
May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

International Journal of Cooperative Information Systems
Vol. 17, No. 2 (2008) 223–255
c© World Scientific Publishing Company

SERVICE-ORIENTED COMPUTING:
A RESEARCH ROADMAP

MICHAEL P. PAPAZOGLOU

Tilburg University, INFOLAB/CRISM
Tilburg, The Netherlands

mikep@uvt.nl

PAOLO TRAVERSO

Istituto per la Ricerca Scientifica e Tecnologica (IRST)
Trento, Italy

traverso@itc.it

SCHAHRAM DUSTDAR

Technical University of Vienna
Information Systems Institute

Vienna, Austria
dustdar@infosys.tuwien.ac.at

FRANK LEYMANN

University of Stuttgart
Institute of Architecture of Application Systems

Stuttgart, Germany
Frank.Leymann@informatik.uni-stuttgart.de

Service-Oriented Computing (SOC) is a new computing paradigm that utilizes services
as the basic constructs to support the development of rapid, low-cost and easy compo-
sition of distributed applications even in heterogeneous environments. The promise of
Service-Oriented Computing is a world of cooperating services where application com-
ponents are assembled with little effort into a network of services that can be loosely
coupled to create flexible dynamic business processes and agile applications that may
span organizations and computing platforms. The subject of Service-Oriented Comput-
ing is vast and enormously complex, spanning many concepts and technologies that find
their origins in diverse disciplines that are woven together in an intricate manner. In
addition, there is a need to merge technology with an understanding of business pro-
cesses and organizational structures, a combination of recognizing an enterprise’s pain
points and the potential solutions that can be applied to correct them. The material in
research spans an immense and diverse spectrum of literature, in origin and in charac-
ter. As a result research activities are very fragmented. This necessitates that a broader
vision and perspective be established — one that permeates and transforms the funda-
mental requirements of complex applications that require the use of the Service-Oriented
Computing paradigm.

This paper provides a Service Oriented Computing Roadmap and places on-going
research activities and projects in the broader context of this roadmap. This research
roadmap launches four pivotal, inherently related, research themes to Service-Oriented

223



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

224 M. P. Papazoglou et al.

Computing: service foundations, service composition, service management and monitor-
ing and service-oriented engineering.

Keywords: Service-oriented computing; service-oriented architecture; business process;
service composition; service management.

1. Overview

Today’s business climate demands a high rate of change with which Information
Technology (IT)-minded organizations are required to cope. Organizations face
rapidly changing market conditions, new competitive pressures, new regulatory
fiats that demand compliance, and new competitive threats. All of these situations
and more drive the need for the IT infrastructure of an organization to respond
quickly in support of new business models and requirements. Only in this way
can an organization gear towards the real world of fully automated, complex elec-
tronic transactions. As most enterprise applications were not designed to enable
rapid adaptation of application functionality, this adds another level of intricacy
to an already complex IT landscape. At the same time, it increases infrastruc-
ture complexity and limits its ability to quickly change application features or
functions.

Integration and infrastructure management are the key elements of an on
demand operating IT environment. Integration enables the efficient and flexible
combination of resources to optimize operations across and beyond the boundaries
of an organization and enables them to interoperate seamlessly. Integration is about
seamlessly interlinking on one hand people and on the other hand processes and
information that may transcend organizational boundaries despite the existence of
multiple — and possibly heterogeneous — platforms and protocols, and numerous
access devices, while leveraging the potential of the Internet. Infrastructure man-
agement address two objectives: automation and virtualization of the environment.
Automation of the environment is achieved by the capability to reduce manage-
ment complexity to enable better use of assets, improve availability and resiliency,
and reduce costs based on business policy and objectives. Virtualization of the
environment is achieved by the capability to provide easy access to and a single
consolidated view of all available resources in a network — no matter where the
resources or information reside. Service orientation provides the underlying imple-
mentation that can make an on demand IT operating environment a reality by
supporting the functions of both integration and infrastructure management.1

Service-Oriented Computing (SOC) utilizes services as the constructs to support
the development of rapid, low-cost and easy composition of distributed applications.
Services are autonomous, platform-independent computational entities that can be
used in a platform independent way. Services can be described, published, discov-
ered, and dynamically assembled for developing massively distributed, interopera-
ble, evolvable systems. Services perform functions that can range from answering
simple requests to executing sophisticated business processes requiring peer-to-peer



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

Service-Oriented Computing: A Research Roadmap 225

relationships between possibly multiple layers of service consumers and providers.
Any piece of code and any application component deployed on a system can be
reused and transformed into a network-available service. Services reflect a “service-
oriented” approach to programming, based on the idea of composing applications
by discovering and invoking network-available services rather than building new
applications or by invoking available applications to accomplish some task.2 Ser-
vices are most often built in a way that is independent of the context in which
they are used. This means that the service provider and the consumers are loosely
coupled.

This “service-oriented” approach is independent of specific programming lan-
guages or operating systems. It allows organizations to expose their core competen-
cies programmatically over the Internet or a variety of networks, e.g. cable, UMTS,
XDSL, Bluetooth, etc. using standard (XML-based) languages and protocols, and
implementing a self-describing interface. Web Services are the current most promis-
ing technology based on the concept of Service Oriented Computing.3 Web services
provide the basis for the development and execution of business processes that are
distributed over the network and available via standard interfaces and protocols.
Web services may use the Internet as the communication medium (as well as other
transport protocols) and open Internet-based standards, such as the Simple Object
Access Protocol (SOAP) as transmission medium, the Web Services Description
Language (WSDL) for service definition and the Business Process Execution Lan-
guage (BPEL) for orchestrating services.

The visionary promise of services technologies is a world of cooperating ser-
vices where application components are assembled with little effort into a network
of services that can be loosely coupled to create dynamic business processes and
agile applications that span organizations and computing platforms.4 Services hold
the promise of moving beyond the simple exchange of information — the dom-
inating mechanism for application integration today — to the concept of access-
ing, programming and integrating application services that are encapsulated within
old and new applications. An important economic benefit of the Service Oriented
Computing paradigm is that it enables application developers to dynamically grow
application portfolios more quickly than ever before, by creating compound appli-
cation solutions that use internally existing organizational software assets which
they appropriately combine with external components possibly residing in remote
networks. Previously isolated Enterprise Resource Planning (ERP), Customer Rela-
tionship Management (CRM), Supply Chain Management (SCM), Human Resource
Management (HRM), financial, and other legacy systems can now be converted to
service enabled architectures and integrated more effectively than when relying
on custom, point-to-point coding or proprietary Enterprise Application Integration
technology. The end result is that it is then easier to create new composite appli-
cations that use pieces of application logic and/or data that reside in the existing
systems. This represents a fundamental change to the socio-economic fabric of the
software developer community that improves the effectiveness and productivity in



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

226 M. P. Papazoglou et al.

software development activities and enables enterprises to bring new products and
services to the market more rapidly.5

Key to this concept is the service-oriented architecture (SOA). SOA is a logical
way of designing a software system to provide services to either end-user applica-
tions or to other services distributed in a network, via published and discoverable
interfaces. A well-constructed, standards-based Service Oriented Architecture can
empower a business environment with a flexible infrastructure and processing envi-
ronment. SOA achieves this by provisioning independent, reusable automated busi-
ness process and systems functions as services and providing a robust and secure
foundation for leveraging these services. Efficiencies in the design, implementation,
and operation of SOA-based systems can allow organizations to adapt far more
readily to a changing environment.

Services technologies are being shaped by, and increasingly will help shape,
modern society as a whole, especially in vital areas such as dynamic business, health,
education and government services. Applying services technologies leads to reduced
complexity and costs, exposing and reusing core business functionality, increased
flexibility, resilience to technology shifts and improving operational efficiency. For
all these reasons, it is expected that the Service Oriented Computing paradigm will
exhibit a steeper adoption curve, as it solves expensive and intractable business
and technology problems, and will infiltrate more of the applications portfolio,
than previous application technologies.

In this paper, we first motivate the need for a Service-Oriented Computing
Roadmap and subsequently place on-going research activities and projects in the
broader context of this roadmap. This research roadmap launches four pivotal,
inherently related, research themes to Service-Oriented Computing: service founda-
tions, service composition, service management and monitoring and service-oriented
engineering. Each theme is introduced briefly from a technology, state of the art
and scientific challenges standpoint. From the technology standpoint a comprehen-
sive review of the state of the art, standards, and current research activities in
each key area is provided. From the state of the art, the major open problems and
bottlenecks to progress are identified. Several of these obstacles arise due to the
current lack of interdisciplinary research in the field, which is considered to be a
major impediment that limits added economic growth through deployment and use
of services technology. Finally, the scientific challenges that tackle the found obsta-
cles are formulated. These are long-term visions that serve as integration platforms
and demonstrators for an holistic approach to Service-Oriented Computing in the
identified key areas.

2. Need for a Services Research Roadmap

As Service-Oriented Computing is very much an emerging field, there is no such
thing as a “general audience” for Service-Oriented Computing — there are many
people (researchers and practitioners) with many different (and probably conflict-
ing) levels of understanding and uses for Service-Oriented Computing.



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

Service-Oriented Computing: A Research Roadmap 227

The subject of Service-Oriented Computing is vast and enormously complex,
spanning many concepts, protocols and technologies that find their origins in dis-
ciplines such as distributed computing systems, computer networking, computer
architectures and middleware, grid computing, software engineering, programming
languages, database systems, security, artificial intelligence and knowledge repre-
sentation that are interwoven in an intricate manner. In addition there is a need
to merge technology with an understanding of business processes and organization
structures, a combination of recognizing an enterprise’s pain points and the poten-
tial solutions that can be applied to correct them. The material in research spans
an immense and diverse spectrum of literature, in origin and in character. As a
result research activities are very fragmented and do not contribute to a mutually
acceptable, joint research agenda.

Only through adaptation of an holistic approach to Service-Oriented Computing
research it is considered likely that new industries and economic growth factors can
be provided. Thus to unleash the full potential of SOC research, a broader vision
and perspective is required — one that permeates and transforms the fundamental
requirements of complex applications that require the use of the Service-Oriented
Computing paradigm. This will further enhance the value proposition of SOC and
will facilitate the formulation of a Services Research Roadmap leading to more effec-
tive and clearly inter-related solutions and better exploitation of research results.

Purpose of the Services Research Roadmap is to facilitate efficient and effective
use of research funds by consolidating, streamlining and strategically inter-relating
the current research results and agenda and prioritizing attention to gaps, encourag-
ing interdisciplinary research that might otherwise be overlooked, and coordinating
existing and future research work and projects.

3. Research Roadmap for Service-Oriented Computing Research

Services Research Roadmap introduces a stratified logical service-based architec-
ture (known as extended Service-Oriented Architecture2,6) to create a reactive and
adaptive IT environment. This environment has the ability to represent detailed
business policies and rules abstracted from fixed functional and operational capa-
bilities and delivering these abstracted capabilities in the form of customizable
service-oriented solutions. Its objective is to provide facilities for ensuring consis-
tency across the organization, high availability of services, security of non-public
services and information, orchestration of multiple services as part of mission-
critical composite applications — all essential requirements for business-quality
services. Thus, it strives to improve systems and business visibility and pro-
vide greater control and flexibility in defining and adjusting business rules and
parameters.

The architectural layers in the Services Research Roadmap, which are depicted
in Fig. 1, describe a logical separation of functionality in such a way that each layer
defines a set of constructs, roles and responsibilities and leans on constructs of its
preceding layer to accomplish its mission. The logical separation of functionality



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

228 M. P. Papazoglou et al.

is based on the need to separate basic service capabilities provided by a services
middleware infrastructure and conventional SOA from more advanced service func-
tionality needed for dynamically composing (integrating) services and the need to
distinguish between the functionality for composing services from that of the man-
agement of services and their underlying infrastructure.

As shown in Fig. 1, the Services Research Roadmap has three planes with the
bottom plane utilizing the basic service middleware and architectural constructs and
functionality for describing, publishing and discovering services, while the service
composition and management planes are layered on top of it. The perpendicular
axis indicates service characteristics that cut across all three planes. These include
semantics, non-functional service properties and Quality of Service (QoS). As cross
cutting concerns permeate all three planes (see Fig. 1) we shall introduce them
briefly below before focussing on the Services Research Roadmap planes in the
following subsections.

Quality of Service encompasses important functional and non-functional ser-
vice quality attributes, such as performance metrics (response time, for instance),
security attributes, (transactional) integrity, reliability, scalability, and availabil-
ity. Delivering QoS on the Internet is a critical and significant challenge because
of its dynamic and unpredictable nature. Applications with very different char-
acteristics and requirements compete for all kinds of network resources. Changes
in traffic patterns, securing mission critical business transactions and the effects

performs

publishes

uses

Role actions

becomes

Composition
Composition

Foundation
Foundation

(Service Oriented Middleware and Basic Functions)

(Service Oriented Middleware and Basic Functions)Capability
Interface
Behavior

Publication
Discovery
Selection
Binding

Service provider

Service client

Service operator

Managed services

Composite services

Basic services

Service aggregator

Management &gement &
MonitoringMonitoring

CoordinationConformanceTransactions

 Semantics
 Non-functional characteristics
 QoS

Metrics,
State mgt
Load balancingChange Mgt

Modelling,
Service Oriented Engineering

Fig. 1. The research planes in the Services Research Roadmap.



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

Service-Oriented Computing: A Research Roadmap 229

of infrastructure failures, low performance of Web protocols and reliability issues
over the Web create a need for Internet QoS standards. Often, unresolved QoS
issues cause critical transactional applications to suffer from unacceptable levels of
performance degradation. Traditionally, QoS is measured by the degree to which
applications, systems, networks, and all other elements of the IT infrastructure sup-
port availability of services at a required level of performance under all access and
load conditions. While traditional QoS metrics apply, the characteristics of Web
services environments bring both greater availability of applications and increased
complexity in terms of accessing and managing services and thus impose specific
and intense demands on organizations, which QoS must address.

For Web services to interact properly with each other as part of composite
applications that perform more complex functions by orchestrating numerous ser-
vices and pieces of information, the requester and provider entities must agree both
on the service description (WSDL definition) and semantics that will govern the
interaction between them. A complete semantic solution requires that semantics
are addressed not only at the terminology level but also at the level that Web
services are used and applied in the context of business scenarios, viz. at the busi-
ness process-level. This implies that there must be agreement between a service
requester and provider as to the implied processing of messages exchanged between
interacting services that are part of a business process.

Finally, Fig. 1 illustrates that service modeling and service oriented engineering,
i.e. service-oriented analysis, design and development techniques and methodolo-
gies, are crucial elements for the developing meaningful services and business pro-
cess specifications and an important requirement for SOA applications that leverage
Web services. Service-oriented engineering activities help develop meaningful ser-
vices, service compositions and techniques for managing services. In other words
they apply to the three service planes shown in Fig. 1.

The Services Research Roadmap in Fig. 1 is also shown to define several roles.
In addition to the classical roles of service client and provider, it also defines the
roles of service aggregators and service operator (which will be explained in the
material that follows).

In the following, we shall concentrate on the individual planes found in the Ser-
vices Research Roadmap, motivate and explain them, introduce current standards,
state of the art as well as characteristic research activities within each plane, high-
light open problems and describe major emerging trends and opportunities, identify
relevant technological driving forces and finally concentrate on proposing a num-
ber of challenging research activities for the near future. Table 1 summarizes our
findings regarding the state of the art and grand challenges in Services Research.

3.1. Service foundations

The bottom plane in the Services Research Roadmap is the service foundations
plane that provides a service oriented middleware backbone that realizes the



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

230 M. P. Papazoglou et al.

Table 1. Overview of state of the art and grand challenges in Services Research.

State of the Art Grand Challenges

Service
Foundations

Enterprise Service Bus:

— Open standards message
backbone

— Implementation, deployment,
management

— Set of infrastructure
capabilities implemented by
middleware technology

— Implementation backbone for
SOA

— Dynamically (re)-configurable
run-time architectures

— Dynamic connectivity capabilities

— Topic & content-based routing

— End-to-end security solutions

— Infrastructure support for process,
information & application
integration

— Advanced service discovery
mechanisms

Service
Composition

Service orchestration

— Service interaction at
message-level

— Point to point compositions
from perspective & control of a
single endpoint

— Executable business processes

— Composability analysis for
repleceability, compatibility &
conformance

— Autonomic composition of services

— QoS aware service composition

— Business-driven composition

— Composition of resources, humans
& organisations in the form of
services

Service
Management — Web Services Distributed

Management (WSDM)

— Management Using Web
Services (MUWS)

— Management of Web Services
(MOWS)

— Self-configuring services

— Self-healing services

— Self-optimizing services

— Self-protecting services

Service
Engineering
(Service
Design &
Development)

— Porting of existing components
using wrappers

— Component-based development

— Design principles for engineering
service applications

— Flexible gap analysis techniques

— Service governance techniques

— Design principles for service
adaptation

runtime SOA infrastructure that connects heterogeneous components and systems,
and provides multiple-channel access to services, e.g. via mobile devices, hand held
devices, over variety of networks including the Internet, cable, UMTS, XDSL, Blue-
tooth, and so on. This runtime infrastructure allows defining basic interactions
involving the description, publishing, finding and binding of services.

In a typical service-based scenario employing the service foundations plane a
service provider hosts a network accessible software module (an implementation of
a given service). The service provider defines a service description of the service



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

Service-Oriented Computing: A Research Roadmap 231

and publishes it to a client (or service discovery agency) through which a service
description is published and made discoverable. The service client (requestor) dis-
covers a service (endpoint) and retrieves the service description directly from the
service (through meta-data exchange) or from a registry or repository (like UDDI);
it uses the service description to bind with the service provider and to invoke the
service or to interact with the service. Service provider and service client roles are
logical constructs and a service may exhibit characteristics of both. In Fig. 1, ser-
vice aggregators group services that are provided by other service providers into a
distinct value-added service and may themselves act as service providers. For rea-
sons of conceptual simplicity, in Fig. 1, we assume that service clients, providers
and aggregators can act as service brokers or service discovery agencies and publish
the services they deploy. The role actions in this figure also indicate that a service
aggregator can become (or rather is a special type of) provider.

3.1.1. State of the art

The requirements to provide an appropriately capable and manageable integra-
tion infrastructure for Web services and SOA are coalescing into the concept of
the Enterprise Service Bus (ESB). There are two key ideas behind this approach7:
loosely couple the systems taking part in the integration and break up the integra-
tion logic into distinct easily manageable pieces.

The Enterprise Service Bus is an open-standards based message backbone
designed to enable the implementation, deployment, and management of SOA-
based solutions. An ESB is a set of infrastructure capabilities implemented by mid-
dleware technology that enable an SOA and alleviate disparity problems between
applications running on heterogeneous platforms and using diverse data formats.
It supports service, message, and event-based interactions with appropriate ser-
vice levels and manageability. In other words, the ESB provides the distributed
processing, standards-based integration, and enterprise-class backbone required by
the extended enterprise. The ESB is designed to provide interoperability between
larger grained applications and other components via standards-based adapters
and interfaces. The bus functions as both transport and transformation facilita-
tor to allow distribution of these services over disparate systems and computing
environments.

Conceptually, the ESB has evolved from the store-and-forward mechanism found
in middleware products and now is a combination of Enterprise Application Inte-
gration, e.g. application servers and integration brokers, Web services, XSLT, and
orchestration technologies.8 An ESB provides an implementation backbone for an
SOA that treats applications as services. It establishes proper control of mes-
saging as well as applies the needs of security, policy, reliability and accounting,
in an SOA.

One model that is emerging as appropriate and successful for the ESB is the
container model. In this model, there is a “container” for the service implementation



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

232 M. P. Papazoglou et al.

taking care of exposing the service functionalities and non-functional properties to
the external world via the network. The basic (core) functions of the container are
as follows:

• establishing connectivity and Message Exchange Patterns (MEPs)
• providing support and provision facilities such as transactions, security, perfor-

mance metrics, etc., in a declarative and composable manner,
• providing support for dynamic configuration,
• monitoring of internal behavior and state to management systems (services)
• performing data and protocol adaptation,
• providing support for services discovery.

Figure 2 shows a simplified view of an ESB that integrates a J2EE application
using JMS, a .NET application using a C# client, an MQ application that interfaces
with legacy applications, as well as external applications and data sources using
Web services. An ESB, as represented in Fig. 2, enables the more efficient value-
added integration of a number of different application components, by positioning
them behind a service-oriented façade and by applying Web services technology
to the problem. In Fig. 2, a distributed query engine, which is normally based on
XQuery or SQL, enables the creation of data services to abstract the complexity
of underlying data sources. As shown in Fig. 2, a primary use case for ESB is
to act as the intermediary layer between a portal server and the backend data
sources that the portal server needs to interact with. A portal in Fig. 2 is a user-
facing aggregation point of a variety resources represented as services, e.g. retail,
divisional, corporate employee, and business partner portals.

Fig. 2. Enterprise service bus connecting diverse applications and technologies.



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

Service-Oriented Computing: A Research Roadmap 233

To design effective SOA solutions it is desirable that service developers build
self-configuring service architectures that can use distributed components to dynam-
ically create an optimal service-based architectural run-time style according to par-
ticular application requirements and existing system characteristics. To this end,
the grid services community has attempted to address the support of dynam-
ically reconfigurable service architectures by directing research efforts into two
categories of problems. Service specific architectures that are designed for par-
ticular classes of services/applications.9–11 Examples include resource selection for
resource-intensive applications and resource allocation for services consisting of a
set of multi-fidelity applications. Others proposed generic architectures that can
compose different services using “type-based architectural composition”.12,13 Com-
ponents have well-defined input/output (requires/provides) interfaces, so a service
composition module can automatically generate a service configuration providing
the requested interface(s) — all in all, the overall direction to compose applications
from services is accepted in this domain too.5

Other research activities in the services foundation layer to date have tar-
geted mostly formal service description language(s) for enhanced service definitions
addressing, besides functional aspects, also behavioral as well as non-functional
aspects associated with services.14–16 Research activities have also concentrated on
providing an open, modular, extensible framework for service discovery, publication
and notification mechanisms across distributed, heterogeneous, dynamic (virtual)
organizations as well as unified discovery interfaces and query languages for multiple
pathways.17–20

The AI and semantic Web community has concentrated their efforts in giving
richer semantic descriptions of Web services that describe the properties and capa-
bilities of Web services in an computer-interpretable form.21 Such activities target
the use of formal languages for semantically describing all relevant aspects of Web
services in order to facilitate the automated discovery, combination and invocation
of services over the Web.22,23

3.1.2. Grand challenges

Major research challenges for the near future include:

• Dynamically (re-)configurable run-time architectures: The run-time service infras-
tructure should be able to configure itself and be optimized automatically in
accordance with specific application requirements and high-level policies —
representing business-level objectives, for example — that specify what is desired
(such as particular security and privacy requirements) and not how it is to be
accomplished. A self-reconfiguring services architecture can automatically lever-
age distributed service components and resources to create an optimal architec-
tural configuration according to both the requirements of a particular user and
application characteristics. For instance, the run-time environment must posses
the critical ability to route service interactions through a variety of protocols, and



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

234 M. P. Papazoglou et al.

to transform from one protocol to another where necessary. Another important
aspect is the ability to support diverse service messaging models consistent with
the SOA interfaces, and capable of transmitting and homogenizing the required
interaction context, such as security, transaction, or message correlation informa-
tion. In particular, the run-time environment should be able to configure itself in
accordance with an extensible set of QoS properties and policies for security, for
transactional behavior, and so on.

• Dynamic connectivity capabilities: Dynamic connectivity is the ability to connect
to Web services dynamically without using a separate static API or proxy for
each service. Service-based applications today operate on a static connectivity
mode, requiring some static piece of code for each service. Dynamic service con-
nectivity is a key capability for a successful run-time environment. The dynamic
connectivity API is the same regardless of the service implementation protocol
(Web services, JMS, EJB/RMI, etc.).

• Topic and content-based routing capabilities: The run-time service infrastructure
should be equipped with routing mechanisms to facilitate not only topic-based
routing but also, more sophisticated, content-based routing. Topic-based rout-
ing assumes that messages can be grouped into fixed, topical classes, so that
subscribers can explicate interest in a topic and as a consequence receive mes-
sages associated to that topic while content-based routing on the other hand,
allows subscriptions on constraints of actual properties (attributes) of business
events. Content-based routing forwards messages to their destination based on
the context or content of the service.

• End-to-end security solutions: Validating the security aspects in SOA-based appli-
cations requires a full system approach to test end-to-end security solutions from
both network level and application level security angles. This requires the devel-
opment of a set of services security technologies can create a unifying approach for
dealing with protection for messages exchanged in service-based environments.
Their purpose is to construct authentication, authorization, auditing, privacy
and trust, as well as higher-level key exchange mechanisms, while providing inte-
grating abstraction framework allowing systems and applications to surmount
different security systems and technologies. Similar considerations can be found
in the WS-Roadmap jointly developed by IBM and Microsoft.24

• Infrastructure support for application integration: The run-time environment
should possess the ability to support service-based application integration by
enabling better-structured integration solutions that deliver applications com-
prised of interchangeable parts, evolutionary application portfolios that protect
investment and can respond rapidly to new requirements and business processes
and facilitate “best of breed” portfolio strategies which automatically combine
legacy applications, acquired packages, external application subscriptions and
newly built components.

• Infrastructure support for data integration: The run-time environment should pos-
sess the ability to provide consistent access to all the data by all the applications



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

Service-Oriented Computing: A Research Roadmap 235

that require it, in whatever form they need it, without being restricted by the
format, source, or location of the data. This requirement might involve self-
configurable adapters and transformation facilities, aggregation services to merge
and reconcile disparate data, e.g. merging two customer profiles, and validation
to ensure data consistency, e.g. minimum income should be equal to or exceed a
certain threshold.

• Infrastructure support for process integration: The run-time environment should
possess the ability to provide automated facilities that provide solutions for busi-
ness processes, integration of applications into processes, and integrating pro-
cesses with other processes. Process-level integration may include the integration
of business processes and applications within the enterprise context (viz. Enter-
prise Application Integration solutions) and should also support the integration
of end-to-end processes involving external sources, such as supply chain manage-
ment or financial services that span multiple institutions (viz. e-Business inte-
gration solutions). The service level provides the necessary infrastructure that
enables effective process compositions (see Sec. 3.2).

• Semantically enhanced service discovery: The main challenge of service discovery
is the use of automated means for accurate discovery of services in a manner
that demands minimal user involvement. Improving service discovery requires
explicating the semantics of both the service provider and the service requester.
Improving service discovery involves adding semantic annotations and including
descriptions of QoS characteristics (for example in DAML/OWL or other seman-
tic markup languages) to service definitions in WSDL and then registering these
descriptions in registries. The use of standard ontologies that support shared
vocabularies and domain models for use in the service description also facili-
tates service discovery by making the semantics implied by structures in service
descriptions explicit. To achieve automated discovery of services, the needs of ser-
vice requesters have to be explicitly stated. We expect such needs to be expressed
as goals, which correspond to the description of what services are sought, in some
formal request language.

3.2. Service composition

The service composition plane in the Services Research Roadmap encompasses nec-
essary roles and functionality for the aggregation of multiple services into a single
composite service. Resulting composite services may be used by service as basic
services in further service compositions or may be offered as complete applica-
tions/solutions to service clients. Service aggregators accomplish this task. Service
aggregators thus become service providers by publishing the service descriptions of
the composite service they create. Service aggregators develop specifications and/or
code that permit the composite service to perform functions that are based on
features such as meta-data descriptions, standard terminology and reference mod-
els and service conformance. Service aggregators perform service coordination to



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

236 M. P. Papazoglou et al.

control the execution of the composite services (viz. processes), services transac-
tions and manage both the dataflow as well as the control flow between composite
services. They also enforce policies on aggregate service invocations.

3.2.1. State of the art

The full potential of Web services as a means of developing dynamic e-Business
solutions will only be realized when applications and business processes are able to
integrate their complex interactions into composite added value services. Services
technologies offer a viable solution to this problem since they support coordination
and offer an asynchronous and message oriented way to communicate and inter-
act with application logic. However, when looking at Web services, for example,
it is important to differentiate between the baseline specifications of SOAP, UDDI
and WSDL that provide the infrastructure that supports publishing, finding and
binding operations in the service-oriented architecture and higher-level specifica-
tions required for e-Business integration. These higher-level specifications provide
functionality that supports and leverages services and enables specifications for
integrating automated business processes.

Currently, there are competing initiatives for developing business process defini-
tion specifications, which aim to define and manage business process activities and
business interaction protocols comprising collaborating services. The terms “orches-
tration” and “choreography” have been widely used to describe business interaction
protocols comprising collaborating services.

Orchestration describes how services can interact with each other at the message
level, including the business logic and execution order of the interactions from
the perspective and under control of a single endpoint. Orchestration refers to an
executable business process that may result in a long-lived, transactional, multi-
step process model. With orchestration, the business process interactions are always
controlled from the (private) perspective of one of the business parties involved in
the process.

Choreography is typically associated with the public (globally visible) message
exchanges, rules of interaction and agreements that occur between multiple busi-
ness process endpoints, rather than a specific business process that is executed by a
single party. Choreography is more collaborative in nature than orchestration. It is
described from the perspectives of all parties (common view), and defines the com-
plementary observable behavior between participants in business process collabora-
tion. Choreography offers a means by which the rules of participation for collabora-
tion can be clearly defined and agreed to, jointly. Choreography tracks the sequence
of messages that may involve multiple parties and multiple sources, including cus-
tomers, suppliers, and partners, where each party involved in the process describes
the part they play in the interaction and no party “owns” the conversation.

Orchestration is targeted by a family of XML-based process standard definition
languages most representative of which is the Business Process Execution Language



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

Service-Oriented Computing: A Research Roadmap 237

for Web Services.25 Service choreography is targeted by Web Services Choreography
Description Language (WS-CDL), which specifies the common observable behavior
of all participants engaged in business collaboration. This sharp distinction between
orchestration and choreography is rather artificial and the consensus is that they
should both coalesce in the confines of a single language and environment.

On the research front, activities have mainly concentrated on dynamic
compositions,26 on modularizing compositions,26,27 on enhancing service descrip-
tions (with, for instance, compositional assertions) so that compositions can be
assessed and formally verified28 and on providing context aware services to enable
compositions. In the AI field there has been some work in the area of applying AI
planning techniques to automate the retrieval and composition of Web service29–34

verification35 and monitoring of service oriented applications36 and so forth, but
these efforts are still either at the specification-level or at very preliminary stage of
development. Many of the existing approaches towards service composition largely
neglect the context in which composition takes place. It is only recently that
research approaches have focussed on developing context-aware methodologies that
take into account the business and social context of service compositions as the
basis for process specification and verification.37

3.2.2. Grand challenges

One of the major challenges for industry-wide adoption of the service-oriented
approach is the automated composition of distributed business processes, i.e. the
development of technology, methods and tools that support an effective, flexible,
reliable, easy-to-use, low-cost, dynamic, time-efficient composition of electronic dis-
tributed business processes. Standards such BPEL and WS-CDL that operate at
the service composition plane in the Services Research Roadmap provide the basis
for the composition of services and the integration of business processes that are
distributed among the most disparate entities, both within an organization (e.g.
different departments) and across organizational borders (e.g. consumers interact-
ing with different businesses or government departments providing complementary
services).

However, so far, the automated composition of distributed business processes
is still far from being achieved: no effective, easy-to-use, flexible support is pro-
vided that can cope with the life cycle of distributed business processes, with their
inevitable evolution and required adaptation to changes in, e.g. business strategies
and markets, customers and providers relationships, interactions, and so on. Service
composition is today largely a static affair. All service interactions are anticipated
in advance and there is a perfect match between output and input signatures and
functionality. More ad hoc and dynamic service compositions are required very much
in the spirit of lightweight and adaptive workflow methodologies. These method-
ologies will include advanced forms of coordination, instance-based modification of
process models, less structured process models, and automated planning techniques
as part of the integration/composition process. On the transactional front, although



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

238 M. P. Papazoglou et al.

standards like WS-Transaction, WS-Coordination and the Web Service Composite
Application Framework (WS-CAF) are a step in the right direction, they fall short
of describing different types of atomicity needs for e-Business and e-government
applications. These do not distinguish between transaction phases and conversa-
tional sequences, e.g. negotiation. Another area that is lacking research results is
advanced methodologies in support for the service composition lifecycle. Some of the
major limitations of state-of-the-art technologies that prevent effective automated
composition are:

(1) Lack of tools for supporting the evolution and adaptation of business processes.
It is hard to define compositions of distributed business processes that work
properly under all circumstances. Misunderstandings in the agreement between
different organizations, as well as errors in the specification and implementation
of the interaction protocols, easily occur, especially for complex processes and
interaction protocols. Typical problems are business processes that wait forever,
or for too long, to receive an answer from another process, or that expect
a different answer; or, business processes that fail to invoke another process
as required and do not allow the distributed business to correctly proceed.
Moreover, even in the case business, interactions are initially correctly defined
and implemented. They frequently stop working when some processes involved
in the interactions are autonomously redefined by an external organization; this
kind of evolution is very common in distributed, highly dynamic environments.

(2) Lack of integration of business requirements in the business process life cycle.
While BPEL and WS-CDL are adequate for the specification of the detailed
message exchanges in orchestrations and choreographies, there is the need for
languages that define both the internal business needs of an organization and
its requirements over external services, and for a systematic way of linking them
to business processes. Indeed, without explicit requirements, it is not possible
to motivate the choices that lead to the specification of a certain flow of activ-
ities within a business processes and of its interactions with other processes.
Traceability, i.e. determining how a process is related to and affect business
requirements and needs, cannot be supported if the two are not linked, which
is of utmost importance in supporting legal requirements by IT.38 Finally, and
most importantly, if requirements are not accessible, there is no way to drive
the automated composition of distributed business processes so that it could
support the evolution and adaptation of the processes.

Some of the most notable research challenges for the near future include:

• Composability analysis for replaceability, compatibility, and conformance for
dynamic and adaptive processes: Service conformance ensures the integrity of
a composite service by matching its operations with those of its constituent com-
ponent services, imposes semantic constraints on the component services (e.g.
to ensure enforcement of business rules), and ensures that constraints on data
exchanged by component services are satisfied. Service conformance comprises



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

Service-Oriented Computing: A Research Roadmap 239

both behavioral conformance as well as semantic conformance. The former guar-
antees that composite operations do not lead to spurious results and that the over-
all process behaves in a correct and unambiguous manner. The latter, by annotat-
ing services and operations with (possibly domain-specific) semantic descriptions,
ensures that they preserve their meaning when they are composed and can be
formally validated.

• Adaptive and emergent service compositions: Automated composition task is tra-
ditionally described as the problem of supporting the aggregation of component
services that are available and published, e.g. in the Web, as they are. How-
ever, most often, when different organizations, e.g. companies, financial or public
administration bodies, decide to cooperate, rarely their services or their business
processes, can be aggregated without a change, an adaptation of the local ser-
vices and processes. In such a distributed environment, with autonomous actors,
knowledge exchange/sharing and process interoperability/composition cannot be
often forced in a top-down manner. They emerge after a negotiation process where
each actor has to deal with two opposite and driving forces: the “impedance” to
change its business assets and the need to evolve towards common and shared
assets. A typical example nowadays in Europe is the financial sector, where dif-
ferent banks have to merge and integrate their own business processes in order
to be more competitive and offer better services to clients. Networks of small
medium enterprises are a further significant example, where each company has
its own local business needs and strategies, and at the same time it has the need
to join in a network to be more competitive on the market. The result, the shared
knowledge and the interoperable processes, the common models and objectives,
are not known a priori. They emerge from a distributed negotiation process where
each actor accepts to give up some of its assets, if this is compensated by some
advantage due to being part of a network. This negotiation has to be human-
driven, since it often concerns the strategic interests of the involved actors. All of
this requires techniques and tools supporting the process of defining the emergent
common model, processes and objectives and supporting the negotiation among
actors.

• Autonomic composition of services: One of the main fundamental ideas of Service-
Oriented Computing is that applications should be developed by composing
services that are available, e.g. on the Web. Given some business level and strate-
gic requirements for the composition, the idea is to automatically generate the
electronic business process implementing it. In this framework, the challenge is
the autonomic composition of services, e.g. service composition that are self-
configuring, self-optimizing, self-healing, and self-adapting. Self-configuring com-
positions are, e.g. composite services that are capable of automatically discovering
new partners to interact with, to automatically select among available suppliers,
to choose among different options available for contracts, etc. Self-optimizing
Web service compositions should automatically select partners and options that
would, e.g. maximize benefits and reduce costs. Self-healing compositions should



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

240 M. P. Papazoglou et al.

be able to automatically detect that some business composition requirements are
no longer satisfied by the implementation and react to requirement violations.
Self-adapting service compositions should be able to function despite changes in
behaviors of external composite services. They should reduce as much as possible
the need of human intervention for adapting services to subsequent evolutions.

• QoS-aware service compositions: To be successful, service compositions need to
be QoS-aware, i.e. understand and respect each other’s policies, performance lev-
els, security requirements, SLA stipulations, and so forth. For example, knowing
that a new business process adopts a Web services security standard such as one
from the stack of WS-Security specifications is not enough information to enable
successful composition. The client needs to know if the services in the business
process actually require WS-Security, what kind of security tokens they are capa-
ble of processing, and which one they prefer. Moreover, the client must determine
if the service should communicate using signed messages. If so, it must determine
what token type must be used for the digital signatures. Finally, the client must
decide on when to encrypt the messages, which algorithm to use, and how to
exchange a shared key with the service. For example, a purchase order service in
an order management process may indicate that it only accepts username tokens
that are based signed messaged using X.509 certificate that is cryptographically
endorsed by a third party.

• Business-driven automated compositions: One of the main ideas of service ori-
ented applications is to abstract away the logic at the business level from its
non-business related aspects, the “system level”, e.g. the implementation of trans-
action, security, and reliability policies. This abstraction should make easier and
effective the composition of distributed business processes. However, the provision
of automated composition techniques, which make this potential advantage real,
is still an open problem. Business-driven automated compositions should exploit
business and system level separation in service compositions. According to this
view, service composition at the business level should pose the requirements and
the boundaries for the automatic composition at the system level. While the
service composition at the business level should be supported by user-centred
and highly interactive techniques, system level service compositions should be
fully automated and hidden to the humans. System level compositions should
be QoS-aware, should be generated and monitored automatically, and should
also be based on autonomic computing principles (see also challenges for service
management and monitoring in Sec. 3.3.2).

3.3. Service management and monitoring

Managing loosely coupled applications in an SOA is an absolute requirement. Com-
posite service developments necessitate the use of mechanisms that provide them
insights into the health of systems that implement Web services and into the sta-
tus and behavior patterns of loosely coupled applications. Failure or change of a
single application component can bring down numerous interdependent enterprise



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

Service-Oriented Computing: A Research Roadmap 241

applications. The addition of new applications or components can overload exist-
ing components, causing unexpected degradation or failure of seemingly unrelated
systems. Application performance depends on the combined performance of coop-
erating components and their interactions. To counter such situations, enterprises
need to constantly monitor the health of their applications. The performance should
be in tune, at all times and under all load conditions. A consistent management and
monitoring infrastructure is thus essential for production-quality Web services and
applications and provided by the management and monitoring plane in Services
Research Roadmap. The rationale is very similar to the situation in traditional
distributed computing environments, where systems administrators rely on pro-
grams/tools/utilities to make certain that a distributed computing environment
operates reliably and efficiently.

The management and monitoring in Services Research Roadmap requires that
a critical characteristic be realized: that services be managed and monitored.
Service management encompasses the control and monitoring of SOA-based appli-
cations throughout their life cycle. Service management spans a range of activi-
ties from installation and configuration to collecting metrics and tuning to ensure
responsive service execution. It includes many interrelated functions such as Service-
Level Agreement negotiation, management, auditing, monitoring, and troubleshoot-
ing, service lifecycle/state management, performance management, services and
resources provisioning, and includes aspects like scalability, availability and exten-
sibility and others.

3.3.1. State of the art

Service operations management typically gathers information about the managed
service platform, services and business processes and managed resource status and
performance, and supporting specific management tasks (e.g. root cause failure
analysis, SLA monitoring and reporting, service deployment, and life cycle manage-
ment and capacity planning). Operations management functionality may provide
detailed application performance statistics that support assessment of the applica-
tion effectiveness, permit complete visibility into individual business processes and
transactions, guarantee consistency of service compositions, and deliver applica-
tion status notifications when a particular activity is completed or when a decision
condition is reached. Considerations need also be made for modeling the scope
in which a given service is being leveraged individual, composite, part of a long-
running business process, and so on. Service monitoring allows monitoring events or
information produced by the services/processes, monitoring instances of business
processes, viewing process instance statistics, including the number of instances
in each state (running, suspended, aborted or completed), viewing the status, or
summary for selected process instances, suspend, and resume or terminate selected
process instances. Of particular significance is the ability to be able to spot prob-
lems and exceptions in the business processes and move toward resolving them as
soon as they occur. We refer to the role responsible for performing such operation



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

242 M. P. Papazoglou et al.

management functions as the service operator (see Fig. 1). Depending on the appli-
cation requirements a service operator could be a service client or service aggregator.

It is increasingly important for service operators to define and support active
capabilities versus traditional passive capabilities. For example, rather than merely
raising an alert when a given service is unable to meet the performance requirements
of a given service-level agreement, the management framework should be able to
take corrective action itself. This action could take the form of rerouting requests
to a backup service that is less heavily loaded, or automatically provisioning a
new application server with an instance of the software providing the service if no
backup is currently running and available.

Finally, service operations management also provides global visibility of running
processes, comparable to that provided by Business Process Management tools.
Management visibility is expressed in the form of real-time and historical reports,
and in triggered actions. For example, deviations from key performance indicator
target values, such as the percent of requests fulfilled within the limits specified by
a service level agreement, might trigger an alert and an escalation procedure, or
might propose changes to affected process models enabling them to achieve their
goals.

Figure 3 highlights the elements of a conceptual architecture that com-
bines a service management and an application channel developed in accor-
dance to SOA principles.39 This architecture provides a continuous connection
between the Web services application channel and directs it into the management
channel. Example management applications include availability and performance

Management
Application

(WSDM)

Mgmt
Interface

Mgmt
Interface

Mgmt
Interface

Mgmt
Interface

Service
Interface

Service
Interface

Management
Application

(WSDM)

Business
Application

(Credit Validation)

Business Application

(Shipping Service)

Business
Application

(Order Processing)

Business
Application

(Inventory)

Service
Interface

Service
Interface

Service
Interface

Service
Interface

WSDL

Enterprise 2Enterprise 2

WSDL

WSDM

Enterprise 1Enterprise 1

Application Channel

Management Channel

Fig. 3. Web services management architecture.



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

Service-Oriented Computing: A Research Roadmap 243

management, configuration management, capacity planning, asset protection, job
control, and problem determination.

Service management in this conceptual architecture involves a collection of ser-
vices that communicate with each other — passing data to each other or coordi-
nating some activity together — all with the aim of facilitating the delivery of one
or more business services. In fact, this architecture does not prescribe a particu-
lar management protocol or instrumentation technology because it needs to work
with the various computing technologies and standards that exist in the industry
today, such as Simple Network Management Protocol (SNMP), Java Management
Extensions (JMX), WBEM, as well as future technologies.

In Fig. 3, manageable resources are as usual hardware and software resources,
both physical and logical, e.g. software applications, hardware devices, servers, and
so on, whose management capabilities are exposed as Web services that implement
various management interfaces, such as those defined in Web Services Distributed
Management specification (see below). A management interface of a resource is
described by a WSDL document, resource properties schema, meta-data documents,
and potentially a set of management related policies. Manageable resources can be
accessed directly by resource managers, as part of a business processes and/or a
management processes. In Fig. 3, a business process is composed of integrating
basic services such as credit validation, shipping, order processing, and inventory
services originating from two collaborating enterprises.

At the level of standards services management considers consistent manage-
ment of end-to-end Web services. Such activities are the target of the Web Ser-
vices Distributed Management (WSDM) specification. WSDM essentially defines a
protocol for interoperability of management information and capabilities in a dis-
tributed environment via Web services. WSDM focuses on two distinct tasks in
its attempt to solve distributed system management problems.40 The first activity
area, called Management Using Web Services (MUWS) addresses the use of Web
services technologies as the foundation of a modern distributed systems manage-
ment framework. This includes using Web services to facilitate interactions between
managed resources and management applications. In particular, MUWS defines
how to describe the manageability capabilities of managed resources using WSDL
documents. Expressing capabilities enables more efficient discovery of and intro-
spection of resources since managers, typically focus on a particular management
task or domain, and therefore need to be able to easily and efficiently determine
the relevant capabilities of a manageable resource.39 In addition, WSDM addresses
the specific requirements for managing Web services themselves just like any other
resource. This activity is called Management of Web Services (MOWS).

The most recent wave of management product categories does not have the
business-awareness that services management will require. The finer grained nature
of services (as opposed to applications) requires evaluating processes and transac-
tions at a more magnified rate and in a more contextually aware manner. Research
activities have concentrated on assessing the impact of service execution from a



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

244 M. P. Papazoglou et al.

business perspective and, conversely, to adjust and optimize service executions
based on stated business objectives.41 This is a crucial issue as corporations strive
to align service functionality with business goals.

One crucial aspect of management entails monitoring. Here research activities
traditionally focus on dynamic monitoring techniques that are capable of employing
monitoring rules governing the control of composite services,42 e.g. such as those
generated using BPEL processes. Other approaches concentrate on capturing and
monitoring negotiations that incorporate security policies and policy models that
facilitate service life-cycle management.43

The ability to gauge the quality of a service is critical if we are to achieve the
Service-Oriented Computing paradigm. Many techniques have been proposed and
most of them attempt to calculate the quality of a service by collecting quality rat-
ings from the users of the service, and then combining them in one way or another.
Collecting quality ratings alone from the users is not sufficient for deriving a reli-
able or accurate quality measure for a service. To this end, research activities have
concentrated on using QoS metrics for selecting Web-services and for establishing
trust between trading partners.44

Ideally, services are collaborating in highly distributed environments, naturally
cutting across various enterprise boundaries. This environment demands that con-
tracts are set up, stipulating agreements between services regarding their collabo-
ration, both at the functional and non-functional level, in a concise manner. These
contracts may serve as the basis for process monitoring and adaptation. Research
activities in this front concentrate on standardizing on agreements between enter-
prise domains offering agreement templates, and facilities to dynamically check the
state of an agreement.45

3.3.2. Grand challenges

Seeding autonomic capabilities for service level management is an evolutionary ser-
vice level management approach where autonomic computing capabilities anticipate
IT system requirements and resolve problems, with minimal human intervention.
The function of any autonomic capability is a control loop that collects details from
the system and acts accordingly.4,40,46 Although there can be numerous types of
control loops in a system, they can be naturally divided into five categories: self-
configuring, self-adapting, self-healing, self-optimizing and self-protecting, each of
which represents a major research challenge for future research in services manage-
ment and monitoring. Some of the most notable research challenges for the near
future include:

• Self-configuring management services — Self-configuring services configure them-
selves automatically to adapt to different environments in which they can be
installed and can operate to optimize for particular kinds of their use.

• Self-adapting management services — Self-adapting services adapt dynamically
to changes in the environment, market and so on, using policies provided by the



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

Service-Oriented Computing: A Research Roadmap 245

IT professional. Such changes could include the deployment of new instances of
a particular kind of services or the removal of existing ones, or dramatic changes
in the system characteristics.

• Self-healing management services — Self-healing services can discover, diagnose
and react to disruptions. They can detect system malfunctions and initiate policy-
based corrective action without disrupting the IT environment. Corrective action
could involve a product altering its own state or effecting changes in other compo-
nents in the environment. In this way, service-based solutions as a whole become
more resilient because day-to-day operations are less likely to fail.

• Self-optimizing management services — Self-optimizing services can monitor and
tune resources automatically. Self-optimizing components can tune themselves
to meet end-user or business needs. The tuning actions could mean reallocat-
ing resources — such as in response to dynamically changing workloads — to
improve overall utilization, or ensuring that particular business transactions can
be completed in a timely fashion. Self-optimization helps provide a high standard
of service for both the system’s end users and a business’s customers. Without
self-optimizing functions, there is no easy way to divert excess server capacity to
lower priority work when an application does not fully use its assigned computing
resources. In such cases, customers must buy and maintain a separate infrastruc-
ture for each application to meet that application’s most demanding computing
needs.

• Self-protecting management services — Self-protecting services can anticipate,
detect, identify and protect against threats. Self-protecting components can
detect hostile behaviors, e.g. unauthorized access and use, virus infection and pro-
liferation, and denial-of-service attacks, as they occur and take corrective actions
to make themselves less vulnerable. Self-protecting capabilities allow businesses
to consistently enforce security and privacy policies.

3.4. Service design and development (Service-oriented engineering)

Service-oriented applications start from the premise that all businesses have a busi-
ness design. A business design describes how that business works — the processes
that it performs; the organizational structure of the people and finances within that
business; the business’ near-term and long-term goals and objectives; the economic
and market influences that affect how that business achieves its goals; the rules and
policies that condition how the business operates.47 The foundations of business
design are business processes that are part of the fabric of a business and con-
tribute to how the business functions and responds to its customers, opportunities,
internal and external threats.48

Service orientation utilizes services as the constructs to support the develop-
ment of rapid, low-cost and easy composition of distributed applications.2 Key
to this concept is the service-oriented architecture (SOA), which is a logical way
of designing a software system to provide services to either end-user applications



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

246 M. P. Papazoglou et al.

or to other services distributed over a network, via published and discoverable
interfaces. A well-constructed SOA can empower a business environment with a
flexible infrastructure and processing environment by provisioning independent,
reusable automated business processes (as services) and providing a robust foun-
dation for leveraging these services. SOAs rely on an evolutionary software engi-
neering approach that partly builds upon earlier development processes including
component-based development and business process modeling.49 Older software
development paradigms for object-oriented and component-based development50,51

cannot be blindly applied to SOA and Web services as they do not address the key
elements of SOA: services, flows of information and components realizing services.52

While relatively simple Web services may be built that way, a service-based devel-
opment methodology is of critical importance to specify, construct, refine and cus-
tomize highly volatile business processes from internally and externally available
Web services.

What is required is a service-engineering methodology that allows enterprises to
effectively design and deploy services and which can more easily embed changes into
service-based applications at the rate and pace of change in the business design.
It is from this correspondence that Service-oriented Architectures deliver on the
promise of more flexible businesses through a more flexible IT environment. This
correspondence is represented as the service-oriented engineering methodology, in
which business processes are modeled, analyzed, assembled (possibly out of pre-
existing components), deployed and monitored in a continuous and iterative man-
ner. Figure 1 also illustrates that the Services Research Roadmap planes require
the support of a SOA lifecycle methodology (service-oriented engineering), which
starts with analyzing and modeling the business environment including key per-
formance indicators of business goals and objectives, translating that model into
service design, deploying that service system and managing that deployment.

3.4.1. State of the art

A service-oriented design and development methodology focuses on business pro-
cesses, which it considers as reusable elements that are independent of applications
and the computing platforms on which they run. This promotes the idea of viewing
enterprise solutions as federations of services connected via well-specified contracts
that define service interfaces in the context of SOAs.

Many researchers and developers in their early use of SOA, think that they can
port existing components to act as Web services just by creating wrappers and leav-
ing the underlying component untouched. Since component methodologies focus on
the interface, many developers assume that these methodologies apply equally well
to service-oriented architectures. Thus, implementing a thin SOAP/WSDL/UDDI
veneer on top of existing applications or components that implement the Web
services is by now widely practiced by the software industry. Yet, this is in no
way sufficient to construct commercial strength enterprise applications. Unless the
nature of the component makes it suitable for use as a Web service, and most are



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

Service-Oriented Computing: A Research Roadmap 247

not, it takes serious thought and redesign effort to properly deliver components
functionality through a Web service. While relatively simple Web services may be
effectively built that way, a methodology is of critical importance to specify, con-
struct, refine and customize highly volatile business processes from internally and
externally available Web services.

Conventional development methodologies such as Object-Oriented Development
(OOD) and Component-Based Development (CBD) do not address the three key
elements of an SOA: services, service assemblies (composition), and components
realizing services. These methodologies can only address part of the requirements
of service-oriented computing applications. These practices fail when they attempt
to develop service-oriented solutions while being applied independently of each
other. For instance, although both CBD and service-oriented computing offer a
“separation-of-internal and external perspectives” and the motivation for both com-
ponents and services is often expressed in terms of reusability, composability and
flexibility, they are quite diverse in nature. Components and services present dif-
ferences along the dimensions of type of communication, type of coupling, type
of interface, type of invocation, and type of request brokering. However, in so far
as development is concerned, they also differ fundamentally in the way that they
approach flexibility and reusability. Services are subject to continuous maintenance
and improvement in scope and performance so that they can be offered to an
ever-increasing number of consumers. The selection of a service is usually done
dynamically on the basis of a set of policies. Use of installed components does not
allow for the same kind of reuse and dynamic behaviour. Moreover, the view that
components are merely distributable objects, deployed on some middleware server,
carries with it all the difficulties of object modeling and yet multiplies the complex-
ity by increasing the scale of the model.53 Let alone if models are extended across
enterprise boundaries.

Service-oriented design and development requires an inter-disciplinary approach
fusing elements of object-oriented and component design with elements of business
modeling. OOD and CBD can contribute general software architecture principles
such as information hiding, modularization, and separation of concerns. On the
other hand, business modeling can contribute conventions that help analyze the
structuring of value-chains and improve processes, help define amongst other things
standardized business processes and operating procedures, and create a shared
understanding of how a business functions so that workflow implementations are
tested before design and implementation.

As regards to research, it is only recently that we see some initial results.
Activities have mainly concentrated on two fronts on developing a methodology
for service-oriented engineering and on design-time models.

On the first activities concentrated on proposing elements of a methodology
for services design and development. Research activities have concentrated on how
to provide sufficient principles and guidelines to specify, construct and refine and
customize highly volatile business processes choreographed from a set of internal
and external Web services.53,54



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

248 M. P. Papazoglou et al.

On the second front activities have concentrated on developing design-time
models using goal-oriented requirements analysis techniques.55 According to these,
requirements analysis begins by identifying stakeholder goals (needs). The goals are
refined through AND/OR decompositions to identify collections of actions which
together can satisfy each root-level goal. Web services are designed for each one of
these actions. The goal models can then be made available at run-time to augment
UDDI and other discovery infrastructure in identifying and selecting what Web
services to compose in order to fulfil a user need.56,57

3.4.2. Grand challenges

Business processes and services in a service-oriented application are implemented
as components in terms of financial and operational functions and data available
from resources such as ERP, databases, CRM and other systems. It is thus conve-
nient to distinguish between business processes and business services as comprising
the logical part of services development life cycle and the physical part of services
development life cycle that comprises infrastructure services and component imple-
mentations that map logical services to existing resources (this is analogous to the
distinction between business and system level separation in Sec. 3.2.2). The logical
part is shown in Fig. 4 to comprise business processes, and business services, such

DatabasesDatabases
PackagedPackaged

ApplicationsApplications
LegacyLegacy

ApplicationsApplications
ERPERP CRM CRM

Operational SystemsOperational Systems

Component-based service realizationsComponent-based service realizations

Business ServicesBusiness Services

Business ProcessesBusiness Processes

Infrastructure ServicesInfrastructure Services

Business (service)Business (service)

DomainDomain

Order ManagementOrder ManagementPurchasingPurchasing InventoryInventory

DistributionDistribution

create, modify, suspend,create, modify, suspend,

cancel orders,cancel orders,

 schedule orders, schedule orders,

 create, modify, delete create, modify, delete

bulk orders,bulk orders,

 order progress order progress

LogicalLogical
partpart

PhysicalPhysical
partpart

Process
decomposition/
composition

Fig. 4. The Web Services Development Life Cycle hierarchy.



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

Service-Oriented Computing: A Research Roadmap 249

as an order management process that provide business services (which are indivisi-
ble services) for creating, modifying, suspending, canceling, querying orders, and so
on. Infrastructure services are usually management and monitoring services woven
in by a container and in the services management and monitoring infrastructure
such as those providing technical utility such as logging, security, transactional-
ity or authentication, and those that manage resources. These services provide
the infrastructure, enabling the integration of services through the introduction of
a reliable set of capabilities, such as intelligent routing, protocol mediation, and
other transformation mechanisms, often considered as part of the Enterprise Ser-
vice Bus. The implementation part provides through component implementations
the financial and operational functions and data available from resources such as
ERP, databases, CRM and other systems, which lie at the bottom of the service
lifecycle development hierarchy, which automatically populate the service domains,
and business processes. Both business services and their implementation compo-
nents need to be designed with the appropriate level of granularity.

The above issues raise a plethora of interesting research challenges that need to
be addressed in order to develop sound service engineering methodologies. Major
research challenges for the near future include:

• Engineering of Service Compositions: One of the main challenges in the develop-
ment of Services-oriented systems is the provision of methodologies that support
the specification and design of compositions of services. Traditional software engi-
neering methodologies hardly apply in this scenario, where the environment is
highly dynamic, the uncertainty is high and several decisions cannot be taken
at design time but must be postponed at run-time, where the control is highly
distributed, and we have different stakeholders with possibly conflicting business
needs. Novel techniques must be developed to support the refinement from the
early phases of requirement analysis to the final steps of implementation and
deployment. Similarly, novel techniques must be devised to construct compo-
sitions of Web services that at run-time can provide feedback and significant
information to business analysis and stakeholders, who can use this information
to devise new business strategies or take strategic decisions at design time.

• Associating a services engineering methodology with standard software develop-
ment and business process modeling techniques: Most representative current con-
ventional software development techniques is the Rational Unified Process (RUP)
whose aim is to support the analysis and design of iterative software develop-
ment. RUP has the principles of object-oriented analysis and design and CDB as
its foundation, and therefore, does not lend itself readily to be aligned to SOA
design.58 Research activities could focus on how to blend several of the RUP mile-
stones and connect them with business modeling approaches such as the Supply
Chain Operations Reference (SCOR) Framework proposed by the Supply Chain
Council (http://www.supply-chain.org/) to provide a sound basis for support-
ing the corresponding phases of a services development methodology. SCOR is a
modeling approach that provides standard guidelines for companies that help to



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

250 M. P. Papazoglou et al.

examine the configuration of their supply chains, identify and measure metrics
in the supply chain. In addition, it should be examined how emerging business
modeling notations such as BPMN can aid in capturing software development
activities rather than using UML.

• Flexible gap analysis techniques: Gap analysis is a technique that purposes a
business process and services realization strategy by incrementally adding more
implementation details to an abstract service/process interface. Gap analysis
commences with comparing candidate service functionality with available soft-
ware service implementations that may be assembled within the enclosures of a
newly conceived business process. A gap analysis strategy may be developed in
stages and results in a recommendation to do development work, reuse or pur-
chase services. It considers several service realization possibilities such as green
field development, top-down and bottom-up development, meet in the middle
development and development on the basis of reference models.

• Design principles for engineering service applications: In order to design useful
and reliable business processes that are developed on the basis of existing or newly
coded services, we need to apply sound design principles that guarantee that
services are self-contained and come equipped with clearly defined boundaries
and service end-points to allow for service composability and loose coupling.
Key principles that serve as the foundation for service design: service coupling,
cohesion and granularity.

• Automated, transparent user centred support to the entire business process lifecy-
cle of composed services: The challenge is to automatically perform the time con-
suming and error prone task of analyzing business processes in detail, discovering
and selecting suitable external services, detecting problems in the interactions,
searching for possible alternative solutions, monitoring execution step by step,
and so on. There is a need for techniques that operate in a transparent and user
centred way by suggesting solutions that can be adopted, refused, or refined by
stakeholders, managers, business analysts, designers, and programmers.

• Design techniques for managing service versioning and adaptivity: Adaptive ser-
vice capabilities need to be seeded into services and processes so that they can
continually morph themselves to respond to environmental demands and changes
without compromising on operational and financial efficiencies. Business pro-
cesses could be analyzed in detail instantaneously, discovering and selecting suit-
able external services, detecting problems in the service interactions, searching
for possible alternative solutions, monitoring execution step by step, upgrading
and versioning themselves, and so on. An integral part of adaptive services is ser-
vice version control. A service interface version is a specific instance of a service
interface at a particular point in time that came into existence due to a revi-
sion or a change. Currently, versioning has not been built into the Web services
architecture. This means that in situations where the interface of a particular
service needs to change with a new version WSDL cannot convey the change to
the service requester. If a developer makes a change to a service interface, all



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

Service-Oriented Computing: A Research Roadmap 251

older requestors would fail, and the failure would be undetectable to the Web
services infrastructure.

• Service Governance: The cross-organizational nature of end-to-end business pro-
cesses that are composed out of variety of service fragments that may need to
be maintained separately by different organizations makes service governance a
challenging issue. The potential composition of services into business processes
across organizational boundaries can function properly and efficiently only if
the services are effectively governed for compliance to requirements dictated by
QoS factors. Services that flow between enterprises must have defined owners
with established ownership and governance responsibilities. These owners are
responsible for gathering requirements, development, deployment, the boarding
process, and operations management for any mission critical or revenue generat-
ing service.59 The service must meet the functional and QoS objectives within the
context of the business unit and the enterprises within which it operates. Own-
ership of a specific service is usually associated with a business scope. Typical
examples of such business scopes are customer relationship management, cus-
tomer information and entitlements, order management, financing, taxes, and
so forth. Consequently, identifying, specifying, creating, deploying enterprise ser-
vices, and overseeing their proper maintenance and growth needs SOA governance
to oversee the entire life cycle of an enterprise’s service portfolio.60

4. Summary

Service-oriented computing is a novel computing paradigm that promotes the idea
of assembling application components with little effort into a network of services
that can be loosely coupled to create flexible dynamic business processes and agile
applications that may span organizations and computing platforms.

The subject of Service-oriented computing is vast and enormously complex,
spanning many concepts and technologies that find their origins in diverse disci-
plines that are woven together in an intricate manner. As a result research activities
are very fragmented. This necessitates that a broader vision and perspective be
established — one that permeates and transforms the fundamental requirements
of complex applications that require the use of the Service-oriented computing
paradigm. In this paper, we have provided a Service-oriented computing Roadmap
and places on-going research activities and projects in the area of SOC in the
broader context of this roadmap.

The SOC research roadmap launches four pivotal, inherently related, research
themes to Service-oriented computing: service foundations, service composition,
service management and monitoring and service-oriented engineering.

Service foundations provide a service oriented middleware backbone that real-
izes the run-time SOA infrastructure that connects heterogeneous components and
systems, and provides multiple-channel access to services, e.g. via mobile devices,
hand held devices, over variety of networks including the Internet, cable, UMTS,
XDSL, Bluetooth, and so on. This run-time infrastructure allows defining basic



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

252 M. P. Papazoglou et al.

interactions involving the description, publishing, finding and binding of services.
Major research challenges for the service foundations plane include: dynamically
(re-)configurable run-time architectures, dynamic connectivity, topic and content-
based routing capabilities, end-to-end security solutions, infrastructure support for
application integration, data integration and process integration, and semantically
enhanced service discovery.

Service composition encompasses the necessary roles and functionality for the
aggregation of multiple services into a single composite service. Resulting composite
services may be used by service as basic services in further service compositions or
may be offered as complete applications/solutions to service clients. Some of the
most notable research challenges for include: composability analysis for replaceabil-
ity, compatibility, and conformance for dynamic and adaptive processes, adaptive
and emergent service compositions, autonomic composition of services, QoS-aware
service compositions, business-driven automated compositions.

Service management encompasses the control and monitoring of SOA-based
applications throughout their life cycle. Service management spans a range of activ-
ities from installation and configuration to collecting metrics and tuning to ensure
responsive service execution. It includes many interrelated functions such as Service-
Level Agreement negotiation, management, auditing, monitoring, and troubleshoot-
ing, service lifecycle/state management, performance management, services and
resources provisioning, and includes aspects like scalability, availability and extensi-
bility and others. Some of the most notable research challenges include seeding auto-
nomic capabilities in service management and monitoring such as self-configuring,
self-adapting, self-healing, self-optimizing and self-protecting capabilities.

Service-oriented engineering allows enterprises to effectively design and deploy
services which can more easily embed changes into service-based applications at the
rate and pace of change in the business design. It is from this correspondence that
SOAs deliver on the promise of more flexible businesses through a more flexible IT
environment. This correspondence is represented as the service-oriented engineer-
ing methodology, in which business processes are modeled, analyzed, assembled
(possibly out of pre-existing components), deployed and monitored in a continuous
and iterative manner. Major research challenges for the near future include the
engineering of service compositions, associating a services engineering methodology
with standard software development and business process modeling techniques, flex-
ible gap analysis techniques, design principles for engineering service applications,
automated, transparent user centred support to the entire business process lifecy-
cle of composed services, design techniques for managing service versioning and
adaptivity, and finally, service governance.

References

1. F. Leymann, The (Service) bus: Services penetrate everyday life, 3rd Int. Conf. on
Service-Oriented Computing ICSOC’2005, LNCS, Vol. 3826 (Springer-Verlag Berlin
Heidelberg, Amsterdam, The Netherlands, December 13–16, 2005).



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

Service-Oriented Computing: A Research Roadmap 253

2. M. P. Papazoglou and G. Georgakapoulos, Service-oriented computing, CACM,
46(10) (October 2003).

3. S. Weerawarana, F. Curbera, F. Leymann, T. Storey and D. F. Ferguson, Web Services
Platform Architecture (Prentice Hall, 2005).

4. F. Leymann, Combining web services and the grid: Towards adaptive enterprise appli-
cations, in Proc. CAiSE/ASMEA’05 (Porto, Portugal, June 2005).

5. F. Leymann, Web Services: Distributed applications without limits, in Proc. BTW’03
Lecture Notes in Informatics, Vol. P-26 (Leipzig, Germany, February 26–28, 2003).

6. M. P. Papazoglou, Extending the service oriented architecture, Business Integration
Journal, February 2005.

7. S. Graham et al., Building Web Services with Java, 2nd edn. (SAMS Publishing, 2005).
8. M. P. Papazoglou and W. J. van den Heuvel, Service-oriented architectures, VLDB

Journal 16 (July 2007).
9. J. L’opez and D. O’Hallaron, Evaluation of a resource selection mechanism for complex

network services, in Proceedings of the Tenth IEEE International Symposium on High
Performance Distributed Computing (Aug. 2001).

10. C. Liu, L. Yang, I. Foster and D. Angulo, Design and evaluation of a resource selection
framework for grid applications, IEEE International Symposium on High Performance
Distributed Computing (HPDC-11) (July 2002).

11. V. Poladian, D. Garlan, M. Shaw and J. P. Sousa, Dynamic configuration of resource-
aware services, in Proceedings of the 26th International Conference on Software Engi-
neering (May 2004).

12. A.-A. Ivan, J. Harman, M. Allen and V. Karamcheti, Partitionable services: A frame-
work for seamlessly adapting distributed applications to heterogeneous environments,
in Proceedings of the 11th IEEE International Symposium on High Performance Dis-
tributed Computing (2002).

13. S. R. Ponnekanti and A. Fox, SWORD: A Developer Toolkit for Web Service Com-
position, 11th World Wide Web Conference (Web Engineering Track), May 2002.

14. V. Deora et al., A quality of service management framework based on user expecta-
tions, in Proceedings of the First International Conference on Service-Oriented Com-
puting (ICSOC03) (Springer, 2003).

15. S. Ran, A Model for Web Services Discovery with QoS, SIGecom Exchange 4(1)
(2003).

16. V. Deora et al., Incorporating QoS specifications in service discovery, WISE Work-
shops, Lecture Notes of Springer Verlag (2004).

17. Y. Wang and E. Stroulia, Semantic structure matching for assessing web-service
similarity, 1st International Conference on Service-Oriented Computing (ICSOC03)
(Springer-Verlag, 2003).

18. M. C. Jaeger and S. Tang, Ranked matching for service descriptions using DAML-S,
in Proceedings of CAiSE’04 Workshops (Riga, Latvia, June 2004).

19. X. Ding et al., Similarity search for web services, 30th VLDB Conference (September
2004).

20. O. D. Sahin et al., SPiDeR: P2P-Based Web Service Discovery, 3rd International
Conference on Service-Oriented Computing (Springer-Verlag, Amsterdam, December
2005).

21. M. Hepp, F. Leymann, J. Domingue, A. Wahler and D. Fensel, Semantic business
process management: Using semantic web services for business process management,
in Proc. IEEE ICEBE 2005 (Beijing, China, October 18–20, 2005).

22. A. A. Patil et al., Meteor-S: Web Service Annotation Framework, WWW’04: Proceed-
ings of the 13th International Conference on World Wide Web (ACM Press, 2004),
pp. 553–562.



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

254 M. P. Papazoglou et al.

23. D. Roman, Web Service Modeling Ontology, Applied Ontology 1(1) (IOS Press, 2005).
24. Security in a Web Services World: A Proposed Architecture and Roadmap, IBM

Developer Works, April 2002.
25. T. Andrews et al. (eds), Business Process Execution Language for Web Services (May

2003), available at http://www.ibm.com/developerworks/library/ws-bpel.
26. J. Yang and M. P. Papazoglou, Service components for managing the life-cycle of

service compositions, Information Systems 28(1) (2004).
27. A. Charfi and M. Mezini, Hybrid Web service composition: Business processes meet

business rules, Int. Conf. on Service-Oriented Computing (ICSOC 2004), New York
(Dec 2004).

28. M. Solanki, A. Cau and H. Zedan, Augmenting semantic web service descriptions with
compositional specification, WWW ’04: 13th International Conference on World Wide
Web (ACM Press, NY, USA, 2004).

29. J. L. Ambite et al., Argos: An Ontology and Web Service Composition Infrastructure
for Goods Movement Analysis, National Conference on Digital Government Research,
Seattle, Washington, May 2004.

30. M. Paolucci et al., Semantic matching of web services capabilities, 1st International
Semantic Web Conference (2002).

31. A. Lazovik, M. Aiello and M. P. Papazoglou, Associating assertions with business
processes and monitoring their execution, Int. Conf. on Service-Oriented Computing
(ICSOC 2004), New York (Dec 2004).

32. A. Lazovik, M. Aiello and M. P. Papazoglou, Planning and monitoring the execution
of web service requests, Int. Journal on Digital Libraries to appear in 2006.

33. P. Traverso and M. Pistore, Automatic composition of semantic web services into
executable processes, International Semantic Web Conference (ISWC) 2004.

34. M. Pistore, P. Traverso, P. Bertoli and A. Marconi, Automated Synthesis of Exe-
cutable Web Serivce Compositions from BPEL4WS Processes, Special Track at the
International World Wide Web Conference (WWW) 2005.

35. R. Kazhamiakin and M. Pistore, A Parametric Communication Model for the Verifica-
tion of BPEL4WS Compositions, International World Wide Web Conference (WWW)
2006.

36. F. Barbon, P. Traverso, M. Pistore and M. Trainotti, Run-Time Monitoring the Exe-
cution of Web Service Compositions, The International Conference on Planning and
Scheduling (ICAPS) 2006.

37. E. Colobo, J. Mylopoulos and P. Spoletini, Modeling and analyzing context-aware
composition of services, 3rd International Conference on Service-Oriented Computing
(Springer, Amsterdam, December 2005).

38. R. Agrawal, Ch. Johnson, J. Kiernan and F. Leymann, Taming compliance with
Sarbanes-Oxley internal controls using database technology, 22nd Int. Conf. on Data
Engineering ICDE’2006, Altanta, GA, USA (April 2006).

39. M. P. Papazoglou and W. J. van den Heuvel, Web Services Management: A Survey,
IEEE Internet Computing (November/December 2005).

40. H. Kreger et al., Management Using Web Services: A Proposed Architecture and
Roadmap, IBM, HP and Computer Associates (June 2005), available at www-
128.ibm.com/developerworks/library/specification/ws-mroadmap.

41. F. Casati et al., Business-Oriented Management of Web Services, Communications of
the ACM 46(10) (2003).

42. L. Baresi and S. Guinea, Towards dynamic monitoring of WS-BPEL processes, in Pro-
ceedings of the 3rd International Conference on Service-Oriented Computing (ICSOC
2005) (Springer, Amsterdam, December 2005).



May 27, 2008 15:35 WSPC/111-IJCIS SPI-J073 00181

Service-Oriented Computing: A Research Roadmap 255

43. H. Skogsrud, B. Benatallah and F. Casati, Trust-serv: Model-driven lifecycle man-
agement of trust negotiation policies for web services, WWW ’04: Proceedings of the
13th International Conference on World Wide Web (ACM Press, NY, USA, 2004),
pp. 53–62.

44. E. M. Maximilien and M. P. Singh, Toward autonomic web services trust and selection,
Int. Conf. on Service-Oriented Computing (ICSOC 2004), New York (Dec 2004).

45. H. Ludwig, A. Dan and R. Kearney, Cremona: An Architecture and Library for Cre-
ation and Monitoring of WS-Agreements, Int. Conf. on Service-Oriented Computing
(ICSOC 2004), New York (Dec 2004).

46. J. O. Kephart and D. M. Chess, The vision of autonomic computing, IEEE Computer
(January 2003).

47. M. P. Papazoglou and P. M. A. Ribbers, e-Business: Organizational and Technical
Foundations (J. Wiley & Sons, Ltd, February 2006).

48. F. Leymann and D. Roller, Production Workflow — Concepts and Techniques (PTR
Prentice Hall, 2000).

49. P. Harmon, Second generation business process methodologies, Business Process
Trends 1(5) (May 2003).

50. F. Bachmann et al., Technical Concepts of Component-Based Software Engineering,
Technical Report, Carnegie-Mellon Univ., CMU/SEI-2000-TR-008 ESC-TR-2000-007,
2nd Edition, May 2000.

51. F. Bachmann et al., Technical Concepts of Component-Based Software Engineering,
Technical Report, Carnegie-Mellon Univ., CMU/SEI-2000-TR-008 ESC-TR-2000-007,
2nd Edition, May 2000.

52. A. Arsanjani, Service-oriented Modeling and Architecture, IBM developerworks
(Novemeber 2004), available at http://www-106.ibm.com/developerworks/library/
ws-soa-design1/.

53. M. P. Papazoglou and W. van den Heuvel, Business Process Development Lifecycle
Methodology to Communications of ACM, October 2007.

54. C. Ghezzi, Service-Oriented Computing: Where does it come from? A software engi-
neering perspective, keynote address at Int. Conf. on Service-Oriented Computing
(ICSOC 2005), Amsterdam (Dec 2005).

55. A. van Lamsweerde, Requirements Engineering in the Year 2000: A Research Per-
spective, 22nd International Conference on Software Engineering, Limerick, Ireland,
(May 2000).

56. R. S. Kaabi, C. Souveyet and C. Rolland, Eliciting service composition in a goal
driven manner, Int. Conf. on Service-Oriented Computing (ICSOC 2004), New York
(Dec 2004).

57. L. Penserini, A. Perini, A. Susi and J. Mylopoulos, From Stakeholder Needs to Ser-
vice Requirements Specifications, Technical Report, ITC-IRST, Automated Reason-
ing Systems, 2006.

58. O. Zimmerman, P. Korgdahl and C. Gee, Elements of Service-oriented Analysis and
Design, IBM developerworks (June 2004), available at http://www-106.ibm.com/
developerworks/library/ws-soad1/.

59. N. Bieberstein et al., Impact of service-oriented architecture on enterprise systems,
organizational structures, and individuals, IBM Systems Journal 44(4) (2005).

60. T. Mitra, A Case for SOA Governance, IBM developerworks, (August 2005),
available at http://www-106.ibm.com/developerworks/Webservices/library/ws-soa-
govern/index.html.




