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Image morphing techniques can create a smooth transition between two images. How-
ever, one of the main weakness of the image morphing technique is that intermediate
images in the transition often have physically incorrect shading such as highlights and
shadows. Moreover, we cannot alter viewing and lighting conditions when creating the
intermediate images. That is because those images are obtained by simply interpolat-
ing pixel intensities of the two 2D images without knowledge of 3D object shape and
re
ectance properties. In this context, 3D shape morphing techniques have a de�nite
advantage in that arbitrary viewing and illumination conditions can be used for creating
new images. Unfortunately, previous 3D morphing techniques do not account for object
surface re
ectance properties or re
ection models when generating intermediate images.
This often results in undesired shading artifacts. In this paper, we consider a new ap-
proach for 3D shape and re
ectance morphing of two real 3D objects. Our morphing
method consists of two components: shape and re
ectance property measurement, and
smooth interpolation of those measured properties. The measured shape and re
ectance
parameters are used to compute intermediate shape and re
ectance parameters. Finally,
the computed shape and re
ectance parameters are used to render intermediate images
which represent a smooth transition between the two objects.

Keywords: Computer Vision, Color Image Analysis, Re
ectance Measurement, Shape
Morphing

1. Introduction

Recently, image morphing techniques for creating a smooth transition between two
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images have been extensively studied. These techniques are based on interpolation

of coordinates (and colors) of image pixels in two images. Surprisingly convincing

image transitions can be created when the interpolation is designed carefully [1] and

[11].

However, one of the fundamental weaknesses of the image morphing technique

is that intermediate images often have physically incorrect shading such as high-

lights and shadows. Moreover, we cannot create intermediate images under di�erent

viewing and lighting conditions. This is because those images are created by simply

interpolating pixel intensities of the two 2D images without knowledge of viewing

and illumination conditions and 3D object shapes. In this context, 3D shape morph-

ing techniques have a de�nite advantage in that arbitrary viewing and illumination

conditions can be used for creating new images [2], [5], and [6]. Unfortunately, those

3D morphing techniques do not account for object surface re
ectance properties or

re
ection models for generating new images. This often results in undesired shading

artifacts (e.g., shadows and highlights fail to match shape changes occurring in the

morph).

Recently, techniques to measure object shape and re
ectance properties by us-

ing both range images and intensity images have been studied. Ikeuchi and Sato

[3] originally developed a method to measure object shapes and re
ection function

parameters from a range image and black and white intensity image pair. The sur-

face shape was �rst recovered from the range image, and then the surface normals

of the recovered object surface and the intensity image were used for re
ectance pa-

rameter estimation. The main drawback of this method is that it assumes uniform

re
ectance properties over the object surface. Kay and Caelli [4] introduced another
method to use a range image and 4 or 8 intensity images taken under di�erent illu-

mination conditions. By increasing the number of intensity images, they estimated

re
ection function parameters locally for each image pixel. Unlike the algorithm

proposed by Sato and Ikeuchi, the method can handle object surfaces with varying

re
ectance properties. However, it is reported that parameter estimation can be un-

stable especially when the specular re
ection component is not observed strongly.

Sato and Ikeuchi [10] proposed another approach for measuring object shape and

re
ectance properties from a sequence of range and color images. This method

di�ers from previous ones in that re
ectance parameters are estimated based on

results of re
ection component separation. This makes parameter estimation more

reliable than previously reported methods.

In this paper, we consider a new approach for 3D shape and re
ectance mor-

phing of two real 3D objects. Our morphing method consists of two components:

shape and re
ectance property measurement, and smooth interpolation of the mea-

sured properties. For measuring shape and re
ectance parameters, the method

proposed by Sato and Ikeuchi [10] is used in our analysis. First, a range image and

a color image sequence are obtained for each of the two objects while the objects

are rotated. Then, for each range image pixel, the sequence of observed colors of a

surface point corresponding to the range image pixel is determined. The observed
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color sequence is separated into the di�use and specular re
ection components by

the algorithm used originally by Sato and Ikeuchi [9]. Subsequently, parameters of

a re
ection function used in our analysis are estimated reliably for the separated

re
ection components. The re
ection model used here is a linear combination of the

Lambertian model and a simpli�ed Torrance-Sparrow model [13]. The estimated re-


ectance parameters of each surface point are combined with its measured (X; Y;Z)

location, and then stored in a new 2D image. Therefore, each pixel of the 2D image

has re
ectance parameters as well as a (X; Y;Z) location. The 2D image containing

the (X;Y; Z) location and re
ectance parameters is referred to as an object image

in this paper. After object images are created for the two objects, the two object

images are used to create a new intermediate object image by interpolating the

shape and re
ectance properties of the two object images. Pixelwise correspon-

dences between the two object images used for the interpolation is established from

correspondence of manually drawn line pairs in the two object images [1]. Finally,

the newly created intermediate object image is used to render new images of the
object under arbitrary viewing and illumination conditions.

The paper is organized as follows. Section 2.1 and Section 2.2 describe our image

acquisition system and determination of observed color sequences for each range-

image pixel. Section 2.3 introduces the re
ection model used in our experiment. The

algorithm for separating the di�use and specular re
ection components is explained

in Section 2.4, and re
ectance parameter estimation is discussed in Section 2.5.

Section 3 explains how to establish pixelwise correspondences between two object

images based on manually drawn line pairs. Our approach is applied to two real

objects, and experimental results are shown in Section 4. Concluding remarks are

presented in Section 5.

2. Measuring Shape and Re
ectance Properties

This section describes a method to recover object surface re
ectance properties from

a range image and a color image sequence. First, we describe the image acquisition

system in our analysis followed by a description of the algorithm used for re
ectance

parameter estimation.

2.1. Image Acquisition System

A range image is obtained using a light-stripe range �nder with a liquid crystal

shutter and a color CCD video camera [8]. It can compute 3D point locations

corresponding to image pixels based on optical triangulation. For each range image,

a set of three images is obtained containing X;Y and Z locations of all pixels. Each

of the range-image pixels represents an (X;Y;Z) location of a corresponding point

on an object surface. The same color camera is used for digitizing color images.

Therefore, pixels of the range images and the color images directly correspond.

The color video camera is calibrated to ensure linear response from all three color

bands. The experimental setup used in our experiments is illustrated in Fig. 1. A
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color camera

light stripe range finder

object

PUMA arm

light source

Figure 1: Image acquisition system

single incandescent lamp is used as a point light source. In our experiments, the

light source color is assumed to be given by calibration. The light source is located

nearby the camera lens so that both the viewing direction and the illumination

direction are approximately the same. This light source location is chosen to avoid

the problem of self-shadowing.

First, the range �nder is calibrated using a calibration box of known size and

shape. The calibration produces a 3 � 4 matrix � which represents the projec-

tion transformation between the world coordinate system and the image coordinate

system. The object whose shape and re
ectance information are to be recovered

is mounted to the end of a PUMA 560 manipulator whose location with respect

to the world coordinate system is given by calibration. The object orientation is

controlled using the PUMA manipulator, and the object location is given as a 4�4

transformation matrix T for each digitized image. First, one range image is cap-

tured to determining the shape of the object surface facing to the camera. Then,

a sequence of color images is captured at a �xed angle step of object orientation.
The projection transformation matrix � and the transformation matrix T will be

used for determining an observed color sequence for each of the range image pixels.

The observed color sequence represents how a surface point corresponding to the

range image pixel appears as the object rotates, and it will be used for analyzing

re
ectance properties of the object.

2.2. Observed Color Sequence for Each Point on Object Surface

For measuring re
ectance properties of the object surface, a sequence of observed

colors has to be determined for each point on the object surface. In this section, we

describe how to determine the observed color sequence.

We represent world coordinates and image coordinates using homogeneous co-

ordinates. A point on the object surface with Euclidean coordinates (X;Y; Z) is

expressed by a column vector P = [X; Y;Z; 1]T . An image pixel location (x; y) is

represented by p = [x; y; 1]T . As described in the previous section, the camera pro-

jection transformation is represented by a 3 � 4 matrix �, and the object location

and orientation are given by a 4� 4 object transformation matrix T . We represent
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the object transformation matrix for the frontal range image by Trange, and that

for the input color image frame f by Tf (f = 1 : : : n). Thus, the projection of a

range image pixel (i.e., corresponding point on the object surface) in the color image

frame f is given as

pf =
Y

TfT
�1

rangeP (f = 1 : : : n) (1)

where the last component of pf has to be normalized to give the projected image

location (x; y). The observed color of the range-image pixel in the color image frame

f is given as the (R;G;B) color intensity at the pixel location (x; y). To avoid

unnecessary aliasing, bilinear interpolation is used to sample the color intensity. If

the range image pixel is not visible in the color image (i.e., the surface point is
facing away from the camera, or it is occluded), the observed color for the pixel is

set to (R;G;B) = (0; 0; 0). By repeating this for all object orientations, we �nally

get an observed color sequence for each of the range image pixels.

2.3. Re
ection Model

In this section, we describe the re
ectance model used in this work. The re
ectance

model will be used later for separating the di�use and surface re
ection components

from a sequence of color images. The re
ection component separation is described

in Section 2.4. The model will also be used for re
ectance parameter estimation

which is explained in Section 2.5.

A general re
ection model is described in terms of three re
ection components,

namely the di�use lobe, the specular lobe, and the specular spike [7]. Unlike the

di�use lobe and the specular lobe components, the specular spike component is not

commonly observed in many actual applications. The component can be observed

only from mirror-like smooth surfaces where re
ected light rays of the specular spike

component are concentrated in a specular direction. It is, thus, di�cult to observe

the specular spike component from a coarsely sampled set of viewing directions.

Therefore, in many computer vision and computer graphics applications, re
ection

models are represented by linear combinations of two re
ection components: the

di�use lobe component and the specular lobe component. These two re
ection

components are normally called the di�use re
ection component and the specular

re
ection component, respectively. This re
ection model was formally introduced by

Shafer as the dichromatic re
ection model [12]. The Torrance-Sparrow model [13] is

used in our analysis for representing the di�use and specular re
ection components.
As Fig. 1 illustrates, the illumination and viewing directions are �xed and are

assumed to be the same. The re
ection model used for the particular experiment

setup is given as

Im = KD;m cos � +KS;m

1

cos �
exp

��2

2�2�
m = R;G;B (2)

where � is the angle between the surface normal and the viewing direction (or the

light source direction), KD;m and KS;m are constants for the respective re
ection
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components, and �� is the standard deviation of a facet slope � of the Torrance-

Sparrow model. For the derivation of the re
ection model, see the appendices of [10].

The direction of the light source and the camera with respect to the surface normal is

referred as the sensor direction � in this paper. In our analysis, only re
ections which

bounce only once from the light source are considered. Therefore, the re
ection

model is valid only for convex objects, and it cannot represent interre
ections on

concave object surfaces. We empirically found that interre
ection did not a�ect our

analysis signi�cantly.

2.4. Re
ection Component Separation

The algorithm to separate the two re
ection components is described here. The

separation of the di�use and specular components is important for robust estima-

tion of re
ectance parameters. It has been reported that estimating all re
ectance

parameters at once tends to make computation unstable [4]. Therefore, the separa-

tion algorithm is applied prior to re
ectance parameter estimation. The separation

algorithm was originally introduced for the case of a moving light source by Sato

and Ikeuchi [9]. In this paper, a similar algorithm is applied for the case of a moving

object.
Using three color bands; red, green, and blue, the coe�cients KD;m and KS;m,

in Eq.(2), becomes two linearly independent vectors, ~KD and ~KS , unless the colors

of the two re
ection components are accidentally the same

~KD =
�
KD;R KD;G KD;B

�T ~KS =
�
KS;R KS;G KS;B

�T
(3)

These two vectors represent the colors of the di�use and specular re
ection compo-

nents in the dichromatic re
ectance model [12].

First, the color intensities in the R, G, and B channels from n input images of

the object are measured for each range image pixel as described in Section 2.2. It is

important to note that all intensities are measured for the same range image pixel.

The three sequences of intensity values are stored in the columns of an n�3 matrix

M . Considering the re
ectance model and two color vectors in Eq.(2) and Eq.(3),

the intensity values in the R, G, and B channels can be represented as

M =
�

~MR
~MG

~MB

�

=

2
6664

cos �1 E(�1)
cos �2 E(�2)
...

...
cos �n E(�n)

3
7775
�
KD;R KD;G KD;B

KS;R KS;G KS;B

�
(4)

=
�

~GD
~GS

� " ~KD

T

~KS

T

#

� GK
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where E(�) = (exp(��2=2��
2))= cos �, the two vectors ~GD and ~GS represent the

intensity values of the di�use and specular re
ection components with respect to

the sensor direction �. The vectors ~KD and ~KS represent the di�use and the

specular re
ection color vectors, respectively. We call the two matrices G and K,

the geometry matrix and the color matrix, respectively.

Suppose we have an estimate of the color matrix K. Then, the two re
ection

components represented by the geometry matrix G are obtained by projecting the

observed re
ection stored in M onto the two color vectors ~KD and ~KS .

G =MK+ (5)

where K+ is the 3� 2 pseudoinverse matrix of the color matrix K.

The derivation shown above is based on the assumption that the color matrix

K is known. In our experiments, the specular re
ection color vector ~KS is directly

measured by a calibration procedure. Therefore, only the di�use color vector ~KD

is unknown and needs to be determined.

From Eq.(2), it can be seen that the distribution of the specular re
ection com-

ponent is limited to a �xed angle, depending on ��. Therefore, if two vectors,

~wi = [IRi IGi IBi]
T (i = 1; 2) are sampled on the � axis at large enough interval,

at least one of these vectors will be equal to the color vector of the di�use re
ec-

tion component ~KD . (i.e., it has no specular re
ection component.) The desired

color vector of the di�use re
ection component ~KD is the vector ~wi which subtends

the largest angle with respect to the vector ~KS . The angle between the two color

vectors can be calculated as � = arccos( ~KS � ~wi=(j ~KS jj ~wij)).

Once we get the color matrix K, the geometry matrix G can be calculated from

Eq.(5). Each of the di�use and specular re
ection components is then given as

MD = ~GD
~KD

T
MS = ~GS

~KS

T
: (6)

2.5. Specular Parameter Estimation for Segmented Regions

In the previous section, we described our method for separating the two re
ection

components from a sequence of observed colors of each range image pixel. In this

section, we will discuss how to estimate parameters of the re
ectance model for the

range image pixel using the separated re
ection components.

By applying the separation algorithm as explained above, we obtain a sequence

of the di�use re
ection intensities and a sequence of the specular re
ection intensi-

ties for each range image pixel. This information is su�cient to estimate re
ectance

parameters of the re
ection model Eq.(2) separately for the two re
ection compo-

nents. As Eq.(2) shows, the re
ectance model is a function of the angle between the

surface normal and the viewing direction �. Therefore, for estimating re
ectance

parameters: KD;m, KS;m, and ��, the angle � has to be computed as the object

is rotated. Since the projection transformation matrix is already given and the

object orientation is known in the world coordinate system, it is straightforward
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to compute the surface normal vector and a viewing direction vector (or a illumi-

nation vector) at a surface point corresponding to each range image pixel. Thus,

the angle � between the surface normal and the viewing direction vector can be

computed. After the angle � is computed, the re
ectance parameters for the di�use

re
ection component (KD;m) and the specular re
ection component (KS;m and ��)

are estimated separately. In our experiments, the camera output is calibrated so

that the specular re
ection color has the same value from the three color channels.

Therefore, only one color band is used to estimate KS in our experiment.

By repeating the estimation procedure for all range image pixels, we can esti-

mate the di�use re
ection component parameters for all range image pixels if those

pixels are illuminated in one or more frames of the image sequence. On the other

hand, the specular re
ection component can be observed only from a few viewing

directions. Due to this fact, the specular re
ection component can be observed

only in a small subset of all range image pixels. We cannot estimate the specular

re
ection component parameters for those pixels in which the specular re
ection

component is not observed. Even if the specular re
ection component is observed,

the parameter estimation can become unreliable if the specular re
ection is not

su�ciently strong.

For the above reasons, we decided to assign the specular re
ection component

parameters based on region segmentation. In our experiments, it is assumed that

the object surface can be segmented into a �nite number of regions which have

uniform di�use color, and all range image pixels within each region have the same

specular re
ection component parameters. By using the segmentation algorithm,
the specular re
ection parameters of each region can be estimated from range im-

age pixels with strong specularity. The estimated parameters are assigned to the

rest of range image pixels in the region. The range image pixels with strong spec-

ularity can be easily selected after the re
ectance components are separated. The

limitation of this approach is that the specular re
ection parameters for a region

cannot be estimated if no specularity is observed in the region. In that case, the

specular re
ection parameters of neighboring regions can be assigned to the region

as an approximation. It is important to note that segmentation and parameter es-

timation are used only for the specular re
ection component. The di�use re
ection

component parameters are estimated locally regardless of specularity.

After re
ectance parameters are estimated for each of the range image pixels,

each range image pixel has 5 associated re
ectance parameters (KD;R, KD;G, KD;B,

KS , and ��). Combining those parameters with the (X;Y; Z) location of the range

image pixel, we obtain a new image with 8 bands (X, Y , Z, KD;R, KD;G, KD;B,

KS , and ��). We call this image an object image since it contains both shape and

re
ectance properties of the object. Using this technique, we obtain the object

images of two real objects. These object images will be later used for creating a

new object model whose shape and re
ectance properties are interpolated from the

two real objects.
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u 

the first object image the second object image

Figure 2: Pixel correspondence by a line pair

3. Interpolation of Shape and Re
ectance Properties

After object images of the real objects are created, we can generate new object

images by interpolating between the obtained object images. For this purpose,

we need to de�ne pixelwise correspondence between the two object images. In

this section, we describe how to de�ne the pixelwise correspondence and how to

interpolate the two object images based on the correspondence.

Several algorithms for establishing pixelwise correspondence between two images

have been developed. In our analysis, we used the mapping introduced by Beier

and Neely [1] to de�ne the pixelwise correspondence between the two object images,

each of which has 8 bands (X, Y , Z, KD;R, KD;G, KD;B , KS , and ��). A user

selects m pairs of corresponding line features each of which is speci�ed by pairs of

pixel coordinates Pn
i Q

n
i where i is the image number (i = 1; 2) and n is the index of

the line pair (n = 1 : : : m). First, we consider a mapping de�ned by one pair of lines

in the two object images (Fig. 2). A pair of corresponding lines Pn
1 Q

n
1 in the �rst

object image and Pn
2 Q

n
2 in the second object image de�nes a coordinate mapping

from the �rst image pixel coordinate X1 to the second image pixel coordinate Xn
2

such that

u =
(X1 � Pn

1 ) � (Q
n
1 � Pn

1 )

kQn
1 � Pn

1 k
2

v =
(X1 � Pn

1 ) � (Q
n
1 � Pn

1 )?
kQn

1
� Pn

1
k

(7)

Xn
2 = Pn

2 + u(Qn
2 � Pn

2 ) +
v(Qn

2 � Pn
2 )?

kQn
2
� Pn

2
k

(8)

where (V )? is the vector perpendicular to and the same length as the input vector

V . (There are two perpendicular vectors de�ned this manner. Either the left or

right one can be used as long as it is consistently used throughout.) The value

u represents the position along the line segment Pn
i Q

n
i . The value u is 0 at the

point Pn
i and 1 at the point Qn

i , and can be less than 0 and greater than 1 outside

the line segment P n
i Q

n
i . The value v represents the perpendicular distance from X

to the line segment Pn
i Q

n
i . Then, Eq.(8) determines the second image coordinate

Xn
2 which corresponds to the �rst image coordinate X1 based on the nth line pairs

Pn
1 Q

n
1 and Pn

2 Q
n
2 (n = 1 : : :m).
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For multiple pairs of lines, the second image coordinate X2 is given by a linear

combination of displacements Xn
2 �X1 for all line pairs (n = 1 : : :m). The weight of

the linear combination is determined by the distance from the �rst image coordinate

X1 to the line segment Pn
1 Q

n
1 as

wn = f
kQn

1 � Pn
1 k

p

a + dist(X1; Pn
1 Q

n
1 )
g
b

(9)

where a, b and p are constants which are used to change the relative e�ect of the

lines. In our implementation, we used a = 0:1, b = 2:0, and p = 0:2.

Finally, the second image coordinate X2 is given as

X2 = X1 +

X
n

wn(X
n
2 �X1)X

n

wn
: (10)

Once the pixelwise correspondences are established, an intermediate object im-

age can be created as linear interpolation of the two object images. For each pixel

X1 of the �rst object image, the corresponding pixel X2 in the second object image

is determined. Then, a new intermediate object image pixel is given as linear in-

terpolation of values of the two object image pixels X1 and X2. Smooth transition

of object shapes and re
ectance properties are obtained by gradually changing the

ratio of the interpolation.

4. Experimental Results

4.1. Measurement

In the previous sections, we described our method for obtaining new object mod-

els whose shape and re
ectance properties are interpolated from two real objects.
The method includes four steps: (1) separate the two fundamental re
ection compo-

nents using a range image and a sequence of color images, (2) estimate the re
ection

model parameters from the separated re
ection components, and store them with

the (X;Y;Z) coordinates as an object image, (3) establish pixelwise correspondences

between two object images, and create an intermediate object image by interpolat-

ing the two object images, and (4) synthesize images of the interpolated object

using Eq.(2). We applied the method to actual range and color images taken in a

laboratory setup in order to demonstrate the feasibility of the proposed method.

The target objects used in our experiment are two plastic toys with an approx-

imate height of 170mm. These objects are multi-colored, and each painted surface

region appears to have a uniform color. One frontal range image and a sequence of

color images of each object are taken using the image acquisition system described

in Section 2.1. A frontal range image is captured before rotating the object (ob-

ject orientation = 0�). Then, a sequence of color images are taken by rotating the

object. In our experiment, color images are taken at 3� intervals from �90� to 90�
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(60 color images total). The input range images for the two plastic toys are shown

as a mesh in Fig. 3. The input color image sequences of the objects are shown in

Fig. 4 and Fig. 5.

object 1 object 2

Figure 3: Measured shapes

frame 0 frame 15 frame 30 frame 45 frame 59

Figure 4: Input color sequence for object 1

frame 0 frame 15 frame 30 frame 45 frame 59

Figure 5: Input color sequence for object 2

4.2. Re
ection Component Separation

By projecting a range image pixel onto all input color images, a sequence of observed

colors is determined for the range image pixel as explained in Section 2.2. Fig. 6 (a)

illustrates a typical observed color sequence for a range image pixel with specularity.

The intensities are set to zero before image frame 8 and after image frame 53

because the surface point corresponding to the range image pixel is not visible

from the camera due to self-occlusion. The specular re
ection component can be

observed near image frame 29. When the specular re
ection component exists, the
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output color intensity is a linear combination of the di�use re
ection component

and the specular re
ection component. In this example, the observed specular

re
ection is relatively small compared to the di�use re
ection component. As a

result, estimating re
ectance parameters for both the di�use and specular re
ection

components together could be sensitive to various disturbances such as image noise.

That is why the re
ection component separation is performed in prior to parameter

estimation in our analysis. By separating the two re
ection components, re
ectance

parameters can be estimated separately in a robust manner.

The algorithm to separate the di�use and specular re
ection components was

applied to the observed color sequence for each range image pixel. The red, green,

and blue intensities of the observed color sequence are stored in the matrixM as its

columns Eq.(4). Then, the matrix G is computed from the matrixM and the matrix

K which is estimated as described in Section 2.4. Finally, the di�use and specular

re
ection components are given as shown in Eq.(6). This re
ection component

separation is repeated for all range image pixels. The separation result for the

observed color change in Fig. 6 (a) is shown in Fig. 6 (b). After the re
ection

component separation, re
ectance parameters can be estimated separately. The

result of parameter estimation will be shown in Section 4.3.
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Figure 6: Observed color sequence (a) and separation result (b)

4.3. Re
ectance Parameter Estimation for Segmented Regions

By using the separated di�use re
ection components, the object surface was seg-

mented based on the hue of the di�use re
ection components, as explained in Section

2.5. The results of the region segmentation are shown in Fig. 7 (segmented regions

are represented as grey levels). For estimating specular re
ection component pa-

rameters, 10 range image pixels with the largest specular re
ection component are

selected for each of the segmented regions. Then, the specular re
ection component

parameters of the re
ection model Eq.(2) are estimated for each of those selected

range image pixels. Finally, the average of the estimated parameters of the selected

range image pixels is used as the specular re
ection component parameters of the

segmented region. The estimated specular re
ection parameters are assigned to

all range image pixels within the segmented region. The results of the estimated

specular re
ection component parameters are shown in Table 1 and Table 2.
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Figure 7: Segmented object surface

Unlike the specular re
ection parameter estimation, parameters of the di�use

re
ection component (KD;R;KD;G; KD;B) are estimated for each range image pixel

individually. That is because the di�use re
ection component at the range image

pixel is guaranteed to be observed as long as the range image pixel is illuminated

and not occluded from the viewing direction. The results of the di�use re
ection

component parameter estimation are shown in Fig. 8. which shows the estimated

parameters KD;R, KD;G, and KD;B as a color image.

Table 1. Estimated specular parameters for the object 1

Ks ��

0 17.31 0.301
1 37.00 0.280

region 2 40.33 0.269
3 42.17 0.301
4 46.38 0.238

Table 2. Estimated specular parameters for the object 2

Ks ��

0 36.82 0.293
1 43.69 0.187
2 78.15 0.166

region 3 78.55 0.197
4 82.71 0.231
5 91.54 0.166
6 43.69 0.189

By combining the �ve estimated parameters (KD;R, KD;G, KD;B, KS , and

��) and three measured values (X;Y;Z), we obtain object images for the two real

objects. These two object images are used to create intermediate object images

which have interpolated shape and re
ectance properties.
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object 1 object 2

Figure 8: Estimated KD

object 1 object 2

Figure 9: Edited line pairs (70 line pairs are shown in green)

4.4. Interpolation of Shape and Re
ectance Parameters

By using the two object images, an interpolated object shape and re
ectance prop-

erties are created as explained in Section 3. Fig. 9 shows 70 manually drawn

corresponding line pairs on the two object images in green. Based on the line pairs,

pixelwise correspondence between the two object images is determined. Then, the

two images are linearly interpolated to produce an intermediate object image. An

example of the interpolated object shape and re
ectance parameters are shown in

Fig. 10. In this particular example, 50%-50% interpolation was used.

KS  σ αKDshape

Figure 10: Interpolation of shape, KD, KS , and ��
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100%-0% 75%-25% 50%-50% 25%-75% 0%-100%

Figure 11: Synthesized interpolated objects

4.5. Morphing Results

Finally, the interpolated object shape and re
ectance properties are used to create

new color images in the morph. Fig. 11 shows a synthesized color image of the

object for 50%-50% interpolation along with synthesized images for other interpo-

lation ratios which are created in the same manner as 50%-50% interpolation. The

same viewing direction, light source direction, and object orientation are used for

rendering Fig. 11 as for frame 30 of the input color images in Fig. 4 and Fig.

5. It is important to see that specularity appears naturally in those synthesized

color images. This is because, unlike other methods, our method uses intermediate

re
ectance parameters, as well as intermediate shapes, which are computed sepa-

rately from the two real objects. Therefore, images rendered using our approach do

not contain false specularities which are often created by other 2D or 3D morphing

techniques.

5. Conclusion

We have studied an approach for 3D shape and re
ectance property morphing of

two real objects. Unlike previously developed 3D shape morphing techniques, our
approach uses object surface re
ectance properties as well as object shapes for cre-

ating intermediate morphing results. This enables us to render images with correct

shading such as highlights and shadows. Our morphing method consists of two

components: shape and re
ectance property measurement, and smooth interpola-

tion of those measured properties. First, a range image and a color image sequence

are used for obtaining an object shape and re
ectance properties. The estimation

of the re
ection parameters is performed reliably by separating the re
ection com-

ponents. The obtained shape and re
ectance parameters are stored in an extended

range image which we call object image. The re
ection model used in our analy-

sis is described as a linear combination of the Lambertian model and a simpli�ed

Torrance-Sparrow model. After object images are created for the two real objects,

the object images are used to create a new intermediate object image which has

interpolated shape and re
ectance properties. Finally, the newly created interme-

diate object image is used to render new images of the objects in the morph. The

proposed approach has been applied to real range and color images of two plas-
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tic objects, and the e�ectiveness of the proposed approach has been successfully

demonstrated by showing intermediate morphing results with proper shadings.
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