
1

GENERATING VERSIONING FACILITIES FOR A DESIGN-DATA REPOSITORY

SUPPORTING COOPERATIVE APPLICATIONS1

THEO HÄRDER, WOLFGANG MAHNKE, NORBERT RITTER and HANS-PETER STEIERT

Department of Computer Science
University of Kaiserslautern

P O Box 3049, 67653 Kaiserslautern, Germany
e-mail: {haerder/mahnke/ritter/steiert}@informatik.uni-kl.de

Received (to be inserted by Publisher)
Revised (to be inserted by Publisher)

Communicated by (Name of Editor)

ABSTRACT

Nowadays the complexity of design processes, no matter which design domain (CAD, software engi-
neering, etc.) they belong to, requires system support by means of so-called repositories. Repositories
help managing design artifacts by offering adequate storage and manipulation services. Some of the
most important features of a repository are version management and activity management. Versioning
comprises the specification, storage, and maintenance of versioned design objects whereas activity man-
agement is responsible for cooperation control, designflow management and management of design
transactions processing versioned design objects. Regarding these issues (version and activity manage-
ment) repository technology, as we think, should not only provide predefined services, but should be
flexible enough to reflect different application needs. For that reason, we propose to provide repository
managers by generic methods, i. e., by generating the corresponding functionality. In this paper, we con-
sider a representative cooperation model, which is based on versioning services, in order to identify the
major data manipulation and activity control needs of cooperative design applications. We will focus on
the data manipulation needs by introducing our generative approach for customizing versioning facili-
ties. Additionally, we will outline our ideas of applying a generative approach also for the provision of
tailored activity control services. Thus, the paper wants to show that by exploiting generic methods and
reuse as well as the extensibility properties of new object-relational database technology, repository
managers can be flexibly tailored to special application needs and, thereby, applications do not have to
be forced to deal with systems only providing predefined services.

Keywords: Repositories, Cooperation, Versioning, Reuse, Generic Methods, ORDBMS.

1. Introduction

For years the termrepository has been used in a restricted manner, since it only addressed

metadata management in the context of database management systems. Nowadays it is used

in a much broader sense and covers multiple services supporting design applications. Our

concern is to make well customized repositories available for users. To reach this goal, we

1. This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Sonderforschungs-
bereich (SFB) 501 “Development of Large Systems with Generic Methods”.

2

propose a framework approach, allowing users to reuse predefined specifications of reposi-

tory services and adapt them to their special needs. Thus, we want to generate specific repos-

itory services from predefined service elements and by amending user specifications. Before

introducing our approach, we first want to mention the basic services a repository manager

has to provide in order to serve cooperative design applications properly.

1.1 Repositories

In the literature, two kinds of technology can be found which aim at an adequate support

of design applications: frameworks [1, 2, 3] and repositories [4, 5, 6]. Although the goals of

both are pretty close, we think, there are some differences between the underlying approach-

es. Frameworks focus on providing basic services, which may be adapted to special applica-

tion needs, and, thus, help to provide corresponding design environments capable of support-

ing the (special) design application. Repositories or, more precisely, repository managers, on

the other hand, emphasize the data control aspect of a certain class of design applications,

e. g. software development applications, and offer predefined, generic services. We think, the

two approaches may be integrated in a way beneficial to both, system providers and system

users. In simple words: we want to provide a framework allowing thegenerationof reposi-

tory managers.

In [4], the termrepository is defined asa shared database of information about engineer-

ing artifacts. Thus,a common repository allows (design)tools to share information so they

can work together. A correspondingrepository manager provides services for modelling, re-

trieving, and managing objects in a repository. For that purpose, a repository manager has to

provide thestandard amenities of a DBMS (data model, queries, views, integrity control, ac-

cess control, and transactions) as well as value-added services [4]:checkout/checkin, version

control, configuration control, notification, context management and workflow control.

1.2 Requirements of Cooperative Design Applications

After having given a very brief list of services usually associated with a repository man-

ager, we now want to consider the actual needs of design applications in a little more detail

in order to identify those repository services, which are really important for that class of ap-

plications. Obviously, repository managers for design applications have to fulfil requirements

w. r. t. both data management and activity management.

Data managementrequirements comprise versioning facilities. Complex structured de-

sign data is versioned for different purposes. First, the process evolution can be documented

by associating design process states with versions (or configurations, respectively) represent-

ing design object states. Second, versions enable designers to step back to previously estab-

lished design states in order to try another way of reaching the design goal. Third, versioning

allows for configuring complex design objects from versions of simpler design objects. Thus

a version model is required, providing adequate data structures for versions and configura-

tions and appropriate (generic) operations for manipulating versions and configurations.

3

This leads us to facilities for processing design data, i. e.,activity management facilities.

Activity management in our opinion comprises several important aspects. First, a processing

concept is needed which is well suited for design applications. Thus, client-side data process-

ing must be supported. Second, (design) data processing must be encapsulated by (design)

transactions in order to avoid inconsistencies. Beside general transaction management facil-

ities [7], design transaction management especially requires a concurrency control mecha-

nism, which is well suited for processing versions, and integrity maintenance mechanisms al-

lowing the specification of integrity conditions in terms of versions and configurations and to

check these conditions at appropriate points in time. The challenge here is, to equip these

mechanisms (for concurrency control and integrity maintenance) with adequate conflict man-

agement services [8], since blocking a transaction in the case of a data access conflict, as per-

formed by traditional concurrency control protocols, is not acceptable in design applications

due to the usually long duration and the interactive character of design transactions.

Besides transaction management, activity management, as we see it, comprises design-

flow management and cooperation control. These two fields mainly deal with project coordi-

nation and administration, but, definitely, are also as closely connected to data processing as

transactions are. Designflow management facilities are needed to pre-plan the steps to be per-

formed by groups of designers or single designers in order to reach their respective design

goals. Thus, design flows allow reuse and, thereby, optimization of processes, which have

been successful in the past, and relieve designers as well as project leaders. The challenge of

design flow management is that design applications cannot be completely planned in ad-

vance, as, for example, business processes can. Thus, designflow management has to provide

facilities for dealing with ad-hoc phases.

Cooperation control facilities have to aim at adjusting the visibility of usually (w. r. t. the

corresponding design goal) preliminary design information. Regarding the huge amount of

data created during a design process, data associated with a certain design task should only

become visible (and, thereby, accessible) to cooperating tasks, if it has a (by some means) sta-

ble design quality and, thus, may help cooperating designers to fulfil their own tasks.

A design model reflecting all the needs mentioned so far in an integrated manner is the

CONCORD model [9, 8]. Since CONCORD comprehensively covers all relevant needs of

cooperative design applications, we decided to consider it as a representative allowing us to

demonstrate our approach of precisely tailoring repository managers to the special needs of

cooperative design applications. CONCORD will be further introduced in Sect. 2.

1.3 Genericity

Usually repository manager services are as generic as database system services are. Let us

consider versioning facilities as an example of generic services. Usually a repository manager

implements a given versioning model offering a predefined set of data structures and generic

operations. As discussed in [10] there are very many facets which versioning models may dif-

fer in. We think, many of the different concepts which lead to many different version models

4

are very application-specific. Consequently, a generic version model cannot supportall ap-

plications properly, but serves some more and others less appropriately. Our goal is to be able

to support all applications by providing basic versioning facilities which may be refined and

which are the foundation for generating application-specific functionality. We think that this

approach is not only suited w.r.t. versioning, but also w.r.t. other fields of design domains,

e. g. designflow management. Therefore, our repository managers are more generated than

generic. As enabling technology for this approach, we use the extensibility features of new

object-relational database systems, i. e., we generate extensions of object-relational database

systems, which, in turn, implement repository manager functionality. Our approach, which is

called the SERUM approach, will be further introduced in Sect. 3.

1.4 Overview of the paper

As already mentioned, we want to illustrate the benefits of our SERUM approach in the

field of cooperative design applications. Therefore, we first introduce the CONCORD model

as a representative design model in Sect. 2. This discussion is supposed to identify the serv-

ices a repository manager has to provide in order to be well suited for cooperative design ap-

plications. For that purpose, we discuss the services provided by an earlier implementation of

a repository (named VStore, see Sect. 2.4), which has been used as an implementation plat-

form for the CONCORD prototype. VStore has especially been designed and implemented

(manually) for serving as a CONCORD repository, and, thus, provides generic repository

services supporting CONCORD.

Our goal is to show the following. First of all, it is not necessary to completely implement

such a repository (like VStore), because it is possible to provide equivalent services with ge-

neric methods. Second, a generative approach (like SERUM) is able to support a whole fam-

ily of systems which VStore is only one element of. Third, the SERUM process of tailoring

repository manager functions can be automated to a considerable extent and can reasonably

be controlled by users. Correspondingly, Sect. 3 introduces the SERUM process of custom-

izing and generating a repository manager. Sect. 4 discusses this process in more detail by

using the provision of adequate versioning facilities as an example. As we will see, our ap-

proach substantially benefits from the use of object-relational technology. Sect. 5 outlines

how access to versions is controlled in CONCORD. In Sect. 6 we discuss how the basic ideas

of SERUM can also be applied in the area of activity management. Sect. 8 concludes the pa-

per and gives an outlook to future work.

2. Overview of CONCORD

The CONCORD (CONtrollingCOopeRation inDesign environments) model [9] captures

the dynamics inherent to design processes. To reflect the spectrum of requirements, such as

hierarchical refinement, goal orientation, stepwise improvement and team orientation, three

different levels of abstraction are distinguished as roughly illustrated in Fig. 1.

5

2.1 Administration/Cooperation Level (AC Level)

At the highest level of abstraction, the more creative and administrative part of design

work is reflected. There, the focus is on the description and delegation of design tasks as well

as on controlled cooperation among the design tasks. The key concept at this level is thede-

sign activity (DA). A DA is the operational unit representing a particular design task or sub-

task. During the design process, aDA hierarchy can be dynamically constructed resembling

a hierarchy of concurrently active tasks. All relationships between DAs essential for flexible

cooperation are explicitly modelled, thus capturing task-splitting (cooperation relationship

typedelegation), exchange of design data (cooperation relationship typeusage), and negoti-

ation of design goals (cooperation relationship typenegotiation). The inherent integrity con-

straints and semantics of these cooperation relationships are enforced by a central conceptual

component, called acooperation manager.

2.2 Design-Control Level (DC Level)

Looking inside a DA reveals the DC level. There, the organization of the particular actions

to be performed in order to fulfil a certain (partial) design task is the subject of consideration

Fig 1: CONCORD-Overview

Design-Data Repository VStore

save suspend resume restore

checkout1 checkout2 checkin

Design Operation

design state

delegation
negotiation

usage

Administration/Cooperation Level

Design Control Level

Tool Execution Level

Design Activity cooperation relationships

DA6DA5DA4

DA2 DA3

DA1(DA)

(DOP) DOP1
DOP2

DOP4

Configure

DOP3

Cooperation Manager

Design Manager

Transaction Manager

6

(design flow). At this level, Fig. 1 shows an execution plan (state/transition graph) of a par-

ticular design activity. It models thecontrol/data flow among several design actions per-

formed within a DA. Usually, these actions are design tool applications. The operational unit

for the execution of a design tool is thedesign operation (DOP). In order to control the ac-

tions within the scope of a single DA, but without restricting the designers’ creativity, flexible

mechanisms for specifying the design flow for a DA are provided. The correctness of tool in-

vocations is guaranteed by a conceptual component, called adesign manager. The design

manager also provides for recoverable design-flow executions that are needed for level-spe-

cific and isolated failure handling. Design tools are applied to improve existing design states

in order to finally reach a design state that completes the current (partial) design task. Design

(object) states are captured by means of an object and version model (cf. Sect. 2.4).

2.3 Tool-Execution Level (TE Level)

From the viewpoint of the design-data repository, a DOP is a long transaction (see Fig. 1).

A DOP has the properties of conventional transactions. Because of long duration, it is inter-

nally structured by save/restore and suspend/resume facilities to be able to rollback the design

at the application level and to continue the design work after breaks. A DOP processes design

object versions in three steps. First, the input versions are checked out from the integrated

data repository, and cached in an object buffer at the workstation for efficiency reasons. Sec-

ond, the design data is mapped to in-memory storage structures tailored to the application

needs. It is processed by one or more design tools. Third, the finally derived new versions are

propagated back to the data repository (checkin operation). The derivation of schema-consist-

ent and persistent design object versions is guaranteed, again, by a central conceptual com-

ponent, called atransaction manager. It is also responsible for the isolated execution of DOPs

and for recoverable DOP executions that are, again, necessary for level-specific and isolated

failure handling.

2.4 The Generic Design Data Repository VStore

The three levels discussed above are conceptually located on top of the design data repos-

itory VStore. VStore completely covers the data management needs of CONCORD by im-

plementing the versioning model described in [11]. This versioning model supports explicit

and apparent versions of complex structured design data and offers a descriptive query lan-

guage for retrieval, insert and update of versions and corresponding configurations. Addition-

ally, basic services are provided by VStore, which have especially been designed and imple-

mented for supporting the CONCORD activity managers. These basic services are briefly

discussed in the following.

2.4.1 Transaction Management Services

Long design transactions are supported by an object-buffer-based processing concept as

described above. A special concurrency control protocol [12] has been developed and imple-

7

mented, taking the version semantics of the underlying data model into account, and thereby

protecting version manipulations sufficiently, without being unnecessarily restrictive. Hand-

ling data access conflicts (between concurrent transactions) is done in a way which avoids

blocking of design transactions. Similar (conflict management) principles have been chosen

w. r. t. integrity maintenance, since integrity violations detected during checkin do not direct-

ly lead to the abort of the corresponding (long design) transaction, but initiate an exception

handling process allowing the application to save as much of the work performed by this

transaction as possible.

2.4.2 Basic Designflow Management Services

Supporting the designflow manager, VStore provides an open transaction management,

i. e., the designflow manager may collaborate with the transaction manager in order to always

be aware of the current design state. Additionally, special-purpose integrity constraints may

be defined, expressing intermediate or final goals of local design tasks. Thus the designflow

manager may delegate the checking of such constraints to the VStore integrity maintenance

component at appropriate design states.

2.4.3 Basic Cooperation Control Services

Cooperation control is mainly based on groupware, but also exploits basic VStore servic-

es, at least as far as data-specific cooperation is regarded. This means that each (cooperating)

design task (DA) is associated with a workspace of private design data. Only if cooperation

relationships and corresponding protocols allow the cooperation with other tasks by making

private data visible, meaningful portions (versions) of private design data become accessible

to others. For such purposes, VStore provides sophisticated access control services to be ex-

ploited by the cooperation manager. Additionally, the cooperation manager may also coop-

erate with the integrity maintenance component of VStore to ensure that access to design data

belonging to ‘foreign’ workspaces does not invalidate the design quality already reached.

3. The SERUM Approach

TheSFB 501, of which our SERUM project is part, aims at the development of large sys-

tems with generic methods. Obviously, in large development processes a shared repository

should be used in order to support cooperation of developers and reuse of design. A suitable

repository has to support all the tools applied in the different steps of the development proc-

ess. This comprises both, managing product data related to a current system under develop-

ment as well as managing process data, i. e., information related to the development process

itself. The larger the development project is, the more multifaceted are the requirements con-

cerning the repository. Furthermore, the variety of tools needed in the various phases of the

software development process leads to sometimes contradictory demands. In our opinion, it

is hard, if possible at all, to fulfil all these differing needs by providing a single ‘stand-alone’

repository system.

8

Consequently, we want to build a family of repository managers, each providing custom-

ized access to the central database for a particular set of design tools. Together, these repos-

itory managers establish the actual repository reflecting all the needs of the entire domain (do-

main repository). Because they have a lot of similarities, we do not want to build each of them

from the scratch. Instead, we want to exploit reuse techniques.

The key idea of SERUM is to generate customized repository managers from a high-level

specification of its application-specific properties. Our approach defines a sequence of trans-

Fig 2: SERUM Process

Tests

UML Specification

Specify Repository
Manager Services

Modify Repository
Manager Specification

Check Model Guidelines

[no]

[yes]

Add Default Structures

SERUM Design Pattern

[not complete]

[complete]

Choose Template

Check Framework Guidelines

Generate Repository Manager

SERUM Template

[yes][no]

Repository Manager

Enhance Specification

SERUM Model Guidelines

SERUM Domain Guidelines

❶

❸

❹

❺

➏

➐

❽

❾

❷

9

formations and supports the corresponding steps towards an executable repository manager

with suitable tools. The idea of reuse is put into practice in the form of process reuse and reuse

of building blocks. Process reuse is embodied in the SERUM process itself and the SERUM

tools. Building blocks are reused throughout the process for completing the specification and

for composing/generating the repository manager. Fig. 2 gives a graphical illustration of the

SERUM process for customizing a repository manager. The generic methods applied in each

step of the SERUM process are based on a set of pre-defined frameworks.

According to [13] “a framework is a reusable design of all or a part of a system that is

represented by a set of abstract classes and the way their instances interact.“ SERUM pro-

vides a framework for each domain section (versioning, activity support, ...); each framework

consists of three parts, the frameworkguidelines, the technology-independentdesign pat-
terns and the technology-dependenttemplates. In the following, we examine SERUM frame-

works and their components in a little more detail, especially regarding their usage within the

SERUM process (see Fig. 2).

If a new repository manager needs to be built or an existing one modified, therepository

designer2 first has to give (❶) (or modify (❷), respectively) a UML3 specification of the (ap-

plication-specific aspects of the) services to be provided by this repository manager4.

This initial UML specification must observedomain guidelines, which are specified in

OCL5. Domain guidelines depend on the (kind of) repository services the repository designer

wants to specify, e. g., a versioning service. For example, since the versioning framework is

not able to deal with multiple inheritance, one rule of the guidelines checks whether or not

theproduct data model (PDM) only contains single inheritance. A SERUM tool, the SERUM

model enhancer (SME), checks the guidelines (❸).

Next, the SME adds thedefault structures (❹). Default structures are, for example, ab-

stract base classes with default attributes, relationships and behaviour. SERUM tools and re-

used building blocks depend on the existence of these base structures.

The next step is to enhance the UML model specified by the repository designer and to

complete the specification automatically by exploiting domain knowledge (❺). This step is

also supported by the SME. The UML model is altered, following modification rules. These

rules are described as scripts, which are part of the SERUM design pattern definition (see ex-

ample in Fig. 3). In [17] a design pattern is defined as “descriptions of communicating objects

and classes that are customized to solve a general design problem in a particular context”.

SERUM design patterns are used to automatically enhance UML models initially specified

2. The repository designer is the person specifying application-specific semantics needed by SERUM to generate
repository manager services.
3. Unified Modelling Language [14, 15].
4. Note that, as described in the following paragraphs, the application-independent aspects of the specification will
be automatically incorporated by the subsequent steps of the SERUM process.
5. Object Constraint Language [16], which is part of UML.

10

by a repository designer. A SERUM design pattern consists of two parts, an informal one

helping the repository designer to select the pattern, and a formal one, the design pattern

script, used to refine user specifications (see Fig. 3). Besides parameters (specifying the ele-

ments of the input model which are to be manipulated) and preconditions/constraints such a

script containsmodel evolution operations performing the actual transformations, e. g., by

enriching class definitions by new attributes, new relationships, new superclasses, new meth-

ods, etc. In our example (Fig. 3), we suppose that all versions managed by our versioning

framework have to be instances of a particular classProductDataObject (see Sect. 4). This

rule is specified by the design pattern which inserts an inheritance relationship between this

root class and each (product data) class specified. The (product data) classes themselves are

incorporated as base classes. All, the repository designer has to do, is to enumerate all classes

he wants to be versionable. He may do this either interactively or by using a scripting lan-

guage. The process of applying design patterns to a UML model can be seen as a customiza-

tion process, in which the framework is adjusted to the needs the repository designer wants

fulfilled. It results in a UML specification of a repository service, which is stored in the SE-

RUM UML repository.

Now, the UML specification has to be checked again (➏). It has to be proven, whether or

not the specification is complete in the sense that theSERUMrepository generator (SRG)

can generate a repository manager from it, i. e., themodel guidelines are checked.

1. begin define pattern “ProductDataObject”
2. begin parameters
3. ClassUList : aClasses;
4. end parameters
5. begin preconditions
6. aClasses->forAll(c | exists(“Class”,c.name));
7. end preconditions
8. begin constraints
9. aClasses
10. ->forAll(c
11. | c.allSupertypes
12. ->exists(s
13. | s.name()=“ProductDataObject”));
14. end constraints
15. begin alter model
16. for (int i; i < aClasses.length; i++)
17. {
18. GeneralizationClass.create_generalization
19. (aClasses[i].name(),“ProductDataObject”);
20. }
21. end alter model
22. end define pattern
23. // additional framework components
24.end define framework

Fig 3: Framework Definition Script

11

While the design patterns provide the implementation-independent parts of a SERUM

framework, SERUM templates represent the implementation-specific parts. This approach

enables reuse of design solutions without being technology-dependent. The idea of a SERUM

template is to bring together a configuration of components with two main properties. First,

these components are able to work together in a repository manager. Hence, SRG does not

need to know which configurations are useful. Second, the configuration of components will

lead to a repository manager with well-known properties, regarding non-functional require-

ments. As components a SERUM template may containcode generation rules giving addi-

tional flexibility w. r. t. programming languages,source code templates comparable to the

mechanism known from the programming languageC++, and ‘ready-to-use’ components

which can be applied without generating or modifying code. If such components need to be

customized, this is done via parameters. The implementations of the abstract base classes (if

they result from expanding a source code template) are examples of ‘ready-to-use’ compo-

nents. Also, repository servers and client caches are usually used without code modifications.

Each component may be part of more than one template, but a template provides the partic-

ular set of parameters, as for example the caching strategy, the repository generator needs for

customizing the components. Other parameters concerning non-functional properties are set

by the repository designer.

Each framework may contain several templates, where

each template includes the components for generating an ex-

ecutable repository manager. The repository designer has to

chose a template which fulfils the needs (➐) he has in mind.

In our versioning example, he may want to access the reposi-

tory by a Java [18] API. Hence, he would chose a template

supporting Java APIs. Consequently, the template includes an

implementation of the abstract classProductDataObject

(see above) in Java.

The UML specification serves as input for the SRG. Based

on the ‘half-fabricated’ components provided by the SERUM

templates, the SRG generates the new repository manager

(❽). It produces arepository database schema, acustomized

tool API and (several)repository servers (application serv-

ers) which together establish the new repository manager (Fig. 4). In this step the application

logic needs to be integrated into the repository manager. The repository designer has to pro-

vide implementations for those methods, which neither exist as source code templates nor can

be generated from the input specification. Additionally, the SRG stores information about the

generation process in the SERUM meta-database.

Server(s)
Repository

Customized Tool API

WF
CSCW

CA*

Fig 4: Repository Manager

Repository-DB

12

4. Providing Versioning Services in SERUM

As already motivated previously, a spectrum of versioning functionality/mechanisms is

required to adequately support applications with different demands. According to [10], we

think that there is a core of basic versioning facilities which can be used (extended, refined)

to establish a version model fulfilling the specific needs of a given (class of) application(s).

Thus, the overall tailoring process actually consists of two steps6:

(1) Adapting the basic versioning framework

Starting from a so-calledbasic versioning framework (BVF), which represents the above

mentioned core of basic versioning facilities, anadapted versioning framework (AVF) is de-

rived, which, in turn, represents the versioning data model7 adequately supporting the appli-

cation(s) in mind. The basic versioning framework [19] consists of structural elements as well

as a communication infrastructure. Adapting the BVF means refining both the structural ele-

ments and the communication in between them, e. g., propagation of actions along relation-

ships, in order to capture certain versioning semantics. We do not want to detail this first step

in this paper and, therefore, refer to [20, 19] which discuss it in more detail.

(2) Applying the adapted versioning framework

The AVF resulting from step (1) and aproduct data model8 (PDM) given for a certain

application are ‘melted’ in a way delivering a customized versioning repository manager.

This second step corresponds with the process which has been described at an abstract level

in the previous section. In the following, we want to concentrate on this step by discussing it

concretely for the example of versioning; it can be further refined as follows:

(1) Choosing an AVF

It is useful to choose the AVF before defining the PDM, because the AVF determines the

model guidelines which have to be fulfilled by the PDM (see❸ in Fig. 2) before it may be

melted with the AVF. Therefore, the repository designer should be aware of the guidelines

when specifying the PDM.

(2) Defining the PDM

Now, the repository designer defines the PDM, which, first of all, does not take any ver-

sioning aspects into account. Like BVF and AVF the PDM has to be specified in UML.

To clarify the process of applying an AVF, we use a small and intentionally incomplete

example from a software development environment (see sample PDM in Fig. 5). The exam-

ple considers applications, which may be divided into sub-applications in order to ease ad-

ministration. A (sub-)application may contain several packages, whereas each package may

belong to several applications.

6. It will turn out that the second step refers to the process described in the previous section.
7. Note, the notiondata model is used in the meaning of a modelling system. Thus, it is to be understood in a similar
way, the term relational data model is understood. It is not meant to be a database schema.
8. This time, the notiondata model refers to a sort of database schema, i. e. the result of a modelling process. At this
point, we stick to this notion (model), since it is mostly used in the literature this way.

13

(3) Specifying the VMI

Next, the PDM is superimposed by a VMI,

i. e., the units of versioning are defined. Fig. 6

shows a sample result of applying this step to

the PDM illustrated in Fig. 5. Fig. 6 illustrates

two sample units of versioning,

VS_Application andVS_Package , also

called versionable structures (VS). In this ex-

ample, each VS contains exactly one PDM

class (Application resp.Package).

Note that a VS generally may include sev-

eral PDM classes and PDM associations.

Since VSs can be considered as being units of

versioning, each instance of a VS9 class can have several versions, and each of these versions

is a structure consisting of instances of the corresponding PDM classes. Like the PDM classes

the VS classes can have associations, which refine the PDM associations. There are also as-

sociations at the version layer, which refine the VS associations; but these associations as

well as the version classes are generated (cf. step 4 below) and do not have to be defined in

the VMI. In our example, there are two VS associations,vs_contains and

vs_divides , which refine the PDM associationscontains resp.divides .

In order to specify the VMI in

SERUM we use a version defini-

tion language (VDL). The basic

VDL is defined in the BVF and

can be adapted in the AVF. The

VDL statements corresponding to

the VMI of Fig. 6 are shown in Fig.

7. The first statement defines the

VS classVS_Application . By

such a VS definition PDM classes

(and PDM associations) are asso-

ciated with a VS. Additionally, it

is specified, how many instances

of the corresponding PDM classes

or PDM associations may belong

to a single version of a VS instance (with [n..m] INSTANCES) and whether or not these in-

stances may belong to (versions of) other VS instances. In line 4, it is specified that anAp-

9. VS is a class of the AVF, and each VS class inherits the properties ofVS.

0..*
+superApplication

+subApplication

contains

0..*

divides

Application

Package

+package

+application

0..*
0..1

Fig 5: Sample PDM

Fig 6: PDM with the VMI

VS_Package

VS_Application

0..*
+superApplication

+subApplication

contains

0..*

divides

Application

Package

+package

+application

0..*
0..1

0..*

0..1

0..*

0..*

vs_divides

vs_contains

+superApplication

+subApplication

+package

+application

14

plication instance can only belong to a single version, no matter which VS instance this

version belongs to. The associations among the VSs are defined ‘DEFINE LINK REFINE-

MENT’-statements. Cardinality restrictions do not have to be specified, because they can be

derived from the PDM.

(4) Enhancing the PDM

In this step, the enhanced PDM is generated from the original PDM, the chosen AVF, and

the VMI specified in step 3. This task is performed by the SME. At first, the SME checks the

PDM against the model guidelines of the AVF (see❸ in Fig. 2). If the model guidelines are

fulfilled, then the default structures of the AVF are added to the PDM. Usually, the default

structures comprise abstract base classes for organizational purposes (a VS superclass, PDM

superclasses and PDM ‘superassociations’) and for the behaviour (SignalHandler [20]). Af-

terwards, the PDM is enhanced by applying the VDL compiler, which, in turn, exploits the

SERUM design patterns associated with the AVF to enhance the PDM. In Fig. 8 an excerpt

of the resulting enhanced PDM is illustrated. Only the structural classes for versioning are

shown; inheritance hierarchy and communication classes (SignalHandler, etc.) are omitted

due to complexity. Furthermore, OCL constraints are part of the enhanced PDM, but are not

considered in Fig. 8.

Note that the enhanced PDM resulting from this step can be further manipulated by ap-

plying more enhancement steps in order to incorporate features reflected by different SE-

RUM frameworks. Since these enhancements are similar to the one described above, we do

not want to detail this point.

1. DEFINE VERSIONABLE STRUCTURE
2. CLASSES(
3. Application WITH [0..1] INSTANCES
4. AND EXCLUSIVE OWNERSHIP BY ONE VERSION)
5. WITH VS_NAME IS VS_Application V_NAME IS V_Application

6. DEFINE LINK REFINEMENT
7. OF BASELINK divides
8. BETWEEN Application AS superApplication
9. AND Application AS subApplication
10. AS VERSIONLINK
11. BETWEEN VS_Application AS superApplication
12. AND VS_Application AS subApplication
13. WITH VS_NAME IS vs_divides V_NAME IS v_divides

14. DEFINE VERSIONABLE STRUCTURE
15. ... WITH VS_NAMEIS VS_Package V_NAME IS V_Package

16. DEFINE LINK REFINEMENT
17. OF BASELINK contains ...

Fig 7: VDL Script (Excerpt)

15

(5) Generating the Repository Manager

In this step, the repository manager is generated by the SRG from the enhanced PDM re-

sulting from step 4. But before, the enhanced PDM has to be checked against the framework

guidelines (see➏ in Fig. 2). If the guidelines are fulfilled, the repository designer may choose

from the set of available SERUM templates reflecting different technology demands. De-

pending on the chosen templates, the SRG generates the new repository manager (see❽ in

Fig. 2). Due to space restrictions, we cannot give a detailed view to the results of such an SRG

application and, therefore, have to refer to [20] which gives concrete examples of ORDBMS

schema structures. These include user-defined functions for the manipulation of versioned

data, functions supporting checkin/checkout and manipulation of buffered versions, and API

functions for calling all the mentioned manipulation functions from programming languages

like Java.

Obviously, the data management facilities needed by CONCORD applications can be pro-

vided as described in this section.

5. Exploiting Generated Versioning Facilities in CONCORD

In this section, we describe how the version management facilities which can be generated

by the mechanisms introduced in the previous section are facilitated by the CONCORD ac-

v_classes

vs_classes

classes

V_ClassV_Application

contains

v_contains

vs_divides

v_divides

divides

[0..*]
[0..*] [0..*]

[1]

[1..*]

[1]

[0..1]

[0..*] [0..*]

[0..*]

[0..*]

[0..*]

[0..*]

[1]

[1..*]

[0..*]

[1..*]

[1]

[1..*]

[0..*]

[1..*]

application

[0..1]

[1]

[1..*]

+superApplication

+subApplication

subapplications

v_subapplications

vs_subapplications

+superApplication

+subApplication

+superApplication

+subApplication

[0..*][0..*]

class
classes

versions
versions

[1]

vs_contains

subapplication

versions

+version

+application

versions

V_Package

VS_Application
[0..1]

Application

Fig 8: Enhanced PDM

Package

VS_Package

+version

+package

+package+application

16

tivity control mechanisms. For clarity purposes, we discuss the most important activity con-

trol aspect at each of the three CONCORD activity levels, respectively.

5.1 TE-Level: Controlling Concurrent Access to Versioned Design Data

Concurrency occurs, if parallel transactions (DOPs) want to access the same (local) data.

In order to determine an adequate notion of correctness, we had to take into account, whether

or not design tools do work cooperatively, and, if they do, whether or not the natural cooper-

ative capabilities already provided by the versioning concepts are sufficient. After having ex-

amined VLSI design, mechanical engineering as well as software engineering, we came to

the conclusion that tools do not directly cooperate. Furthermore, we realized that it is a natural

way of processing that tools derive versions independently and that there are special tools for

merging and configuring. This lead us to isolate DOPs, i. e. to exclude the well-known multi-

user anomalies such as unrepeatable read [7]. To achieve the wanted degree of isolation, we

developed the C3-locking-protocol (C3 stands forConcurrencyControl inCONCORD) [12]

which is an extension of the well known two-phase locking protocol (2PL) [7]. The major re-

quirements were the following. The protocol has to provide an adequate protection for ver-

sioned data. Due to long duration, abort cannot be used as a general mechanism for solving

conflicts (deadlocks). Furthermore, the protocol could take the inherent properties of design

processing into account, e. g. high interactiveness.

Table 1 illustrates the lock modes obtainable for versions. The column ‘Internal Effect’

lists the rights of the lock holding transaction and the column ‘External Effect’ correspond-

ingly lists the remaining rights of others. Considering a single version and a request of a trans-

action to derive a successor version, we had to foresee different mechanisms. Provided, the

derivation graph structure, the version is embedded in, allows the derivation of multiple suc-

cessors, the system grants a VD lock, giving concurrent transactions the possibility to also

Version Lock Mode Internal Effect External Effect

VS
(version read)

reading the version; reading the version,
deriving a successor
version;

VD
(version derive)

reading the version,
deriving a successor version;

reading the version,
deriving a successor
version;

VDX
(version exclusive derive)

reading the version,
deriving a successor version;

reading the version;

VX (version exclusive) reading/updating the version,
deriving a successor version;

no rights;

VXC
(version exclusive convertible)

reading the version; no (further) rights;

Table 1: Version Lock Modes

17

check this version out for derivation. If, on the other hand, the derivation structure does not

allow multiple successors, e. g. in the case of a list structure, then the VDX mode must be

given.

We also have to explain the two exclusive modes. VX is self-explaining. The VXC mode

reminds at the Update lock mode introduced to prevent conversion deadlocks on hot spots [7]

(in the original meaning it is granted instead of a shared lock). In the C3-protocol, however,

this mode is used differently, as we will see in the following. In our checkout/checkin scenar-

io, manipulations are carried out on a copy (stored within the object buffer) so that it is often

appropriate to use the VXC mode (instead of an exclusive lock) and prevent from that point

in time on further transactions from getting shared modes (VS, VD, VDX). So, there is a high

probability that the initially active transactions holding shared locks will be committed until

the considered transaction gets to its checkin step in which the VXC mode must be converted

to VX.

Since the processing context of a design tool is usually known in advance and design flow

can often be pre-planned, we found it acceptable to introduce some kind of preclaiming

[GR93], which we called pre-specification of access mode, because it is not completely

equivalent to preclaiming as we will see. Thus, with each query the application specifies

which access mode it wants to get on the query’s result set. Fig. 9 shows the pre-specification

clauses and the corresponding compatibilities of modes.

The major principles of the protocol are as follows. For each version in the query’s result

set, the lock manager checks whether or not the requested mode can be granted. If the request-

ed mode is incompatible, the lock manager determines the highest possible mode (which

could be granted on all elements) and offers it to the application. The application program

now has the following possibilities: to accept the lower mode, to reject and get back control,

or to wait synchronously or asynchronously. The drawback of this concept is that the appli-

cation programmer has to deal with concurrency control aspects, but we think that this is re-

stricted to an acceptable extent. For example, it can be appropriate to accept a derivation lock

VS VD VDX VXC VX

VS + + + - -

VD + + * - -

VDX + * - - -

VXC + + + - -

VX - - - - -

SELECT VERSIONS

SELECT VERSIONS

SELECT VERSIONS

lock held by a concurrent transaction
lock requested

Fig 9:Lock-Mode Compatibilities

FOR READ]

FOR DERIVATION

FOR UPDATE

18

for a certain version instead of the originally requested update lock and not having to wait

until other (usually long running) DOPs terminate. VXC modes are handled in a similar way.

After a ‘SELECT ... FOR UPDATE’ request, the lock manager may offer a VXC lock, if

there is a certain probability that the design tools which are currently holding incompatible,

shared locks will be finished until the requesting tool gets to its checkin step.

We just want to add, how deadlocks are handled and which correctness criterion is

achieved, since these aspects directly contribute to the topic of conflict management in this

system layer. Deadlocks may occur, since we allow DOPs to initiate several checkout steps.

Nevertheless, deadlocks are expected to be very infrequent, since they may only occur, if

transactions decide to wait synchronously. Additionally, due to the pre-specification, dead-

locks can be detected very early, i. e. during the checkout phase, so that it is acceptable, to

use abort as a resolution mechanism. Since the manipulation phase is expected to be the most

time-consuming phase within DOP processing, a reiteration of checkout is not too expensive.

Using the above mentioned principles within a two-phase locking protocol ensures at least
a 2.9 degree of isolation (cf. [7], degree 3 is equivalent to serializability). This means that
dirty reads, lost updates and unrepeatable reads cannot occur. Additional phantom protection
would require extension of the lock granule. Since phantom protection is hardly required in

the design environment, C3 does not provide phantom protection by default, but the applica-
tion may switch to full serializability.

5.2 DC-Level: Managing the DA-internal Designflow

At the DC level, we consider the internal structure of a single DA. Here only those ver-
sions are visible, which are relevant for data flow aspects. The set of operators is equivalent
to the set of available design tools. The designflow (description) to be observed is applica-
tion-specific and, therefore, specified by the user who created the DA. Fig. 10 shows an ex-
cerpt of a sample design-flow specification arranging the design steps of a particular DA
(which is responsible for designing the body of a new car).

Note that the user does not have to specify workflows in the language of the example. The

CONCORD system provides a graphical specification tool guiding the user in creating de-

sign-flow specifications. The graphical specifications are internally mapped to the specifica-

tion language. Nevertheless, we see in the example that the basic concept of design-flow

specifications is the transition. A transition transfers design states into each other. A design

state can be imagined as the set of currently accessible design versions. A transition specifi-

cation contains a pre- and a post-condition as well as an activity description. The conditions

have the usual semantics. The activity description is more interesting. Here, we provide the

possibilities of specifying design-tool invocations, sub-design-flow specifications or abstract

activity descriptions. Nesting of design-flow specifications can also be used to control coop-

erative phases as we will see in the next subsection. An abstract activity description means

just leaving it to the designer on how to fulfil this design step, i. e. letting him dynamically

decide on which tools to execute in order to fulfil the post-condition. Besides all that, well-

19

known concepts for control flow (e. g. the sequence used in the example of Fig. 10, see CON-

TROL-FLOW clause) and data flow are supported, which we do not discuss in this paper.

5.3 AC-Level: Controlling Cooperation

At the highest activity layer, we consider the AC-System manipulating versions which are

subjected to cooperation. This includes preliminary data which is exchanged between coop-

eratively working DAs (usage) as well as final data w.r.t. a certain DA which has fulfilled its

task and passes the result back to the superordinated DA (delegation). Thus, the activity units

are the (sub-)DAs incorporated into a design process and the operators are the corresponding

design-flow types or the incorporated tool invocations, respectively. The corresponding de-

sign flows may be interleaved or may access cooperation data according to application-spe-

cific correctness criteria. Constraints may be divided into cooperation-processing constraints

and cooperation-data constraints, together restricting the set of allowed histories of tool ap-

plications.

Let us first consider the different types of cooperation supported in CONCORD. Al-

though, cooperation specifications logically belong to the AC-level, they are embedded into

design-flow specifications. Due to simplicity of specifications we used the same language.

This language supports the specification of explicit as well as implicit cooperation.Explicit

cooperation relies on operations which can be compared with operations on access rights as

Fig 10:Excerpt of a Sample Designflow Specification

DESIGNFLOW_DESCRIPTION Body_Design
INPUT_PARAMETERS (in: inf_data)
OUTPUT_PARAMETERS (out: body_data)
OUTPUT_BINDINGS (out:=S3.body)
TRANSITIONS (

(T1 (TRUE)
(Determine_Frame_Data
IN (in := START.in) OUT (Frame := out))
(Frame.state = verified))

(T2 ...)
...

CONTROL_FLOW (S1->(T1, S2)->(T2, S3)-> ...);

pre-condition
activity_description

post-condition

T1 T2
S1 S2 S3

DA: Body_Design

20

known from SQL2 [21]. Note that all data which is created or derived by design-tool appli-

cations is, first of all, inserted into the local scope of the corresponding DA and can only be

made accessible for other DAs due to cooperation. Now, the operationspermit or transmit

can be used to cooperatively exchange preliminary design data. Permit grants a certain access

right (read, derive or update) on a certain design-object state to a cooperating DA. Rights giv-

en by the permit operation can be withdrawn again by issuing therevoke operation. The op-

erationtransmit transfers ownership from one DA to another one; this can only be undone by

issuing the transmit operation again (into the opposite direction). The usage of these opera-

tions can be allowed between certain DAs in certain design phases or can explicitly be pre-

planned. Fig. 11 gives, at its upper part, a sample specification of a pre-planned, explicit co-

operation phase; the illustration at the lower part shows how this specification can be embed-

ded into the design-flow specifications of the involved DAs.

The example shows how cooperation between DAs can be pre-planned as a sub-design-

flow specification appearing in each of the design-flow specifications of the two DAs in-

K1 K3 K4K2

L1 L3 L4L2

Phase 1
S4S1

DA1

DA2

EXPLICIT_COOPERATION_DESCRIPTION Phase_1
INVOLVED ARE (DA1, DA2)
OUTPUT_PARAMS (out: transmission_data)
OUTPUT_BINDINGS (out:=S3.transmission)
TRANSITIONS (
(T1 (TRUE) DA1: PERMIT (DA1, DA2, K2.engine, R) (TRUE))
(T2 (TRUE)

DA2: (Transmission_Design,
INPUTS (in1:=DA2.START.in,

in2:=DA1.K2.engine)
OUTPUTS (transmission:=out))
(transmission.state=verified))

(T3 (TRUE) DA1: REVOKE (DA1, DA2, K2.engine, r)) (TRUE)))
CONTROL_FLOW (S1->(T1, S2)->(T2, S3)->(T3, S4));

Fig 11:Sample Specification for Explicit, Pre-planned Cooperation

21

volved. After having reached design state S1 (which is associated with state K2), DA1 per-

mits access on the designed engine to DA2. Then DA2 uses this information to design the

transmission. Afterwards the access rights are revoked. Besides this pre-planned invocation

of cooperation operations, there is the possibility of allowing the dynamic usage between cer-

tain DAs in certain design phases. Suppose, the two DAs of the example both have a sub-de-

sign-flow with abstract (open) activities. Within the specifications of these sub-design-flows

it can be specified that the corresponding designers are allowed to issue cooperation opera-

tions dynamically.

The basic idea ofimplicit cooperation is that there are no local data scopes of the cooper-

ating DAs, but there are object pools the DAs are concurrently working on by applying design

tools. Correctness of processing can only be enforced by specifying, which sequences of de-

sign-tool applications are correct and which are not. For that purpose, we exploit the mecha-

nism of finite, deterministic automata, known from the ‘Cooperative Transaction Hierarchies

Approach’ [22]. A sample specification is illustrated in Fig. 12. We see the specification of

an implicit cooperation phase, which can be imagined as a sub-design-flow occurring in the

design flows of the involved DAs. The object pool, being the set of data the cooperative phase

is working on is initialized in the INPUT_PARAMS clause and the correctness criteria is giv-

en by the automaton A1. Due to simplicity we use just one automaton in the example. The

mechanism still holds for a set of automata. The basic idea is the following. Suppose we are

in the initial state S1. Now, the involved DAs may issue design-tool applications on the data

in the object-pool. The final state of the automaton (S2) can only be reached by verifying the

frame_data (upper transition). The design phase can only be left when the automaton is in the

final state. But if, after having verified the frame_data, a DA again modifies the frame_data,

Fig 12:Sample Specification for Implicit Cooperation

IMPLICIT_COOPERATION_DESCRIPTION Phase_2
INVOLVED ARE (DA1, DA2, DA3)
INPUT_PARAMS (in1: engine_frame_data,

in2: transmission_frame_data, in3: body_frame_data)
OUTPUT_PARAMS (out1: engnine_frame_data,

out2: transmission_frame_data, out3: body_frame_data)
AUTOMATA (A1);

FINITE_STATE_MACHINE A1
STATES (S1, S2)
TRANSITIONS (

(S1, S2, ANY, Verify_Frame_Data, ACCEPT)
(S2, S1, ANY, NOT Verify_Frame_Data, ACCEPT))

START_STATE S1
END_STATES (S2);

(ANY, Verify, ACCEPT)

(ANY, Verify, ACCEPT)

S1 S2

22

and, thereby, makes S1 the current state (lower transition), again the verify tool must be in-

voked, before the (cooperative) design phase can be finished. Thus, the automaton enforces

the last step of the phase to be the verification step. In a similar way, more sophisticated pat-

terns of cooperation can be specified.

This finishes our outline of the possibilities in specifying user-defined correctness criteria
related to special usage relationships. Delegation and Negotiation relationships follow pre-
defined protocols which do not have to be adapted to application-specific needs. Since these
protocols are intuitive, we do not detail them.

6. Providing Cooperation Control Services in SERUM

After having given a detailed description of the SERUM process for providing tailored re-
pository manager functionality for data management, especially version management, in
Sect. 4, as well as an outline on how cooperative access to versions is controlled at the differ-
ent CONCORD activity layers we now want to deal with the problem of generatively provi-
sioning repository manager functions for activity management, which is the focus of our cur-
rent work. Consequently, and, additionally, due to space restrictions, we cannot give a de-
scription, which is as detailed as the one given in Sect. 4. Thus, this section is more intended
to describe our position and goals of ongoing work than to present final solutions. In order to
outline the basic ideas on how to support activity management by means of SERUM con-
cepts, we decided to elaborate on cooperation control mechanisms residing at the topmost ac-
tivity layer of CONCORD (see Fig. 1 and Sect. 5.3), the administration/cooperation level.

First we want to recall the basic cooperation control services a repository has to provide
in order to properly serve as a CONCORD repository (cf. Sect. 2.4). Regarding the basic con-
cepts CONCORD offers at the administration/cooperation level, we can identify three major
areas of activity control. First, users (roles, groups) are to be managed and these users must
be associated with DAs, which are the central operational units at this level representing de-
sign tasks. Second, private workspaces of design data are to be associated with DAs and, ad-
ditionally, private data can selectively be made visible (accessible) for cooperating DAs. Vis-
ibility can be controlled dynamically by users or can be pre-planned by enhancing design
flow descriptions by operations adjusting visibility of meaningful design object states. Third,
data manipulation actions performed within the scope (sphere of control) of a DA, e. g. design
tools, must implicitly be caused to only access data, which is currently visible to that DA
(w. r. t. the corresponding private workspace and current cooperation relationships).

In order to provide activity management components which may be customized towards
fulfilling the mentioned tasks, SERUM offers three basic concepts (for cooperation control):
• Dependency Management. In cooperative design environments, a lot of dependencies be-

tween different tasks exist w. r. t. control flow and data flow. Hence, dependency manage-
ment is a helpful support for the CONCORD design manager.

• Access Control.Access control is not only related to security issues. If multiple develop-
ers work on the same shared database, access control is crucial in order to avoid inconsist-

23

encies. Therefore, flexible repository mechanisms are necessary which allow for custom-
ized access control facilities.

• Filter. Besides controlling object access, it is necessary to limit the scope of operations.
In CONCORD design operations of a DA are limited to the data owned by this DA or hav-
ing been made visible by cooperating DAs. In order to provide such functionality, the SE-
RUM approach includes the concept of filters. Filters control the visibility of objects to
subjects in a given context and, hence, restrict the scope of operations.
In SERUM each of these aspects is related to a base component. In the following, we will

take a closer look at these components.

6.1 Dependency Manager

Petri nets have been proven to be a useful concept in the field of workflow management

and designflow management [9]. Their mature formal foundation allows for tool supported

analysis and simulation. In the SERUM dependency manager (DM), we exploit the features

of petri nets for managing dependencies between different tasks. It includes a petri net ma-

chine (PNM) which provides functionality for the specification and animation of petri nets.

Our PNM is based on a variant of predicate/transition nets (P/T nets). A special feature of our

implementation is that it has almost completely been integrated into the ORDBMS by using

the extensibility features of object-relational database technology.

While we use petri nets for managing dependencies between different tasks, external ac-

tors have to take care of the tasks themselves. One of our design goals was to decouple these

actors from the PNM. Therefore, we have introduced a special kind of places, called magic

places. A signal is raised, if a token is received by one of these places. The signal contains the

token and the identifier of the magic place. External actors are free to catch the signal and to

handle the job. Afterwards, they send a notification to the magic place. This notification

changes the internal state of the token making it visible for depending transitions. Hence,

there is no direct linkage between magic places and actors. Both are decoupled, which allows

for a broader field of application.

In P/T nets a firing condition is associated with each transition. If the firing condition is

not fulfilled, the transition must not fire. The integration of the PNM into the database server

allows for linking transitions to the state of product data stored in the same database. To do

so, we take advantage of the activity features of the ORDBMS, i. e., database triggers. If the

state of the product data related to a transition changes, then an associated database trigger

asks the transition to check its firing condition. This allows the relation of dependencies to

product data without a tight integration into the product data management facilities.

6.2 Access Manager

In cooperative design environments, access control is crucial. Hence, SERUM provides a

component for integrating customized access control into the repository manager. This com-

ponent is called the access manager (AM). If a subject wants to apply an operation to an ob-

24

ject, it first has to send a request to the AM. The AM checks whether or not this subject is

allowed to apply the operation. Typical responses are to deny access to the object or to delay

access until the subject is allowed to apply the operation. Additionally, the subject is allowed

to decide itself how long it wants to wait, if access can not be granted immediately. The re-

sponse of the AM is represented by a so-called response object which connects subjects, op-

erations, and objects (Fig. 13). If the AM receives a request, then it reroutes it to the response

object responsible for the particular triple of subject, object, and operation.

A flat view to subjects, objects, and operations is not

suitable for most applications. Hence, the AM provides

several customization points for more flexible model-

ling of the relationships between the objects in each

group. For example, the ‘supplier’ relationship enables

the repository designer to customize the AM towards

implementing a hierarchical group concept for subjects,

where each group is a subject itself. In our example (see

Fig. 13) subject S1 is a supplier of subject S2, which

means that all properties of S1 are supplied to S2 if nec-

essary. A higher level tool may consider S1 as being a

group, but the AM does not depend on this interpretation.

Let subject S1 ask for access to object O1 with operation op1. If the AM receives the re-

quest, then it looks for an appropriate object R1, which connects S1, O1 and op2, and forwards

the request to this object. For a similar request by S2 the AM will not be able to find a response

object connecting S2, O1 and op1. Hence, it asks all suppliers to provide a suitable response

object. In our example, S1 will deliver R1. Similar concepts help to customize the facilities

for managing objects and operations. Objects and operations may also be structured with re-

lationships and the search for an appropriate response object has to take into account these

relationships, too. By choosing the relationships between subjects, the repository designer

can adapt the AM to his needs.

Additionally, the response objects are customization points, because these objects respond

to the actual request. Hence, by extending the set of response objects available in the frame-

work, new kinds of responses can be integrated into the AM, if necessary.

In our opinion, the generic functionality of the AM is suitable to support a broad range of

applications in the field of access control in our repository manager family.

6.3 Filter Manager

In cooperative design environments, it is necessary to limit the scope of operations to

product data, which is related to the work of a subject in a given context. We use the concept

of filters to hide objects outside the scope of an operation. The concept of filters is embodied

by the filter manager (FM) which manages the visibility of objects.

S1

S2

s

O1

op1R1

Fig 13: Access Control Example

25

Let us examine, for example, a database query. Based on the features of an ORDBMS,

queries can access the FM through a simple UDF which evaluates to ‘true’ if the object is vis-

ible. This UDF can be used in database queries to limit the scope of the query to objects,

which are currently visible. Considering a CONCORD design activity (DA) as a scope rele-

vant for the FM, it would (logically) work as follows. Designers, or design tools, respectively,

may issue queries without taking their (data) scope into account explicitly. The FM knows

about the scope corresponding to the query issued and after the query has been evaluated

against the entire database it cuts down the query’s result set by removing all objects (ver-

sions), which are not visible for the issuing DA w. r. t. cooperation control.

Both, the FM and the AM are based upon similar subject and object management facili-

ties, but the FM uses a context management infrastructure instead of the operation manage-

ment facilities used by the AM. Here, again, the external interpretation of the relationships is

not crucial to the FM.

6.4 Architectural Overview

In Fig. 14 an architectural overview of the basic services provided by SERUM in order to

support customized cooperation control is given. Note that this illustration only relates those

components discussed previously in this section with each other, and, therefore, is not neces-

sarily complete. For example configuration management and context management services

are not taken into account.

Every access to objects managed by the product data management (PDM) has to be passed

to the data access layer. This component asks the AM for the right to apply a certain operation

to these objects. This decision is taken by the AM by taking internal information into account

which has been specified by high level tools through the public interface. The semantics of

the internal structures as well as the interfaces provided to external tools are customized dur-

Fig 14: Architectural Overview

S O

op

R

CONCORD

SERUM Repository Manager

Data Access Layer

Access ManagerProduct
Data

Management

VMI

Filter
Manager

Dependency
Manager

F

O

C

S

PNM

26

ing the SERUM development process. This enables CONCORD to exploit the AM facilities

to ensure synchronized access and wanted security policies.

The scope of operations provided by the PDM depends on the visibility of objects. Hence,

the PDM has to ask the FM, whether or not the object to be manipulated is visible. An object’s

visibility depends on the subject and the corresponding context. External tools, as for exam-

ple the CONCORD cooperation manager, can change the internal information of the FM

through its public interface, which is generated by the SERUM application generator. Addi-

tionally, a generic interface allows other repository components to access the FM. For exam-

ple, a response object managed by the AM can change the visibility of a data object, after ac-

cess has been granted to a subject, in order to avoid this object being visible to other subjects

any longer.

The DM is almost completely independent of other components and is used as a black box.

CONCORD may use it to control the execution of design flows. The cooperation manager

acts as an external component and reacts to the signals raised by the DM. If necessary, the

DM can be coupled to the product data at the ORDMBS level by exploiting database triggers

to monitor manipulations of product data.

Although not taken into account in Fig. 14, it has been mentioned several times that OR-

DBMS technology, again, is the foundation for implementing the activity management serv-

ices discussed in this section. The DM has (almost) completely been realized as a DBMS ex-

tension consisting of UDTs modelling PNMs, and UDFs allowing the creation and deletion

of PNM instances and firing corresponding transitions. These UDFs can be used within SQL

statements serving for communication between actors and the DBMS. Furthermore, database

triggers may be used to automatically call the function responsible for firing transitions. FM

as well as AM functionality is needed to be encapsulated at each layer (client, repository serv-

er, ORDBS) of a repository manager (cf. Fig. 4) in order to control requests. At the lowest

layer which is the ORDBS layer, again, corresponding functionality can be realized by means

of UDTs and UDFs.

7. Related Work

In this paper, we brought together the worlds of cooperation models, versioning and ap-

plication generators. We have chosen the CONCORD model as a representative cooperation

model [9] which relies on a repository supporting versioning [10] of design artifacts. Version-

ing has been emphasized because of its crucial role w. r. t. data management for design ap-

plications and its manifoldness w. r. t. available versioning models. The latter underlines the

need to tailor versioning facilities in an application-specific manner. This, in turn, is what we

are aiming at in our SERUM approach.

What SERUM has in common with other approaches is the basic idea of reuse [23, 24].

Considering the classification of reuse techniques given in [23], SERUM exploits the princi-

ples ofsoftware components, software schemas, application generators, and software archi-

27

tectures. As many application builders, e. g., user interface builders or simulator generators

(e. g., MOOSE [25]), the SERUM repository generator is highly domain-specific. However,

in contrast to other approaches, our domain is given as data management facilities (repository

managers) for software development applications. Furthermore, we aim at generating soft-

ware components fitting into a generic software architecture, which, as we think, serves soft-

ware development applications best. This architecture (as discussed in Section 3) consists of

API functions, application server modules and an object-relational DB schema. The latter

also comprises object-relational extensions, e. g., user-defined functions effectively support-

ing the application servers on top. A similar idea w. r. t. the software architecture is pursued

in [26], but, to the best of our knowledge, our approach is the first one generating DB appli-

cations containing object-relational extensions. As we think, the extensibility property of ob-

ject-relational DBMS [27] provides a well suited infrastructure for generatively creating DB

applications.

SERUM is not a single-step but a transformational approach. In contrast to other transfor-

mational approaches, e. g. GenVoca [28], refinements are not applied to executable compo-

nents but to the (UML) specification which serves as input for the SERUM repository gener-

ator. The transformations performed by design pattern applications represent the actual proc-

ess of customization in SERUM. Other approaches do not support automatic adoptions of

input specifications for generators. The transformation performed in these other approaches

are more aiming at fulfilling non-functional requirements, which in SERUM are taken into

account by the concept of design templates.

Concluding the comparison to related work, we can say that SERUM mainly differs from

other approaches in its domain (generating data management facilities for software develop-

ment applications), the resulting software architecture (applications servers on top of object-

relational DBMS) and the transformational approach represented by the SERUM design pat-

terns.

8. Conclusions

In this paper, we have discussed the potential of SERUM, a generative approach for ac-

complishing repository manager functionality, by considering the demands of cooperative

design applications. The SERUM approach, in general, is beneficial for the following rea-

sons. First, the repository designer only has to model application-specific aspects of the re-

pository manager service he wants to realize; corresponding specifications may be expressed

in UML. Second, pre-defined, technology-independent design patterns relieve repository de-

signers by automatically enhancing UML models by application-independent aspects. Third,

repository manager functionality (code) is automatically generated/composed from the cus-

tomized UML model by applying technology-dependent design templates.

As a representative design model, we have chosen to consider the CONCORD model cap-

turing the dynamics of design applications by integrating version management as well as so-

28

phisticated activity management mechanisms. In order to enable applications to use the CON-

CORD functionality, a repository is needed providing basic data management as well as ac-

tivity management services. We have given a detailed description on how version

management facilities tailored to the needs of a distinguished application can be generated.

Additionally, we have outlined that similar (generative) customization processes may be ap-

plied in SERUM w. r. t. activity management, especially cooperation control. Thus, we have

shown an efficient way of generatively providing repository manager functionality, which

before had to be implemented completely manually. Furthermore, we have argued that UML

and the extensibility property of object-relational database technology is very helpful in this

concern.

The discussion has shown that the data management facilities as well as the activity man-

agement facilities can be decomposed in basic services, which, at their core, are application-

independent and, therefore, can be provided by means of what is called SERUM frameworks.

Certainly, we have to admit that we currently cannot give a complete list of basic components

and a prove that all thinkable cooperation models can be provided in SERUM. Nevertheless,

we think that the SERUM way of providing repository manager functionality is very prom-

ising, since it effectively puts into practice the basic idea of reusing design artifacts. The ex-

tensive application of reuse in SERUM considerably contributes to the goals of SERUM,

which are providing a basic infrastructure for assisting and relieving repository designers in

creating tailored repository manager functionality. Reuse is not only the foundation for the

tailoring process, but also simplifies this process for the user by hiding details, reduces error

probability, and helps to capture the complexity of the software generation step.

As future work, we intend to clearly identify all domain sections to which the mentioned

SERUM process of customization may be applied and define the interfaces of the correspond-

ing system components. Furthermore, we want to completely exploit the extensibility poten-

tial of ORDBMS technology, e. g., also using features such as adapted index structures or

controlled access to externally stored data via SQL, and to evaluate/validate the overall SE-

RUM approach in real application scenarios.

References

[1] Rammig, F. J., Steinmüller, B.: Frameworks and Design Environments, Informatik-Spektrum
15:1, 1992, pp. 33-43, in german.

[2] Harrison, D., Newton, R., Spickelmier, R., Barnes, T.: Electronic CAD Frameworks, Proc. of
the IEEE 78:2, Feb. 1990, pp. 393-417.

[3] van der Wolf, P.: CAD Frameworks - Principles and Architecture, Kluwer Academic, 1994.

[4] Bernstein, P.A., Dayal, U.: An Overview of Repository Technology, Proc. 20th VLDB, San-
tiago, Chile, Sept. 1994, pp. 705-713.

[5] Bernstein, P.A., Bergstraesser, T., Carlson, J., Pal, S., Sanders, P., Shutt, D.: Microsoft Repos-
itory Version 2 and the Open Information Model, Information Systems 24:2, 1999, pp.71-98.

[6] Wakeman, L., Jowett, J.: PCTE - The Standard for Open Repositories, Prentice Hall, 1993.

29

[7] Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques, Morgan Kaufmann
Publ., San Mateo, CA, 1993.

[8] Ritter, N., Mitschang, B., Härder, T.: Conflict Management in CONCORD, Proc. 6th. Int.
Conf. on Data and Knowledge Engineering Systems for Manufacturing and Engineering
(DKSME), Tempe, Arizona, Oct. 1996, pp. 81-100.

[9] Ritter, N., Mitschang, B., Härder, T., Gesmann, M., Schöning, H.: Capturing Design Dynamics
- The CONCORD Approach, Proc. 10th. Int. Conf. on Data Engineering, Houston, Texas, Feb.
1994, pp. 440-451.

[10] Katz, R.: Towards a Unified Framework for Version Modeling in Engineering Databases,
ACM Computing Surveys 22:4, 1990, pp. 375-408.

[11] Käfer, W., Schöning, H.: Mapping a Version Model to a Complex Object Data Model, Proc.
8th Int. Conf. on Data Engineering, Tempe, Arizona, 1992, pp. 348-357.

[12] Ritter, N.: The C3-Locking Protocol - A Concurrency Control Mechanism for Design Environ-
ments, Proc. STAK ‘ Rechnergestützte Teamarbeit’, Munich, March 1996, pp. 95-110.

[13] Johnson, R. E.: Frameworks = Components + Patterns, CACM 40:10, 1997, pp. 39-42.

[14] OMG, UML Semantics, Version 1.1, OMG Document ad/97-08-04, Sept. 1997.

[15] OMG, UML Notation Guide, Version 1.1, OMG Document ad/97-08-05, Sept. 1997.

[16] OMG, Object Constraint Language Specification, Version 1.1, OMG Document ad/97-08-08,
Sept. 1997.

[17] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Ob-
ject-Oriented Software, Addison-Wesley, 1995.

[18] Arnold, K., Gosling, J.: The Java Programming Language, Addison-Wesley, 1996.

[19] Mahnke, W., Ritter, N., Steiert, H.-P.: A Basic Versioning Framework for SERUM, Technical
Report, SFB 501, Dept. of Computer Science, Univ. of Kaiserslautern, 1998.

[20] Mahnke, W., Ritter, N., Steiert, H.-P.: Towards Generating Object-Relational Software Engi-
neering Repositories, Proc. Datenbanken in Büro, Technik und Wissenschaft (BTW’99),
Freiburg, Germany, March 1999, pp. 251-270.

[21] Date, C., Darwen, H.: A Guide to the SQL Standard - A User’s Guide to the Standard Relation-
al Language SQL (3rd Edition), Addison-Wesley Publishing Company, 1993.

[22] Nodine, M.H., Zdonik, B.: Cooperative Transaction Hierarchies: Transaction Support for De-
sign Applications, VLDB Journal 1, 1992, pp. 41-80.

[23] Krueger, C.W.: Software Reuse, ACM Computing Surveys 24:2, 1992, pp. 131-385.

[24] Mili, A., Mili, R., Mittermeir, R.T.: A Survey of Software Reuse Libraries,Annals of Software
Engineering 5 (1998), pp. 349-141.

[25] Altmeyer, J., Riegel, J.P., Schürmann, B., Schütze, M., Zimmermann, G.: Application of a
Generator-Based Software Development Method Supporting Model Reuse, Proc. 9th Confer-
ence on Advanced Information Systems Engineering (CAiSE*97), Barcelona (ES), June 1997,
pp. 159-172.

[26] What is DSSA? Online Document, http://www.lfs-owego.com/dssa/what-is-dssa.html, Aug.
1995.

[27] Stonebraker, M., Brown, P., Moore, D.: Object-Relational DBMSs, Second Edition, Morgan
Kaufmann Publ., San Mateo, CA, 1998.

[28] Batory, D., Geraci, B.J.: Composition Validation and Subjectivity in GenVoca Generators,
IEEE Trans. on Software Engineering 23:2 (special issue on Software Reuse), 1997, pp. 67-82.

