix. Figure 3(e) illustrates the
propagated transformations between two anchors on the camel’s leg.
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4.3. Vertex repositioning

Since the transformations obtained for adjacent triangles are typically not identical,
applying each of the transformations as-is would result in ambiguous positions for
the two shared vertices. Therefore, we need a second stage to compute the optimal
position for each vertex.

Optimal vertex positions are found such that the gradient transformation of
each triangle remains as close as possible, in the least squares sense, to the previ-
ously calculated transformation 31. Since the process results in triangle shearing,
we introduce the shearing stiffness into the formulation, to direct the distortion
according to the flexibility of the mesh.

Sumner and Popovic 31 show that the transformation gradients can be expressed
in terms of the vertex positions before and after the deformation:

A = Ṽ V −1,

where

Ṽ = (ṽ4 − ṽ1, ṽ4 − ṽ2, ṽ4 − ṽ3) ,

V = (v4 − v1, v4 − v2, v4 − v3) ,

and ṽi is the position of vertex vi after applying the deformation transformation.
Next, the system is reformulated such that the unknowns are the new vertex posi-
tions ṽ.

The optimal solution is obtained when the resulting triangle transformations
are as close as possible to the previously computed Ti’s. Since the Ti’s are blends
of the original anchor transformations, they contain no shearing. Thus, the closer
the final and the original transformations are, the smaller the triangle shearing. To
account for the shearing stiffness we incorporated ψi into the formulation:

min
ṽ

n−k∑
i

ψi‖ṼiV
−1
i − Ti‖2

F , (3)

where Vi and Ṽi are the local frames before and after applying the deformation and
Ti are the previously calculated transformations. We reformulate this as a linear
optimization problem:

min
ṽ
‖Ψ(Aṽ − t)‖2

2, (4)

where A is a sparse matrix constructed using the pre-deformation local frames V , t
is a vector composed of all the elements in Ti and Ψ is a diagonal matrix composed
of ψi.

Large ψi will result in transformations which are very close to the originally
computed Ti, and thus exhibit less shearing. Small ψi will allow for more shearing
to take place. Figure 4(e) shows an example of stretching a bar with non-uniform
shearing stiffness. As expected, most of the shearing occurs in the flexible region.
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(a) (b)

Fig. 5. Deformation of a bar specifying only positional constraints. The optimal rotations are
computed automatically. (a) uniform materials (b) non-uniform materials

The solution of the system in Equation 4 provides a new position for each of the
vertices up to a global translation of the model. To anchor the model in place, we
fix the position of a single vertex by removing the corresponding variable and pre-
multiplying its known position with the appropriate elements of A into the vector
T 29. In fact, multiple vertices may be set at fixed positions to apply boundary
constraints such as regions of influence.

5. Positional Constraints

The formulation presented so far allows the user to only specify rotational con-
straints for the anchor triangles. In certain cases the user might want to specify
positional constraints as well. Positional constraints on vertices can be added by
augmenting the second stage of our system (equation 4) by adding more rows to
the constraint matrix A to keep the anchor vertices in place. In this setup, the user
has to specify positional and rotational constraints simultaneously to achieve the
desired results which is less intuitive than a standard drag and drop interface. Most
of the deformation methods that use linear formulations 14,15,20,21 also face the
same limitation. Non-linear methods 16,24,25 that employ rotational invariant local
coordinates do not have this problem, but non-linear formulations are in general
less efficient.

In this work we develop a method where the user can specify only positional
constraints on vertices using a drag and drop interface. The system then computes
the optimal rotations automatically. Figure 5 shows an example where a straight
bar is deformed by specifying a new position for one vertex while keeping the other
vertex fixed. Note that the algorithm provided an intuitive rotation for both the
uniform and non-uniform case yielding a natural looking result.
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Fig. 6. Left: rotation of the bar using only rotational constraints. Right: rotation of the bar by
dragging one anchor and using our method to determine the rotation.

5.1. Finding Rotations

We now describe more formally our method for computing the rotations For each
user selected anchor vertex vi we associate an adjacent anchor triangle ti. As the
user changes the position of vi, the system computes the optimal rotation Ri for the
associated anchor triangle ti. It than propagates the rotations to all the triangles
in the mesh as described in section 4.2. After that, it finds vertex positions as
described in section 4.3 with the amendment that additional constraints are added
in the constraint matrix A of Equation 4 for all anchor vertices vi.

Theoretically, since a 3D rotation has 3 degrees of freedom we would need to
solve for 3 new variables. However, we observe that in a typical drag and drop
interface, an anchor vertex is moved on a plane parallel to the projection plane.
This means that the anticipated rotation will typically be around the normal of
the projection plane thus reducing the problem to only one degree of freedom.
Details on how to solve for this latest degree of freedom are given in section 5.2.
Figure 6 compares the results of a deformation using only rotational constraints
and a deformation using our positional constraints. Note that in figure 6(b) the
system found automatically the appropriate angle.

We choose as the optimal rotation angle for the anchor triangle, the angle that
yields a result that best preserves certain properties (functionals) between the origi-
nal object and the deformed object. We experimented with several such functionals:

• Area preserving. Minimize
∑

i∈T (ψi ∗ (Ai − A′i))
2 where Ai and A′i are

the areas of the original triangles and the triangles after deformations,
respectively. ψi is the face stiffness.

• Volume preserving. Minimize the variation in total volume. The total vol-
ume is estimated using the standard method of summation over the signed
tetrahedra volumes obtained by each face with an arbitrary reference point
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(a) (b)

(c) (d)

(e)

Fig. 7. Comparative results for various energies used: (a) area, (b) volume, (c) shearing (d) dihedral
angle

P .
• Shape preserving. Minimize

∑
i∈T (psii ∗ si)2 where si is a measures the

shearing between the original and the deformed triangles weighted by the
stiffness of each triangle. We computed the shearing by first obtaining the
3× 3 transformation matrix that transforms the frame of one triangle onto
the other and we obtain the shearing coefficients from the polar decompo-
sition.

• Angle preserving. Minimize the variation in bending between adjacent tri-
angles: minimize

∑
(i,j)∈E(ϕij ∗ (αij − α′ij))

2 where αij and α′ij are the
dihedral angle of the faces corresponding to edge (i, j) on the original mesh
and deformed mesh respectively, and ϕij is the edge stiffness coefficient of
edge (i, j).

Figure 7 shows a comparative result of bending a bar using the different func-
tionals. The deformations in figure 7(a-d) are done by keeping an anchor and its
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Fig. 8. The two figures show two plots of the error function against the angle of rotation of the
moving anchor. The dotted line represents the parabola that we are trying to fit to the data. The
two numbers at the bottom of each figure represent the true solution, and the solution computed
using the parabolic strategy respectively.

associated anchor triangle in place and pushing the other towards it as illustrated
in figure 7(e).

The area preserving and shape preserving functionals are in the spirit of the “as
rigid as possible” deformations. In both cases we are preserving the shapes of the
triangles in the least square sense, giving more priority to stiffer triangles. As shown
in Figure 7, the area preserving functional allows for more bending yielding more
natural looking results. In addition to that, the area preserving is also cheaper to
evaluate than the shape preservation functional that requires a polar decomposition
step for every triangle in the mesh. The volume preserving functional finds the
rotation in the plane that makes the change in volume minimal. Hence it has to
over-rotate in order to add more volume. Note that this functional minimizes the
variation in total volume, but it does not guarantee that the volume is preserved
exactly. The angle preserving functional collapses the bar since a zero rotation of
the anchor triangle best preserves the dihedral angles. This functional can be used
to simulate plastic deformations like clay. Note that affine combinations of these
functionals can be used to get intermediate effects. In practice the area preserving
functional yields the most natural results and it is also the most numerically stable,
so this is the function that we used for all the other examples that use positional
constraints.
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(a) (b) (c)

Fig. 9. Comparative results for the 3 solvers: (a) brute force (b) parabolic solver (c) binary search
solver

5.2. Solving

Since we are looking for an angle, a brute-force approach to solving this problem
is to densely sample the interval [−π, π] and find which angle gives us optimal
results. Moreover, we note that as the user drags the mouse on the screen, the
angle change from one evaluation to another is relatively small. This shortens the
range of values making the search more efficient. In practice, we observed that the
[−1, 1] range is usually sufficient. One evaluation of the functional requires solving
the two systems described by equations 1 and 4. Since the two matrices associated
with these systems need to be inverted only once, even the brute-force approach
to finding the optimal angle yields interactive rates for small models. For larger
models we devised two strategies that significantly speed up the process: a binary
search strategy and a quadratic fit strategy.

In the binary search case, we estimate the derivative of the function using for-
ward differences and we search for the root of the derivative function using a binary
search strategy. Note that the search interval is so small that a more sophisticated
Newton method would not significantly improve the convergence. Binary search
takes usually around 6 iterations to converge, and since it takes two evaluations to
compute the derivatives it takes around 12 evaluations.

While the binary search strategy works well in practice, we can speed up the
method even more using the observation that in most cases the function has only
one local minimum and the shape of the curve looks very much like a parabola
as illustrated in figure 8. Therefore, we can find the rotation angle by fitting a
parabola to the data and choosing the tip of the parabola as the minimum point.
The difference between the estimated solution and the true solution is within a few
degrees. This approach always requires a constant number of evaluations, namely
4. Three evaluations are required to find the equation of the parabola and the
fourth is the evaluation that gives us the final solution. Using this strategy, the
solution is still assymptotically linear with a constant factor of 4. The quadratic
fit formulation, while faster, tends to be less stable than the binary search or brut
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Fig. 10. Bending and twisting a bar with different material properties and a single transformation
applied at the two end faces. (a) Uniform material. (b) Center region is isotropically more stiff. (c)
Anisotropic stiffness - allowing the center region to bend around the z axis, and the side regions
to twist around the x axis.

force methods in cases where the true solution is close to −π or to π. Figure 9 shows
a comparison of the solvers.

6. Anisotropic materials

The formulation presented above uses a single scalar bending stiffness field. This
formulation assumes that bending flexibility is a non-directional property, which
need not be true in practice. For example, a knee joint is only flexible in one
direction and rigid in the other two. In this section we extend our method to allow
different bending stiffnesses for different axes of rotation.

Instead of using one bending stiffness value per edge, we define three differ-
ent values corresponding to rotations around three orthogonal axes x, y and z.
To apply those stiffnesses when blending anchor transformations, we first need to
decompose the anchor transformations into a scaling transformation and rotation
transformations around the three axes x, y and z.

Using the polar decomposition Ta = SaQa such that Qa is a rotation trans-
formation 27, we identify the rotational component of each anchor transformation.
Using the transformation matrix algebra described by Alexa 30, three matrices Rθ

x,
Rθ

y, Rθ
z denoting rotations by an angle θ ∈ [0, π] around three orthogonal axes x,

y, and z form a basis of the sub-space of rotations. Thus, for any given rotation
matrix Q we can find a commutative decomposition such that

Q = cx �Rθ
x ⊕ cy �Rθ

y ⊕ cz �Rθ
z.

The coefficient cx is found by simply computing the inner product

cx =< log(Q), log(Rθ
x) >,
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where the inner product of transformation matrices is the sum of products of the
corresponding matrix entries
< A,B >=

∑
aijbij . cy and cz are found in a similar manner.

By defining Xa = cax � Rθ
x, Ya = cay � Rθ

y and Za = caz � Rθ
z we get a unique

decomposition of each anchor transformation Ta into a scaling matrix Sa and three
rotation matrices Xa, Ya and Za around the three orthogonal axes of rotation x, y
and z.

To compute the new blending weights and transformations we solve Equation 1
separately for each axis of rotation using the appropriate bending stiffness to get
three weight vectors ωx

i , ωy
i and ωz

i per triangle. In the isotropic case, we used ωi as
weights for blending the anchor transformations. In the anisotropic setting we find
the local triangle transformations Ti by combining the per-axis transformations.
We rewrite Equation 2 as

Ti =

(
k⊕

a=1

ω̃a
i � Sa

)(
k⊕

a=1

ωax
i �Xa ⊕ ωay

i � Ya ⊕ ωaz
i � Za

)
where Ti are the propagated transformations,ωax

i , ωay
i and ωaz

i are the blending
weights, ω̃a

i is their average, and Sa, Xa, Ya and Za are decompositions of the anchor
triangle transformations Ta such that Ta = Sa (Xa ⊕ Ya ⊕ Za).

Since we only define anisotropic stiffnesses for bending the rest of the algorithm
continues as previously described. Figure 10 shows the impact of using anisotropic
stiffness fields when bending and twisting a 3D bar. First, we used a single material
with uniform stiffness and applied two rotations around the x and z axes at one end
of the bar while anchoring the other end. This resulted in a uniform deformation
(Figure 10(a)). Next, we changed the model’s material, specifying the center region
as isotropically stiff and the sides as isotropically flexible. We then applied the same
transformation. The result is shown in Figure 10(b) where the center region remains
rigid. Finally, Figure 10(c) illustrates an anisotropic deformation. The center region
material was defined to be stiff when rotating around the x axis, and flexible when
rotating around the z axis. The side region materials were defined to deform in
the exact opposite manner. The resulting deformation exhibits twisting (rotation
around the x axis) only in the side regions, and bending (rotation around the z
axis) only in the center region.

7. Material learning

In many situations, physically or anatomically correct deformation samples of a
given model may already be available. In such cases we would like to derive the
material properties from the sample poses to create new deformations which are
consistent with the sample set and are therefore also correct. The following sec-
tion describes our method of automatically acquiring the material properties from
sample deformations.
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Fig. 11. Estimation of material stiffness from sample poses. (a) Sample poses. (b) Estimated
bending and shearing stiffnesses visualized on the edges and faces respectively. (c), (d) New poses
created using the estimated stiffnesses: (c) chasing the tail (4 anchors); (d) handstand (8 anchors).

Given a reference mesh P0 with m triangles and a set of deformed meshes with
the same connectivity Ps s = 1, . . . , l, we first compute the deformation gradient
for each of the triangles i = 1, . . . ,m in Ps as follows:

Tsi = ṼsiV
−1
0i s = 1, . . . , l, i = 1, . . . ,m,

where V and Ṽ are the local frames in the reference and deformed meshes.
Next, we decompose each deformation gradient matrix using the polar decom-

position Tsi = SsiQsi such that Qsi is a rotation transformation, and Ssi is a
combination of scaling and shearing 27,28,29. We use this decomposition to estimate
the bending and shearing stiffness across the mesh.

The amount of bending the model undergoes locally is best reflected by the
change in the dihedral angle around a mesh edge, and can be estimated by analyzing
the rotations Qi and Qj of two triangles sharing the edge. In each example the
difference between the two matrices Qi and Qj of adjacent triangles is roughly
equivalent to the amount of bending around the shared edge. Since each sample
only exhibits bending around a subset of the edges we need to combine values from
multiple samples. The maximum difference observed for each edge is equivalent to
the maximum bending around the edge among all samples and therefore is used to
define the bending stiffness. The values are then scaled to be in [ε, 1].

ϕ̃ij = max
s=1...l

||Qsi −Qsj ||2F (i, j) ∈ E,
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ϕij = 1− ϕ̃ij

max
í,j́∈E

ϕ̃íj́ + έ
(i, j) ∈ E.

For each face i, we estimate a shearing stiffness ψi based on the maximum
distortion of the face found in the set of example deformations. The values are then
scaled to be in [ε, 1].

ψ̃i = max
s=1...l

‖Ssi − I‖2
F i = 1 . . .m,

ψi = 1− ψ̃i

max
í=1...m

ψ̃í + έ
i = 1, . . . ,m.

(a) (b)

Fig. 12. Refining learned materials. (a) Bending the front leg of a camel using the estimated
stiffness and two anchors. (b) Bending the leg after modifying the stiffness by marking both the
knee and ankle joints as stiff.

Fig. 13. Deformation of articulated models using our technique: (a), (c) original models and painted
stiffnesses; (b), (d) deformation results.

For both scalar fields we found that clamping the bottom 1% of the values before
scaling greatly improved the results.
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Figure 11 shows an example of estimated bending and shearing stiffnesses
learned from a sample sequence of deformations. As shown in the figure we use
these as a basis for creating new poses which were not in the sample set.

Our method is much simpler than those of James and Twigg 28 and Sumner et
al. 29, who also use polar decomposition as the first step in their methods. However,
some problems can occur when stiffness coefficients of different parts of the body are
learned independently from different poses. In these cases there is no information on
the relative stiffness between these parts and hence the relative scale of the stiffness
coefficients may not be correct. Nevertheless, our experimental results appear to
correctly capture the model’s material properties, and to provide realistic looking
deformations. Furthermore, our method exhibits two nice properties: our learning
algorithm is linear in the number of sample poses, and the learned stiffnesses can
be further refined by the user for finer control.

8. Implementation and results

We now provide some implementational details and discuss some deformations cre-
ated by our technique. We used Graphite 32 as a framework for implementing our
deformation method. Material properties are defined using a simple color map with
a paintbrush interface. To deform models users mark anchor triangles and then
transform them by dragging the mouse. Note that in all our examples except Fig-
ure 4(e) we defined only the rotation and scaling for the anchor triangles without
fixing their final positions. We let the algorithm find these optimal positions auto-
matically.

We used the UMFPACK4.4 33 solver to compute the solutions of equations 1
and 4. In each of the equations the required matrix inversion depends only on
the selection of anchor triangles, the mesh connectivity, and the undeformed mesh
geometry. We can therefore precompute the inverse of these matrices, allowing the
system to work at interactive rates.

We support the concept of deforming only regions of interest, confining all the
calculations to triangles within that region. When using such a region of interest,
the vertices on its boundary are constrained to remain in their initial position. Our
results demonstrate that the method may be applied to a large variety of model
types.

Figures 2, 3(f), 13 and 14 demonstrate how a simple coloring scheme for defining
the material properties allows us easily to deform articulated models. In the hand
example from Figure 13, we simply painted the joints with a flexible material. We
used three anchors per finger, one at the tip and two at the base, and then deformed
each finger independently using a region of influence to speed up the computation.
The eagle deformation in Figure 13 uses simple coloring of the head, neck and
wings to illustrate that the head is the most rigid part while the wings are the most
flexible.

Figure 14 demonstrates a combination of scaling and rotation applied to the
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Fig. 14. Scaling and rotating a camel’s head. Top: uniform material causes the entire camel to scale
and rotate. Bottom: the stiff head scales uniformly, while the flexible neck absorbs the distortion.

head of the camel. The deformation was created using four anchors on the bottom
of the feet, and one anchor on the tip of the nose. The feet anchors were kept in
place and the anchor triangle on the nose was rotated and scaled to three times
the original size. When using uniform materials (Figure 14(top)) the scaling is
propagated uniformly through the model. Using different materials we are able to
better control the propagation. In Figure 14(bottom), we defined the neck to be
more flexible than the head and the body. With the new materials the head scales
to three times the original size, the body remains undeformed, and the distortion
is mostly concentrated at the neck. Using standard methods it is not possible to
archive such deformation in a single operation. Even defining a region of influence
to include only the head and neck would not be sufficient, since the head would not
deform uniformly.

For many models the stiffness changes smoothly across the mesh. Tree branches,
plant stems, and octopus tentacles are examples of models where the flexibility is
proportional to the girth of the model. Figure 15 demonstrates how our material-
aware deformation framework allows us to define correct bending behavior for an
octopus’s tentacle. When using a uniform material the tentacle takes the unnatural
shape of an arc; however, using non-uniform materials results in the more natural
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Fig. 15. Deformation comparison for octopus tentacle in figure 1 between uniform stiffness (top)
and smooth variation of stiffness (bottom). In both cases we defined the same amount of rotation
applied at the tip of the tentacle while the final position of the tip is calculated automatically.

shape of a spiral with the tip bending more than the base. In both deformations
we applied the same rotation transformation to an anchor triangle at the tip of the
tentacle, while the final position of the tip was computed automatically.

Figure 16 demonstrates the application of our algorithm to a non-articulated
model. In order to deform the piece of cloth we used a texture map to define the
material properties. The bold letters define very stiff areas, while the rest of the
model varies in degrees of flexibility.

We have also tested our method for estimating the stiffness from sample poses.
Figures 3(d), 11 and 12 demonstrate our results. For sample poses we used models
obtained from 31. For the camel (Figures 3(d) and 12) the stiffness fields were
learned from ten sample poses in 9.5 seconds. For the lion (Figure 11) we used nine
sample poses and the learning process took 2.1 seconds. As expected, in both cases
the estimated stiffness scalar fields are anatomically correct, showing more flexible
regions at the joints and stiffer regions along the bones. Figures 11(c) and (d) show
examples of new anatomically correct poses created using the estimated stiffness
fields. Figure 12 shows an example of manually modifying the stiffness fields in
order to create a desired deformation which does not comply with the sample set.
The learned fields allow bending of the leg at the knee and ankle, resulting in an
anatomically feasible pose (Figure 12 (a)). To handicap the camel, we manually
define these areas as stiff. Applying the same transformation at the tip of the foot
causes the leg to raise without bending at the knee or ankle (Figure 12 (b)).

Figure 17 illustrates deformations using only positional constraints as described
in section 5 The system automatically computes the appropriate rotation of the
head. Since the neck of the camel is more flexible than the rest of the body, most of
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Fig. 16. Material-aware deformation of cloth. The printed letters are made up of stiffer material;
the rest of the model consists of flexible material modulated using Perlin noise to create a natural
wrinkled look.

the rotation will be at the neck, thus preserving the geometric detail of the head.
This mesh has 19,536 faces and it was deformed interactively at a frame rate of 3-4
frames per second using the parabolic solver.

Central to our technique is the ability to capture the surface behavior in a
pre-processing stage and encode it in the formulation. We successfully capture the
material properties while preserving the simplicity and efficiency common to geo-
metric deformation techniques. We demonstrated that our technique can be applied
to a wide range of models producing complex results with only few anchors.

Table 1 summarizes the deformation statistics of the various models used in our
results, measured on a 3GHz Intel Pentium IV with 2Gb of RAM.

9. Summary and future work

We presented a new mesh deformation technique that incorporates material proper-
ties into the geometric deformation framework. Using these properties, we provide
a simple mechanism that allows material-aware behavior of the surface under de-
formation. Our method combines the efficiency, generality and control of geometric
methods together with material awareness found in physical and skeleton based
methods.

Material properties can be user-driven, where the stiffnesses are specified with a
simple brush-like interface, or data-driven where stiffnesses are deduced from a set
of given poses. It also can be a combination of the two where the user can override
the learned material stiffnesses.

The formulation is simple and efficient. It requires solving only two linear sys-
tems, and thus works at interactive rates. The resulting deformations are as-rigid-
as-possible, subject to the material stiffness and the user defined transformations,
and therefore maintain the shape details as demonstrated in our results.
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Fig. 17. Deformation of a camel using positional constraints. The neck of the camel is more flexible
than the rest of the body. Three anchors were used: two at the back of the camel on each side of
the neck and a third one on the head. The example was generated by simply dragging the vertex
on the head to its new position while keeping the other two in place. Note that the geometric
details of the head are very well preserved.

For future research we would like to improve the anisotropic model. The cur-
rent anisotropic model uses a global coordinate frame to decompose local rotations
instead of local coordinate frames. Decomposition around local coordinate frames
would be preferred because the stiffness maps would be invariant to the position
and orientation of an object in space. However, the challenge in doing so is the
consistent construction of blending weights across different coordinate frames.
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Bar Hand Lion(c) Lion(d) Cloth Horse Eagle Octopus Camel
#Faces 1596 6274 9996 9996 19602 19996 29232 36542 43775
#Anchors 2 3 4 8 10 2 4 5 5
Preprocessing:
Weight calculation(s) 0.03 0.23 0.51 1.03 2.91 0.63 1.50 2.76 2.95
Vertex repositioning 0.1 0.48 0.75 0.75 1.58 1.81 2.47 3.16 3.63
factorization(s)
Total (s) 0.13 0.71 1.26 1.78 4.49 2.44 3.93 5.92 6.58
Real-time:
Blending (ms) 10 30 30 30 70 60 100 130 150
Repositioning (ms) 10 60 60 60 90 120 140 210 130
Total (ms) 20 90 90 90 160 180 240 340 280

Table 1. Model deformation timings including pre-processing and actual interactive deformation.
For the octopus and hand models the number of faces noted is the number of faces in the region
of influence.

Appendix A. Appendices

Geometric transformations are typically represented as square matrices. Matrix
multiplication is used to compose and apply the transformations. This representa-
tion has two key shortcomings:

• Rotation transformations cannot be interpolated by interpolating the ma-
trix elements.

• Matrix multiplication is not commutative.

Both of these properties are crucial for us in order to propagate and later decompose
anchor triangles.

To deal with these issues a number of interpolation methods for rotations have
been developed over the years. When dealing with rotations there are three desired
properties: torque-minimization, constant speed, and commutativity. Currently no
interpolation method exhibiting all three properties exists. SLERP 34 exhibits con-
stant speed and minimal-torque. LERP, popularized by Casey Muratori, is commu-
tative and minimal-torque. The exponential map interpolation 35 is commutative
and constant speed.

Alexa 30 extended the exponential map interpolation method into a commuta-
tive algebra of (almost) general transformations that supports matrix blending and
interpolation. This algebra is commutative and interpolates transformations with
constant speed. Furthermore, it is not limited to rotations only, thus simplifying
the task of dealing with combinations of rotations and scales.

We have chosen to use the later method since it answers both our requirements.
We now give a brief overview of the blending operators defined in this algebra.
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By defining two new operations denoted by ⊕ and by � (corresponding to
matrix addition and scalar multiplication), the blending of transformations Ta with
weights ωa becomes

⊕
ωa � Ta.

The two operators are based on matrix exp and log operators defined as follows:

exp(A) =
∞∑

k=0

Ak

k!
,

A = log(X) ⇔ exp(A) = X.

Alexa 30 shows that this sum is well defined and closed for 3x3 rotation matrices
and non-uniform scales under some minimal conditions. The blending formula is
defined as follows:

k⊕
a=1

ωa
i � Ta = exp(

k∑
a=1

ωa
i log(Ta)).

More details as well as numerical methods to compute these operations are
found in 30.
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surface editing, Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium
on Geometry processing (2004) 175–184

15. Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rössl and H.-P. Seidel, Differential
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