Intelligent Agents for
Mobile and Embedded Devices

Tim Finin, Anupam Joshi, Lalana Kagal, Olga Ratsimor, Sasikanth Avancha,
Vlad Korolev, Harry Chen, Filip Perich, and R. Scott Cost

University of Maryland Baltimore County, Baltimore MD 21250 USA

Abstract. The pervasive computing environments of the near future
will involve the interactions, coordination and cooperation of numerous,
casually accessible, and often invisible computing devices. These devices,
whether carried on our person or embedded in our homes, businesses and
classrooms, will connect via wireless and wired links to one another and
to the global networking infrastructure. The result will be a networking
milieu with a new level of openness. The localized and dynamic nature
of their interactions raises many new issues that draw on and challenge
the disciplines of agents, distributed systems, and security. This paper
describes recent work by the UMBC Ebiquity research group which ad-
dresses some of these issues.

This research was supported in part by the NIST Advanced Technology
Program, DARPA contract F30602-97-1-0215, and NSF grants CCR0070802
and I1S9875433.

1 Introduction

In the past few years, the research community has seen plenty of hype associated
with wirelesss / pervasive / mobile / ubiquitous computing. Mobile Commerce
(M-Commerce) in particular was declared as the “killer app” driving the wireless
revolution. In what is undoubtedly testimony to the speed at which internet time
moves, the last year has also seen pundits declaring, with equal certainty, that
M-Commerce is either a non-starter or that it is dead. In large part, the blame
for both the initial hype and the more recent disappointments must rest with the
rather narrow vision of m-commerce that some segments of the industry were
promoting. In this vision, cell phones (or wirelessly connected PDAs) became
mobile storefronts for e-tailers — essentially an incremental change in the present
e-tailing idea. We are all familiar with the ads of people buying products and
services from their cell phones from the beach. The drawbacks of this idea are
not hard to identify, as an increasing number of recent critical commentaries
show. This approach essentially treats palmtop devices as consumers (or clients)
of goods or information. The information or goods come from servers on the
wired side.

This approach (typically based on a client—proxy—server model) has been de-
veloped in academia over the last five or six years in contexts such as web access

from mobile platforms (for instance [26,30,6,33,37,3,25]) or transaction sup-
port for database access [13]. Variants of this approach are now emerging from
several commercial companies in the form of systems that allow phone based
“microbrowsers” or PDAs to access domain specific internet content (head-
line news, stocks, sports etc.) from designated portals. The WAP consortium
(http://www.wap.com/) is leading efforts among telecommunication companies
and service providers to evolve a standard mechanism and markup language to
support this. There have also been efforts, mostly from startups and e-tailers,
to allow people to buy goods using the phone microbrowsers or PDAs. In some
sense, one can think of this as a supermarket approach, where a few identified
service providers exist and the traffic in services is one-way.

Viewed in a broader perspective, M-Commerce in particular, and M-Services
in general, have yet to be fully articulated or explored, especially in the context of
emerging mobile ad-hoc networks. Staying with the M-Commerce idea, consider
a move away from the prevailing mobile store front vision. In the future, instead
of just interacting with the “buy-it—yourself” web storefronts, consumers will
be able to interact with service providers in a personalized way via automated
service-oriented eMarket models (e.g. [22]). The selling of tangible goods will
simply be one such service. Other services would include data, information, soft-
ware components or even processing time/storage on networked machines. There
will be no explicit clients and servers — but peers which can be both consumers
and providers of different services. M-Commerce will thus be transformed into
what we refer to as Me-Commerce, or more generally, Me-Services.

We have been working on a number of projects utilizing this alternative
bazaar approach that involves the cooperation of autonomous (“active”), self-
describing (“articulate”), highly interactive (“social”), and adaptive (“intelli-
gent”) components which are located in “vicinity” of one another. Such hard-
ware and software components will automatically become aware of each other,
establish basic (wireless) communication, exchange information about their ba-
sic capabilities (e.g. services they can offer) and requirements (e.g. payments
they need), discover and exchange APIs, and learn to cooperate effectively to
accomplish their individual and collective goals.

This idea of “ad-hoc” teams of entities that are dynamically formed to pursue
individual and collective goals can be used to create the software infrastructure
needed by the next generation of mobile applications. These will use the emerging
third and fourth generation broadband wireless systems, as well as short range
narrowband systems such as Bluetooth. Heretofore, the software component of
mobile computing has lagged behind its hardware (communication, computing
and networking) aspects. Much of the research in the software area is often
limited to allowing applications built for the wired world (web, databases etc) to
run in the wireless domain using proxy based approaches. Our work has sought to
move beyond this and provide a framework which uses the power of mobility and
ad-hoc wireless connectivity to enable novel applications. The results will point
us toward a physical environment in which devices all around us and even on

our body are in constant communication and organize themselves to cooperate
to do our bidding.

1.1 A Fanciful Scenario

It is 5:30 in the evening, and Jane’s panel meeting at NSF in Arlington is just
ending. As she steps out of the building to walk the two blocks to her hotel,
she decides that after resting for a bit, she’ll get ready and have dinner in one
of the nearby restaurants. She tells her palmtop of this decision, and asks it to
find nearby restaurants that serve cuisines that she would like to try but can’t
find in her home town. The palmtop goes into discovery mode and connects to a
nearby broker provided by the Arlington Restauranters Association. It sends it
Jane’s cuisine preferences and price ranges, and asks for a recommendation for
a restaurant where she can eat in about 45 minutes from now. The broker has
some static information about its local restaurants such as location and menus.
Managers in the restaurants are also feeding it dynamic information such as
wait times or any discounts/specials that they may have, based on their cur-
rent situations. Based on both the static and dynamic information, the broker
comes up with a list of possibilities. Meanwhile, as Jane is walking back, her
PDA asks the PDAs of others in the area for their opinions of good local restau-
rants and stores them. When Jane is ready to head out, the Palm PDA pulls
the recommendations from the broker and presents them to Jane. Her choices
include Vietnamese, Malaysian, Mongolian and Cambodian restaurants, since
these cuisines are similar to the Chinese foods she likes. She selects the Viet-
namese restaurant, since it is offering a 20% off coupon and had a couple of
good mentions in the information her PDA had gathered from other people. Her
PDA communicates this choice to the broker, asks that a reservation be made.
It then discovers the local map server that the city of Arlington runs, and gets
directions from Jane’s hotel to her restaurant.

Other scenarios can be drawn in and around meeting rooms, shopping malls,
airport terminals, train stations, and highway exits. A commuter train passenger
getting off her destination station may need to send an urgent fax but her PDA
lacks dial-up capability. Or perhaps, during the trip, she may have received an
email attachment that contains a new audio or graphics format that requires a
player she does not have on her PDA. As the train starts to slow down entering
the station, the passenger starts up an agent that can seek and retrieve the
fax or the player software services as she walks out of the station. Another
possible scenario that could arise in airport terminals and gateways is one in
which arriving and departing passengers may seek each other to exchange leftover
currency directly short of bank’s buy/sell exchange rates. Similarly, crossing
tourists may exchange or sell goodies such as e-coupons, unused museum tickets,
and personal tips on their way out of a country they have visited.

1.2 Background

The basic assumption behind our work is that at the level of computing and
networking hardware, we will see dramatic changes in the next few years. Com-
puting will become pervasive — a large number of devices (e.g. phones, PDAs,
household appliances) will become computationally enabled, and micro/nano
sensors (the so called smart dust) will be widely embedded in most engineered
artifacts. All of these devices will be (wirelessly) networked. More specifically,
we assume the emergence of (i) palmtop and wearable/embeddable computers,
(ii) Bluetooth like systems which will provide short range, moderate bandwidth
connections at extremely low costs, and (iii) widely deployed, easily accessible
wireless LANs and satellite WANs. We assume that these will be a mixture of
traditional low bandwidth systems and the next generation high speed ones.
These developments will lead to wireless networks that will scale all the way
from ad hoc body area networks to satellite WANSs, and link together supercom-
puters, “palmstations” and embedded sensors and controllers. There is ongoing
research in industry and academia in creating the hardware and low level net-
working protocols that are needed to realize this vision. Some recent efforts have
also started creating smart spaces and integrated sensor networks and addressing
the data management challenges that will need to be solved.

The scenario we have described earlier serves to illustrate the technical chal-
lenges that we and others are trying to address. In particular, as computing
becomes pervasive, an increasing number of entities will be both sources and
consumers of data and information. This is a significant change from the present,
where mobile devices essentially remain consumers of information, and the re-
search challenge has been to get them the right information in a format suited
to the bandwidth and resource constraints of the device [26]. In the future we
envision, besides the traditional Mobile Support Station based wireless access,
many of the devices will communicate using Mobile Ad-hoc Networks (MANET)
[21] formed by Bluetooth type devices. Further, most devices will have (and use)
multiple wireless network interfaces (Bluetooth, LAN, cellular etc.) [34]. Besides
obtaining information from “canonical and centralized” sources (such as a yellow
pages server for restaurants), a device may obtain information (recommendation
about restaurants) or service offers (a discount coupon for dinner) from other
devices around it — its present dynamic community. The scenario demands that
the system have some sense of vicinity. The entities in the system must be able
to describe themselves as well as discover others and figure how (and whether)
to interoperate with them, both at syntactic and semantic levels. Finally, the
entities should be able to communicate abstract ideas, (e.g. goals such as what
information is it looking for) and be able to negotiate with others for services
(I want to know what the traffic conditions are at I 95 Springfield Interchange,
in return I can provide traffic conditions in downtown DC.). Of course, the de-
vices participating will be resource constrained and heterogeneous, which poses
further problems.

Note that the challenges here go over and beyond those found in hetero-
geneous and distributed data management, and are in ways more subtle than

simply handling reduced bandwidth or disconnection, which of course remain
important issues. To express this in traditional data management parlance [12],
we could say that unlike heterogeneous data access, where “schemas” and “cat-
alogs” at least are known in advance, we are talking of a situation where both
are highly variable and not known up front. Thus a “query” will return results
dependent on where it originates, what location it refers to, and who is around
at that time.

1.3 The Remainder of this Paper

In the remainder of this paper we describe on three recent efforts we have made
to explore some of the issues mentioned above. We first present our work in
developing the Centaurus system, a relatively low-level framework on which to
build intelligent services in a mobile environment. We then describe research
aimed at using a distributed trust model to provide security and access control
in such environments. Finally, we describe an example application, agents2Go,
which uses location awareness to provide a simple restaurant recommendation
service.

2 Centaurus

The system described in this section provides an infrastructure and communica-
tion protocol for providing ‘smart’ services to these mobile devices. This flexible
framework allows any medium to be used for communication between the sys-
tem and the portable device, including infra-red, and Bluetooth. Using XML for
information passing, gives the system a uniform and easily adaptable interface.
We explain our trade-offs in implementation and through experiments we show
that the design is feasible and that it indeed provides a flexible structure for pro-
viding services. Centaurus provides a uniform infrastructure for heterogeneous
services, both hardware and software services, to be made available to the users
everywhere where they are needed.

Our goal is to provide an infrastructure and communication protocol for
wireless services, that minimizes the load on the portable device. While within
a confined space, the Client can access the services provided by the nearest
Centaurus System (CS) via some short-range communication. The CS is respon-
sible for maintaining a list of services available, and executing them on behalf of
any Client that requests them. This minimizes the resource consumption on the
Client and also avoids having the services installed on each Client that wishes
to use them, which is a blessing for most resource-poor mobile clients.

We also expect all Services to communicate via XML or XML-based lan-
guages such as RDF and DAML which are suitable for defining ontologies and
describing properties and interfaces of Services. As this is already being widely
used, we think that it will help in integrating Centaurus with already existing
systems. The information flowing in the system is strictly in the form of CCML
(Centaurus Capability Markup Language) which is built on top of XML.

Additionally, we address the security concerns of SmartSpace by incorpo-
rating a simplified Public Key Infrastructure that provides for authentication,
non-repudiation, anti-playback, and access control. We employ smartcards and
other media as secure containers for digital certificates to allow clients to securely
act as portals to services through heterogeneous networks.

To verify the feasibility of our infrastructure, we have used InfraRed (IR),
Bluetooth and 802.11b wireless technologies to enable communication between
Clients and Service Managers

In the last few years, a number of technologies have emerged that deal with
‘Smart’ Homes and Offices. Among them are the Berkeley Ninja Project [10],
the Portolano project [15] from the University of Washington, Stanford’s In-
teractive Workspaces Project [19], and Berkeley’s Document-based Framework
for Internet Application Control [23]. In the remainder of this section we will
present the design and modeling issues of our approach and touch on ongoing
work. Complete details on the communication protocols, implementation, ex-
perimental results and comparisons to other systems are available in [28,29,7,
43].

2.1 Design

Our system is designed to control access to services within a SmartSpace. Cen-
taurus2 is a second generation framework that enhances the original design of
Project Centaurus. The framework allows clients (users and services) to move,
attach, detach, and re-attach at any point within the system. A ‘SmartRoom’ is
equipped with a Centaurus Communication Manager, which continuously broad-
casts, through some medium, a client application. A person with a portable de-
vice who enters the room for the first time is given the option to install the
software. Once the application is installed, it continuously reads the updated
list of services. The person is able to choose a service, select a function, fill in
the related options and execute the function. These services may be provided
by Centaurus systems other than the one the portable device is connected to.
Additionally, we provide a bridging mechanism so that a user in one domain can
reach a service in another domain provided that the user has the appropriate
permissions.

Centaurus Communication Protocol. The Centaurus Communication
Protocol (CCOMM) is used to communicate with mobile clients and services
and consists of two levels. CCOMM Levell is used as a glue between some ex-
isting communication architecture such as IrDA stack, Bluetooth, or TCP/IP
and the generic Level2 protocol. The Centaurus Levell protocol handles con-
nection and disconnection issues, identification and authentication of the clients
and interaction with architecture specific protocols such as IrLAP and IrLMP
or Bluetooth. The CCOMM Level2 protocol handles transmission of the XML
messages, time synchronization, message fragmentation and re-assembly. The
Centaurus Level2 protocol is designed to be insensitive to disconnections, han-
dle multiple clients, provide minimal turnaround times and be easily portable.

In fact in the current implementation all communication managers and client
communication modules use the exactly the same code base.

Components. There are five functional components within the Centaurus2
system. The Centuarus?2 Certificate Authority is responsible for generating x.509
version 3 digital certificates for each entity in the Centaurus2 system and for
responding to certificate validation queries from Service Managers. The Cen-
taurus?2 Capability Managers maintains a database of the group membership
of Centaurus2 entities and answer requests for group membership. Next is the
Communications Managers, which provides a communication gateway between
a Client device and a Service Manager. Its sole purpose is to abstract and trans-
late communications protocols. The fourth component is the Service Manager,
which brokers requests between registered user-Clients and service-Clients. Fi-
nally, users and services are treated equally as Clients. Access rights of others to
a particular client entity are exclusively determined by the entity itself; and set
when it registers with a Service Manager. This equality of users and services is
a minor variation from Project Centaurus original design; however, it allows a
Client to access services while at the same time providing some its own services
to others.

Clients

: !
v v

| CDPD Module | RModde | | BiueTooth Module | | Ethemet Modle |

Centaurus Communication (CComm)

Service Manager

Recommender

Service Lamp Service Whiteboard

Service

Coffee Pot
Service

Services

Fig. 1. Centaurus Components

Centaurus2 Certificate Authority. The Centaurus2 Certificate Author-
ity is used to produce x.509 version 3 digital certificates [17]. In Centaurus2
certificate request and issuance is ancillary to the system. When a certificate
request from a Centaurus2 entity is filled, the entity receives its requested x509
v3 certificate signed by the Certificate Authority and the Certificate Author-
ity’s self signed certificate, which is subsequently used to validate other entities’
certificates. These certificates are stored and protected on a client’s smartcard.

Certificate generation and signing is typically a one time occurrence for any
entity within the Centaurus2 System. In a typical PKI the Certificate Authority
makes its registrant’s public certificates available in an on-line repository and
provides an on-line Certificate Revocation List (CRL) where inclusion indicates
that a given certificate is, for one of many possible reasons, invalid. As previously
stated, Centaurus2 uses a simplified PKI. In Centaurus2 each entity presents its
certificate to its Capability Manager when it registers. Rather than use a CRL
to signal a problem with an entity, the entity’s entry in the Capability Manager
is blocked, consequently preventing all access by that entity to the Centaurus2
system. This precludes the necessity of maintaining a CRL, which must be signed
by the Certificate Authority each time it is modified.

A Centaurus2 Service Manager verifies the authenticity of its stored copy of
the Certificate Authority’s certificate by sending the Certificate Authority a vali-
dation query. The Certificate Authority replies to the query with Epiyaterey ((verifier)).
In Centaurus2 the Certificate Authority’s certificate SHA-1 message digest is
used as the verifier. To verify the validity of its copy of the Certificate Authority’s
certificate the Service Manager tests if (Certi ficate Authority'scertificateSH A—
1messagedigest) = Dpyptickey (Eprivatekey ((vVerifier))). When the test passes it
assumes that the copy of Certificate Authority’s private key is valid and any
object signed by that key is also valid.

Our Lightweight PKI, in contrast to the traditional PKI, does not maintain
a CRL, does not transmit its key via the network, and does not distribute user’s
certificates or public keys. Rather, the Service Manager verifies its copy of the
Certificate Authority’s certificate with the CA as described above. In turn the
Service Manager will ensure that all certificates that it receives from clients have
been signed by the Certificate Authority.

Centaurus2 Capability Manager. The Centaurus2 Capability Manager is
responsible for maintaining and communicating group membership(s) of all en-
tities in the Centaurus2 system. Entities include Service Managers and Clients
(users and services). Group membership may be as general as “umbc.edu” (mean-
ing that only entities in the group umbc.edu are allowed access), more restrictive
as “cs.umbc.edu”, or even so granular as only the named Client “fperic1”, which
implies that only the named Client is allowed to access a particular service.

When the Centaurus2 Capability Manager is initialized it reads its x.509 v3
digital certificate and its PKCS#11 [38] wrapped private key from a secure file
and stores it into local memory. It also reads and indexes the capability file
containing the group membership of all entities within the system, as well as
storing the time stamp of the capability file.

When a Service Manager’s group membership request is received, the Cen-
taurus2 Capability Manager compares the current time stamp on the capability
file with the time stamp of the last file read, if they are not equal it re-reads
the capability file. This feature allows for a dynamic administration, to include
rights revocation, of the capability file.

In response to a group membership request, the Centaurus2 Capability Man-
ager sends a message containing the subject’s group memberships. The response
is digitally signed with the Centaurus2 Capability Manager’s private key.

We note that there could be multiple Capability Managers where one Ca-
pability Manager serves a cluster of Service Managers. In the event of multiple
Capability Managers each instance will replicate the capability database. During
initialization, each Service Manager learns the location of its Capability Man-
ager from its configuration file and communicates with that Capability Manager
directly. At the first communication exchange between the Service Manager and
the Capability Manager, the Service Manager requests and validates the Capabil-
ity Manager’s certificate, which it receives encoded in a signed CCML message.

Centaurus2 Service Manager. The Service Manager is responsible for
processing Client Registration/De-Registration requests, responding to regis-
tered Client requests for a listing of available services, for brokering Subscribe/Un-
Subscribe and Command requests from user-Clients to service-Clients, and for
sending Service Updates to all subscribed users whenever the state of a particular
service is modified.

Service Managers are arranged in tree-like structure and form the core of
the Centaurus2 system. Service Managers are identified by their “locations”, or
handles. With the exception of Group Membership requests to the Capability
Manager and certificate validation requests to the Certificate Authority all mes-
sages are sent and routed through the hierarchy of Service Managers using the
handle to determine where to forward each message.

All Clients (users and services) rely upon the Service Manager to which
they are registered to enforce security, access control, and to broker requests for
services. Consequently, each Client is only concerned with the trust relationship
with its immediately connected Service Manager. In turn, Service Managers
establish trust relationships with each other. Consequently, trust between Clients
is transitive through the Service Managers.

Generally in a PKI system, certificates are made available in an on-line repos-
itory. Consequently, when a user needs an entity’s digital certificate it is re-
quested from such a repository and assumed to be valid once it is received and
has verified the certificate signing chain along the entire path to the top level
signature authority. In the general PKI implementation certificate repositories
and CRLs have a high degree of administrative overhead. This overhead and
the accompanying network traffic imposed by certificate acquisition and the sig-
nature verification is mitigated in Centaurus2 by its simplified PKI framework.
As previously stated, each Centaurus2 entity possess its certificate and presents
that certificate upon registration. All entity’s attributes, to include the validity
of its certificate, are validated through a single query to the Capability Manager.

10

In addition, the authenticity of the presented certificate is verified by ensuring
that the certificate was signed by the Certificate Authority.

The Service Manager maintains a database of Client profiles for all entities
registered with it. Information contained in the profile includes the Client’s cer-
tificate (or the certificate of the Client’s Service Manager if the Client did not
initially register with the Service Manager), group memberships, location (the
Service Manager to which it is immediately connected), name, and permissible
access groups.

Client. Client registration and subsequent access to services occurs on an
ad hoc basis. All Clients must register with a Service Manager prior to accessing
any services or making its services available. At registration, a Client will, in
addition to sending its digital certificate, transmit a list of group memberships
required for other Clients to access its services. The Service Manager will store
the Client’s certificate, list of access memberships, and the list of group mem-
berships (acquired from the Capability Manager) for the Client in the Service
Manager’s user profile database. Generally, a user-Client will send an empty ac-
cess list indicating that no other Client may be granted access to it, whereas a
service-Client will include a list of groups where membership in at least one of
the listed groups is required for access to that Client’s service.

Once a Client has successfully registered, it is given an interface to all services
to which it has rights to and which are also registered to the same Service Man-
ager. This includes an interface to all other Service Managers that the Client’s
Service Manager is aware of.

Centaurus Capability Markup Language. The CCML is divided into
‘system’ , ‘data’, ‘addons’, ‘interfaces’, and ‘info’. The ‘system’ portion contains
the header information, the id, timestamp, origin, etc. There are two variables,
‘update’ or ‘command’. An ‘update’ variable is used to inform other Centaurus
components about status updates of Services and Clients, whereas the ‘com-
mand’ is only used by Clients to send a command to a certain Service. The
system also contains the listening section for a Service or Client. It specifies all
the Services that a Service or Client is interested in. Using the ‘addons’ section,
we can add a related Service to another Service, for example, add an Alarm
Clock Service to a Lamp-Control Service. We are not currently using this sec-
tion. All information regarding the variables and their types are contained in
the ‘data’ section. The CCML for a Client always has one or more ‘actions’ in
its data section that a Service Manager can invoke on it. This is used by the SM
to change the state of the device.

Two actions can be conveyed in the CCML:

— AddService: When this action is set, the Client adds the value of this variable
to its InterestList; i.e. the list of services that it is interested in.

— RemowveService: This is set by the Service Manager, if the Service that the
Client is interested in, is no longer available. It causes the Client to stop
listening or using the Service and remove the Service from its InterestList.

11

The ‘interface’ section contains information about the interfaces that the ob-
ject (Service/Client) implements. Other details like the description, and icon for
representation are in the ‘info’ section.

2.2 Conclusion

We have successfully developed a highly flexible and adaptive infrastructure
for providing secure access to services within the SmartSpace environment. We
believe that by providing a uniform infrastructure using XML-encoded data
exchange we have shown that it is appropriate and effective for deploying services
in such environments.

We are also working on a Recommender Service. Instead of returning a list
of all possible services that are available to a Client, this service recommends a
list of services that might be in the interest of the Client based on the existing
environment context. For example, the system returns a coffee-maker control
service during the morning to the user, and in the evening it returns a light
control service to the user. It may also notice that the user generally wants to
listen to to the same list of songs and provide the list as soon as the user steps
into the room.

3 Distributed Trust Management in Pervasive
Environments

Traditionally, security for stand alone computers and small networks was han-
dled by physical security and logging into computers and domains. With open
networks like the Internet and pervasive environments, issues concerning security
and trust become crucial. There is no longer the physical aspect of security due
to the distributed nature of the networks and the concept of user authentication
to a domain is not possible. Imagine a scenario where a user, with a portable
device, walking through a building, switches on the lights in the corridor and
lowers the temperature of the room that he/she enters. This is an example of
pervasive/ubiquitous environments that will soon be a reality. In these ubiquitous
computing environments users expect to access resources and services anytime
and anywhere, leading to serious security risks and problems with access control
as these resources can now be accessed by almost anyone with a mobile device.
Adding security to such open models is extremely difficult with problems at
many levels. We can not assume an architecture with a central authority and ac-
cess control is required for foreign users. The portable hand-held and embedded
devices involved have severe limitations in their processing capabilities, memory
capacities, software support and bandwidth characteristics. Moreover, there is
currently a great deal of heterogeneity in the hardware and software environ-
ments and this is likely to continue for the foreseeable future. Finally, in such
an open, heterogeneous, distributed environment there is a great likelihood that
inconsistent interpretations will be made of the security information in different
domains.

12

We encountered several problems with security for Centaurus. Firstly, it is
not possible to have a central authority for a single building, or even a group
of rooms. It is also not sufficient to authenticate users because most users are
foreign to the system, i.e. they are not known. So there is no means of providing
access control. Consider a Centaurus Smartroom in an office, equipped with an
MP3 player, fax machine, several lights, a coffee maker and a printer. If a user,
John, walks into a room, how does the room decide which services John has the
right to access. Just authenticating John’s certificate gives no information about
his access rights because John is an unknown user. Unless the expected users
along with their access rights are known in advance, dividing authorization into
authentication and access control is not possible. Assume John does not work in
the office, but in one of its partner firms. How will the system decide whether
to allow him to use certain services?

We suggest enhancing security by the addition of trust, which is similar to
the way security is handled in human societies. Some authorized person in the
office can delegate the use of the services in the room to John, for the period
during which he is in the office. Trust management can be viewed as verifying if
the credentials of the requester fulfill the policy of the requested service [35,4].
We propose a lightweight solution for trust management that is applicable for
the Internet, which we are tailoring for pervasive computing environments.

3.1 What is Distributed Trust Management ?

The distributed trust management approach involves articulating policies for
authentication, access control and delegation, assigning credentials to agents,
allowing entities to delegate or defer their rights to third parties and providing
access control by checking if the initiators credentials fulfill the policies. If an
agent has credentials allowing it to access a certain service, the agent is said to
have the right to access the service. If an agent defers a right it has to another
agent, it is called a delegation, the former is called delegator and the latter
delegatee. Delegations are very important to trust management as they help
disperse trust and provide a very flexible mechanism for evaluating access rights.
They allow distributed systems to be more scalable as the process of generating
and evaluating access rights is no longer limited to certain central administrative
entities [5].

Blaze, who coined the term distributed trust management, tries to solve the
trust problem by binding public keys to access control without authentication
[35,4]. His PolicyMaker, given a policy, answers queries about trust. Though
powerful, the policy definition is complicated and not easy to understand for
non-programmers who are probably going to develop the policy. Simple Pub-
lic Key Infrastructure (SPKI) was the first proposed standard for distributed
trust management [14]. This solution, though simple and elegant, only included
a rudimentary notion of delegation. Pretty Good Privacy or PGP [45] was de-
veloped to enable the sending of secure email without a secure key exchange
or a central authority. In PGP, a keyholder (an individual associated with a

13

public/private key pair) learns about the public keys of others through intro-
ductions from trusted friends. Whether or not a user accepts the information
about new keys depends on the number of introduces and the degree to which
they are trusted (quantized in PGP to three levels: fully trusted, partly trusted
and untrusted). Some of the main problems with PGP are with key distribution
and management. The Use-Condition Centered Approach [24] uses certificates
for use-conditions that are created by those responsible for the resources. This
can only be used when the resource is simple enough to be described by use-
conditions, but in large systems there could be many types of access like read,
write, execute etc. Delegation logics [32,20] is similar to our approach, however
it is not able to capture adequately the constraints associated with rights and
delegations.

3.2 Previous Work

We have implemented a Distributed Trust Mechanism for a Supply Chain Man-
agement (SCM) system for the CIIMPLEX EECOMS project [42,9]. An SCM
system consists of groups of agents that are either vendors or clients. These
agents need to access resources in each others domains. For example, a software
consultant may need to access the database of its client. Each group of agents
that are part of the same company form a policy domain, and follow the same
security policy. The policy in each domain is enforced by special agents called
security agents. Agents are identified by X.509 [18] authentication certificates
and all communication is via signed messages. Security agents are able to reason
about these signed messages and policies to provide authorization.

Our system sets up authorization and delegation rules, so that the informa-
tion in the SCM may be accessed only by authorized agents. Security agents
provide authentication and authorization within a particular domain, and are
trusted within the company and by the company’s buyers and sellers. They also
represent the company in some sense as they interpret the company policy. This
policy describes certain rules for rights, delegation and for reasoning about them.

In order to allow the buyer’s employees to access certain information within
its company, the security agent of the seller gives the security agent of the buyer
the permission to access that information, and the ability to delegate this right.
To propagate this trust within its own company, the security agent of the seller
delegates this right to some of its employees based on the policy. Depending on
the previous delegations, the employees can further delegate this right to other
employees, forming a chain of delegation from the buyer’s security agent to the
seller’s security agent to the seller’s employees. If at any point a delegation fails
or is revoked the access cannot go through. The same holds if the situation is
reversed and the supplier gives the buyer access to some of its resources. Dele-
gation chains should always trace back to a security agent to be valid. Security
agents are responsible for all accesses originating from its company and act as
gateways. All access to information outside the company must go through a secu-
rity agent. This agent will authenticate the requester, check the delegation chain
and verify that the requester has the right to access the requested information.

14

The security agent creates an authorization certificate for the requesting agent,
that the requesting agent can use for access.

This framework led us to view trust management as a very effective method
for resolving several issues related to security in distributed systems.

3.3 Trust Architecture

Our architecture supports authentication through a PKI infrastructure based
on X.509v3 certificates. After entities are authenticated, they are assigned roles
either statically, based on a role list or dynamically, based on a set of rules
that describe the credentials an entity must possess, to be in a certain role.
In our previous work with supply chain management [27], trusted third parties
were responsible for delegating abilities, and authorizations were deemed valid,
if they were supported by these trusted entities. However in our current work,
trusted third parties are not responsible for delegating abilities. Any entity can
delegate any right that it has the ability to delegate. However all delegations
are sent to and stored by Service Managers, that are trusted to reason about
the policy and delegations and provide access control within a SmartSpace. The
Service Manager still employs trust based mechanisms to decide access rights
of an entity by reasoning over the global policy of the organization and its
own local policy. The global policy will include the roles in the organization
and role based access rights. Vigil does not use delegation certificates because
most mobile devices do not have the resources to store so many certificates.
This semi-centralized approach makes revocations rather straightforward. The
appropriate Service Manager needs to be informed about the revocation and it
is reflected immediately. This approach works very well for SmartSpaces because
of the localized nature of these spaces.

Rights or privileges can be given to trusted agents who are responsible for
the actions of the agents to whom they subsequently delegate the privileges.
These rights are generally associated with the role of the agent. So the agents
will only delegate to agents that they trust. This forms a delegation chain. If any
agent along this chain fails to meet the requirements associated with a delegated
right, the chain is broken and all agents following the failure are not permitted
to perform the action associated with the right [27].

Agents can make requests, either for certain actions or to ask for permission
to perform an action, and while doing so they attach their ID certificate the
request. The Service Manager authenticates the requesting agent and checks its
delegations before authorizing the request. An agent is allowed to execute any
action that it has the permission to execute, or if the ability has been delegated
to it by an agent with the right to delegate. In our system we view ’delegation’ as
a permission itself. Only an agent with the right to delegate a certain action can
actually delegate that action, and the ability to delegate, itself can be delegated.

We have developed a representation of trust information in Prolog, that al-
lows flexibility in describing requests and delegations. Delegations can be con-
strained by specifying whether the delegatee has the permission to delegate and
to whom it can re-delegate.

15

Consider an example of John entering a SmartRoom. John is an employee of
one of the office’s partners. He approaches one of the managers, Susan, and asks
for permission to use the services in the SmartRoom. According to the policy,
Susan has the right to delegate those rights. Susan delegates to John the right to
use the lights, the coffee maker and the printer but not the fax machine. Susan
sends a message to the Centaurus Service Manager of the office, associating
John’s identity certificate with the rights. When John enters the room, he sends
a request to use the printer to the the Service Manager of the room. The Service
Manager reads John’s identity certificate but cannot locate any access rights.
So it asks the Service Manager above it in the hierarchy, this continues till
the request reaches the root. This Service Manager has the delegation made by
Susan. The service manager sends the access right back down the chain. On
receiving the access right, the SmartRoom’s Service Manager authorizes John’s
request and John is allowed to use printer. One optimization is for the root
Service Manager to send back the entire list of access rights. The SmartRoom’s
Service Manager creates an authorization certificate containing all the rights
and returns it to John. While the authorization certificate is valid, John can
access the services without the Service Manager having to re-check his rights.
However once the certificate expires, the Service Manager checks with the root
if the access rights are still valid and creates another certificate. By having very
short periods for the certificate, the system handles revocation of rights easily.
This scenario demonstrates the importance of trust over simple security.

3.4 Ongoing Work

We are working on integrating trust into the security infrastructure for Centau-
rus. We believe that trust will add a new dimension to pervasive computing,
allowing more flexibility and control over access control.

At the same time, we are improving our trust architecture. The system is
being extended to include entitlements, prohibitions and obligations and the
ability to delegate them. We are not sure if these delegations can be interpreted
correctly. In many contexts, an agent may want to delegate some obligation to
another agent who is willing and able to assume it. If the obligation is not ful-
filled, then hopefully the former agents reputation will not suffer as much as the
agent which took on the obligation. Entitlements are stronger than permissions
and prohibitions are negative permissions, both of which can be delegated in the
same way as permissions.

Our approach is to treat delegation as a “speech act” and to associate with
it appropriate conversational protocols along the lines of those used in agent
communication languages [31]. In some cases it may be necessary to allow or
even require the delagatee to accept or reject the delegated object. Although
we typically view privileges as extending our capabilities and thus being purely
beneficial it is not always the case. If we allow privileges to entail corresponding
obligations when the privilege is exercised, an agent may not want to accept the
delegation of the privilege. Similarly, an agent may want to reject the delegation
of an obligation or a prohibition, if it is allowed to.

16

Another important issue with distributed networks is that of privacy. Users
do not want their names and actions to be logged, so we are trying to do away
with with X.509 certificates and replace them with XML signatures [44] from a
trusted authority and does not include the identity of the bearer, but only a role
or designation.

Our past work on distributed trust represented actions, privileges, delegations
and security policy as horn clauses encoded in Prolog. In order to develop a
approach that is better suited to sharing information in an open environment,
we are recasting this work in DAML [11], the DARPA Agents Markup Language.
DAML is built on XML and RDF and provides a description logic language for
defining and using ontologies on the web. Using DAML, we are defining the basic
ontologies for actions, agents, roles, privileges, obligations, security policies and
other key classes and properties. In applying our framework, one must extend
the initial ontology! by defining domain specific class of actions, roles, privileges,
etc. and creating appropriate individuals.

3.5 Conclusion

According to the current paradigm of pervasive computing, we will soon be able
to access information and services virtually anywhere and at any time via any
device, whether it is our phones, PDAs, laptops or even watches. In environments
like this, security is very important. But security by itself is insufficient and trust
management is required, as normal security mechanisms like authentication and
access control are unable to meet the requirements of these environments. Trust
management is the development of security policies and credentials, the checking
of presented credentials against the policy and the delegation of permissions.
Earlier in this section, we presented the design of a trust based architecture for
pervasive systems based on some of our previous work with distributed trust
management. To help make the vision of ubiquitous computing a reality, we
firmly believe that trust should be included in the security infrastructure for
pervasive environments.

4 Agents2Go

In this section we describe the Agents2Go system that addresses some of the
problems of location dependent service discovery in an M-commerce environ-
ment. Agents2Go is a distributed system that provides mobile users with the
ability to obtain location dependent services and information. One of the most
critical requirements for M-Commerce is the ability to discover services in a
given context. Context aware computing [40, 2] is a challenging goal. It involves
recognizing a users location, current focus of attention, immediate objectives and
even ultimate underlying goals. Our objective in Agents2Go system is to provide
location dependent service and information discovery. Our system automatically

! http://daml.umbc.edu/dt.daml

17

obtains a user’s current geographical location in CDPD (Cellular Digital Packet
Data) based systems without relying on external aids such as GPS (Global Po-
sitioning System). This location information is used to find a local provider for
a requested service. For example, a user arriving at a location that he/she has
never visited before should be able to find a local taxicab service.

Current mobile devices have well known inherent limitations [25] like limited
power supply, smaller user interface, limited computing power, limited band-
width and storage space. To overcome these limitations, it is necessary to develop
systems that provide mobile users with high quality, accurate context relevant
information. It is important that these systems be highly scalable since the de-
mand for service searches will increase in the future.

A location dependent search utilizes a user’s current geographical location to
refine the search and provide access to locally available services without going
though a centralized infrastructure. One of the challenges for location-based
searches is determining the user’s current location. Users are often uncertain, or
even completely unaware, of their current geographical location making location
based searching more difficult. An automated detection of the user’s current
location is very helpful in overcoming this issue.

Location dependent systems are naturally described and implemented as dis-
tributed systems. This improves their fault tolerance and scalability. For in-
stance, service information can be grouped by location and managed by a server
responsible for that specified geographical region. In such a decentralized scheme
user requests are processed at the local server and do not burden the rest of the
system. This makes the system more efficient, responsive and scalable.

4.1 Related Work

There are a number of platforms that provide multi-agent infrastructures to al-
low inter-agent communication and collaboration. These platforms can be used
to create collaborative intelligent agent environments that could provide location
based information services. One such infrastructure is the Lightweight Extensi-
ble Agent Platform (LEAP) [1]. LEAP provides a lightweight platform that is
executable on small devices such as PDAs and phones. It is FIPA [16], compliant
and also supports WAP and TCP/IP. The YellowStone Project [39] from Retic-
ular Systems, Inc. also deals with location dependent services. Essentially, there
are communities of software agents called agencies, which provide information
services and e-commerce support for a particular geographical area. However, a
participating user has to specify his current geographical location. Very recently
researchers at AT&T Research Labs have described a project with similar goals
[36], which also locates the user in a CDPD [41] environment using cell tower
IDs.

There are several features that distinguish Agents2Go from other existing lo-
cation dependent service discovery systems. Primarily, Agents2Go is a platform
for supporting deployment of any type of location dependent services, and not
just limited to providing location dependent information. Our system automati-
cally discovers user’s location and utilizes this information to refine its searches to

18

Aot 57

Fig. 2. Agents2Go is a simple prototype application exploring which makes use of
location aware services.

provide the most relevant information to the user. In addition, the Agents2Go
system allows service providers to actively participate in the system. Service
providers routinely supply the system with dynamic information updates. This
improves the quality of information or services presented to the user and ensures
that the service providers are able to send their latest promotions/updates to
their users.

4.2 Components of the Agents2Go System

The Agents2Go System, illustrated in Figure 2, is composed of several compo-
nents: the PalmApp, the Agents2Go Server, the Locator, the Agents2Go Infor-
mation Repository, the restaurant Brokers and participating Restaurant Agents.
PalmApp. The PalmApp is the end user interface to the Agents2Go Sys-
tem. This component runs on the user’s PDA equipped with a CDPD modem.
Essentially, it is a generic “form visualizer” that is independent of the system
functionality. we used in-house markup tags to specify the layout and compo-
nents of the form. The PalmApp captures a user request, converts it to an ap-
propriate format, and then forwards that request to the Agents2Go Server. The
PalmApp also handles the responses from the Agents2Go Server and presents
them to the user. Our initial implementation was for the PalmOS platform.
Communication and Location Detection. All the messages that are ex-
changed between the Agents2Go Server and the PalmApp are sent using the
CCOMM described in section two. Our current Agents2Go System uses CDPD
Levell Module, which is an extension of the UDP Levell module. CDPD pro-
vides an infrastructure that allows the transmission of data over idle capacity
of already existing cellular voice networks. Cellular networks consist of cell tow-
ers with a unique ID and a specific geographical cell over which it provides
services. Our system employs these tower IDs to identify a user location. We

19

have developed a library that allows us to control and interact with Novatel
wireless modems through MSCP (Minstrel Status and Configuration Protocol).
The PDA’s CDPD module employs this library to obtain periodic status reports
which contain information like cell tower signal strength (which can be used to
minimize packet loss) and the tower ID.

Messages. All the messages that are exchanged between the PalmApp and
the Agents2Go Server are encapsulated in a generic message format which spec-
ifies a sender ID, a message type and message content. Messages sent from a
PDA to a Server use that PDA’s ID as the Sender ID. Messages sent from a
Server to a PDA use the Server’s ID as the Sender ID. The message type field
can contain one of three message types: “response form message”, “form request
message”, or “form data message”. The Message Content field contains the mes-
sage itself. The PalmApp uses a generic “form request message” to request forms
from the Agents2Go Server that are displayed to the user. This message specifies
the form name that the PalmApp is requesting and the cell tower, with which
it is currently communicating.

On startup, PalmApp requests an “initial query form” from the Agents2Go
Server. This form is used to issue user requests. These requests are converted
into a “form data message” and sent to the Agents2Go Server. The response is a
form that the PalmApp displays to the user that may contain a “home” button
that causes the PalmApp to generate the “initial query form” message to allow
the user to enter a new query. Unlike a “form request message” or a “form data
message”, the “response form message” is initiated at the Agents2Go Server and
destined for the PalmApp. This message contains a form that the PalmApp is
required to display to the user. This message may contain a response to the
user’s query, an error message, etc.

Agents2Go Server. The Agents2Go Server is the component that handles
messages to and from a PalmApp. User queries are forwarded to the Locator,
and the corresponding responses are forwarded back to the PalmApp. Upon
receiving a “form request message”, the Agents2Go Server reads the requested
form from a file. If the desired form cannot be located, a suitable error form
is sent back to the PalmApp. Once the desired form is located, the Agents2Go
Server uses a lookup table to map the specified cell tower ID (obtained from
the request message) to its neighborhood name. This neighborhood name is
inserted into the location field of the form that needs to be displayed to the
user. This neighborhood name, which can be changed by the user, is inserted
into location field of the form displayed to the user. Thus a user, regardless of
his current location, can find information about any participating region. This is
encapsulated in a “response form message” and sent back to the PalmApp. When
the Server receives a “form data message” from a PalmApp, it forwards it to the
Locator. Other alternative designs could be used, a “form data message” could
be forwarded to the corresponding Broker. Once the Agents2Go Server receives
a response from either the Locator or a Broker, it generates the corresponding
“response form message” and sends it to back the PalmApp.

20

Locator. The Locator is the component that plays the role of a proxy be-
tween the Agents2Go Server and a set of Brokers. The Locator receives requests
from the Agents2Go Server, determines which area the request originated form
and then forwards that request to the Broker responsible for that area. The Lo-
cator maintains a dynamic table that maps geographical areas to Brokers. The
Locator listens on a well defined port for registration messages from Brokers.
A Broker registration message specifies a port on which the Broker will accept
requests that are forwarded by the Locator. The registration message also speci-
fies the geographical area for which that Broker is responsible. Upon receiving a
request form the Agents2Go Server, the Locator looks inside the request string
and extracts the point of origin information. This information is used to de-
termine the designated Broker. The Locator then forwards the request to that
Broker. If the Locator is unable to locate a suitable Broker for the given request,
the Locator sends a “broker not found” message back to the Agents2Go Server.
A reliable communication channel is maintained between the Agents2Go Server
and the Locator for all message transfers.

Broker. The Broker maintains information about restaurants in its desig-
nated geographical region. It also processes requests from users and generates
suitable responses. These requests are forwarded to the Broker from the Locator
and the generated responses are sent to the Agents2Go Server for forwarding to
the requesting PalmApp. The system partitions participating restaurants into
sets based on the geographical region in which these restaurants are located.
Each coverage region is assigned a unique name and is serviced by a designated
Broker. This Broker is responsible for generation of replies for requests pertain-
ing to its coverage region. Our current implementation allows grouping of several
geographical regions or partitioning a single geographical region to construct a
coverage region.

Every Broker in the Agents2Go System is also associated with a specific
Agents2Go Information Repository — a set of databases that contain informa-
tion about participating restaurants in a Broker’s coverage region. Restaurant
information like name, address, cuisine etc. of all participating restaurants in
that coverage region is distributed among these databases. This information can
be classified as static, since it rarely changes. The Broker is also responsible for
frequently changing restaurant information like waiting times and promotions.
This kind of information can be classified as dynamic. This dynamic information
is maintained within the Broker itself. The separation of dynamic and static in-
formation is done to reduce the number of messages that is exchanged between
the Agents2Go System components.

It is common for wireless cells to overlap. If a user is in a cell overlap region,
then that user’s PDA connection can hop from one overlapping cell to another.
So, the cell tower ID that the user’s PDA picks up can change quite frequently.
If the cell overlap is contained within a single coverage region, then cell hopping
is not an issue. In this case any cell ID that is picked up in that cell overlap
will map to the same coverage region name and is managed by the same Broker.
However, if the cell overlap is on the border of two or more coverage regions, the

21

user’s PDA may pick up IDs that belong to cell towers that service neighboring
coverage regions. This could create a scenario where a user’s request query could
be routed to a neighboring Broker that has absolutely no information about the
current location of that user.

The Agents2Go System solves this issue by imposing a policy that prohibits
coverage regions from overlapping unless there are some cell overlaps falling on
their borders. We also require a special configuration for the Information Repos-
itories that are associated with these overlapping coverage regions. Restaurants
in overlapping regions are partitioned into two disjoint sets: a shared set and a
native set. A shared set contains restaurants that are located in the areas of cell
overlap (that fall on the borders of coverage regions) and a native set contains
the remaining restaurants that are in the Broker’s coverage region but not in
the cell overlap. During his interaction with Agents2Go a user might move to a
different coverage region, while the request is being processed. In this scenario,
the reply to the request contains the information relevant to the region from
where the request originated. This information could still be of relevance to the
user since he/she is not far form the initial coverage region.

On initialization, a Broker establishes connection with its Agents2Go Infor-
mation Repository. The Broker queries its repository to obtain IDs of restau-
rants for which it will broker information. If the Broker is unable to establish
required connection(s) with its repository, the initialization fails and the Broker
exits gracefully. Once a successful connection is established, the Broker builds
a “waiting time” table. The “waiting time” table is a data structure that the
Broker uses to maintain the dynamically changing restaurant information. The
restaurant IDs and the location identifiers for the restaurants are used as keys of
the table. The values of the table are the waiting time information, promotion
information and time stamps of updates. Once the table is built the Broker reg-
isters itself with the Locator component. The registration contains geographical
regions that this Broker administers and the port on which the Broker will lis-
ten for forwarded requests from the Locator. If the registration with the Locator
fails, the Broker exits gracefully.

Once initialized, the Broker starts to listen for updates sent by the local
Restaurant Agents and requests forwarded by the Locator. When a Broker re-
ceives a wait time update and some promotion information from a Restaurant
Agent, it timestamps it and then caches this information into the “waiting time”
table. When the Broker receives a request from the Locator, it first checks for
the validity of the request. If the request string does not match the expected
format, further processing of that request is terminated and an error message
is sent back to the user. For valid requests, corresponding database queries are
dynamically generated. Request parameters are dynamically incorporated into
a database query.

If the request contains a waiting time limit, then the Broker searches its
“waiting time” table for the restaurants that have their waiting time below the
requested time limit. This search returns IDs of the restaurants that have suit-
able waiting time. Returned IDs are also incorporated into the database search

22

query. Once the query is constructed, it is executed on the Broker’s Agents2Go
Information Repository. If no records are found, then a “No record found” mes-
sage is returned to the user. If matching records are found, a timestamp for
each result record is evaluated. This timestamp can belong to one of three age
groups: “fresh” age group, “aged” age group, or “trashed” age group. A record
will be treated differently depending on its age group, and on whether the user
is interested in dynamic information.

To identify the age group of a timestamp, the difference between the value of
that timestamp and current system time is calculated. This difference is the age
of the timestamp. The timestamp age is compared against two threshold values.
The first, lower, threshold denotes the limit between the “fresh “age group and
the “aged” age group. The second, higher, threshold denotes the limit between
the “aged” age group and the “trashed” age group. Hence, if a timestamp is
“fresh”, the record that has been selected is sent to the user, and the dynamic
information is displayed in its regular format. Else, if a timestamp is “aged”,
the record is sent to the user along with a warning that the record is not up to
date. And finally, if a timestamp is “trashed”, the user request is analyzed to
determine if the user is interested in dynamic information. If the user’s request
specifies a waiting time limit, the record is dropped from the result set. On the
other hand, if there is no time limit specified, the record is sent to the user, but
the dynamic, outdated portion of that record is replaced with an “Information is
unavailable” message. This classification of the record’s timestamps gives users
some flexibility. Users themselves can determine if the dynamic information is
useful.

Once the response to the query is formed, it is converted into an appropriate
format and sent to the Agents2Go server. So there are two types of Restaurant
Information messages that could be sent to the Agents2Go Server.

The Restaurant Agent. The Restaurant Agent resides and runs at the
location of the participating restaurant and allows the restaurant manager to
update dynamic information such as waiting times, promotion information, etc.
Updates from the restaurant are sent to the Broker that is responsible for the
geographical area in which the restaurant resides. If the restaurant is located
in a cell overlap region, which is managed by several Brokers, then the update
message is sent to every Broker that manages the overlap region. The update
message contains the restaurant id, and other relevant information like the value
of the wait time for table for two, the wait time for table for four, the wait time
for table for six, etc. Each update message also contains a timestamp specifying
the creation time. The Broker, upon receiving an update message, extracts the
relevant values from the message and inserts these values into the appropriate
row of its “waiting time” table.

We are currently developing an extended version of our system. For this ver-
sion, we are porting our system to the iPAQ platform. We are also using 802.11b
as the networking protocol. The functionality of the Locator and the Agets2Go
Server have been merged with the PalmApp and the Broker components. In
this version, the PalmApp directly communicates with the local Broker. We are

23

currently working on a mechanism that allows The PalmApp to automatically
discover local Brokers by receiving their heartbeat broadcasts.

An alternative way of discovering local Brokers is to use the Bluetooth Ser-
vice Discovery Protocol. When a Bluetooth enabled device running a PalmApp
component comes into proximity of a Bluetooth enabled server that is hosting a
local Broker, the PalmApp will be able to discovers this Broker.

4.3 Conclusion

We have implemented a working prototype of the Agents2Go System as a loca-
tion aware, distributed system that allows mobile users to request and receive
various services information that is of most relevance to their current geograph-
ical location. Thus, the mobile users will not be burdened with extraneous in-
formation for services in remote locations. Also, the Agents2Go System allows
service providers to supply dynamic service updates. This dramatically improves
the value of the service for the providers and gives users more refined service
information. Our implementation currently deals with restaurants, but it could
be easily updated to work with other location specific services. All of the above
mentioned features make our system well suited for various M-Commerce exper-
iments using the existing CDPD infrastructure in use in the United States.

5 Conclusions

The pervasive computing environments of the near future will involve the in-
teractions, coordination and cooperation of numerous, casually accessible, and
often invisible computing devices. These devices, whether carried on our person
or embedded in our homes, businesses and classrooms, will connect via wireless
and wired links to one another and to the global networking infrastructure. The
result will be a networking milieu with a new level of dynamism and openness.
The localized and dynamic nature of their interactions raises many new issues
that draw on and challenge the disciplines of agents, distributed systems, and se-
curity. This paper describes recent work by the UMBC Ebiquity research group
which addresses some of these issues ranging from the need to develop a common
communication infrastructure, to requirements for security and access control to
techniques for location recognition.

References

1. A FIPA platform for handheld and mobile devices. In Proceedings of the 2001
Workshop on Agent Theories, Architectures, and Languages, 2001.

2. G. Abowd, C. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinkerton. Cyber-
guide: A mobile context-aware tour guide. ACM Wireless Networks, 3:421-433.

3. Harini Bharadvaj, A. Joshi, and Sansanee Auephanwiriyakyl. An active transcod-
ing proxy to support mobile web access. In Proc. IEEE Sumposium on Reliable
Distributed Systems, October 1998.

24

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. The role of trust man-

agement in distributed systems security. In Secure Internet Programming, pages
185-210, 1999.

M. Blaze, J. Feigenbaum, J. Ioannidis, A. Keromytis, The Role of Trust Man-
agement in Distributed Systems. Secure Internet Programming, LNCS vol. 1603,
Springer, Berlin, 1999, pages 185-210,1999.

E.A. Brewer, R.H. Katz, Y. Chawathe, A. Fox, S.D. Gribble, T. Hodes, G. Nguyen,
T. Henderson, E. Amir, H. Balakrishnan, A. Fox, V. Padmanabhan, and S. Seshan.
A network architecture for heterogeneous mobile computing. IEEE Personal Com-
munications Magazine, 5(5):8-24, 1998.

A. Cedilnik, L. Kagal, F. Perich, J. Undercoffer, and A. Joshi. A Secure Infrastruc-
ture for Service Discovery and Access in Pervasive Computing. Technical Report
TR-CS-01-12, CSEE, UMBC, August 2001.

Harry Chen, Anupam Joshi, Tim Finin, and Dipanjan Chakraborty. Dynamic
service discovery for mobile computing: Intelligent agents meet jini in the aether.
Baltzer Science Journal on Cluster Computing, Special Issue on Advances in Dis-
tributed and Mobile Systems and Communications, 2001.

R. Scott Cost, Tim Finin, Yannis Labrou, Xiaocheng Luan, Ian Soboroff Yun Peng,
James Mayfield, and Akram Boughannam. An agent-based infrastructure for en-
terprise integration. In First International Symposium on Agent Systems and Ap-
plications, October 1999.

Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes, Anthony D. Joseph, and
Randy H. Katz. An architecture for a secure service discovery service. In F'ifth
Annual International Conference on Mobile Computing and Networks (MobiCom
’99), pages 24-35, Seattle, 1999.

DAML. Darpa agent markup language specification, http://www.daml.org/.

M. Dunham, P. Chrysanthis, A. Joshi, V. Kumar, K. Ramamritham, O. Wolfson,
and S. Zdonik. Issues in wireless data management. Discussion of the wireless data
management panel at NSF IDM PIs Meeting, March 2000.

M. Dunham, A. Helal, and S. Balakrishnan. A mobile transaction model that
captures both the data and movement behavior. ACM/Balizer Journal of Mobile
Networks and Applications, 2(2):149-162, 1997.

Carl M. Ellison, Bill Frantz, and Brian M. Thomas. Simple public key certificate.
Internet document, 1996.

Mike Esler, Jeffrey Hightower, Tom Anderson, and Gaetano Borriello. Next century
challenges: Data-centric networking for invisible computing. In Mobile Computing
and Networking, pages 256-262, 1999.

FIPA. FIPA 97 specification part 2: Agent communication language. Technical
report, FIPA - Foundation for Intelligent Physical Agents, october 1997.

R. Housley, W. Ford, W. Polk, and D. Solo. RFC2459 Internet X.509 Public Key
Infrastructure Certificate and CRL Profile, January 1999.

Internet Engineering Task Force. Public-key infrastructure (x.509),
http://www.ietf.org/html.charters/pkix-charter.html.

Armando Fox, Brad Johanson, Pat Hanrahan, and Terry Winograd. Integrating
information appliances into an interactive workspace. IEEE Computer Graphics
and Applications, 20(3), 2000.

Benjamin Grosof and Yannis Labrou. An approach to using xml and a rule-based
content language with an agent communication language, 1999.

Z. J. Has. Panel report on ad hoc networks - MILCOM’97. Mobile Computing and
Communications Review, 2(1), January 1998.

22

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

25

A. Helal, M. Wang, A. Jagatheesan, and R. Krithivasan. Brokering based selfor-
ganizing e-service communities. In Fifth International Symposium on Autonomous
Decentralized Systems (ISADS), Dallas, Texas, March 2001.

T. Hodes and R. H. Katz. A document-based framework for internet application
control. In Proceedings of the Second USENIX Symposium on Internet Technologies
and Systems, October 1999.

W. Johnston and C. Larsen. A use-condition centered approach to authenticated
global capabilities: Security architectures for large-scale distributed collaboratory
environments. Technical Report Technical Report 3885, Lawrence Berkeley Na-
tional Laboratory, 1996.

A. Joshi, S. Weerawarana, and E. N. Houstis. Disconnected Browsing of Distributed
Information. In Proc. Seventh IEEE Intl. Workshop on Research Issues in Data
Engineering, pages 101-108. IEEE, April 1997.

Anupam Joshi. On proxy agents, mobility and web access. ACM/Baltzer Journal
of Mobile Networks and Applications, 2000. (accepted for publication, also availbe
as UMBC CS TR 99-02).

Lalana Kagal, Tim Finin, and Yun Peng. A framework for distributed trust man-
agement. In To appear in proceedings of IJCAI-01 Workshop on Autonomy, Dele-
gation and Control, 2001.

Lalana Kagal, Vlad Korolev, Harry Chen, Anupam Joshi, and Tim Finin. Centau-
rus: A framework for intelligent services in a mobile environment. In Proceedings
of International Workshop on Smart Appliances and Wearable Computing (IW-
SAWC), The 21st International Conference on Distributed Computing Systems
(ICDCS-21) April 16-19, 2001.

Lalana Kagal, Vladimir Korolev, Sasikanth Avancha, Anupam Joshi, Timothy
Finin, and Yelena Yesha. A highly adaptable infrastructure for service discovery
and management in ubiquitous computing. Technical Report TR CS-01-06, De-
partment of Computer Science and Electrical Engineering, University of Maryland
Baltimore County, 2001.

R. H. Katz, E. A. Brewer, E. Amir, H. Balakrishnan, A. Fox, S. Gribble, T. Hodes,
D. Jiang, G. T. Nguyen, V. Padmanabhan, and M. Stemm. The bay area research
wireless access network (barwan). In Proceedings Spring COMPCON Conference,
1996.

Yannis Labrou, Tim Finin, and Yun Peng. Agent communication languages: The
current landscape. IEEE Intelligent Systems, 14(2):45-52, / 1999.

Li, Feigenbaum, and Grosof. A logic-based knowledge representation for autho-
rization with delegation. In PCSFW: Proceedings of The 12th Computer Security
Foundations Workshop. IEEE Computer Society Press, 1999.

M. Liljeberg, M. Kojo, and K. Raatikainen. Enhanced services for world-wide web
in mobile wan environment. http://www.cs.Helsinki.FI/research/mowgli/mowgli-
papers.html, 1996.

D. Maltz and P. Bhagwat. Msocks: An architecture for transport layer mobility.
In Proc. IEEE Infocom 98, San Francisco, pages 1037-1045, April 1998.

M.Blaze, J.Feigenbaum, and J.Lacy. Decentralized trust management. IEEE Pro-
ceedings of the 17th Symposium, 1996.

S. Muthukrishnan, Rittwik Jana, Theodore Johnson, and Andrea Vitaletti. Lo-
cation based services in a wireless wan using cellular digital packet data (cdpd).
In Proceedings of the 2nd ACM International Workshop on Data Engineering for
Wireless and Mobile Access (MobiDEQ1), May 2001.

26

37.

38.

39.

40.

41.

42.

43.

44.
45.

B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn, and
K. R.Walker. Agile application-aware adaptation for mobility. In Proceedings
of the 16th ACM Symposium on Operating System Principles.

RSA Laboratories. PKCS 11 - Cryptographic Token Interface Standard, January
1994.

Reticular Systems. The yellowstone project.

Bill Schilit, Norman Adams, and Roy Want. Context-aware computing applica-
tions. In IEEE Workshop on Mobile Computing Systems and Applications, Santa
Cruz, CA, US, 1994.

Mark Taylor, William Waung, and Mohsen Banan. Internetwork Mobility: The
CDPD Approach. Professional Technical Reference. Prentice Hall, 1996.

W. J. Tolone, B. Chu, J. Long, T. Finin, and Y. Peng. Supporting human inter-
actions within integrated manufacturing systems. International Journal of Agile
Manufacturing, 1998. To appear.

J. Undercoffer, F. Perich, A. Cedilnik, L. Kagal, and A. Joshi. A Secure Infrastruc-
ture for Service Discovery and Access in Pervasive Computing. ACM MONET:
Special Issue on Security in Mobile Computing Environments, 2002.

W3C. Xml signature http://www.w3.org/signature/.

Philip R. Zimmermann. The Official PGP User’s Guide. MIT Press, Cambridge,
MA, USA, 1995.

