
UC Irvine
UC Irvine Previously Published Works

Title
Semantics-based dynamic Web Service composition

Permalink
https://escholarship.org/uc/item/4r93w1sf

Journal
International Journal of Cooperative Information Systems, 15(3)

ISSN
0218-8430

Authors
Fujii, Keita
Suda, Tatsuya

Publication Date
2006-09-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4r93w1sf
https://escholarship.org
http://www.cdlib.org/

SEMANTICS-BASED DYNAMIC WEB SERVICE COMPOSITION

Keita Fujii

School of Information and Computer Science,
University of California, Irvine, Irvine CA, 92697-3425, U.S.A.

kfujii@ics.uci.edu

Tatsuya Suda

School of Information and Computer Science,
University of California, Irvine, Irvine CA, 92697-3425, U.S.A.

suda@ics.uci.edu

ABSTRACT
This paper presents a semantics-based dynamic service composition architecture that composes an
application through combining distributed components based on the semantics of the components.
This architecture consists of a component model called Component Service Model with Semantics
(CoSMoS), a middleware called Component Runtime Environment (CoRE), and a service
composition mechanism called Semantic Graph based Service Composition (SeGSeC). CoSMoS
represents the semantics of components. CoRE provides interfaces to discover and access
components modeled by CoSMoS. SeGSeC composes an application by discovering components
through CoRE, and synthesizing a workflow of the application based on the semantics of the
components modeled by CoSMoS.

This paper describes the latest design of the semantics-based dynamic service composition
architecture, and also illustrates the implementation of the architecture based on the Web Service
standards, i.e., WSDL, RDF, SOAP, and UDDI. The Web Service based implementation of the
architecture allows existing Web Services to migrate onto the architecture without reimplementation.
It also simplifies the development and deployment of a new Web Service on the architecture by
automatically generating the necessary description files (i.e., WSDL and RDF files) of the Web
Service from its runtime binary (i.e., a Java class file).

Keywords: dynamic service composition, semantics, service oriented computing, web service,
component model

1. Introduction

The paradigm in distributed systems is shifting towards Service Oriented Computing
(SOC)1 where components (also called services in SOC) play as basic elements in
developing applications. In SOC, applications are composed of multiple components, i.e.,
platform- and network-independent software elements distributed across the network. In
the current SOC environments, applications are statically composed by human developers.
However, it is more desirable if applications are dynamically composed on demand (i.e.,
when requested by users) by software agents because it eliminates the need for pre-
installation and pre-configuration of applications, and also allows applications to be
customized based on user profiles (e.g., usage history) and contexts (e.g., device
availability). This concept of dynamically composing applications on demand is called
Dynamic Service Composition2.

To dynamically compose applications from a collection of distributed components, a
component in SOC must (1) overtly define its operation in a standard, machine-readable
format, (2) publish its definition into the network in order to make itself discoverable by
other components, and (3) support a protocol to communicate with a client or other
components. A component in SOC thus requires three capabilities: description, discovery,
and communication. Web Service is a typical SOC example as it consists of Web
Services Description Language (WSDL) for description, Universal Description,
Discovery, and Integration (UDDI) for discovery, and Simple Object Access Protocol
(SOAP) for communication. WSDL is an XML-based Interface Definition Language.
SOAP is an XML-based protocol that enables Web Service operation invocation over the
standard transport protocols such as HTTP and SMTP. UDDI is a SOAP-based directory
service for publishing and discovering Web Services.

Based on the Web Service standards (i.e., WSDL, SOAP and UDDI), several
Dynamic Service Composition systems have recently been proposed and implemented
(e.g., Refs. 3-21). However, those systems often require a user to request an application
in a manner that may not be intuitive to the user. For instance, a user is required to
choose a template of the application3, or specify the pre/post conditions of the application
using logic formula11.

In order to allow users to request applications in an intuitive manner (i.e., using a
natural language), the authors of this paper proposed22,23 a semantics-based dynamic
service composition architecture. The proposed architecture consists of a component
model called Component Service Model with Semantics (CoSMoS), a middleware called
Component Runtime Environment (CoRE), and a service composition mechanism called
Semantic Graph based Service Composition (SeGSeC). CoSMoS represents the
semantics of the distributed components. CoRE provides interfaces to discover and
access components modeled by CoSMoS. When a user requests an application, SeGSeC
composes the requested application by discovering and accessing the distributed
components through CoRE, and synthesizing a workflow of the requested application
based on the semantics of the components and of the user’s request represented by
CoSMoS. The feasibility of the proposed architecture was confirmed22 through
preliminary implementation of the architecture, and the scalability of the architecture was
also empirically confirmed23.

This paper summarizes the design of the semantics-based dynamic service
composition architecture with emphasis on recent modifications of the architecture,
including the refined semantic representation based on Conceptual Graph24. In addition,
this paper also presents the implementation of the semantics-based dynamic service
composition architecture based on the Web Service standards, i.e., WSDL, Resource
Description Framework (RDF), SOAP, and UDDI, in order to validate the feasibility,
portability and flexibility of the architecture. The Web Service based implementation of
the architecture is designed to satisfy the following requirements. First, the Web Service
based implementation of the architecture maintains compatibility with existing Web
Service based systems because it does not require any modification of the existing Web
Service standards (i.e., WSDL/RDF/SOAP/UDDI). Second, the Web Service based
implementation of the architecture allows existing Web Services to migrate to the

architecture without reimplementation. Lastly, the Web Service based implementation of
the architecture simplifies the development and deployment of a new Web Service by
automatically generating the necessary description files (i.e., WSDL and RDF files) of
the Web Service from its runtime binary (i.e., a Java class file).

The rest of the paper is organized as follows. Section 2 summarizes the semantics-
based dynamic service composition architecture that consists of CoSMoS, CoRE and
SeGSeC. Section 3 describes the Web Service based implementation of the architecture
in detail. Section 4 concludes the paper.

2. SEMANTICS-BASED DYNAMIC SERVICE COMPOSITION
ARCHITECTURE

This section summarizes the semantics-based dynamic service composition architecture.
The architecture consists of CoSMoS, CoRE and SeGSeC. CoSMoS is a semantics-
aware component model that represents the semantics of the components using semantic
graph representation. CoRE is a middleware that provides interfaces to discover and
access components modeled by CoSMoS. SeGSeC is a semantics-based dynamic service
composition mechanism that composes the requested application based on the semantics
of the components and of the request from the user.

2.1. COMPONENT SERVICE MODEL WITH SEMANTICS (CoSMoS)

This section presents a semantics-aware component model, Component Service Model
with Semantics (CoSMoS). This section first describes the overview of CoSMoS,
followed by the detailed design of CoSMoS. This section concludes with the comparison
between CoSMoS and the existing Semantic Web Service models such as OWL-S25.

2.1.1. CoSMoS Overview

Many existing component models (e.g., WSDL, JavaBeans/EJB, COM) represent a
component by defining its operations and properties. In existing component models, an
operation is defined as a pair of inputs to and outputs from the component. Each input
and output is defined as a pair of a name and a data type (e.g., “int price”, “String name”).
Similarly, each property of a component is also defined as a pair of a name and a data
type. Although the names of operations, inputs, outputs and properties may imply their
semantics, the existing component models do not explicitly represent the semantics
information regarding a component. Therefore, human designers have to rely on external
documents such as specification of a component in order to obtain the semantics of the
component.

In order to explicitly represent the semantics of a component, a semantics-aware
component model named Component Service Model with Semantics (CoSMoS) has been
developed. CoSMoS represents the semantics of a component by modeling a component
from three aspects: the functional aspect, the semantic aspect and the logical aspect. In
the functional aspect, CoSMoS defines the operations and properties of the component
using data types. In the semantic aspect, CoSMoS defines the semantics of the
component, namely, what each operation, input, output, and property of the component

semantically represents. In the logical aspect, CoSMoS defines rules (i.e., sets of
conditions and consequences) that SeGSeC uses in extracting the semantics of a
synthesized workflow. Each aspect is represented as a semantic graph, a directed graph
that consists of nodes and labeled links. CoSMoS integrates the semantic graph
representations of the three aspects of a component and forms a single semantic graph to
model the component.

Figure 1 shows an example of how CoSMoS models a component that generates a
JPEG image of a map showing a direction from one address to another. The functional
aspect in Figure 1 defines that the direction generator component implements an
operation which accepts two Address data as inputs and outputs one JPEG image. The
semantic aspect in Figure 1 defines that the operation of the direction generator
component ‘generate’ a ‘direction’ ‘from’ an ‘origin’ ‘to’ a ‘destination’. The direction
generator component does not define any rules, thus Figure 1 does not show the logical
aspect of the component.

implements

performs

inputs

inputs outputs

representedBy representedBy

represents

to

from

represents

represents
<<Element>>

Location: origin

<<Element>>
Location: destination <<Element>>

Direction

<<Action>>
Generate

<<Component>>
originComp

<<Component>>
destComp

<<Structure>>
address

<<Operation>>
generate

<<Component>>
DirectionGenerator

<<Binary>>
image/jpeg

<<Component>>
dirImage Functional

Aspect

Semantic
Aspect

Figure 1. A direction generator component in CoSMoS

2.1.2. CoSMoS Architecture

The following subsections explain how CoSMoS models a component in the functional,
semantic and logical aspects in detail.

Functional Aspect:

In the functional aspect, CoSMoS defines the operations of a component. In
CoSMoS, an operation is defined as a set of inputs, outputs, and exceptions. Each input
(and output) of an operation is defined as a component, representing that the operation
accepts (or generates) another component as its input (or output). Some components (e.g.,
a microphone and a printer) may accept or generate a physical object (e.g., sound and a
paper) instead of accepting or producing any binary data. CoSMoS supports such
components by defining their input or output as a component without any data type.
Some components (e.g., a printer) may support several options for its operation (e.g.,
different paper sizes). CoSMoS supports such an operation by defining an enumeration
(e.g., a ‘paper size’ enumeration) consisting of several values (e.g., ‘letter’, ‘legal’ and

‘A4’ values) as one of its inputs. An operation may throw an exception when its
execution fails.

The functional aspect of CoSMoS also defines the properties of a component. In
CoSMoS, a property of a component is defined as a component, representing that the
property can be retrieved as another component.

When an input, output or property of a component represents some data, the
functional aspect of CoSMoS specifies its data type using common primitive data types
(such as integer, string, float, and Boolean) and/or common data structures (such as array,
structured data, enumeration, and binary data). CoSMoS also supports arbitrary data
types (e.g., XML Schema data types, or Java collection libraries), as long as it can
determine compatibility between two data types (e.g., through parsing XML Schema file,
or through Java reflection functionality).

CoSMoS represents the functional aspect of a component as a semantic graph. In
CoSMoS, a component is represented as a Component node. An operation of a
component is represented as an Operation node with an ‘implements’ link connected to a
Component node. Similarly, a property of a component is represented as a Component
node (representing the property) with a ‘hasPropertyOf’ link connected to another
Component node (representing the owner of the property). The inputs and outputs of an
operation are represented as Component nodes (representing the input or the output) with
‘inputs’ and ‘outputs’ links connected to an Operation node. The exception of an
operation is represented as an Exception node with a ‘throws’ link connected to an
Operation node. Each Component node may have a ‘representedBy’ link pointing
toward a DataType node (or its subclass node such as Structure or Binary), representing
the data type of the component.

Figure 1 shows an example of how CoSMoS represents the functional aspect of the
direction generator component as a semantic graph. The functional aspect of Figure 1
represents that ‘Component DirectionGenerator’ implements ‘Operation generate’,
which accepts two inputs, ‘Component originComp’ and ‘Component destComp’, and
generates one output, ‘Component dirImage’. Similarly, Figure 2 illustrates how
CoSMoS represents the functional aspect of a restaurant component, which has one
property (‘Component RestAddress’) representing the address of the restaurant.

representedBy

represents represents

<<Element>>
Restaurant: demmy’s

<<Element>>
Location

<<Structure>>
address

<<Component>>
Restaurant

Functional Aspect

Semantic
Aspect

<<Component>>
RestAddresshasPropertyOf

Figure 2. A restaurant component in CoSMoS

Semantic Aspect:

In the semantic aspect, CoSMoS defines the semantics of a component, namely, what
each operation, input, output, and property of the component semantically represents.

CoSMoS represents the semantic aspect of a component as a semantic graph, whose
notation is based on Conceptual Graph24. The semantic aspect of CoSMoS defines each
node of a semantic graph as an instance of a concept. The concept of a node specifies
what the node semantically represents. For example, a node defined as an instance of the
concept ‘Human’ represents a human. This is similar to an object-oriented language
where an object is defined as an instance of a class, and the class of the object specifies
what the object represents. In addition to the concept, the semantic aspect of CoSMoS
may specify the name of a node. For example, two ‘Human’ nodes may be named
‘Alice’ and ‘Bob’ in order to represent two humans named Alice and Bob. In CoSMoS,
the nodes representing nominal concepts (e.g., ‘Human’, ‘Restaurant’) are called Element
nodes, and the nodes representing verbal concepts (e.g., ‘Generate’, ‘Print’) are called
Action nodes.

Once several nodes (i.e., instances of concepts) are defined, the semantic aspect of
CoSMoS connects them with labeled links and forms a semantic graph. The label of
each link is also defined as a concept, and specifies the semantics of the relationship
between two nodes. For example, the ‘Human: Alice’ node and the ‘Human: Bob’ node
may be linked with a ‘isASiblingOf’ link, representing that Alice and Bob are siblings
(Figure 3). Similarly, the ‘from’ and ‘to’ links in Figure 1 represent that the ‘Direction’ is
‘from’ the ‘Location: origin’ and ‘to’ the ‘Location: destination’.

isASiblingOf
Human: Alice Human: Bob

Semantic Aspect Ontology

Animal

Mammal

Human Dog

Amphibian Reptile

LizardPerson=

concepts

Figure 3. An example of a CoSMoS semantic aspect and Ontology

In order for a software agent to properly interpret the semantic aspect of CoSMoS, the
formal definition of the concepts used in defining the semantic aspect needs to be
provided. The definition of concepts (e.g., ‘Human’, ‘Mammal’, ‘Animal’) is called an
ontology, and it defines the relationships between the concepts (e.g., ‘Human is a kind of
Mammal, which is a kind of Animal’). CoSMoS assumes that an ontology is defined by
using an existing ontology definition framework such as RDF Schema and OWL. This
allows component developers to define and use their own ontology to develop
components.

An ontology is used in determining whether a concept is compatible with another or
not. CoSMoS considers that a concept C1 is compatible with another concept C2 either
if C1 and C2 are equivalent (e.g., ‘Human’ and ‘Person’), or if C2 is a generalized
concept of C1 (e.g., ‘Human’ and ‘Animal’). When, for example, an ontology is defined
in either RDF Schema and OWL, CoSMoS considers two concepts C1 and C2 are
compatible if it is possible to traverse from C1 to C2 through owl:equivalentTo and
rdf:subClassOf properties.

CoSMoS integrates the semantic and functional aspects of a component by linking
the nodes in the semantic aspect and the nodes in the functional aspect. An Element node

in the semantic aspect and a Component node in the functional aspect may be connected
with a ‘represents’ link in order to represent the semantics of the inputs, outputs or
properties of a component. Figure 1, for example, shows that the ‘Location: origin’ and
‘Location: destination’ nodes in the semantic aspect represent the semantics of the
‘Component originComp’ and ‘Component destComp’ nodes in the functional aspect.
Similarly, an Action node in the semantic aspect and an Operation node in the functional
aspect may be connected with a ‘performs’ link in order to represent the semantics of the
operation. For instance, Figure 1 shows that the ‘Generate’ node in the semantic aspect
represents the semantics of the ‘Operation generate’ node in the functional aspect.

In CoSMoS, an Element node may be declared as a Wildcard Element. To illustrate
how a Wildcard Element is used in CoSMoS, consider a printer component that receives
an image as an input and generates a print out of the input image as an output. The input
image and the printed output of a printer component should represent the same Element
(i.e., nominal concept) which cannot be determined when designing the component. For
example, if the input image illustrates a direction to a restaurant, the printed output also
illustrates the direction to the restaurant. If the input image is a textual description of a
novel, the printed output also describes the novel. In such cases, CoSMoS uses a
Wildcard Element node (e.g., the ‘Wildcard’ node in Figure 4) to indicate that the input
image and the printed output represent the same but arbitrary Element.

outputs

represents represents
<<Element>>

Wildcard

<<Component>>
outPaper

<<Component>>
inputImage

Functional
Aspect

Semantic
Aspect

<<Operation>>
printinputs

<<Binary>>
Image/jpeg

representedBy

<<Component>>
Printer

implements

<<Action>>
Print

performs

Figure 4. A printer component in CoSMoS

Logical Aspect:

CoSMoS allows components to define rulesa in the logic aspect. A rule is defined as a set
of conditions and consequences, and represents that, when its conditions are met (e.g., “if
a person uses a microphone”), its consequences become valid (e.g., “then, the recorded
sound is of the person”). Rules are used by SeGSeC when extracting the semantics of a
synthesized workflow. Details of how rules are used in SeGSeC will be explained later
in Section 2.3.

CoSMoS represents the logical aspect of a component as a semantic graph. In the
logical aspect, a rule is represented as a Rule node with one or more ‘condition’ links and
one or more ‘consequence’ links. Each ‘condition’ and ‘consequence’ link is pointing to

a Please note that the rules defined in the logical aspect are not intended to represent the internal state of a
component or the preconditions/effects of an operation.

another labeled link connecting two Element nodes in the semantic aspect. A Rule node is
also connected to a Component node in the functional aspect with a ‘knows’ link. Figure
5 shows a microphone component with a rule representing “if a person uses a
microphone, the recorded sound is of the person.”

outputs

<<Element>>
Person

<<Component>>
inSound

<<Component>>
Microphone

Functional
Aspect

<<Operation>>
convertimplements

<<Element>>
Microphone

<<Element>>
Sound

<<Rule>>
rule1

use of

condition consequence

<<Component>>
outSound

inputs

<<Binary>>
audio/wav

knows

represents

re
pr

es
en

tsrepresentedBy

Semantic
Aspect

Logical
Aspect

represents

Figure 5. A microphone component in CoSMoS

2.1.3. CoSMoS Class Diagram

Figure 6 is a UML class diagram illustrating the formal specification of CoSMoS. As
described in Section 2.1.1, CoSMoS models a component as a single semantic graph that
integrates the functional, semantic and logical aspects of the component. Nodes in the
semantic graph (e.g., Component nodes) are defined as instances of the classes (e.g., the
‘Component’ class) in Figure 6. The labels of the associations in Figure 6 (e.g.,
‘implements’) are the concepts that are used to label the links between nodes in the
semantic graph (e.g., the ‘implements’ link between ‘Component Microphone’ and
‘Operation convert’ in Figure 5).

Enumeration

Component

Operation

Exception

Structure

DataType

Primitive

Interface

Value

Functional Aspect

Element

-wildcard : boolean

AbstractEntity

Action

Semantic Aspect

ParameterRule

Logical AspectResource

+namespace : string
+name : string

Concept

+URI : string

Binary

Link

Array

-representedBy

-consistsOf
1..*

-inputs/outputs
1..*

-implements
0..* -hasPropertyOf

0..*-throws 0..1

-members1..*
-represents

-performs

-object

-knows -consequences
-conditions

1..*

-source/target 2

-represents

Figure 6. The CoSMoS Class Diagram

2.1.4. CoSMoS and other Semantic Web Service models

CoSMoS is unique compared to existing Semantic Web Service models (such as OWL-
S25, WSDL-S26, WSDF27, SESMA28, and WSMO29) in the following aspects.

CoSMoS annotates the semantics of an operation of a component using a concept.
For example, CoSMoS represents the semantics of a book purchase operation provided
by an online book store using a ‘purchase’ concept. Although some of the existing
Semantic Web Service models26 follow the same approach as CoSMoS, many existing
models25,27,28,29 annotate the semantics of an operation as the effect (a.k.a. post condition)
of the operation. For example, they represent the semantics of the book purchase
operation as an effect specifying that the ownership of the book is transferred to the user.
Although the effect may provide more formal and precise semantics of an operation, the
concept-based semantic annotation of an operation is more suitable for the proposed
semantics-based dynamic service composition than the effect-based annotation because,
with the concept-based annotation, it is easier to map the semantics of the user’s request
(expressed in a natural language) onto the semantics of a component.

CoSMoS represents not only the semantics of the inputs and outputs of an operation
but also the semantic relationships between the inputs and outputs. The semantic
relationships between inputs and outputs are represented by labeled links connecting the
Element nodes representing the semantics of the inputs and outputs. For instance, in the
example shown in Figure 1, the labeled link ‘from’ represents that the input ‘origin’ is
‘from’ the output ‘direction’, and similarly, the labeled link ‘to’ represents that the input
‘destination’ is ‘to’ the output ‘direction’. Most of the existing Semantic Web Service
models, on the other hand, only represent the semantics of the inputs and outputs by
specifying the concepts of the inputs and outputs, assuming that the ontology which
defines the concepts of the inputs and outputs provides the semantic relationship between
those concepts. In other words, existing models do not support the semantic relationships
that are not defined in an ontology. Because CoSMoS allows a component designer to
arbitrarily specify the semantic relationships, CoSMoS is more flexible in representing
the semantic relationships than existing models.

2.2. COMPONENT RUNTIME ENVIRONMENT (CoRE)

This section describes Component Runtime Environment (CoRE), a middleware which is
designed to support CoSMoS on various component technologies.

CoRE consists of two interfaces (Discovery interface and Access interface) and three
groups of modules (DiscoveryEngines, InvokerEngines, and PropertyAccessEngines)
(See Figure 7). The Discovery interface provides an interface to discover a component
distributed in a network. Upon receiving a query from the Discovery interface, the
DiscoveryEngine searches the requested component(s) and provides a CoSMoS
representation of the discovered component(s) (e.g., by analyzing the component’s
metadata) to the Discovery Interface. The Access interface provides an interface to
invoke an operation of a component and to retrieve a property of a component. Upon
receiving a query from the Access interface, the InvokerEngine invokes an operation of a
component, and the PropertyAccessEngine retrieves a property of a component.

DiscoveryEngine, InvokerEngine and PropertyAccessEngine may be implemented with
various component technologies, such as Web Service, Jini, or uPnP. When several
Engines are installed, CoRE automatically selects a proper Engine for each component by
identifying the component technology on which the component is implemented.

Semantic Graph based Service Composition (SeGSeC)

Discovery Interface Access Interface

Discovery
Engine

Invoker
Engine

C
om

po
ne

nt
 R

un
tim

e
En

vi
ro

nm
en

t (
C

oR
E)

Property
Access
Engine

Discovery
Engine

Discovery
Engine

Invoker
Engine
Invoker
Engine

Property
Access
Engine

Property
Access
Engine

Various Component TechnologiesVarious Component TechnologiesVarious Component Technologies
(e.g., Web Service, CORBA, Jini, uPnP)

Discover
components

Invoke
operations

Obtain
properties

Figure 7. CoRE Architecture

2.3. SEMANTIC GRAPH BASED SERVICE COMPOSITION (SeGSeC)

This section presents a service composition mechanism named Semantic Graph based
Service Composition (SeGSeC). This section describes the overview of SeGSeC,
followed by its detailed mechanism description. This section also describes the features
of SeGSeC compared to those of existing Web Service Composition systems, and ends
with a brief summary of the performance evaluation of SeGSeC.

2.3.1. SeGSeC Overview

SeGSeC composes an application from multiple components based on the semantics of
the request from the user and the semantics of the components. SeGSeC assumes that all
components are modeled by CoSMoS, and they can be discovered and accessed through
CoRE. SeGSeC consists of four modules: RequestAnalyzer, ServiceComposer,
SemanticsAnalyzer, and ServicePerformer (See Figure 8).

Semantic Graph based Service Composition (SeGSeC)

Request
Analyzer

Service
Composer

SemanticsAnalyzer

Service
Performer

workflow

workflowRequest in
CoSMoS

Component Runtime Engine (CoRE)

Discovery Interface Access Interface

User

Request

Figure 8. Modules in SeGSeC

When a user requests an application in a natural language, RequestAnalyzer parses
the request in a natural language into a CoSMoS semantic graph, and passes the request
represented as the semantic graph to ServiceComposer. ServiceComposer, upon
receiving the request from RequestAnalyzer, discovers components in the network based
on the request, synthesizes a workflow using the discovered components, and passes the
workflow and the request to SemanticsAnalyzer. SemanticsAnalyzer extracts the
semantics of the workflow from the semantics of the components in the workflow, and
examines if the semantics of the workflow satisfies the request. If SemanticsAnalyzer
concludes that the semantics of the workflow satisfies the request, the workflow is passed
to ServicePerformer, which executes the workflow.

The following subsections describe the detailed algorithm of SeGSeC using an
example scenario in which a user requests an application to print out a map showing the
direction from user’s house to a restaurant, and SeGSeC composes the requested
application using four components, Home (Figure 9), Restaurant (Figure 2), Direction
Generator (Figure 1), and Printer (Figure 4).

representedBy

represents represents

<<Element>>
Home: home

<<Element>>
Location

<<Structure>>
address

<<Component>>
Home

Functional Aspect

Semantic
Aspect

<<Component>>
HomeAddresshasPropertyOf

Figure 9. A home component in CoSMoS

2.3.2. SeGSeC Algorithm

RequestAnalyzer Module:

When a user requests an application in a natural language (e.g., “print direction from
home to demmy’s”), RequestAnalyzer parses the request into a CoSMoS semantic graph
(e.g., Figure 10). Since the natural language analysis is a well established research area,
SeGSeC assumes that RequestAnalyzer uses existing techniques (e.g., BEELINE30) for
parsing a request (in a natural language) into a semantic graph. RequestAnalyzer may
access to the Discovery Interface provided by CoRE and use the semantics of the
components when parsing a request. For instance, when parsing the request “print
direction from home to demmy’s”, RequestAnalyzer may discover a restaurant
component (shown in Figure 2) by using the keyword “demmy’s” and realize that
“demmy’s” is the name of a restaurant. After parsing a request into a semantic graph,
RequestAnalyzer passes the semantic graph to ServiceComposer.

from

to <<Element>>
Restaurant: demmy’s

<<Element>>
Home: home

<<Action>>
Print

<<Element>>
Direction

object

Figure 10. CoSMoS representation of the request “print direction from home to demmy’s”

ServiceComposer Module:

Upon receiving a request (represented as a semantic graph) from RequestAnalyzer,
ServiceComposer discovers components in the network through the Discovery Interface
of CoRE and synthesizes a workflow from the received request.

In order to synthesize a workflow from a request, ServiceComposer first discovers a
component whose operation performs (i.e., has a ‘performs’ link to) the action specified
in the request. This component that ServiceComposer first discovers is called an initial
component. In the example scenario described in Section 2.3.1, ServiceComposer first
discovers a Printer component (shown in Figure 4) as the initial component because its
operation performs the ‘Print’ action that appears in the request (shown in Figure 10).

After discovering an initial component, ServiceComposer synthesizes a workflow
that only contains the initial component, and then expands the workflow through the
process called Input Complement. In the Input Complement, ServiceComposer first
discovers several components whose outputs or properties are compatible with the inputs
of the components in the workflow. ServiceComposer considers that an output and an
input (or a property and an input) are compatible if their data types are compatible and
also if they represent the Element nodes whose concepts are compatible. Then,
ServiceComposer decides which of the discovered components to add to the workflow by
comparing them with the request from the user.

The Input Complement is a recursive process which, given an operation in the
workflow, discovers components that provide inputs of the operation, selects a
component among the discovered ones, and expands the workflow by adding the selected
component into the workflow. The following is a pseudo-code of the Input Complement.

01:inputComplement(operation, userRequest, workflow){
02: create a list of empty lists L[1] ... L[N];
03: # N = the number of the inputs of the operation
04: for each input ix of the operation{
05: if ix is an Enumeration{
06: add its values to L[x];
07: }else{
08: discover outputs/properties that are
09: compatible with ix and store them in L[x];
10: }
11: }
12:
13: compute possible combinations LC[1] … LC[M] of
14: the components in L[1] ... L[N];
15: # choose N components from each of L[1] … L[N]
16: # and store them into LC[x] such that the members of
17: # two lists LC[x] and LC[y] are different if x!=y
18:
19: sort LC[1]...LC[M] based on the similarities;

20: # similarity: the number of elements that
21: # appear both in userRequest and in LC[x]
22:
23: for each LC[x]{
24: expand the workflow such that
25: LC[x] provides the inputs of the operation op;
26: if LC[x] contains outputs{
27: for each output{
28: identify operation op2 that generates the output;
29: inputComplement(op2, userRequest, workflow);
30: }
31: }else{
32: if semanticMatching(userRequest, workflow)
33: return workflow;
34: }
35: }
36:}

In the Input Complement, ServiceComposer first identifies the inputs of the given
operation and discovers all the components whose outputs or properties are compatible
with the inputs of the given operation (Line 2-11). After discovering components that
provide inputs of the given operation, ServiceComposer determines which components
among the discovered ones to add to the workflow (Line 13-21). In order to do so,
ServiceComposer first computes all possible combinations of the outputs and properties
of the discovered components such that each of the combinations provides all the inputs
of the given operation (Line 13-14). Then, ServiceComposer calculates the similarity of
each of the combinations against the given request, and selects the one with the highest
similarity (Line 19). The similarity of a combination against a request is defined as how
many Element nodes in the CoSMoS representations of the components in the
combination also appear in the request. After selecting a combination, ServiceComposer
expands the workflow by adding the components in the combination to the workflow
such that the outputs and properties in the combination become inputs of the given
operation (Line 24-25). ServiceComposer iterates the Input Complement as long as the
workflow contains an operation whose inputs need to be complemented (Line 26-29).
When ServiceComposer finishes complementing all the operations in the workflow,
ServiceComposer passes the workflow and the request to SemanticsAnalyzer (Line 32-
33).

In the example scenario described in Section 2.3.1, after discovering the Printer
(shown in Figure 4) as the initial component, ServiceComposer performs the Input
Complement and complements the ‘print’ operation of the Printer with the ‘generate’
operation of the Direction Generator (shown in Figure 1). ServiceComposer then iterates
the Input Complement to complement the ‘generate’ operation of the Direction Generator.
In this iteration of the Input Complement, ServiceComposer discovers the Home (shown
in Figure 9) and Restaurant (shown in Figure 2) because their properties (i.e.,

‘HomeAddress’ and ‘RestAddress’) are both compatible with the two inputs (i.e.,
‘originComp’ and ‘destComp’) of the ‘generate’ operation. In this case,
ServiceComposer computes four combinations, {‘HomeAddress’, ‘HomeAddress’},
{‘RestAddress’, ‘RestAddress’}, {‘HomeAddress’, ‘RestAddress’}, and {‘RestAddress’,
‘HomeAddress’}, and selects either {‘HomeAddress’, ‘RestAddress’} or {‘RestAddress’,
‘HomeAddress’} because they have the highest similarity of 2 against the given request
shown in Figure 10. Depending on which combination is selected, ServiceComposer
synthesizes either of the two workflows shown in Figure 11 (a) and (b). Note that the
workflow in Figure 11 (a) provides the requested application of printing out the direction
from home to the restaurant, and that the workflow in Figure 11 (b) does not provide the
requested application as it prints out the direction from the restaurant (i.e., not from
home) to home (i.e., not to the restaurant). In order to identify whether the synthesized
workflow satisfies the request from the user, ServiceComposer asks SemanticsAnalyzer
to examine the workflow against the request.

implements

(a) Print direction from home to restaurant

<<Component>>
originComp

<<Component>>
destComp

<<Element>>
Location:origin

<<Element>>
Location:destination

<<Operation>>
generate

<<Component>>
dirImage

<<Element>>
Direction:direction

<<Operation>>
print

<<Element>>
Wildcard

<<Component>>
inputImage

<<Component>>
outPaper

<<Element>>
Home:home

<<Element>>
Location

<<Component>>
Home

<<Component>>
HomeAddress

represents

hasPropertyOf

represents

inputs

outputs

outputs

represents

<<Component>>
DirectionGenerator

implements

<<Component>>
Printer

<<Element>>
Restaurant:demmy’s

<<Element>>
Location

<<Component>>
Restaurant

<<Component>>
RestAddress

represents

hasPropertyOf

represents

represents

represents

inputs

represents

represents inputs

DirectionGenerator Printer

H
om

e
R

es
ta

ur
an

t

to

from

implements

(b) Print direction from restaurant to home

<<Component>>
originComp

<<Component>>
destComp

<<Element>>
Location:origin

<<Element>>
Location:destination

<<Operation>>
generate

<<Component>>
dirImage

<<Element>>
Direction:direction

<<Operation>>
print

<<Element>>
Wildcard

<<Component>>
inputImage

<<Component>>
outPaper

<<Element>>
Home:home

<<Element>>
Location

<<Component>>
Home

<<Component>>
HomeAddress

represents

hasPropertyOf

represents

inputs

outputs

outputs

represents

<<Component>>
DirectionGenerator

implements

<<Component>>
Printer

<<Element>>
Restaurant:demmy’s

<<Element>>
Location

<<Component>>
Restaurant

<<Component>>
RestAddress

represents

hasPropertyOf

represents represents

represents

inputs

represents

represents

inputs

DirectionGenerator Printer

H
om

e
R

es
ta

ur
an

t

to

from

<<Action>>
Print

performs

<<Action>>
Print

performs

Figure 11. Workflows created through Input Complement

SemanticsAnalyzer Module:

Upon receiving a workflow and a user’s request from ServiceComposer,
SemanticsAnalyzer extracts the semantics of the workflow using the semantics of the
components in the workflow, and examines if the semantics of the workflow satisfies the
request or not. This process is called Semantic Matching.

In the Semantic Matching, SemanticsAnalyzer first converts the workflow into a
semantic graph. A workflow (e.g., Figure 11 (a)) consists of a set of components (e.g.,

‘Home’, ‘Restaurant’, ‘DirectionGenerator’, and ‘Printer’ components in Figure 11 (a)),
each of which is modeled as a semantic graph (i.e., dotted boxes in Figure 11 (a)). A
workflow also specifies data flows among components, i.e., which output or property of a
component becomes an input to another component (shown as thick arrows in Figure 11
(a)). SemanticsAnalyzer converts a workflow into a semantic graph by interconnecting
the semantic graphs of the components in the workflow with ‘usedBy’ links such that
each ‘userBy’ link corresponds to each data flow in the workflow.

After converting a workflow into a semantic graph, SemanticsAnalyzer extracts the
semantics of the workflow by applying a set of predefined rules called semantics
retrieval rulesb (Table 1) onto the semantic graph. The semantics retrieval rules add new
links onto a semantic graph converted from a workflow such that the newly added links
represent the semantics of the workflow. If the components in the workflow define any
rules in the logical aspect, SemanticsAnalyzer also applies those rules onto the semantic
graph in addition to the semantics retrieval rules. This allows component designers to
specify how SemanticsAnalyzer extracts the semantics of a workflow, resulting in
flexibility and extensibility in Semantic Matching.

Table 1. Semantics retrieval rules

Name Rule Meaning

Rule 1
performs(O,A) & outputs(O,C) &
represents(C,E) object(A,E)

If O performs A, O outputs C, and C represents
E, then, E is the object of A.

Rule 2
hasPropertyOf(C1,C2) & represents(C1,E1) &
represents(C2,E2) applyTo(E2,E1)

If C1 has a property C2, C1 represents E1, and C2
represents E2, then, apply E2 to E1.

Rule 3
usedBy(C1, C2) & represents(C1, E1) &
represents(C2, E2) applyTo(E2, E1)

If C1 is used by C2 (i.e., C1 becomes an input C2),
C1 represents E1, and C2 represents E2, then, apply
E2 to E1.

Rule 4
L(E1, W) & L(E2, E3) & applyTo(E1, E2)
applyTo(W, E3)

If E1 has a link L to W, E2 has the same link L to
E3, and E1 is applied to E2, then, apply W to E3.

Rule 5
applyTo(E1, E2) & L(N, E1) L(N, E2) If E1 is applied to E2, and N has a link L to E1,

then, add the same link L from N to E2, too.
Note: Ci = Component, Ei=Element, Ai=Action, Oi=Operation, W=Wildcard element, L=arbitrary link,
N=arbitrary node

After extracting the semantics of a workflow, SemanticsAnalyzer examines if the

semantics of the workflow satisfies the user’s request by comparing the semantic graph
representing the semantics of the workflow (i.e., the semantic graph emerged after
applying semantics retrieval rules) and the semantic graph representing the request. If all
the links of the semantic graph representing the request also appear in the semantic graph
representing the semantics of the workflow, SemanticsAnalyzer concludes that the
semantics of the workflow satisfies the request, and notifies ServiceComposer
accordingly. ServiceComposer, then, presents the workflow to the user, and asks the user
whether to execute the workflow or not. If the user replies positively, ServiceComposer
passes the workflow to ServicePerformer, which in turn executes the workflow. If

b Please note that semantics retrieval rules consist of the concepts predefined in CoSMoS.

SemanticsAnalyzer concludes that the semantics of the workflow does not satisfy the
request, or if the user replies negatively, ServiceComposer tries to create another
workflow from the request.

In the example scenario described in Section 2.3.1, if SemanticsAnalyzer receives the
workflow shown in Figure 11 (a) from ServiceComposer, it first converts the workflow
into a semantic graph by connecting {‘HomeAddress’, ‘originComp’}, {‘RestAddress’,
‘destComp’}, and {‘dirImage’, ‘inputImage’} with ‘usedBy’ links. SemanticsAnalyzer,
then, applies the semantics retrieval rules onto the semantic graph converted from the
workflow. This results in adding several new links, including “object(‘Print’,
‘Direction’)”, “from(‘Direction’, ‘Home: home’)”, and “to(‘Direction’, ‘Restaurant:
demmy’s’)”, to the semantic graph. Figure 12 and Figure 13 illustrate how the semantics
retrieval rules add two of the newly added links, “object(‘Print’, ‘Direction’)” and
“from(‘Direction’, ‘Home: home’)” to the semantic graph. Since the newly added links
also appear in the semantic graph representing the user’s request (shown in Figure 10),
SemanticsAnalyzer concludes that the semantics of the workflow satisfies the request.

Apply Rule 1: performs(‘Operation print’, ‘Print’) &
 outputs(‘Operation print, ‘Component outPaper’) &
 represents(‘Component outPaper’, ‘Wildcard’)
 object(‘Print’, ‘Wildcard’)
Apply Rule 3: usedBy(‘Component dirImage’, ‘Component inputImage’) &
 represents(‘Component inputImage’, ‘Wildcard’) &
 represents(‘Component dirImage’, ‘Direction’)
 applyTo(‘Wildcard’, ‘Direction’)
Apply Rule 5: applyTo(‘Wildcard’, ‘Direction’) &
 object(‘Print’, ‘Wildcard’)
 object(‘Print’, ‘Direction’)

Figure 12. An example showing how semantics retrieval rules are applied (1)

Apply Rule 2: hasPropertyOf(‘Component Home’, ‘Component HomeAddress’) &
 represents(‘Component Home’, ‘Home: home’) &
 represents(‘Component HomeAddr’, ‘Location’)
 applyTo(‘Location’, ‘Home: home’)
Apply Rule 3: usedBy(‘Component HomeAddress’, ‘Component originComp’) &
 represents(‘Component originComp’, ‘Location origin’) &
 represents(‘Component HomeAddr’, ‘Location’)
 applyTo(‘Location origin’, ‘Location’)
Apply Rule 5: applyTo(‘Location origin’, ‘Location’) &
 from(‘Direction’, ‘Location origin’)
 from(‘Direction’, ‘Location’)
Apply Rule 5: applyTo(‘Location’, ‘Home: home’) &
 from(‘Direction’, ‘Location’)
 from(‘Direction’, ‘Home: home’)

Figure 13. An example showing how semantics retrieval rules are applied (2)

On the other hand, however, if SemanticsAnalyzer receives the workflow in Figure
11 (b), it concludes that the semantics of the workflow does not satisfy the user request,
because the links added by the semantics retrieval rules contain “from(‘Direction’,

‘Restaurant: demmy’s’)” and “to(‘Direction’, ‘Home: home’)” instead of
“from(‘Direction’, ‘Home: home’)” and “to(‘Direction’, ‘Restaurant: demmy’s’)”. Thus,
with the support of SemanticsAnalyzer, ServiceComposer concludes that only the
workflow in Figure 11 (a) satisfies the request from the user.

ServicePerformer Module:

Upon receiving a workflow from ServiceComposer, ServicePerformer executes the
workflow by invoking operations of the components and retrieving properties of the
components as specified in the workflow. ServiceComposer accesses the Access
Interface of CoRE to execute the workflow.

2.3.3. SeGSeC and other Web Service Composition systems

Several systems have been proposed and developed for composing an application through
combining several Web Services. SeGSeC is unique compared to those existing systems
in the following aspects.

The systems proposed in Refs. 3-10 compose an application using a template. A
template is written either in a logical programming language such as Golog3, as an OWL-
S composite process4, as a BPEL workflow5, or in an original template description
language6. Using a template, those systems compose an application through discovering
the components necessary to convert (or instantiate) the template into an executable
workflow. This approach requires a template for each and every application to be
developed in advance, and thus severely limits the adaptability of the systems as it cannot
compose new applications until new templates become available. This approach also
requires a user to either create a template for an application that he/she requests or choose
a template among those developed by application developers. This is not trivial for non-
expert users as it requires the knowledge on the format of and the language used in a
template. Unlike those template-based systems, SeGSeC synthesizes a workflow directly
from the semantics of components when a user requests an application. This allows
composing new applications without developing any templates, resulting in higher
adaptability than the template-based systems.

The systems proposed in Refs.11-21 require a user to specify in his/her request the
precondition and effect (a.k.a. post conditions) of an application that s/he requests. The
precondition of an application may specify the input data that a user supplies with the
application (e.g., Refs.13, 15), or may specify the initial condition of the application
using First Order Logic (FOL) (e.g., Refs. 11, 17). Similarly, the effect of an application
may specify the output data that a user expects from the application, or may specify the
goal condition of the application using FOL. Given the precondition and effect of an
application, those systems synthesize a workflow of the requested application through
interconnecting the interfaces of the components in a network such that the synthesized
workflow satisfies the specified precondition and effect. Unlike the template-based
approach described previously, this approach does not require any template to be
developed in advance. Thus, this approach allows composing new applications without
developing any templates. However, specifying the precondition and effect of an
application requires the knowledge regarding data types or FOL, and thus is not trivial for

non-expert users. SeGSeC, on the other hand, allows a user to request an application
using a natural language, and this is more intuitive than choosing/creating a template or
specifying the precondition/effect of an application. SeGSeC, thus, achieves higher
usability than the systems proposed in Refs.11-21.

2.3.4. Performance of SeGSeC

The performance and scalability of SeGSeC were examined23 through a series of
empirical measurements. Due to space limitation, this paper briefly describes the results
of the empirical measurements. See Ref. 23 for more detail discussion on the empirical
measurements and additional measurements.

In order to evaluate the performance and scalability of SeGSeC, the average time for
SeGSeC to compose applications was measured as a function of the number of
components deployed in a network. In the measurements, 5 example applications
(including the application explained in Section 2.3.2) were composed using up to 13
components deployed in a network.

 The results of the empirical measurements show that SeGSeC composes
applications in a reasonable time (i.e., less than a second) when the number of deployed
components is small. The results also show that as the number of deployed components
increases, the overhead of discovering components also increases significantly, and the
overhead of the other processes of SeGSeC remains relatively constant. This implies that
SeGSeC scales to the number of components deployed in a network provided that it can
discover components efficiently.

3. WEB SERVICE BASED IMPLEMENTATION OF SEMANTICS-BASED
DYNAMIC SERVICE COMPOSITION ARCHITECTURE

Section 2 summarized the design of the semantics-based dynamic service
composition architecture. This section presents an implementation of the semantics-
based dynamic service composition architecture based on the Web Service standards in
order to validate the feasibility, portability and flexibility of the architecture. Web
Service is the most practical implementation of the Service Oriented Computing and
presents a good platform to implement the architecture.

The semantics-based dynamic service composition architecture has been
implemented in Java using the Web Service standards, i.e., WSDL, UDDI and SOAP.
The Resource Description Framework (RDF) is also used in implementing the
architecture in order to describe the semantic information regarding the Web Services.
The Web Service based implementation of the architecture is designed to satisfy the
following requirements. First, the implementation maintains compatibility with existing
Web Service based systems because it does not require any modification of the existing
Web Service standards (i.e., WSDL/RDF/SOAP/UDDI). Second, the Web Service based
implementation of the architecture allows existing Web Services to migrate to the
architecture without reimplementation. Lastly, the Web Service based implementation of
the architecture simplifies the development and deployment of a new Web Service by
automatically generating the necessary description files (i.e., WSDL and RDF files) of

the Web Service from its runtime binary (i.e., a Java class file). The Web Service based
implementation of the architecture is available for download at Ref. 32.

As described in Section 2, the semantics-based dynamic service composition
architecture consists of CoSMoS, CoRE, and SeGSeC. The following subsections
describe how CoSMoS and CoRE are implemented based on the Web Service standards.
Once CoSMoS and CoRE are implemented based on the Web Service standards, SeGSeC
is able to compose applications from the Web Services.

3.1. CoSMoS for Web Services

This section presents how to describe a component modeled by CoSMoS using WSDLc
and RDF. As described in Section 2.1, CoSMoS models a component from three aspects:
the functional aspect, the semantic aspect and the logical aspect. WSDL is used to
describe the functional aspect of CoSMoS. RDF is used to describe the semantic and
logical aspects of CoSMoS. A WSDL file describing the functional aspect and an RDF
file describing the other two aspects are bound by another WSDL file (called a binding
WSDL file) that imports those two files (See Figure 14). A binding WSDL file may bind
a WSDL file that describes the functional aspect of an existing Web Service and a RDF
file that is newly created to describe the semantic and logical aspects of the Web Service.
This allows the existing (already deployed) Web Service to migrate to the semantics-
based dynamic service composition architecture without reimplementation.

Functional
Aspect

Semantic
Aspect

Logical
Aspect

WSDL

RDF

Binding
WSDLimport

describe

describe

describe

Figure 14. Describing CoSMoS in WSDL and RDF

3.1.1. CoSMoS in WSDL

WSDL defines an interface (called portType) of a Web Service as a set of operations.
Each operation is defined as a pair of input and output messages, and each message is
defined as a list of <name, data type> pairs called parts. WSDL may define data types
using a schema language (e.g., XML Schema). WSDL may also specify how and where
to access the interface using binding and service elements.

The functional aspect of CoSMoS can be described using WSDL in the following
manner. An operation of a component in CoSMoS is defined as an operation in WSDL,
whereas input and output components of an operation in CoSMoS are defined as parts
that comprise the input and output messages of the operation in WSDL. Data types used
in CoSMoS are defined in WSDL using XML Schema. The following is the WSDL

c This paper assumes WSDL version 1.1. However, the mapping between WSDL and CoSMoS described in this
paper is also applicable onto WSDL version 2.0 with little modification.

description of the functional aspect of the Direction Generator component shown in
Figure 1.

<wsdl:definitions …>
 <wsdl:types>
 <schema …>
 <complexType name="Address">
 <sequence>
 <element name="street" type="xsd:string"/>
 <element name="city" type="xsd:string"/>
 <element name="state" type="xsd:string"/>
 </sequence>
 </complexType>
 </schema>
 </wsdl:types>
 <wsdl:message name="output">
 <wsdl:part name="dirImage" type="xsd:base64Binary"/>
 </wsdl:message>
 <wsdl:message name="input">
 <wsdl:part name="originComp" type="impl:Address"/>
 <wsdl:part name="destComp" type="impl:Address"/>
 </wsdl:message>
 <wsdl:portType name="DirectionGenerator">
 <wsdl:operation name="generateOp" …>
 <wsdl:input message="impl:input" name="input"/>
 <wsdl:output message="impl:output" name="output"/>
 </wsdl:operation>
 </wsdl:portType>
 …
</wsdl:definitions>

In order to parse a WSDL file describing the functional aspect of a component (i.e.,
Web Service) into a CoSMoS semantic graph, a WSDL parser is implemented. Since no
modification is made on WSDL to describe the functional aspect of CoSMoS, the WSDL
parser can parse any regular WSDL files. However, WSDL cannot describe the semantic
and logical aspects of CoSMoS. In order to complement WSDL, RDF is used to describe
the semantic and logical aspects of CoSMoS.

3.1.2. CoSMoS in RDF

RDF describes a resource as a set of statements. A statement is a tuple of subject,
predicate, and object. A subject identifies the resource that the statement describes. A
predicate identifies the property or characteristics of the subject of the statement. An
object identifies the value of the property of the statement. A set of statements in RDF is

often represented as a graph in which nodes represent the subjects and objects of the
statements and arcs represent the predicates of the statements.

The semantic aspect of CoSMoS can be described using RDF in the following
manner. An Element node (or an Action node) in the semantic aspect is defined as an
RDF resource with a “rdf:type” predicate referring to the RDF resource
“cosmos:Element” (or “cosmos:Action”) and another “cosmos:concept” predicate
specifying the URI of the concept the node represents. When a Component node (defined
in the functional aspect) represents an Element node (defined in the semantic aspect), an
RDF statement is defined such that its subject, predicate and object correspond to the
Component node, the ‘cosmos:represents’ concept, and the Element node, respectively.
Similarly, when an Operation node (defined in the functional aspect) performs an Action
node (defined in the semantic aspect), an RDF statement is defined such that its subject,
predicate and object correspond to the Operation node, the ‘cosmos:performs’ concept,
and the Action node, respectively. A labeled link between two Element nodes is defined
as an RDF statement whose subjects, predicates and objects correspond to the source
Element node, the label of the link, and the target Element node, respectively. The
following is the RDF description of the semantic aspect of the Direction Generator
component show in Figure 1. This example uses the WordNet31 as an ontology for
defining the concepts of the Element nodes.

<rdf:RDF ...>
 <rdf:Description rdf:about="#generateOp">
 <cosmos:performs rdf:resource="&wnd;Generate"/>
 </rdf:Description>
 <rdf:Description rdf:about="#origin">
 <rdf:type rdf:resource="&cosmos;Element"/>
 <cosmos:concept rdf:resource="&wn;Location"/>
 </rdf:Description>
 <rdf:Description rdf:about="#originComp">
 <cosmos:represents rdf:resource="#origin"/>
 </rdf:Description>
 <rdf:Description rdf:about="#destination">
 <rdf:type rdf:resource="&cosmos;Element"/>
 <cosmos:concept rdf:resource="&wn;Location"/>
 </rdf:Description>
 <rdf:Description rdf:about="#destComp">
 <cosmos:represents rdf:resource="#destination"/>
 </rdf:Description>
 <rdf:Description rdf:about="#direction">
 <rdf:type rdf:resource="&cosmos;Element"/>
 <cosmos:concept rdf:resource="&wn;Direction"/>
 <en:from rdf:resource="#origin"/>

d “wn” is the namespace prefix representing” http://xmlns.com/wordnet/1.6/”.

 <en:to rdf:resource="#destination"/>
 </rdf:Description>
 <rdf:Description rdf:about="#dirImage">
 <cosmos:represents rdf:resource="#direction"/>
 <cosmos:MIME>image/jpeg</cosmos:MIME>
 </rdf:Description>
</rdf:RDF>

Similarly, the logical aspect of CoSMoS can be described using RDF in the following

manner. As described in Section 2.1.2, the logical aspect of CoSMoS defines rules, and
each rule is a set of conditions and consequences. A Rule node in the logical aspect of
CoSMoS is defined as an RDF statement whose subject, predicate and object correspond
to the condition(s) of the rule, a “cosmos:implies” predicate, and the consequence(s) of
the rule, respectively. Each condition and consequence, represented as a labeled link in
CoSMoS, is defined as an RDF reification of a statement where the subject and object of
the statement correspond to the source and target Element nodes of the link, and the
predicate of the statement corresponds to the label of the link. If a rule contains multiple
conditions or consequences, they are grouped into a single RDF resource using the RDF
container “rdf:Bag”. When a Component node (defined in the functional aspect) has a
‘knows’ link to a Rule node (defined in the logical aspect), an RDF statement is defined
such that its subject, predicate and object correspond to the Component node, the
‘cosmos:knows’ concept, and the Rule node, respectively. The following is the RDF
description of the logical aspect of the Microphone component show in Figure 5.

<rdf:RDF ...>
 <rdf:Statement rdf:ID="cond">
 <rdf:subject rdf:resource=”#microphone”/>
 <rdf:predicate rdf:resource=”&wn;Use”/>
 <rdf:object rdf:resource=”#person”/>
 </rdf:Statement>
 <rdf:Statement rdf:ID="cons">
 <rdf:subject rdf:resource=”#sound”/>
 <rdf:predicate rdf:resource=”&wn;Of”/>
 <rdf:object rdf:resource=”#person”/>
 </rdf:Statement>
 <rdf:Statement rdf:ID="rule1">
 <rdf:subject rdf:resource=”#cond”/>
 <rdf:predicate rdf:resource=”&cosmos;implies”/>
 <rdf:object rdf:resource=”#cons”/>
 </rdf:Statement>
 <rdf:Description rdf:about="#Microphone">
 <cosmos:knows rdf:resource="#rule1"/>
 </rdf:Description>
</rdf:RDF>

In order to parse an RDF file describing the semantic and logical aspects of a

component (i.e., Web Service) into a CoSMoS semantic graph, an RDF parser is
implemented. The RDF parser collaborates with the WSDL parser described in Section
3.1.2 so that when the WSDL parser parses a binding WSDL file it can relay the
imported RDF file to the RDF parser.

3.1.3. Automatic Generation of WSDL and RDF

In order to ease the development of a new Web Service modeled by CoSMoS, the
Web Service based implementation of the semantics-based dynamic service composition
architecture supports the automatic generation of the WSDL and RDF files from an
annotated Java class file. Annotation, a feature of Java 1.5, enables to annotate and
embed the semantic and logical aspects of CoSMoS into a Java class file. The following
is an example Java source code of the Direction Generator component in Figure 1.

public class DirectionGenerator {
 @Prefix … String wn = " http://xmlns.com/wordnet/1.6/";
 @Element … String origin = "&wn;Location";
 @Element … String destination = "&wn;Location";
 @Element … String direction = "&wn;Direction";

 @Link(from="direction",to="origin")
 static final String from="&wn;from";

 @Link(from="direction",to="destination")
 static final String to="&wn;to";

 @Action("&wn;Generate")
 @Return("direction") @Binary("image/jpeg")
 byte[] generate(
 @Param("origin") Address originComp,
 @Param("destination") Address destComp) {…}
}

Apache Axis, a library for Web Service, is used to automatically generate a WSDL

file from a Java class file. Two servlets, RDF Generator and Binding WSDL Generator,
are implemented in order to generate an RDF file and a binding WSDL file automatically
from an annotated Java class file. This automatic generation of WSDL and RDF greatly
simplifies the development of a new Web Service for the semantics-based dynamic
service composition architecture.

3.2. CoRE for Web Services

This section describes how to publish Web Services modeled by CoSMoS onto a UDDI
repository, and how to allow CoRE to discover and invoke the Web Services using UDDI
and SOAP. As described in Section 2.2, CoRE consists of DiscoveryEngines,
InvokerEngines, and PropertyAccessEngines. In order to allow CoRE to discover Web
Services modeled by CoSMoS, a DiscoveryEngine based on UDDI is implemented. In
order to allow CoRE to invoke Web Services modeled by CoSMoS, an InvokerEngine
based on SOAP is implemented. Please note that PropertyAccessEngine is not
implemented for Web Services because Web Services cannot expose any property.
Figure 15 shows the architecture of CoRE that is implemented using UDDI and SOAP.

Component Runtime Environment (CoRE)

Discovery Interface Access Interface

UDDI Discovery Engine SOAP Invoker Engine

UDDI
repository

Web
Service

RDF

WSDLregister
Binding
WSDL

SOAPUDDI

Figure 15. Implementing CoRE using UDDI and SOAP

3.2.1. Web Service Publication onto UDDI

UDDI specifies a set of APIs and protocols that enables a client to publish and
discover Web Services. In order to organize Web Services, UDDI defines the following
elements: businessEntry, businessService, bindingTemplate and tModel (Technical
Model). A businessEntry represents a physical company and contains multiple
businessServices, which represent the (web) services provided by the company. Each
businessService may contain multiple bindingTemplates, the instructions on how to
invoke the service. Each bindingTemplate specifies the access point of the service and
also may specify several tModels. A tModel may specify the technical specification of
the bindingTemplate using WSDL.

Since UDDI only supports business-related information for organizing Web Services,
it cannot organize or lookup Web Services based on their semantic information.
Although it is possible to extend UDDI to directly support the semantic information of
the Web Services (e.g., Ref. 33), this paper proposes an approach that requires no
modification of existing UDDI repositories in order to maintain compatibility.

As described in Section 3.1, a Web Service modeled by CoSMoS is described by a
binding WSDL file that imports another WSDL file describing the functional aspect of
the component and an RDF file describing the semantic and logical aspects of the
component. One can publish a Web Service modeled by CoSMoS onto a UDDI
repository by (1) registering the binding WSDL file of the Web Service as a tModel, and
(2) specifying the tModel (i.e., the registered binding WSDL file) in the bindingTemplate

of the Web Service. Since no modification is made on UDDI, this approach is applicable
to any existing UDDI repositories.

3.2.2. Web Service Discovery from UDDI

In order to allow CoRE to discover the Web Services modeled by CoSMoS, a
DiscoveryEngine based on UDDI is developed. The DiscoveryEngine first retrieves all
tModels specifying the binding WSDL files from UDDI and parses them into CoSMoS
semantic graphs by using the WSDL and RDF parsers described in Section 3.1. Then,
upon receiving a query from the Discovery Interface, the DiscoveryEngine evaluates the
parsed CoSMoS semantic graphs of the Web Services against the query, and identifies
which Web Services match the query. After identifying the Web Services that match the
query, the DiscoveryEngine retrieves the access points (i.e., URLs) of the Web Services
by retrieving their bindingTemplates from UDDI, and returns the pairs of the CoSMoS
semantic graphs and the access points of the Web Services to the Discovery Interface.

3.2.3. Web Service Invocation via SOAP

SOAP is an XML-based message exchange protocol, which is a de facto standard for
invoking Web Services on remote hosts. In order to allow CoRE to invoke the Web
Services modeled by CoSMoS, an InvokerEngine based on SOAP is developed. Upon
receiving a request to invoke a Web Service from the Access Interface, the
InvokerEngine obtains the following information regarding the Web Service: its access
point (i.e., URL), its operation name, the data types of its input(s) and output(s), and the
actual input data (i.e., arguments). The access point of a Web Service is provided by the
DiscoveryEngine when it discovers the Web Service from UDDI. The operation name of
the Web Service is identified when SeGSeC synthesizes a workflow containing the Web
Service. The data types of the input(s) and output(s) are obtainable from the functional
aspect of the Web Service. The actual input data is provided when SeGSeC executes the
workflow. With completed information, the InvokerEngine invokes the Web Service by
sending the request encoded as an XML message to the specified access point, and
returning the return value from the Web Service back to the Access Interface.

3.3. Empirical Evaluation

In order to test and evaluate the Web Service based implementation of the semantics-
based dynamic service composition architecture empirically, various components are
developed and deployed onto the implementation, and several applications are composed
using those components. Since the performance of the architecture has already been
examined23, this paper focuses on the feasibility, compatibility and portability of the Web
Service based implementation of the architecture.

Table 2 summarizes the components developed for and deployed onto the Web
Service based implementation of the architecture. Some components are developed as
annotated Java class files and deployed as Web Services. Some other components are
developed by annotating the WSDL files of the existing Web Services with new RDF

files. There are also several components that are not deployed as Web Services, such as
device components and data components.

Table 2. Components developed for the Web Service based implementation of the architecture

 Components developed
Original Web Services Direction generator, Business directorya, Text-to-sound converter, Sound-to-text

converter, Business card creatorb
Existing Web Services Email sending service34, Fax sending service35, SMS sending service36, Instant

messaging sending service37, Zip code lookup38, Distance calculator39,c
Device components Keyboard, display, microphone, speaker
Data components Home, Office, Restaurant, Tom, Alice
a Given a name of a person, it returns the address, phone number, homepage and email address of the person.
b Given a name, address, phone number, email address and homepage of a person, it creates an image of a
business card of the person.
c Given two zip codes, it calculates the distance between the two zip codes.

The client software of the architecture (Figure 16) allows a user to deploy different

sets of components and request an application using a natural language. Based on the
request from the user, the client software performs SeGSeC and composes various
applications using the components deployed. For instance, it can compose the direction
printing service described in Section 2.3.

Figure 16. The user interface of the Web Service based implementation of the architecture

Table 3 shows some other example applications that can be composed by the
architecture.

Table 3. Example applications that can be composed by the architecture

Request Composed application
Play direction from home
to office

Home

Office
Direction

Generator
Speaker

Address

Address

Text

Text-to-speech
Converter

Sound

Show distance between
office and restaurant

Office Zip code lookup
Display

Address

Address Distance
Calculator

TextRestaurant
Zip

Zip

Send email to Tom

Tom

name

sound

Microphone Sound-to-text converter

Business directory Email sending service

Email address

message

Print businesscard of Tom

Tom

name

Business card creatorBusiness directory

Address, phone,
Email, homepage imagename

Printer

This empirical evaluation confirmed that the semantics-based dynamic service

composition architecture can be implemented using Web Service standards without any
modification, and thus demonstrated that the Web Service based implementation of the
architecture maintains compatibility with other Web Service based systems. It also
verified that the Web Service based implementation of the architecture allows the
existing Web Services to migrate to the architecture without reimplementation by
annotating the WSDL files of the existing Web Services with new RDF files. The
empirical evaluation also demonstrated that a new Web Service for the architecture can
be developed easily as the Web Service based implementation of the architecture is
capable of automatically deploying an annotated Java class file as a Web Service for the
architecture by automatically generating the necessary description files (i.e., WSDL and
RDF files). Most importantly, the empirical evaluation verified that the concept of the
semantics-based dynamic service composition, i.e., composing applications based on the
semantics of the components and of the user’s request, is applicable to the Web Service
domain.

4. CONCLUSION AND FUTURE WORK

This paper presents the semantics-based dynamic service composition architecture,
which dynamically composes the application requested by a user based on the semantics
of the components and of the user request. The architecture consists of a semantics-aware
component model called Component Service Model with Semantic (CoSMoS), a
middleware called Component Runtime Environment (CoRE), and a semantics-based
dynamic service composition mechanism called Semantic Graph based Service
Composition (SeGSeC). This paper describes the latest design of the architecture and
also illustrates the Web Service based implementation of the architecture. Through the
empirical evaluation, this paper confirmed that the Web Service based implementation of
the architecture satisfies the following requirements. First, the Web Service based
implementation of the architecture maintains compatibility with existing Web Service
based systems because it does not require any modification of the existing Web Service
standards (i.e., WSDL/RDF/SOAP/UDDI). Second, the Web Service based
implementation of the architecture allows existing Web Services to migrate to the
architecture without reimplementation. Lastly, the Web Service based implementation of
the architecture simplifies the development and deployment of a new Web Service by
automatically generating the necessary description files (i.e., WSDL and RDF files) of
the Web Service from its runtime binary (i.e., a Java class file). The empirical evaluation
using the Web Service based implementation of the architecture also verified that the
concept of the semantics-based dynamic service composition is applicable to the Web
Service domain.

The semantics-based dynamic service composition architecture may be extended to
compose applications not only based on the semantics of the components and of the user
request but also based on the user’s context information such as location, time, or history
in order to provide more adaptable applications. This awaits further research.

Acknowledgements

This research is supported by the NSF through grants ANI-0083074, ANI-9903427 and
ANI-0508506, by DARPA through grant MDA972-99-1-0007, by AFOSR through grant
MURI F49620-00-1-0330, and by grants from the California MICRO and CoRe
programs, Hitachi, Hitachi America, Hitachi CRL, Hitachi SDL, DENSO IT Laboratory,
DENSO International America LA Laboratories, NICT (National Institute of
Communication Technology, Japan), NTT Docomo and Novell.

References

1. M.P. Papazoglou and D. Georgakopoulos, Service Oriented Computing, in Comm. ACM, vol.
46, no. 10, 2003, pp. 25–28.

2. Chakraborty, D. and Joshi, A Dynamic Service Composition: State-of-the-Art and Research
Directions, Technical Report TR-CS-01-19, Department of Computer Science and Electrical
Engineering, University of Maryland, Baltimore County, Baltimore, USA, 2001.

3. S. McIlraith and T. Son, Adapting Golog for Composition of Semantic Web Services, in
Proceedings of the Eighth International Conference on Knowledge Representation and
Reasoning (KR2002), pages 482-493, April, 2002.

4. D. Chakraborty, F. Perich, A. Joshi, T. Finin, and Y. Yesha, A Reactive Service Composition
Architecture for Pervasive Computing Environments, in Proceedings of the 7th Personal
Wireless Communications Conference (PWC 2002), Singapore, October 2002.

5. K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-
106.

6. J. Cardoso and A. Sheth, Semantic e-Workflow Composition, to appear in Journal of
Intelligent Information Systems, 2003.

7. Q. Z. Sheng, B. Benatallah, M. Dumas, and E. Mak, SELF-SERV: A Platform for Rapid
Composition of Web Services in a Peer-to-Peer Environment, in Proceedings of the twenty-
eighth Very Large DataBase Conference (VLDB'2002), Hong Kong, China, August 2002.

8. P. Doshi, R. Goodwin, R. Akkiraju, and K. Verma, Dynamic Workflow Composition using
Markov Decision Processes, in Proceedings of the Second International Conference on Web
Services (ICWS), pp. 576-582, San Diego, CA, July 6-9, 2004.

9. P. Pires, M. Mattoso, M. Benevides, Building Reliable Web Services Compositions, Web,
Web-Services, and Database Systems 2002. Springer LNCS 2593, ISBN 3-540-00745-8, pp.
59-72, 2003.

10. P. Traverso and M. Pistore, Automated Composition of Semantic Web Services into
Executable Processes, in Proceedings of the 3rd International Semantic Web Conference
(ISWC2004), 7-11 Nov. 2004, Hiroshima, Japan.

11. S. R. Ponnekanti and A. Fox, SWORD: A Developer Toolkit for Web Service Composition, in
Proceedings WWW Conference (11), Honolulu, Hawaii, May 7-11, 2002.

12. E. Sirin, J. Hendler, and B. Parsia, Semi-automatic composition of web services using semantic
descriptions, in Proceedings of the Web Services: Modeling, Architecture and Infrastructure
workshop in ICEIS 2003, Angers, France, April 2003.

13. W. Cheung, J. Liu, K. Tsang, R. Wong, Towards Autonomous Service Composition in A Grid
Environment, in Proceedings of the 2004 IEEE International Conference on Web Services, San
Diego, California, July, 2004.

14. M. Carman, L. Serafini and P. Traverso, Web Service Composition as Planning, in
Proceedings of the ICAPS 2003 Workshop on Planning for Web Services, June 2003.

15. M., Takahiro Kawamura, T. R. Payne, and K. Sycara, Semantic Matching of Web Services
Capabilities, in Proceedings of the 1st International Semantic Web Conference (ISWC2002),
Sardinia, Italy.

16. J. Yang and M. Papazoglou, Web Components: A Substrate for Web Service Reuse and
Composition, in Proceedings of the 14th International Conference on Advanced Information
Systems Engineering (CAiSE'02), Toronto, Canada, 2002.

17. J. Peer, Towards Automatic Web Service Composition using AI Planning Techniques, 2003.
18. J. Hendler, D. Wu, E. Sirin, D. Nau, and B. Parsia, Automatic web services composition using

Shop2, In Proceedings of The Second International Semantic Web Conference (ISWC 2003),
Sundial Resort, Sanibel Island, Florida, USA, 2003.

19. B. Limthanmaphon and Y. Zhang, Web Service Composition with Case-Based Reasoning, In
Proceedings of the Fourteenth Australasian Database Conference (ADC2003), Adelaide,
Australia. CRPIT, 17. Schewe, K.-D. and Zhou, X., Eds., ACS. 201-208.

20. M. Sheshagiri, M. desJardins, and T. Finin, A Planner for Composing Services Described in
DAML-S, in Proceedings of the ICAPS 2003 Workshop on Planning for Web Services, July
2003.

21. J. Rao, P. Kungas and M. Matskin. Logic-based Web Service Composition: from Service
Description to Process Model, In Proceedings of the 2004 IEEE International Conference on
Web Services (ICWS 2004), San Diego, California, USA, July 6-9, 2004.

22. K. Fujii and T. Suda, Dynamic Service Composition Using Semantic Information, In
Proceedings of the Second International Conference on Service Oriented Computing
(ICSOC ’04), November 2004.

23. K. Fujii and T. Suda, Semantics-based Dynamic Service Composition, to appear in the IEEE
Journal on Selected Areas in Communications (JSAC), special issue on Autonomic
Communication Systems.

24. J. F. Sowa, Conceptual Graphs Summary, in Conceptual Structures: Current Research and
Practice, P. Eklund, T. Nagle, J. Nagle, and L. Gerholz, eds., Ellis Horwood, 1992, pp. 3-52.

25. OWL Service Coalition, OWL-S 1.0 Release, http://www.daml.org/services/owl-s/1.0/.
26. R. Akkiraju et al., Web Service Semantics - WSDL-S (2005), http://www.w3.org/Submission/

WSDL-S/.
27. A. Eberhart, Ad-hoc Invocation of Semantic Web Services, in Proceedings of the IEEE

International Conference on Web Services (ICWS 2004), July 2004.
28. J. Peer. Semantic Service Markup with SESMA, in Proceeding of Web Service Semantics

Workshop (WSS'05) at the Fourteenth International World Wide Web Conference (WWW'05),
2005.

29. Web Service Modeling Ontology, http://www.wsmo.org/.
30. G.A. Mann, BEELINE - A Situated, Bounded Conceptual Knowledge System, International

Journal of Systems Research and Information Science, 1995, 7, pp37-53.
31. D. Brickley, Wordnet for the Web, http://xmlns.com/2001/08/wordnet/
32. K. Fujii, Dynamic Service Composition (2005), http://netresearch.ics.uci.edu/kfujii/dsc/
33. N. Srinivasan, M. Paolucci, and K. Sycara, Adding OWL-S to UDDI, implementation and

throughput, in the First International Workshop on Semantic Web Services and Web Process
Composition (SWSWPC 2004), 2004, San Diego, California, USA.

34. Email sending service, http://www.abysal.com/soap/AbysalEmail.wsdl
35. Fax sending service, http://www.webservicex.com/fax.asmx?wsdl
36. SMS sending service, http://www.webservicex.com/sendsmsworld.asmx?WSDL
37. Instance messaging sending service, http://www.scdi.org/~avernet/webservice/yim.wsdl
38. Zip code lookup service, http://www.webservicex.com/uszip.asmx?WSDL
39. Distance calculator, http://webservices.imacination.com/distance/Distance.jws?wsdl

