World Scientific

International Journal of Cooperative Information Systems \\p
www.worldscientific.com

Vol. 18, No. 2 (2009) 261-308
© World Scientific Publishing Company

MODEL DRIVEN DEVELOPMENT OF SEMANTIC WEB
ENABLED MULTI-AGENT SYSTEMS

GEYLANI KARDAS*

International Computer Institute, Ege University
Bornova, 35100 Izmir, Turkey
geylani.kardas@ege. edu. tr

ARDA GOKNIL

Software Engineering Group, University of Twente
Enschede, 7500 AE, The Netherlands
a.goknil@ewi.utwente.nl

OGUZ DIKENELLIt and N. YASEMIN TOPALOGLU?

Department of Computer Engineering, Ege University
Bornova, 35100 Izmir, Turkey
foguz. dikenelli@ege. edu.tr
tyasemin.topaloglu@ege. edu. tr

Semantic Web evolution brought a new vision into agent research. The interpretation of
this second generation web will be realized by autonomous computational entities, called
agents, to handle the semantic content on behalf of their human users. Surely, Semantic
Web environment has specific architectural entities and a different semantic which must
be considered to model a Multi-agent System (MAS) within this environment. Hence,
in this study, we introduce a MAS development process which supports the Semantic
Web environment. Our approach is based on Model Driven Development (MDD) which
aims to change the focus of software development from code to models. We first define
an architecture for Semantic Web enabled MASs and then provide a MAS metamodel
which consists of the first class meta-entities derived from this architecture. We also
define a model transformation process for MDD of such MASs. We present a complete
transformation process in which the source and the target metamodels, entity mappings
between models and the implementation of the transformation for two different real MAS
frameworks by using a well-known model transformation language are all included. In
addition to the model-to-model transformation, the implementation of the model-to-
code transformation is given as the last step of the system development process. The
evaluation of the proposed development process by considering its use within the scope
of a real commercial software project is also discussed.

Keywords: Multi-agent System; model driven development; semantic web; model
transformation.

*Corresponding author. Addr: Ege University International Computer Institute, Ege University
Campus, 35100, Bornova Izmir Turkey. Tel.: +90-232-3423232-103; Fax.: +90-232-3887230.

261

262 @. Kardas et al.

1. Introduction

Software agents and Multi-agent Systems (MAS) are recognized as both useful
abstractions and effective technologies for the modeling and building of complex
distributed systems. In its most fundamental artificial intelligence definition, an
agent is anything that can be viewed as perceiving its environment through sensors
and acting upon that environment through effectors.!

Software agents are considered as autonomous software components which are
capable of acting on behalf of their human users in order to perform a group of
defined tasks. On the other hand, the study of MAS focuses on systems in which
many intelligent software agents interact with each other. Their interactions can be
either cooperative or selfish.? In other words, the agents can share a common goal
or they can pursue their own interests (as in the free market economy).

MAS researchers develop communication languages, interaction protocols,
and agent architectures that facilitate the development of MASs. They pro-
pose new methodologies (e.g. Gaia,® Tropos,® MaSE® and SODAS) and tools
for agent-oriented software development because characteristics and challenges of
agent-oriented software engineering (AOSE) stretch the limits of current software
engineering methodologies as mentioned in Ref. 7. Since AOSE is distinct from
object-orientation when agent goal, role, context and messages are considered as
first class entities, various studies in MAS community®? define agent metamodels
that include these entities and their relations. Also, in recent past, Modeling Techni-
cal Committee (TC) of Foundation for Intelligent Physical Agents (FIPA)* had an
effort to develop a notation to express relationships between agents, agent roles and
agent groups in a MAS.'® However, we believe that a significant deficiency exists in
those noteworthy agent modeling and methodology studies when we consider their
support on the Semantic Web!'! technology and its constructs.

Semantic Web evolution brought a new vision into agent research. This second
generation Web aims to improve World Wide Web (WWW) such that web page
contents are interpreted with ontologies. It is apparent that the interpretation in
question will be realized by autonomous computational entities — so agents —
to handle the semantic content on behalf of their human users. Surely, Semantic
Web environment has specific architectural entities and a different semantic which
must be considered to model a MAS within this environment. Therefore, agent
modeling techniques and MAS development frameworks should support this new
environment by defining new meta-entities and architectural components. Hence, in
this study, we introduce a MAS development process which supports the Semantic
Web environment during MAS development according to this vision. The developed
MASs will be Semantic Web enabled; that means software agents are planned to
collect Web content from diverse sources, process the information and exchange

aFIPA was accepted by the IEEE as its eleventh standards committee on June 2005 and became
IEEE FIPA. We keep naming as FIPA throughout the paper since we reference this organization’s
previous works.

Model Driven Development of Semantic Web Enabled Multi-Agent Systems 263

the results on behalf of their human users. Autonomous agents can also evaluate
semantic data within these MASs and collaborate with semantically defined entities
such as semantic web services by using content languages.

Our approach is based on Model Driven Development (MDD) which aims to
change the focus of software development from code to models.'? Design and imple-
mentation of MAS may become more complex and hard to implement when new
requirements and interactions for new agent environments such as Semantic Web
are considered. We believe that MDD would provide an infrastructure that sim-
plifies the development of such MASs. To work in a higher abstraction level is of
critical importance for the development of MASs since it is almost impossible to
observe code level details of the MASs due to their internal complexity, distribut-
edness and openness. Hence, such MDD application increases the abstraction level
in MAS development.

MDD requires (1) definition of domain metamodels, (2) definition of system
models conforming to those metamodels, (3) definition and application of model
transformations between those models according to the entity mappings and (4)
definition and application of model to text transformation for the automatic gen-
eration of software codes from output models. Our study presents a complete soft-
ware development process that meets all of these MDD requirements to develop the
Semantic Web enabled MASs.

The business domain in our study is agent systems working on the Semantic Web
environment. So, we need a formal agent metamodel for such systems. The meta-
model in question should be platform independent. That means, it should define
first class entities and their relations for a Semantic Web enabled MAS which are
all abstract from the physical agent deployment environments. However, current
agent metamodels in literature have been generally used for only presenting con-
cepts of their dedicated methodologies as mentioned in Ref. 13 and they support
neither semantic representations of agent capabilities nor interactions between soft-
ware agents and semantic web services. In our study, we first introduce a platform
independent MAS metamodel in which agent organizations, agents, their roles and
Semantic web extensions of the MAS are all modeled with their associations. Meta-
entities and their relations of this MAS metamodel are derived from a conceptual
MAS architecture which is also discussed in this paper.

Definition of such a model is a prerequisite to conduct a model transformation
which is the key activity in MDD.'* Hence in this paper, we also present a model
transformation process in which a model conforming to the above MAS metamodel
is transformed into models conforming to metamodels of two different real agent
platforms. The designed Semantic Web enabled MAS can be implemented on these
real platforms by applying the corresponding transformations. To do this, we first
define source and target metamodels for each transformation and then provide
mappings between entities of these source and target metamodels to derive trans-
formation rules and constraints. We realize the whole transformation by using a
pretty known model transformation language. Finally, automatic code generation

264 @G. Kardas et al.

from output MAS models assists MAS developers in implementing their systems
on various agent platforms.

The paper is organized as follows: In Sec. 2, a brief explanation for MDD and its
application on MAS development are given. In Sec. 3, we discuss a new conceptual
software architecture for Semantic Web enabled MASs to identify new constructs
in addition to the constructs of a traditional MAS. A metamodel for such MASs is
discussed in Sec. 4. This metamodel is our source metamodel for the model transfor-
mations. Section 5 introduces metamodel of two target MAS development platforms
and discusses the entity mappings required for the model transformations. Appli-
cation of the real model transformations with appropriate transformation language
and tool utilization is given in Sec. 6. Section 7 discusses the last step of the pro-
posed development process: model to text transformation which provides automatic
generation of software codes from MAS models. Section 8 includes the evaluation
of the development process within the scope of a commercial software develop-
ment project. Section 9 covers the related work on MDD of agent systems. Finally,
conclusions and future work are given in Sec. 10.

2. Model Driven Engineering for MAS Development

MDD approach considers the models as the main artifacts of software development.
We use Model Driven Architecture (MDA)'Y which is one of the realizations of
MDD to support the relations between platform independent and various platform
dependent agent artifacts to develop semantic web agents.

MDA defines several model transformations which are based on the Meta-Object
Facility (MOF)!'6 framework. In MDA, models are first-class artifacts, integrated
into the development process through the chain of transformations to coded applica-
tion. In order to enable this, MDA requires models to be expressed in a MOF-based
language. This guarantees that the models can be stored in a MOF-compliant repos-
itory, parsed and transformed by MOF-compliant tools, and rendered into XML
Metadata Interchange (XMI) for transport over a network.'®

Transformations defined by MDA are structured in a three-layered architec-
ture: the Computation Independent Model (CIM), the Platform Independent Model
(PIM), and the Platform Specific Model (PSM). A CIM is a view of a system from
the computation independent viewpoint.'® For instance, the CIM for agent systems
does not have any information about agents and semantic web services. However,
according to the system requirements, entities in the CIM can later be used in order
to derive agents and semantic web services in the PIM of the Semantic Web enabled
MAS.

The PIM focuses on the operation of a system while it still hides the details
necessary for the implementation of the system in a particular platform. The PIM
specifies a degree of platform independency to be suitable for use with a number
of different platforms of similar type.'® In our perspective, the PIM of a Semantic
Web enabled MAS should define the main entities and interactions which do not
belong to a specific agent framework.

Model Driven Development of Semantic Web Enabled Multi-Agent Systems 265

On the other hand the PSM includes details of the platform implementation. The
platform independent entities in the PIM of the Semantic Web enabled MAS are
transformed to the PSM of an implemented Semantic Web enabled agent framework
like SEAGENT.!'" The flexible part of this approach is that the PIM enables to
generate different PSMs of Semantic Web enabled agent frameworks automatically.

The development process and the MOF based transformations between the
MDA models are given in Fig. 1. The transitions from the CIM to the PSM step
by step are specified in the model transformation definitions based on the MOF
metamodel.

In the transformation pattern depicted in Fig. 1, a source model sm is trans-
formed into a target model tgm. The transformation is driven by a transformation
definition written in a transformation language.'®~2! The source and target models
and the transformation definition conform to their metamodels SMM, TgMM and
TMM respectively. The transformations defined from CIM to PIM (7'1) and PIM to
various PSMs (T2 and T2') use the metamodels of CIM, PIM and PSMs for source
and target metamodels in corresponding transformation patterns. After completing
model-to-model transformations according to that pattern, the next and final step
is to provide system implementation by realizing model-to-code transformations
(T'3 and T'3') for the specific platforms.

Considering the study presented in this paper, we provide a PIM for Seman-
tic Web enabled MASs and PSMs of various MAS development frameworks and
we define model to model and model to code transformation steps which employ
the related metamodels. Hence, a MAS developer builds the model of the desired
MAS conforming to the defined PIM and provides this model as the input of the
MDA process. After automatic execution of the related transformations the devel-
oper obtains the implementation of the designed system on different MAS environ-
ments. The developers do not deal with the transformation pattern or the internal
execution of the transformations.

3. A Software Architecture for Semantic Web Enabled MASs

The first class entities of a Semantic Web enabled MAS, which constitute the appli-
cation models, must be defined in order to apply model driven approaches for the
development of these systems. We believe that these entities can be derived from a
conceptual architecture of Semantic Web enabled MASs. For this reason, we intro-
duce a MAS architecture in which autonomous agents can also evaluate the semantic
data and collaborate with the semantically defined entities such as semantic web
services by using content languages. The preliminary version of the architecture
appeared in Ref. 22.

Our proposed conceptual architecture for the Semantic Web enabled MASs is
given in Fig. 2. The architecture has a layered style and the relation among layers is
allowed-to-use relation described in Ref. 23. For two layers having this relation, any
module in the first is allowed to use any module in the second. The direction of the

266 G. Kardas et al.

VA Ul WSTUeYDaW UOIJRULIOjSURI) [dpowt pue ssed01d juatdoress(]

MO

.3pPoD

‘T 81

3poD A

NOILVLINIWITdIAL

+ I3PON
oypads wiopeld

(INSd) [2pol NOIS3Ia
oypads wuoje|d DJIdIS3ds
WdO41vd

Nd3L1Vd NOLLYINJO4SNVdL 13d0W

(INId) [12POoIN
juspuadspu] wuiojpeld

NOIS3a
LNIAN3d3ANI
NdO41v1d

HOIH
\4

uoRoRNSqY
JO |pAR7

NOIS3a

(WID) [2POIN
juspuadspur uoneindwo)d

INIANI4IANI
NOILVLNdWOD

\ 4
3PAD 3N
uswdojanaQ

267

Model Driven Development of Semantic Web Enabled Multi-Agent Systems

"'SSVIN POIQRUD (PA\ OTJURIISG I0J 2IN3099Tyore renjdeowod o], g "S1q

IN3IOV
d3im
JOILNVW3S

1a2Ae ainjonJjseljul uonedIuNWWo)

Jaddeupy sbpsmouy| onuewss

19Ae
Aousby R J3324da33u]
(AseiqrInoiney3d) || o oseay g aseqaBpa/MOUY JRUEWSS juz3U0D
43uue|d opuewas
._0>m._ 103B1P3|A Ansibay Ansibay
adIAIRS ABojojuQ JDIAISS DUR WSS Juaby

268 @. Kardas et al.

relation is downward. That means only a higher layer is allowed to use facilities of a
lower layer in our architecture. Reverse usage is not allowed. On the other hand, the
architecture does not include any layer bridging.2> Hence a higher layer uses only
modules of the next-lower layer. We use a notation including layers with a sidecar
and the allowed-to-use relation is denoted by geometric adjacency in the figure.
Due to its layered construction, the architecture defines three layers in its
main stack: Service Layer, Agency Layer and Communication Infrastructure Layer.
Semantic Web Agent is the sidecar component which uses modules of the above
mentioned architecture layers. A group of system agents provides services defined
in the Service Layer. Every agent in the system has an inner agent architecture
described in the Agency Layer and they communicate with each other according
to the protocols defined in the Communication Infrastructure. The layers of the
architecture are discussed with their internal modules in the following subsections.

3.1. Service layer

In the Service Layer, services (and/or roles) of semantic web agents inside the
platform are described. All services in the Service Layer use the capability of the
Agency Layer. Besides domain specific agent services, yellow page and mediator
services should also be provided.

Agent Registry is a system facilitator in which capabilities of agents are seman-
tically defined and advertised for other platform members. During their task execu-
tions, platform agents may need services provided by the other agents. Hence, they
query on this facilitator to determine relevant agents for interaction. No matter it
is FIPA-compliant?* or not, a traditional MAS owns one or more registries which
provides yellow page services for system’s agents to look for proper agent services.
Certainly, the aforementioned registries are not simple structures and mostly imple-
mented as directory services and served by some platform specific agents. For exam-
ple there is a mandatory agent called directory facilitator (DF) in FIPA abstract
architecture specification on which agent services are registered.?* When an agent
looks for a specific agent service, it gathers supplier data (agent’s name, address,
etc.) of the service from the DF and then it begins to communicate with this service
provider agent to complete its task. However, capability matching becomes complex
and has to be redefined when we take into consideration of MASs on Semantic Web
environment. In case of agent service discovery, in such systems, we should define
semantic matching criteria of service capabilities and design registration mecha-
nisms (directory services) of agent service specifications according to those criteria.
That makes matching of requested and advertised services more efficient by not only
taking into consideration of identical service matching: New capability matching will
determine type and degree of relation between two services (requested and adver-
tised) semantically. Hence, the conceptual architecture includes an agent registry
to provide capability matching on agent services. In Ref. 25, one such application
of the semantic capability matching on FIPA-compliant agent systems is discussed.

Model Driven Development of Semantic Web Enabled Multi-Agent Systems 269

On the other hand, agents of the platform may also need to interact with Seman-
tic Web Services which are web services with semantic interface to be discovered
and executed. Web services are commonly-known software systems identified by a
Uniform Resource Identifier (URI) whose public interface and bindings are defined
and described by XML.2% By discovering these definitions, other software systems
use related Web service. However, current Web service infrastructure focuses on
only syntactic interoperability. Two popular standards are SOAP (Simple Object
Access Protocol) and WSDL (Web Services Description Language) which supports
XSD-based data structures. Again in Ref. 26, it is mentioned that such a defini-
tion does not allow for both semantic interoperability and automatic composition of
Web services. To support such interoperability and composition, capabilities of web
services are defined in service ontologies such as OWL-S?7 and WSMO.?® In our
approach, those service capabilities should also be advertised on proper registries
to provide dynamic discovery and execution of the services by agents. Hence, we
define a conceptual entity called Semantic Service Registry in the proposed architec-
ture. This registry can also be modeled as a service matchmaker in which semantic
interfaces of the platform’s semantic web services are advertised to be discovered
by the agents. Considering OWL-S services, agents may query on this facilitator
by sending its requested semantic service OWL-S profile to the facilitator. The
facilitator (or matchmaker) performs a semantic capability matching between the
given request and advertised profiles and informs the agent about suitable services.
Then the agent may interact with those services to complete its task. Engagement
and invocation of the semantic web service is also performed according to service’s
semantic protocol definitions. Candidate implementations for capability matching
of the semantic web services are discussed in Refs. 29 and 30.

A Semantic Web enabled agent interacts with agents within the different orga-
nization(s) and semantic web services may use knowledge sources handled by the
different knowledgebase(s) and/or peer system(s). In such environment, it is obvi-
ous that, there exist more than one ontology and different entities may use different
ontologies. So, there should be another architectural service in which translation
and mapping of different ontologies are performed. We call this service as Ontol-
ogy Mediator and it may be provided by one or more agents within the MAS. An
Ontology Mediator may also behave as a central repository for the domain ontolo-
gies used within the platform and provide basic ontology management functionality
such as ontology deployment, ontology updating and querying. Through the usage
of the ontology translation support, any agent of the platform may communicate
with MAS and/or services outside the platform even if they use different ontologies.

3.2. Agency layer

The middle layer of the architecture is the Agency which includes inner structural
components of Semantic Web enabled agents. Every agent in the system has a
Semantic Knowledgebase which stores the agent’s local ontologies. Those ontologies

270 @. Kardas et al.

are used by the agent during its interaction with other platform agents and semantic
web services. Evaluation of the ontologies and primitive inference are realized by
the Reasoner.

Semantic Knowledge Wrapper within the Agency provides utilization of above
mentioned ontologies by upper-level Agency components. For example, during its
task execution, the agent may need object (or any other programmatic) represen-
tation of a specific ontology individual. Or the content interpreter requests a query
on one of the ontologies to reason about something. To meet up such requirements,
the Semantic Knowledge Wrapper of the agent may form graph representations of
the related ontologies within the runtime environment of the Agency. An example
for this kind of wrapper use within an agent internal architecture is based on the
JENA3! framework which is discussed in Ref. 32.

The Planner of the Agency Layer includes necessary reusable plans with their
related behavior libraries. The reusable agent plans are composed of tasks which
are executed according to the agent’s intentions. The planner is based on the reac-
tive planning paradigm e.g. HTN (Hierarchical Task Network) planning framework
presented in Ref. 33. In reactive planning a library of general pre-defined (may be
defined at compile time) plans is provided to agent and the agent performs one or
more of these plans in response to its perceptions of the environment.3*

Semantic Content Interpreter module uses the logical foundation of semantic
web, ontology and knowledge interpretation. During its communications, the agent
receives messages from other agents or semantic services. It needs to evaluate the
received message content to control its semantic validity and interpret the content
according to its beliefs and intentions. Necessary content validity and interpretation
takes place in this module.

3.3. Communication infrastructure layer

The bottom layer of the architecture is responsible of abstracting the architec-
ture’s communication infrastructure implementation. For example, it may be an
implementation of FIPA’s Agent Communication and Agent Message Transport
specifications?* to handle agent messaging. Hence, the layer transfers any content
(including semantic knowledge) by using FIPA Agent Communication Language
(ACL) and transport infrastructure. Physical communication may take place via
well-known HTTP-IIOP (Internet Inter-ORB Protocol). However, the content lan-
guage within the message infrastructure is crucial.

4. A Metamodel for Semantic Web Enabled MASs

In this section, we introduce an agent metamodel superstructure to define elements
and their relationships of a Semantic Web enabled MAS depending on the preceding
software architecture. Current metamodel is composed of a core model discussed in
Ref. 22 and this core’s supplements in order to support the use of model in MDD

Model Driven Development of Semantic Web Enabled Multi-Agent Systems 271

as a PIM. The final metamodel is an extension of FIPA Modeling TC’s Agent
Class Superstructure Metamodel.!” On the other hand, we provide new constructs
(e.g. Semantic Web constructs) for our metamodel by extending Unified Modeling
Language (UML) 2.0 Superstructure®® and Ontology UML Profile which is defined
in Ref. 36.

FIPA Modeling TC’s Agent Class Superstructure Metamodel (ACSM) has a
specification which is based on — and extends — UML superstructure. It proposes
a metamodel which defines the user-level constructs required to model agents, agent
roles and agent groups. Although ACSM is in a preliminary phase, we believe that
it neatly presents an appropriate superstructure specification that defines the user-
level constructs required to model agents, their roles and their groups. By extending
this superstructure we do not need to re-define basic entities of the agent domain. In
fact, representing the MAS structure with these main meta-entities is not new and
formerly proposed in AALAADIN MAS metamodel®” but not as formal as FIPA
Modeling TC’s work. Also, ACSM models assignment of agents to roles by taking
into consideration of group context. Hence, extending ACSM clarifies relatively
blurred associations between related concepts in our core metamodel by appropriate
inclusion of ACSM’s Agent Role Assignment entity. More information about ACSM
can be found in Refs. 10 and 38.

Due to space limitations, our Semantic Web enabled MAS metamodel is pictured
in here by dividing it into two parts (Figs. 3(a) and 3(b) respectively). In order to
provide traceability, the rest of each entity relation denoted with a bold letter at
the end of the Fig. 3(a) is again denoted with the same bold letter in Fig. 3(b). The
depicted metamodel is the enhanced version of the model introduced in Ref. 39
with new entities and revised associations and used as PIM during our MDD
process.

A Semantic Web Agent is an autonomous entity which is capable of interac-
tion with both other agents and semantic web services. It is a special form of the
ACSM’s Agent class. Semantic Organization is a composition of Semantic Web
Agents which is constituted according to organizational roles of those agents. A
Semantic Organization is implemented as a composition of Semantic Web Agents.
It also includes organizational roles and those roles are played by its agents. Tak-
ing into consideration those organizational roles, a Semantic Web Agent may be
a member of different Semantic Organizations. That means, one agent may play
more than one Role and one Role may be played by many Semantic Web Agents
within the Semantic Organization context.

On the other hand, Semantic Web Organization is defined as a direct extension
of the ACSM’s Group Structure in the model. A Semantic Web Organization may
or may not behave as a Semantic Web Agent in overall manner. Hence, it is not
defined neither as Agentified nor Non-Agentified Group.

The Role concept in the metamodel is an extension of Agent Role Classifier due
to its classification for roles the semantic agents are capable of playing at a given
time. This conforms to the Agent — Agent Role Classifier association defined in

G. Kardas et al.

272

a[goId TN ASojou() pue
amjonysiodng 0'g TINN ‘INSOV S DL SUlepoIN VdId SPuoIXo ydiym sSYIN Po[qeue P\ dljuewag 10j [opourejowr oy jo jred isiy oyJ, (e) ‘¢ S

w I A 1 y 6|3 C P| 2| q|e
sasijeApe _ ut uo «
« sasn | 1 AN
Juaby u~a uo
2lod 2lod qaM dRUBWSS saidde ueld
|EIN3OILRIY uewoq
Ut ur ABojojuo::(dno)
_ _ 3|yo.d N ABojoug
sey sheid sey
% v
sazieal T ShoLs
LOREDIUNLL WO 3j04 o uoneziuebig ABojojup
u 1 Qa0 dnUBWSS n wt uoneziuebig
ut T
T . _
sey smou|
uy
Yum syoealsiul
abessay
s3|04 4
dnoib - 0
o0 JISSB|D 9|0y e "0 Jayissep [eaisyAd
JU3by: NSOV Juaby: :
s8I0 ssepn jeaisAyd R
T pajued Burpioddns T
8j04 BulAyisse|o u
ut Juawubissy
m“:e@ dnoio 3[04 3UBY/: NSOV
P34iusby-UoN 5 o
nuaby::
NSDY p3y! 7 NSOV U
P10 « ANﬂ:o _.._ G Jayissen/ fut Jsyisse/ |ug
1
H 4 A0 YR J3yisse|D Jayisse|n
dnos6 UL SRR 3UsBy: NSOV o) Jusby: NSOV 201125 qaM DRUBWRS Jayisse|D dIAIS
_ dnoib aquasw soueysul FENTEEERY
paubisse
« paubisse, dnoub, « payisseja/ _ _
uoneoynads ¢
13yisse[D pa.nanis 3dueIsu] J=yisse|n
110°'Z TN pepueis 110'Z TN plepuels 110°Z TN plepuels

A

273

Model Driven Development of Semantic Web Enabled Multi-Agent Systems

amjonaysiodng 0°g TN ‘INSDV S.D.L SUuIepoN VI SPUeIXo yarym sGYIN Po[qRUS oA\ dljurwiag 10J [opourejauwr o) jo 1red puodes oy], (q)

9[goId TN ASojou() pue

$s8[1U0: (dNO) 3lYoid TN ABojoauo

adALonuewss+
10

adAlonuewss
10

Buipunoib [psm

syioddns

Agpaquosap
$59000d sajndaxs
sey
sjuasaid
ue|d Jo3noax3
seq Col Sl 301AI3S DNUE WSS
1
uaby J1axew el
sheid 3 Y -MEUIPI _
20IAI3S DNUB WSS
S13A02SIP
— saidde
uelq Jspuld
Yim sjoeisjul | S0IAISS DRUE WSS
U sasijanpe
ABojojuo uo u
i 1 3|0d
u ABojojug ueld 123s163y
aimea] [ejoineysg <t ut 30INIBS 20IAISS DRUB WSS
+10° TN pepuels e
uo spuadsp
e
smoun| smouy| s T uo spuadap . —|
uo uo U u
Joineyag sasodwoa i
3)0d 3)10d — oIS T ur ERIINELS
Jojeipa|y ABojojup Ansibay — gaMm dpuewsas aoue)sul
e saInoexs payisse|s/
LES u _ u
L — L ot _ k wucmwmr:
sasianpe payisse|o;/
w 1 AL 1 y 6|4 ° P| 2|q

‘¢ 81

274 @. Kardas et al.

ACSM?3®: Semantic Web Agents can be associated with more than one Role (which is
also an Agent Role Classifier) at the same point in time (multiple classification) and
can change roles over time (dynamic classification). The ACSM extensions provide
clarification of the relations between Semantic Web Agent, Role and Semantic Web
Organization in our model by employing ACSM’s Agent Role Assignment ternary
association between Agent, Agent Role Classifier and Group.

The Role is a general model entity and it should be specialized in the metamodel
according to task definitions of architectural and domain-based roles: An Architec-
tural Role defines a mandatory Semantic Web enabled MAS role that should be
played at least one agent inside the platform regardless of the organization context
whereas a Domain Role completely depends on the requirements and task defini-
tions of a specific Semantic Organization created for a specific business domain.

Some of the organization agents must play architectural roles to provide services
defined in the Service Layer of the conceptual architecture for other agents. Hence
two specialization of the Architectural Role are also defined in the metamodel:
Registry Role and Ontology Mediator Role. Registry Roles are played by one or
more Semantic Web Agents which store capability advertisements of Semantic Web
Agents or Semantic Web Services. Ontology Mediator Role in the metamodel defines
basic ontology management functionality that should be supported by ontology
mediator agents as discussed in the previous section.

One Role is composed of one or more Behaviors. Task definitions and related task
execution processes of the Semantic Web agents are modeled inside the Behavior
entities. Proper arrangement of those behaviors constitutes agent roles. The Behav-
ior entity is defined in the metamodel as a UML 2.0 Behavioral Feature because
it refers to a dynamic feature of a Semantic Web Agent (e.g. an agent task which
realizes agent interaction with other agents).

According to played roles, agents inevitably communicate with other agents to
perform desired tasks. Each Communication entity defines a specific interaction
between two agents of the platform which takes place in proper to predefined agent
interaction protocol. One Communication is composed of one or more Messages
whose content can be expressed in a Resource Description Framework (RDF)%0
based semantic content language.

A Semantic Web Service represents any service (except agent services) whose
capabilities and interactions are semantically described within a Semantic Web
enabled MAS. A Semantic Web Service composes one or more Service entities. Each
service may be a web service or another service with predefined invocation protocol
in real-life implementation. But they should have a semantic web interface to be
used by autonomous agents of the platform. It should be noted that association
between the semantic web agents and the services is provided over the agent role
entities in the metamodel. Because agents interact with semantic web services,
depending on their roles defined inside the organization.

Like agents, semantic web services have also capabilities and features which
could not be just based on the object-oriented paradigm. Hence, we define new

Model Driven Development of Semantic Web Enabled Multi-Agent Systems 275

Classifiers and their related Instance Specifications in the metamodel by extending
proper UML 2.0 Superstructure meta-entities in order to encapsulate the semantic
web entities. We have applied classifier — classified instance association between
Semantic Web Service Classifier and Semantic Web Service. Same is valid for Ontol-
ogy Classifier — Ontology and Service Classifier — Service relationships.

A Semantic Web enabled MAS is inconceivable without ontologies. An Ontol-
ogy represents any information gathering and reasoning resource for MAS mem-
bers. Collection of the ontologies creates knowledgebase of the MAS that provides
domain context. Specializations of the Ontology called Organization Ontology, Ser-
vice Ontology and Role Ontology are utilized by the related metamodel entities.
For example semantic interface and capability description of services are formed
according to the Service Ontology and this ontology is used by the Semantic Web
Agents in order to discover and invoke Semantic Web Services.

Ontology entities in the proposed metamodel are defined as extensions of the
Ontology element of the Ontology UML Profile (OUP) defined in Ref. 36. The OUP
captures ontology concepts with properties and relationships and provides a set of
UML elements available to use as semantic types in our metamodel. By deriving
the semantic concepts from the OUP, we have already-defined UML elements to
use as semantic concepts within the metamodel.

Semantic web service modeling languages (e.g. OWL-S?7) mostly represent ser-
vices by three semantic documents: Service Interface, Process Model and Physical
Grounding. Service Interface is the capability representation of the service in which
service inputs, outputs and any other necessary service descriptions are listed. Pro-
cess Model describes internal composition and execution dynamics of the service.
Finally, Physical Grounding defines invocation protocol of the web service. These
Semantic Web Service components are given in the metamodel with Interface, Pro-
cess and Grounding entities respectively. Semantic input, output and web service
definitions used by those service components are imported from the UML Semantic
Web Service Profile (USWSP) proposed in Ref. 41. Each semantic service input and
output has a type which is a domain specific Ontology class. In order to represent
those Ontology type entities in our UML 2.0 based metamodel, we also import the
OntClass meta-entity defined in the OQUP.36

Semantic Web Agents apply Plans to perform their tasks. In order to discover
and execute Semantic Web Services dynamically, two extensions of the Plan entity
are defined in the proposed PIM. Semantic Service Finder Plan is a Plan in which
discovery of candidate semantic web services takes place. During this plan exe-
cution, the agent communicates with the service matchmaker of the platform to
determine proper semantic services. After service discovery, the agent applies the
Semantic Service Fxecutor Plan to execute appropriate semantic web services. Pro-
cess model and grounding mechanism of the service are used within the plan.

On the other hand, agents need to communicate with a service registry in
order to discover service capabilities. For this reason, the model includes a spe-
cialized agent entity, called Semantic Service Matchmaker Agent. This meta-entity

276 G. Kardas et al.

"UTRTIOP WSLINOJ, UT SU{Iom QYA © UM TOT}ORIDIUT 9IIAIOS — JUaFe 91} J0J [9POUT 9OURISUT Uy

N ACITI

1Mo sj0usby
<<AbojojuQ 3j0y>>

|MO' SHUOIEAISSSY|SI0H
<<AB0j0JuUQ UoReZILUEBIO>>

Ansibay so1ales sy Aend
<<Jlolneysg>>

BUIPUNOJD IAISS UOIBAISSSY
<<Buipunoin>>

$5800.d 01AI8S UoneAISSSY
<<S5S3001d>>

syloddns

Agpaquassp

uo spuadsp

S83NdJ3xK

20IAI8S 8)S0dWOD UoIIBAISSSY
<<EINIBS QM DPUBWISS>>

|MO*S0INIBS
<<ABojojuQ 01NIBS>>

S0BLISIUI S0IAISS UoneAlssay
<<I}VEUIUI>>

201185 &0AU]
<<loneyag>>

SI3A0DSIP

sjuasaud

ue|d AJaA02SIg @1AIBS S 3UBID [230H
<<Ue|d Japuly 81185 JRUBWES>>

yBM SPedEIUl

S33N23Ks sasn

sajnoaxe

UB|d UOIEI0AU] 3D1AISS S3USID |330H
<<UB|d 10JN0&XT 80IAISS JRUBWSS>>

saydde

sa|dde

ueby JusD [230H

sapnpul

<<juaby qam oRueWaS>>

shejd

sasiuaApe

ue|d Ansibay ao1ales sjusby Jajewydiel
<<ue|d 1335163y S01AI8S dUBWS S>>

sajnoexs

201A1aS Ja3sibay
<<IoINBYSg>>

sapnpul

smouyy

smouy

2|0y JuB1D [230H
<<8|0y Ulewog>>

Juaby Jesjewypiepy

<<jusby Jadjewe 221AI8S JRUeWSS>>

sa||dde

sheld

<<8|0y Ansibay>>

310y BuILpIe 201AIBS JRUBWES

Model Driven Development of Semantic Web Enabled Multi-Agent Systems 277

represents the matchmaker agents which store the capability advertisements of
semantic web services within a MAS and match those capabilities with service
requirements sent by the other platform agents. These matchmaker agents apply
the Semantic Service Register Plan.

An instance model of the above metamodel is given in Fig. 4 for the interaction
between a Hotel Client Agent and a Reservation Service within a MAS working in
Tourism domain. The client agent is a Semantic Web Agent which reserves hotel
rooms on behalf of its human users. During its task execution, it needs to inter-
act with a semantic web service called “Reservation Composite Service”. The Hotel
Client Agent applies its service discovery and invocation plans called “Hotel Client’s
Service Discovery Plan” and “Hotel Client’s Service Invocation Plan” respectively.
“Matchmaker Agent” is the service matcher of the related agent platform. It stores
capability interfaces of the semantic services and matches them with client requests
semantically by applying its register plan called “Matchmaker Agent’s Service Reg-
istry Plan”. Hence, “Hotel Client Agent” determines appropriate semantic service
by asking the “Matchmaker Agent” in its service discovery plan and interacts with
the selected semantic service by executing service’s process description and using
service’s grounding. The model also includes related agent roles, behaviors and
required ontologies for the domain.

5. Model Transformations for MDD of the Semantic Web
Enabled MASs

Sendall and Kozaczynski'* describe model transformation as the heart and soul of
model driven software development. Indeed, definition of metamodels is required
but not sufficient for a complete MDD process. We have to define transformations
between those metamodels to obtain the main artifacts of the process: target mod-
els. We apply transformation between platform independent and platform specific
MAS metamodels in order to achieve working model of Semantic Web enabled agent
Systems.42

Referring to Fig. 1, our source metamodel for the transformation is the PIM
pictured in Figs. 3(a) and 3(b). The instance model conforming to this metamodel
is the one given in Fig. 4. As mentioned before, this model is a platform independent
Semantic Web enabled MAS model in which semantic agents reserve hotel rooms
on behalf of their users by interacting with semantic web services. Now, we employ
the transformation between PIM and various PSMs shown in Fig. 1 in order to
facilitate the implementation of the specified agent system in different agent devel-
opment environments. This can only be realized if we provide metamodels of the
corresponding physical environments as platform specific metamodels and define
transformation rules.

In this study, we employ two different agent development software frameworks
called SEAGENT!” and NUIN*? for the implementation of our Tourism MAS.
Therefore, metamodels of these frameworks are used as target metamodels (PSMs)

278 @. Kardas et al.

in our MDD process. In the following subsections, metamodels of these frameworks
and model transformation between our PIM and those metamodels are discussed.

5.1. Model transformation for the SEAGENT framework

Our first target platform for platform specific models is the SEAGENT.
SEAGENT!7 is an agent development software framework and platform that is spe-
cialized for semantic web-based MAS development. The communication and plan
execution infrastructure of the SEAGENT looks like other existing agent devel-
opment frameworks such as DECAF,** JADE*® and RETSINA.%*6 However, as
discussed in Ref. 32, in order to support and facilitate semantic web-based MAS
development, SEAGENT includes the following built-in features which the existing
agent frameworks and platforms do not have:

e SEAGENT provides a specific feature within the agent’s internal architecture to
handle the agent’s internal knowledge using Web Ontology Language (OWL).47

e The directory service of the SEAGENT stores agent capabilities using specially
designed OWL-based ontologies and it provides a semantic matching engine to
find the agents with semantically related capabilities.

e Based on FIPA-RDF,?* a content language called Seagent Content Language
(SCL) has been defined to transfer semantic content within the agent communi-
cation language messages.

e SEAGENT introduces a new service called Ontology Management Service
(OMS). The most important feature of this service is to define the mappings
between the platform ontologies and the external ontologies. Then it provides a
translation service to the platform agents based on these defined mappings.

e SEAGENT supports discovery and dynamic invocation of semantic web ser-
vices by introducing a new platform service for semantic service discovery and a
reusable agent behavior for dynamic invocation of the discovered services.

SEAGENT is implemented in Java and provides libraries to develop Semantic
Web enabled MASs also in Java. The metamodel of SEAGENT considering HTN-
based agent planner and service interaction is given in Fig. 5. The upper part of the
metamodel includes the SEAGENT planner components. In the SEAGENT frame-
work, agents execute their Tasks according to HTN.33 HTN planning creates plans
by task decomposition as an Al planning methodology. This decomposition process
continues until the planning system finds primitive tasks that can be performed
directly. For example, semantic web service interaction of an agent may be mod-
eled as a reusable plan which composes service discovery, service engagement and
dynamic service invocation tasks. The Semantic Web agent executes those tasks in
order to utilize a semantic web service.

As a requirement of HTN, tasks might be either complex (called Behaviors)
or primitive (called Actions). Each plan consists of a complex root task consisting
of sub-tasks to achieve a predefined goal. Behaviors hold a “reduction schema”

279

Model Driven Development of Semantic Web Enabled Multi-Agent Systems

‘sjutodMaTA UOI10RISIUL 901ATSS pue Jouue[d jusle ul ylomeuwrel] [NHOHVHS JO [opowre)awt oy, ‘G "Siq
aoeJaaqur T u'o
£38TIT3APE
S3{oAUT uo L
urg
' [Jueb
smaoJaad R up
gaa0ddns $S9201d S 'IMO spuT3 T
T e smaogaad
£3IN23X3 EIRISIE
T T uo § ug
sape13suowap
T dIAIRSIORUT -
[|
T T T
uo
MWIAIBSTS IMO uonoy dnoiaeyag o
ug
Muiaouejsyuisiq
uo
uo Aul=[0uelayuy
up
- < L MuIuoIsIA0Lg
uo <<3oeI3s(qR>>

280 @. Kardas et al.

knowledge that defines the decomposition of the complex task to the sub-tasks and
the information flow between these sub-tasks and their parent task. The information
flow mechanism is as follows: each task represents its information need by a set of
provisions and the execution of a task produces outcomes, and there are links that
represent the information flow between tasks using these provision and outcome
slots. There are three types of these links: Provision Links that connect outcomes
to provisions, Inheritance Links that connect provision in a parent task to one of
its sub-tasks and Disinheritance Links that connect outcome of a sub-task to its
parent task.

Actions are primitive tasks that can be executed directly by the planner. Also,
each task produces an outcome state after its execution. The outcome states are
used to route the information flow between tasks. Tasks have a name describ-
ing what they are supposed to do and have zero or more Provisions (information
needs) and Outcomes (execution results). The provision information is supplied
dynamically during plan execution. Tasks are ready, and thus eligible for execu-
tion, when there is a value for each of its provisions. More detailed information
about SEAGENT plan structure can be found in Ref. 48.

Discover Candidate Service and Enact Service are two predefined Behavior
extensions which provide semantic web service interaction for Agents. In Discover
Candidate Service Behavior, an Agent performs discovery of semantic web services
that matches with the agent’s requirements while execution of the service according
to service’s process definition is realized in the Agent’s Enact Service Behavior.

Semantic web services are implemented in SEAGENT as OWL-S Services.
Therefore each semantic web service is defined as an OWL-S Service instance in
SEAGENT models and has OWL-S Profile, OWL-S Process and OWL-S Grounding
constructs in order to provide service usage by the platform agents.

The above metamodel of SEAGENT is used as one of the PSMs in the proposed
MDD process and transformation between PIM and this PSM is realized within the
study. The crucial part of the transformation process is to define the transformation

27

rules in a predefined transformation language. Those rules are based on the map-
pings between source and target model entities. The rules also include the formal
representation of mapping constraints which are applied during the transformation.
In our case, we have to define the mappings between entities of the PIM and the
PSM of the SEAGENT framework. In Table 1, significant entity mappings are listed.

Mappings between our metamodel entities and the SEAGENT concepts are not
always in one-to-one manner. For instance, the SEAGENT framework does not
define a Role abstraction. That abstraction is built in the definition of the Agent
class. Hence both the Role and the Semantic Web Agent entities of the metamodel
are mapped into the Agent class of the SEAGENT metamodel.

On the other hand, the Task entity in the SEAGENT metamodel corresponds to
the abstract Plans of our PIM and the predefined behavior classes of the SEAGENT
planner library correspond to the extended Plans of the PIM. For example, the
SEAGENT planner includes the behavior class called DiscoverCandidateService

Model Driven Development of Semantic Web Enabled Multi-Agent Systems 281

Table 1.

Entity mappings between the PIM and the PSM of the SEAGENT.

PIM Entity

SEAGENT Entity

Explanation

Role, Semantic Web Agent
(SWA), Semantic Service
Matchmaker Agent (SSMA)

Plan

Semantic Service Register Plan

Semantic Service Finder Plan

Semantic Service Executor
Plan

Behavior

Semantic Web Service
Interface

Process

Grounding

Agent

Task

Behavior

DiscoverCandidateService

EnactService

Action

OWL-S_Service
OWL-S_Profile
OWL-S_Process
OWL-S_Grounding

Role, SWA and SSMA in the
metamodel correspond to the
Agent in SEAGENT.

Agent plans are mapped onto
the HTN tasks in the
SEAGENT framework.

Register plan of the
matchmaker agent is
implemented as a Behavior in
the SEAGENT model.

Service finder plan of the SWA
is mapped into built-in
Behavior subclass called
DiscoverCandidateService.

Service executor plan of the
SWA is mapped into built-in
Behavior subclass called
EnactService.

Agent behaviors defined in the
metamodel can be
implemented as Action
instances in the SEAGENT
Platform.

In SEAGENT, capabilities
and process models of
semantic web services are
defined by using the OWL-S
markup language.

which provides the discovery of semantic services according to their capability
advertisements as mentioned before. When an agent acts according to that behav-
ior, in fact it applies the Semantic Service Finder Plan which is defined in our PIM.
Hence, that behavior class in the SEAGENT is the physical counterpart of our
related metamodel entity.

Since capabilities and process models of the semantic web services are defined
in SEAGENT by using the OWL-S markup language, we provide the translations
derived from the mappings between our service metamodel entities (Interface, Pro-
cess and Grounding) and OWL-S components of the SEAGENT as given in Table 1.

After the execution of the whole transformation process between the PIM and
the SEAGENT PSM, we achieve the platform specific model of our tourism MAS.
This output (target) model is given (in Fig. 8) and discussed at the end of Sec. 6.2
of this paper.

5.2. Model transformation for the NUIN framework

Our second target platform for implementing the desired MAS is the NUIN. NUIN*3
provides a flexible agent architecture designed to develop agents in Semantic Web

282 @. Kardas et al.

applications based around Belief-Desire-Intention (BDI) principles. The implemen-
tations on the NUIN framework strongly embody the BDI theoretical foundation*®
which is perhaps the most commonly studied architecture for deliberative agents.

On the other hand, NUIN aims to make semantic web notations and representa-
tions central to the design of the agents. So, agents are able to operate as semantic
web agents. While being a semantic web agent admits a number of interpretations
as discussed in Ref. 50, it should be noted that NUIN agents can only provide some
of those interpretations such as: They are configured using RDF*? and in princi-
ple they can report this configuration in response to queries. NUIN agents can use
semantic web information sources as agent belief bases, by including JENA model
specifications®! in the agent configuration, and they have a limited ability to query
external semantic web information sources. Also, the NUIN language supports the
semantic web notion of identity by requiring all symbolic constants to be URI’s.
These design basics of the NUIN framework and the “semantic web agent” vision
that we share with the NUIN cause us to choose the NUIN as another candidate
for the system development environment in exemplifying the applicability of our
MDD process.

NUIN provides a Java API (Application Program Interface) for developers to
build agent systems. Internally, the agent plans are Java objects, and can be gen-
erated in a variety of different ways, including by directly invoking the action con-
structors. However, the most convenient way, is to program agents by using an
agent scripting language called Nuinscript, which is parsed into the Java objects
used by the interpreter. For this reason, we first derived the metamodel of the
Nuinscript agent scripting language from its Extended Backus-Naur Form (EBNF)
specification given in Ref. 50 and employed this metamodel as another PSM during
the MDD process. Figure 6 depicts this metamodel.

The whole discussion of the Nuinscript language is beyond the scope of this
paper and interested readers may refer to Ref. 50 for this discussion and Ref. 51 for
the complete script specification. However, a brief explanation on meta-entities of
the language and their relations is given below in order to provide understanding
of further model transformation and its implementation.

A Nuinscript script includes declaration of namespaces, knowledge stores and
plans for a NUIN Agent configuration. There exist Namespace Declarations in which
URIs for namespaces are given to provide interoperation with other semantic web
knowledge sources easier. A script can contain any number of collections of initial
data in Knowledgestore Declarations for the agent’s knowledge bases. Those col-
lections constitute the agent’s beliefs. A knowledge store may be associated with
one or more ontologies. Each Ontology Specification is identified by URI. Also, a
knowledge store may specify a set of initial sentences that are asserted into the
knowledge store before the agent starts. These sentences are denoted as Azioms.

High-level behavior of the NUIN agents is specified by the Plans that they
can carry out. Plans are named by Identifiers. Identifiers are unique within the
scope of a single agent. Each Plan contains Plan Elements which can be a Trigger

Model Driven Development of Semantic Web Enabled Multi-Agent Systems 283

NUIN Agent el --Achieve
uses 0..*
1 1] believes
Plan Add Goal
Namespace "
Declaration | O 1
contains 1
0..% cohitaing Identifier
Ontology
Specification
— Plan Step <}
Invoke
0¥ Service
Axiom Send Message
composes
Drop Goal
| Trigger Post Condition

Fig. 6. The metamodel of the Nuinscript agent scripting language.

(a pattern over events that the agent may perceive), a Post Condition (a logical
sentence denoting the condition that is stated to be achieved by the plan) and a
Body. Body of an agent plan is composed of Plan Steps which represent actions. An
agent’s intention is represented with a series of actions that the agent will perform
or a logical goal that it is attempting to achieve or a mixture of them.’’ Some
platform dependent and predefined plan step extensions such as Add Goal, Send
Message and Invoke Service are also included within the NUIN library and they
are denoted in the rightmost side of the metamodel figure.

We have to define entity mappings between the PIM and NUIN PSM in order
to write transformation rules and hence realize the model transformation for the
source models in the same manner with the SEAGENT transformations. Mappings
between metamodel elements of our PIM and the Nuinscript are listed in Table 2.

Agent entities in the PIM are mapped into NUIN Agents in the target meta-
model as expected. Ontology Specifications which are used as knowledge stores in
the NUIN platforms correspond to the Ontology meta-entities of the PIM. Concep-
tually, each Plan instance in the platform independent model is represented with
a NUIN Plan in the target model. However, in fact, transformation between these
elements is much more than a simple Plan-to-Plan mapping. For each PIM Plan,
we have to create corresponding NUIN Plan instance and its Identifier and a Body
as a container for the plan steps. Hence, the transformation for the Plan elements

284 @. Kardas et al.

Table 2. Entity mappings between the PIM and the Nuinscript.

PIM Entity Nuinscript Entity Explanation
Semantic Web Agent (SWA), NUIN Agent NUIN Agent in the Nuinscript
Semantic Service Matchmaker metamodel corresponds to
Agent (SSMA) SWA and SSMA in the PIM.
Ontology, Role Ontology, Ontology Specification Organizational, role or any
Service Ontology, other ontology in the
Organization Ontology metamodel are represented as

ontological knowledge store
declarations in the NUIN

platform.
Plan, Semantic Service Finder Plan Identifier Body Agent plans pertaining to
Plan, Semantic Service semantic service interaction
Executor Plan, Semantic can be implemented as NUIN
Service Register Plan, Plans and their identifiers. For

each plan, a Body element is
created in order to provide a
container for plan steps.

Behavior Plan Step Agent behaviors defined in the
PIM can be implemented as
Plan Step instances in the
NUIN Platform.

includes a mapping between the Plan meta-entity of the PIM and Plan, Identifier
and Body elements of the Nuinscript metamodel. Agent Behaviors defined in the
PIM are mapped into the Plan Step entities of the NUIN metamodel.

The platform specific model of our tourism MAS for the NUIN framework is
obtained after the execution of the whole transformation process between the PIM
and the Nuinscript PSM. This output (target) model is given (in Fig. 9) and dis-
cussed at the end of Sec. 6.2 of this paper.

Model transformation for the NUIN platform differs from the SEAGENT trans-
formation in two major viewpoints: Completeness and Complexity of the transfor-
mations. Model transformations from PIM to SEAGENT PSM are more complete
than the NUIN PSM. We can provide appropriate (or nearly exact) counterparts of
the most of the metamodel entities and their associations in the SEAGENT PSM.
Hence, in most cases, we can achieve the realization of the designed model defined in
the platform independent layer by using the SEAGENT environment. However, we
need to provide new entity definitions and Nuninscript entity extensions to complete
the realization of the same model in the NUIN environment especially when we con-
sider semantic web service structures. Semantic web support of the NUIN remains
only in agent configuration and knowledge store declaration. In order to provide real
implementation of the agent — semantic web service interactions, we defined exter-
nal software constructs for the NUIN (both in agent plans and semantic web service
descriptions) which are not currently included in the Nuinscript metamodel.

On the other hand, model transformation for the NUIN is more complicated
and difficult to implement than SEAGENT transformations. Defined rules for the

Model Driven Development of Semantic Web Enabled Multi-Agent Systems 285

SEAGENT PSM transformation mostly include attribute settings for the target
entities and mapping of source entities into those target entities after recognition
of related model instances at the source pattern. However model transformation
for NUIN environment requires more than just entity mappings between our PIM
and metamodel of the Nuinscript. As they are discussed at the following section,
rules written for NUIN transformations include various dynamic model element
creations, complex Object Constraint Language (OCL) queries®® for detection of
source elements on the pattern and selection of derived instances according to the
relations on the target environment in addition to n-to-n entity mappings. Those
differences in model transformations for NUIN and SEAGENT PSMs are naturally
expected because SEAGENT platform and our PIM are compatible due to their
abstractions, design mechanisms and environments that they model.

6. Implementation of the Model Transformations Using ATL

We implemented the whole model transformation processes (both for SEAGENT
and NUIN PSMs) discussed in this study by using ATLAS INRIA & LINA research
group’s Atlas Transformation Language (ATL). ATL?? is a widely accepted model
transformation language, specified as both a metamodel and a textual concrete
syntax. It is defined to perform general transformations within the MDA framework.
It also provides a development environment as a plugin in Eclipse Open Source
Development Platform.?® These advantages are the main reasons of choosing ATL
as our implementation language. The following subsections provide an overview
about our transformation implementation in ATL and discuss the prepared model
transformation rules for each PSM.

6.1. Overview of the implementation in ATL
The structure of an ATLP transformation is composed of the following elements®*:

e a header section that defines some attributes that are relative to the transforma-
tion

e an optional import section that enables to import some existing ATL libraries

e a set of helpers that can be viewed as an ATL equivalent to Java methods

e a set of rules that defines how target models are generated from source models

ATL helpers can be viewed as the ATL equivalent to Java methods. They make
it possible to define factorized ATL code that can be called from different points of
an ATL transformation.

PThere are two versions of ATL compiler in use now: ATL 2004 and ATL 2006. ATL 2004 allows
only one pattern element in the query part of rules. Therefore, we can only define one-to-one
and one-to-many transformations in a single rule. ATL 2006 allows multiple source elements.
We intentionally used ATL 2004 because it had more detailed documentation and more stable
execution environment at the time of this study. We use ATL to refer ATL 2004 throughout this

paper.

286 G. Kardas et al.

The transformation rule in ATL has the “t0” section which allows only one
element to query the model elements in the source part and the “from” section for
the target part which allows multiple elements. Since ATL does not have a direct
support for in-place model updates, it only considers create operations. Detailed
information about these language features can be found in Refs. 20 and 54.

Referring back to the model transformation process depicted in Fig. 1, we use
the MOF variant called Ecore® as the metametamodel (MMM) of all metamodels
(SMM, TMM and TgMM) within the implementations. Our transformation meta-
model (TMM) is the ATL and source metamodel (SMM) is the platform independent
MAS metamodel discussed in Sec. 4. Our source model (sm) is the platform indepen-
dent model of the tourism MAS pictured in Fig. 4. When we apply transformations
(tm) into our source model, we aim to obtain the platform specific target models
(tgm) of our tourism MAS in the SEAGENT and the NUIN frameworks which con-
form to the target metamodels (TgMMs) given in Figs. 5 and 6 respectively.

In order to use ATL engine, we need to prepare Eclipse Modeling Framework
(EMF) encodings -ecore files- of both source and target metamodels. EMF pro-
vides its own file format (.ecore) for model and metamodel encoding. However
manual edition of Ecore metamodels is particularly difficult with EMF. To make
this common kind of editions easier, the ATL Development Tools (ADT) include
a simple textual notation dedicated to metamodel edition: the Kernel MetaMeta-
Model (KM3).5¢ This textual notation facilitates the edition of metamodels. Once
edited, KM3 metamodels can be injected into the Ecore format using the ADT inte-
grated injectors. More information about KM3 and Ecore injection can be found
in Refs. 20 and 56. Hence, we first prepare the KM3 representations of the source
metamodel and the target metamodels and then inject them into the Ecore format.
The maximized editor window in Fig. 7 portrays the visual representation of our
source metamodel (PIM) in the ATL environment after the source KM3 file has
been injected into Ecore format.

UML superstructures used in our PIM are not used directly in model transforma-
tions. However they should exist as fundamental structures in Ecore representation
of our PIM since PIM entities extend these structures. Therefore UML superstruc-
ture entities extended by our entities are also represented in KM3 notation of the
PIM and when we inject this KM3 model into Ecore, we automatically achieve
Ecore counterparts of these UML elements.

After both the source and the target metamodels are prepared for the trans-
formation, heuristic rules for the transformation should be written in the transfor-
mation language (herein ATL) according to the entity mappings defined between
source and target metamodels. Each ATL rule for the transformation defines a
source model element in its source part and has the full definition of constraints
to query the whole source pattern in the model. Then we have to prepare source
model also in Ecore format for the transformation process. ATL engine applies the
written rules on this source model and produces the target model conforming to
each PSM again in Ecore format.

287

Model Driven Development of Semantic Web Enabled Multi-Agent Systems

"JuaUISeIj [9POWRISW PIje[aI Y[} JO UOIIRIUasaIdel 91009 [BNIX)) SMOYS MOPUIM JYSLI I9MO[S} S[IYM JBULIOJ G Ul
[epouwrejau 92IN0S dY} JO JUWFRIJ ® SMOUS mopurm JuSH1 roddn oy, "JuewWUOIIAUS Ty 9} Ul [9POUIRIDUI 92IN0S dY} Jo uorjejuasaidor renstp L "S1q

__\L UUIPUINIOAY) Uapaiioan = 4

- e 558204 ¢ sse004d 3, @)

_ ki | (¥] aleyayu] ¢ sl L o

<BIITITESBIIA> | acsepammiagqa/woiiueuias : sueisufpaiyssep X0 @

</, AqPa1340081P/20RIAUT/ 0/ =33 1e0ddpa ,,3081333uT/0/,=2dAL3 ,T,,=PmOgIan0T Bum : aweu @

,38TRJ,=PaI13pI0 ,T3A00STP,,=3MBU ,,30U3TITIYT:37003,,=adA1 : TEX £3INIBIYTRANIINIAGI> SR b #
</, AgPa30BI33UT/AUahY 13 HEMYOI R0 TATAGOTAURTAS /0 /=33 120ddpa ,mn_mou...32%%.?2@%%A.B_tmmn_mz_u_u_._msom e
= LAURRYI3NEMOIR A0 TATASITAWRNAS/ 0/, =2dALa ,,T,,=PunogaanoT —— nmou_._BEHnoN._z_._Em_Esm n..mu_.:om g M
,35TBJ,,=Pa13pI0 ,308T3JUT,,=3WBU ,,30U3TITIYT:32003,,=3dA3 1 16X nmunuuuﬁw”uu“uumuv AN P cmaﬁm_m&B_zmmu_ucm__._om - M
< UBT4/0/ =sadiladnga | IAIBGIL T
LUBTJI3PUT{30TATIZOTAURTAG,, =3MBU ,S58T)F1371003,,=adk] 118X SI3TITESRTIA> UBld <- URONIBX38INB5INURSS [-3

5 sonaiety ﬂ aepiaqu] ¢ aa0xsp L &

UaBIPRWYIIREINIASIIURWAS | 120433 L,
_ uBld)

[

_ﬂ | - _ i Ueld <- UB|diapuidaaiaiasinuewss 5. (=

Z‘ {q0m739UT 3033Ts0ddo URTJI3PUTIFOTATICITAURTAG | AQPa10BIaquT 30UaTaial SSB[)DZWNpAepuels <- ueld (@

} IUaHYqapITIUBNIG SPUIIX IUANYIIHBMYOIBHAOTATISITAURTAG SSRTD ajoyRNIIRYPAY <- AoyiorepaAboeu0 [#

{ 2joy[Rn}IagY <- 2joyAasibay m #

{730008TP J023Ts0ddo WRTJISPUTIOTATISOTIUEMSS | AgPaIaA0dSTp 20U3I3Ia1 2|0y <- 2j0yjRInyaYY m &

tasT1373ape J0a3te0ddo URT41318TAaYR0TATAGOTAURTRE (AQPaSTIT3APE A0UaTATaT oy <- goyuewoq @

{2083723uT 3I023Tsoddo 30TAIIGHINITIUEMAS :13UN0 IJUITITAT Jaiysse|y8j0juaby WSOy <- 80y @

{hutiag :ameu 3INqrIdIe ainjeagpeiaiieyag” 02 wNpAepuUelS <- Janeyag B -&

} 20®JA3UI SSRTO abessapl [

{ uoneawnwwo) [

f3aqnoaxa jpaatsoddo IotaRyag :[y-p] Agpainoaxa 20ua13jad UEBYGB ARG <- BB B UPIE A BSIUEWES]

) (A1dde zpaatsoddo quafiyqapotawenas :[y-0] Agpatrdde aouazajaz OIS EDY <- UOE2UEBIOEMINLELES m @
i.ﬂ fAuraag: BT ANALINE apoyhnsibay | Agpasiuaspe &

} £6BT) 0ZTHAPIBPURAS SPUIIXI URT{ £5BTD apy: ded &

{ il
AgpaT2a005TP 3033TS0ddo 2083139UT ¢ T2A0DSTP 30UATaIaT ueid : Adde 3-8
¢Agpa1oeaaqut IpaaTsoddo USHYISNEMYIIRHAITATACOTIURTAG ¢ 10BIAIUT 30UATATAT m:_.smhmemc &8
) } UBTd SPUIIXI UBTJIIPUTIAITATIZOTAURTAL SEEBTD By WSY ()
L : Juaby™ WSOy <- uabyqaanuewss [=
0= 5 SuBy'juaby _u by @
¥ | io3e ey oK INFDYISZeByfedinosaiWioer (# =

__ [N ,fv\aw m._aa.ucmg m..

288 (. Kardas et al.

Due to space limitations, it is not feasible to show whole KM3 representations
and ATL rule definitions of our implementation. However, to give some flavor of
the implementation in here, we describe transformation of the “Semantic Service
Finder Plan” source instance into their corresponding entities in the SEAGENT
and the NUIN frameworks. Again in Fig. 7, at the upper right window, the part
of the source KM3 file in which “Semantic Service Finder Plan” is represented
with its associations for “Interface” and “Semantic Service Matchmaker Agent”
entities. In its Java-like syntax, KM3 representations provide the definition of every
source metamodel entity and its relationships with other entities. Using ADTs
injection feature we prepare Ecore format of the above given KM3 representation
automatically. The lower right window in Fig. 7 shows the definition of “Semantic
Service Finder Plan” meta-entity again but this time in Ecore format.

The source model should also be given in Ecore format as the input for the
transformation processes. In our case study, we have to provide Ecore representation
of the tourism MAS model conforming to the source metamodel (PIM). Considering
our plan transformation, this model includes the following model instance in which
the Semantic Service Finder Plan called “Hotel Client’s Service Discovery Plan” is
defined with its associations to other model elements. Numbers refer to the exact
order of the model instances in the full source model Ecore specification. References

to the other instances are omitted and specified with “...”.

<xmi:XMI xmi:version="2.0" xmlns:xmi=http://www.omg.org/XMI xmlns="Agent">
<SemanticServiceFinderPlan name="Hotel Client’s Service Discovery Plan"
appliedBy="{\#}/0" executedBy="{\#}/10" interact="{\#}/1" discover="{\#}/7"/>

<SemanticWebAgent name="Hotel Client Agent" apply="{\#}/4 ..." play="..."/>

<Behavior name="Query the Service Registry" includedBy="..."
execute="{\#}/4" knowRoleOntology="..."/>

<SemanticServiceMatchmakerAgent name="Matchmaker Agent" apply="..."
play="..." interactedBy="{\#}/4"/>

<Interface name="Reservation Service Interface" owner="..."
advertisedBy="..." discoveredBy="{\#}/4"/>

</xmi:XMI>

6.2. Rules for the model transformation in ATL

According to the entity mappings, heuristic rules for the transformation should
be given in ATL as mentioned in Sec. 6.1. For instance, we write two
ATL rules called SemanticServiceFinderPlan2DiscoverCandidateService and
SemanticServiceFinderPlan2Plan in order to transform Semantic Service Finder
Plan instances in source models into their platform specific counterparts in
SEAGENT and NUIN frameworks respectively. The Semantic Service Finder Plan
class in the source part of those rules needs the full constraint definition of the
source pattern to match in the model because the constraint part requires con-
straints of other source pattern elements related to the Semantic Service Finder
Plan class to bind the appropriate model element. The helper rules are required
in the constraint part to define the relationships between the pattern elements.

Model Driven Development of Semantic Web Enabled Multi-Agent Systems 289

Following is the SemanticServiceFinderPlan2DiscoverCandidateService ATL
rule:

1 rule SemanticServiceFinderPlan2DiscoverCandidateService {

2 from fndpln: Agent!SemanticServiceFinderPlan (

3 fndpln.partofPatternforFinderPlan)

4 to plnf: SEAGENT!DiscoverCandidateService (

5 name <- fndpln.name,

6 containTask <- Sequence{Agent!Behavior->allInstances()->
asSequence () ->select (bhv|bhv.execute->exists(pln|pln=fndpln))},

7 interact <- Sequence {Agent!SemanticServiceMatchmakerAgent->
allInstances()->asSequence()},
8 find <- Sequence {Agent!Interface->alllnstances()->asSequence()}
)
9}

In the above rule, the transformation of the SemanticServiceFinder
Plan entity into its corresponding target model entity (DiscoverCandidateService
class of the SEAGENT) is realized. We need to call the helper rule called partof
PatternforFinderPlan for the relations of the SemanticServiceFinderPlan
entity with its attributes. These helpers are the realization of the constraints to
query the models. The constraints in ATL are specified as OCL constraints.®?
Same helper rules and constraint repetitions may be required both for other rules in
the same target model transformation or other PSM transformations (e.g. NUIN).
Hence this kind of rule decomposition makes the definitions easier. The helper
partofPatternforFinderPlan called in line 3 of the above rule is given below:

1 helper context Agent!SemanticServiceFinderPlan def:
2 partofPatternforFinderPlan : Boolean =

3 if self.appliedBy->forAll(agnt]|
not agnt.oclIsTypeOf (Agent!SemanticServiceMatchmakerAgent)

4 and not agnt.play.oclIsTypeOf (Agent!RegistryRole))
5 and self.interact.play.oclIsTypeOf (Agent!RegistryRole)
6 and self.interact.apply—>

select(plp.oclIsTypeOf (Agent!SemanticServiceRegisterPlan))->
forAll(plp.advertise->exists(intfc|intfc.discoveredBy=self))

7 and self.discover.advertisedBy.appliedBy->
exists(sma|sma.interactedBy=self)

8 then true

9 else false

10 endif;

The helpers correspond to the constraint part of the related rules. There are
two types of helper in our transformations as discussed in Ref. 42. The first type
helpers like partofPatternforFinderPlan are used to check if the model element
is the part of the pattern or not. The second type helpers are used to select the
elements for creating relations between target elements. As a first type helper,
partofPatternforFinderPlan is used to select the Semantic Service Finder Plan
instances in pattern matching. The conditions between line 3 and line 7 check the
relations of Plan instances with other instances like Semantic Service Matchmaker
Agent, Registry Role and Interface. They determine if the matched plan is a part
of the pattern or not. If the conditions in the helper are satisfied by the instance,
the helper returns the boolean value “true”.

290 @. Kardas et al.

During the transformation process, the ATL engine applies the above rule
(SemanticServiceFinderPlan2DiscoverCandidateService) in order to trans-
form “Hotel Client’s Service Discovery Plan” into a SEAGENT DiscoverCandi-
dateService instance. The Ecore representation of this obtained target instance is
given below. Reference numbers to the other generated model instances are omitted
again and denoted with “...”:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns="SEAGENT">
<DiscoverCandidateService name="Hotel Client’s Service Discovery Plan"
interact="..." find="..." performedBy="...">
<containTask xsi:type="Action" name="Query the Service Registry"/>
</DiscoverCandidateService>
</xmi:XMI>

On the other hand, following rule called SemanticServiceFinderPlan2Plan is
written for the transformation of Semantic Service Finder Plan instances into NUIN
Plan entities for the NUIN PSM. Above mentioned partofPatternforFinderPlan
helper is again used in here (line 3) to provide selection of Semantic Service Finder
Plan instances in the source model. However, transformation rule now becomes
complicated when we compare it with the one written for the SEAGENT transfor-
mation. As discussed in Sec. 5.2, Plan entities in our PIM are mapped onto “Plan”,
“Identifier” and “Body” entities in the Nuinscript metamodel. Therefore this rule
includes one source part but three target parts. For each finder plan, a NUIN Plan
instance and its Identifier are created first and transformation of other model asso-
ciations is realized (lines between 5 and 11). Then a NUIN Body is created for the
plan (lines between 12 and 16) in order to provide a container for the related plan
steps which are counterparts of the behaviors of this plan in the source model.

rule SemanticServiceFinderPlan2Plan {
from fndpln: Agent!SemanticServiceFinderPlan (
fndpln.partofPatternforFinderPlan)

plnf: NUIN!Plan (
containedBy <- Agent!SemanticWebAgent->allInstances()->
asSequence () ->select (agt | agt.apply->
exists(pln|pln=fndpln))->first()

1
2
3
4 to
5
6

),
identifier: NUIN!Identifier (
id <- fndpln.name,
10 name <- Agent!SemanticServiceFinderPlan->allInstances()->
asSequence () ->select (pln|pln=fndpln)->first ()

© 00 N

11),

12 plnfBody: NUIN!Body (

13 name <- ‘Finder Plan Body’,

14 containedBy <- plnf,

15 compose <- Sequence{Agent!Behavior->allInstances()->
asSequence () ->select (bhv|bhv.execute->

exists(pln|pln=fndpln))}
16)

17 }

Model Driven Development of Semantic Web Enabled Multi-Agent Systems 291

When the ATL engine applies the above rule, the target instance of the “Hotel
Client’s Service Discovery Plan” in the NUIN framework is obtained. Notice that
the related plan and its required plan step instance are represented as inner ele-
ments within the definition of the target NUIN Agent instance with <contain>
and <compose> tags respectively. The identifier of the plan is represented with a
standalone element. Such kind of Ecore element representation is also correct and it
is just the preference of the ATL engine for the automatic generation of the output
model:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="NUIN">
<NUINAgent name="Hotel Client Agent" believe="...">
<contain namedBy="/4">
<containPlanElement xsi:type="Body" name="Finder Plan Body">
<compose name="Query the Service Registry"/>
</containPlanElement>
</contain>
</NUINAgent>
<Identifier id="Hotel Client’s Service Discovery Plan"
name="/0/Qcontain.1"/>
</xmi:XMI>

In our complete implementations, we first provided KM3 representations of all
metamodels: our PIM for Semantic Web enabled MASs and SEAGENT and Nuin-
script metamodels as PSMs. We also supplied the model of our tourism MAS in
Ecore format as the transformation input. Then we prepared model transforma-
tion rules written in ATL. Finally, after execution of the whole process in ATL
environment, we obtained the platform specific models of the tourism MAS.

The model in Fig. 8 describes components and their relations of our
tourism MAS implemented in the SEAGENT environment. The model includes
the Hotel Client_Agent that discovers hotel reservation services with seman-
tic capability interfaces according to its Hotel Client _Service_ Discovery Plan.
It communicates with the Matchmaker Agent of the system during execu-
tion of this plan. The register plan of the matchmaker agent (Matchmaker_
Agent Service Registry Plan) is represented as a SEAGENT behavior instance
in the output model. Discovery plan extends DiscoverCandidateService behav-
ior. This behavior is the corresponding entity for the “Semantic Service Finder
Plan” meta-entity given in our PIM. Similarly, agent’s service execution plan
(Hotel Client _Service_Invocation Plan) is an EnactService behavior and this
behavior is the counterpart of our PIM’s “Semantic Service Executor Plan”
meta-entity. Agent behaviors defined in the source model are now represented as
SEAGENT plan actions in the target model. Semantic web services are OWL-S ser-
vices in SEAGENT. Hence, our reservation service becomes an OWL_S_Service with
its profile, process and grounding descriptions after the transformation as expected.

G. Kardas et al.

292

‘uoryeuriojsuel) INSJ LNHOVHS 01 NI 92U} I03Je paureiqo QYN WSLINO) o) Jo [9pou joSIe) o1 T,

'8 81

dIAIRS a9)sIbay
<<UOTIIV>>

Hse LUTLIUOD

ue|d—Ansibay 9o1A19S Juaby T aaxewuplen

<<InoTARYIE>>

2]3pI3suUomMIp

IAIRS 2sodwio) uoneAIaSaY
<<IITATIS S TMO>>

20vJI23UT

0BJI2UI IDIAIDS UORAIDSIY

28TIT34pPR

Juaby IaxewPIR

<<3TT302d § TMO>>

ssanoad

azoddng _

BuIpuUNOJID T IDIAISS T LONBAISSIY
<<hUTpuWOIn” & TMO>>

ax0AUT

mmOQOLH_|OU_>L0m|_._°_um>._0w0~u_
<<8830014 § TMO>>

|

2INI3X3

<<uahy>>

pury
1oeI2]UT

<<30TATIZIRUT>>

ue|d— UoOREdOAUT SDIAIRS IUSID T |910H

ue|d—AI9A02SIQ 9DIAIRS T IURID T [210H
<<30TATIGIALPTPUR)IIA0ISTA>>

i j

HSeLUTLIU0D

DIAIDS T 0AUT
<<UoTIIVN>>

-

HSRLUTLIUOD

wrogasd wrogasd

JuUsbyuRID T |910H
<<uahy>>

Ansibay 2o1A195 9y A1and
<<UOTIDY>>

293

Model Driven Development of Semantic Web Enabled Multi-Agent Systems

‘uorpeurIojsuely NSJ jduosumy 01 NI Y} I03je paureiqo Sy N WSLINOY 1) jo [opowt 1981e) oy], ‘6 "SI

IAI9S T 491sIb9Y
2goduon

Apog—ue|d 493s1b9y

<<dzagweTd>> <<Epog>>
ue|d—Ansibay 921AI98 JUIbY 19xewULPIe N
<<TITITIUPI>> QUM TFUR TJUTLIUCD
Agpamen
Juaby a9xewuyDye
<ueTd>> | UrRIUe? <<AUSHYNIAN>>
— |MO*SIDIAIRS
QIAIBS 20AUT <UOTILITITHRASABOTOAUG S>> ARhoTojugureiucd
<<dzagueTd>>
BAITT
ssoduod

UR|d UOIEIOAUT 3DIAISS IURID T |210H

<<UOTIRTLTIZCT0ISIHP TAOW>>

<<AITITIUIPIO>>
ApogTue|d103n0ax3
<<Apog>> AHOTO3UGUTRIUDD
Ansibaoy 201495 9oy~ Adand Agpameu
<<dzagueTd>>

UM T UL TJUTRIUOD
agodmon

|MO*'SYINUONBAIDSIY|210H
<<uoT3enTITazdgihoTolun>>

ZhoToaugureius

|MO*3j0HIURbY

<cuoTiestIToadgihoTorug>>

ZBoTo3ugurRIuod

>_UOM|:N_n_|._O—u:_u_
AAm—u_omvv canTd>> ABOTOUGUTRIWOD
AUSWSTIUR TJUTLIUOD _ _
uTeauod _ _ 243TT2q
Cm_n_|>._0>Oom_D|OU_>._OM|u:O__Ul_m.uo_u_ ur_w_w<|u=0__0|_®uOI
<CAFTITIRI>> <URTE>> Hpeames <ausBYNIM>

Agpameu

<<U0TIRIRTIZI2T01536P3 TAOW>>

294 @. Kardas et al.

The NUIN specific model of our tourism MAS, that is obtained after appli-
cation of the whole model transformation process, is given in Fig. 9. This time
our platform agents are represented with NUIN Agent instances and their plans
as NUIN Plans. For each BDI agent, a KnowledgestoreDeclaration instance is
created in order to store the beliefs of agents as OntologySpecifications. Plan
instances of the source model are given with their identifiers and bodies according
to the Nuinscript specifications. Behaviors defined in the source model are now
given as PlanStep instances for the related agent plans (e.g. Invoke Service for
the Hotel Client_Service Invocation Plan).

In fact, design and preparation of the source model conforming to our PIM is the
only thing that a system developer needs to do to achieve working counterparts of
the model in various PSMs according to our proposed MDD process. For example,
considering the SEAGENT and NUIN environments, there is no need to rewrite
metamodel definitions and abovementioned ATL rules in case of different system
designs. Since metamodels and transformation rules are defined at the time of our
MDD process is defined, developers only deal with the design of their MAS and
provide that system’s Ecore or XMI representation as an input to the introduced
model transformation process.

7. Beyond the Model to Model Transformation: Code Generation
for Semantic Web Enabled M ASs

Although model to model transformation facilitates development of MASs by pro-
viding a higher abstraction level, it is not sufficient for real life implementations
of such systems. System designers should inevitably write software codes for the
systems. Proposed software development methodologies or development processes
should provide a step in order to assist developers for code generation. Hence, in
this section, the last step of our MDD process is discussed: Code generation from
PSMs.

An Eclipse plugin for the generation of HTN-based agent plans was developed
for the SEAGENT framework. The developed HTN€¢ editor provides a Graphical
User Interface (GUI) for the system developers to assist generation of software
codes using the SEAGENT library. MAS developers prepare agent plan models in
this GUI environment and the tool generates template codes for the planners of the
agents. It is also possible to test designed plan model and execute generated codes
inside a real SEAGENT platform via this Eclipse plugin.

Above introduced editor is based on the Eclipse Graphical Editing Framework
(GEF). GEF allows developers to create a rich graphical editor from an existing
application model.>” The Model, EditParts and Figures are the three aspects of
the GEF. These aspects are mapped to the widely-known Model-View-Controller

©This Eclipse plugin and also SEAGENT MAS development environment can be downloaded from
the SEAGENT Project website at: http://seagent.ege.edu.tr.

295

Model Driven Development of Semantic Web Enabled Multi-Agent Systems

S{Iomewrely [NHOVHS 92U} uo Sursjiom sjusfe 1oy uorjerauss apoo ueld sepraoad yorym I1031ps mouue[d NI H 2UL ‘0T “Sii

A A A A a

Yaiw adejday
Y asedwod
wea|

sy bngag

abessaly

S8IMBSTE MO sjendoldde ©
alyoid~ 5T IMO”pajsanbal
Ansifioy 3219S ayy Asanp)

BIMBSTS T IMO PapB|as £
aluoid- S IMOPalsanbal

U..?_bu hnoumw & 3Eq c_.U:_&
X+ e | siosuo> =) | Arousodan s () | semiedosd [52 6074043 (¢ | uonesepaq G | s0pene @) | swaiqosd T3]
O+YSHIY awono ppy £)
dHNSHIY uoisihoad PPY () i
Insai uonedoaul)
Opa <5 BUIpuUNoIO TS TIMO T PalIaIas o. BWBS S MO PeRBIes ©)
aA0l OPUN (1> | $S8301d7SIMOPBRBIES $aIMag "5 MO aleudoidde (B - =0--=
Inoweyag 35a (B [BONRS SMOMINGY 1 . 8OWES pORSEY -
uoipy 3521
x 5358)
noneyeq () ynsai"uoneaoau £)
oy () BUIPUN0IOTS MO PalIBIas)
¥ sysel < . mmwﬁu_n_lwln_@oﬁwmﬁ_mm (€] uejd”A13A09S1Q”221IaS) [210H ()
S — uejd UONRI0AUI 30IAIRS RN [930H ()
S sapiomea
By
T PR L [R50 -
aanbeyy T a|oid— S MO pajsanbal
= B UE)
a0 paps ysel1 wand jeloH 0
4 —— 8njed —
&
v (LE =

52 WY TIPPOWUN & |

296 @. Kardas et al.

(MVC) architecture. GEF Model maps to “Model” of MVC and definition of model
is left to user. GEF EditParts map to “Controller” of MVC and GEF figures map to
“View” aspect of MVC. When we consider the HTN editor for the SEAGENT mod-
els, the GEF Model is composed of the SEAGENT planner meta-entities (Behavior,
Action, Provision, Outcome, etc.). GEF EditParts provides the communication
between model and figures. When a modification exists in the model, this mod-
ification is reflected to the corresponding figure element(s) via the EditParts or
vice versa.

The editor employs the Abstract Syntax Tree (AST) and related parser in the
Eclipse Java Development Tools (JDT) for automatic generation of HTN Plan
codes. For example, there exists a component of the editor called ActionCodeGen
which is the source code generator for HTN Action classes. It provides code gen-
eration as a compilation unit from a specified action code model and supports for
writing generated code to a file or an output stream.

The screenshot given in Fig. 10 depicts generation of agent plan codes for our
tourism MAS by using the editor. After visualization of the platform specific model
for the Hotel Client Agent’s plans, SEAGENT specific codes for each Action and
Behavior components are prepared using the proper menus. It is also possible to
modify Plan components (e.g. addition of new provisions and outcomes) using the
editor palette.

In our example, we want to generate SEAGENT code for an Action (e.g.
Invoke_Service in here). After setting specific properties of the generation process
(e.g. source folder for the generated code file and name of the package) via a dia-
logue (shown in left side of Fig. 11), the code generator parses the model element,
determines outcome, provision and any other associations and finally generates the
template code for the related Action (shown in the right side of Fig. 11). The devel-
oper completes the code (e.g. by filling the body of the generated Action methods).
Likewise, code generation of all actions are completed. According to the hierarchy,
the next step is to generate codes of the agent behaviors which compose actions.
Codes for actions of a behavior should be created first in order to generate the
behavior codes, otherwise the editor warns the developer. After setting system spe-
cific properties again, the behavior codes are generated by taking into consideration
provision — outcome relations of its sub-tasks (actions). Code generation for the
upper levels of the agent plan is realized in the same manner.

The developer may also test execution of the generated plan in a SEAGENT
MAS platform which can be initialized by using the SEAGENT Eclipse plugin.

Considering the NUIN framework, we provided a model to text transformation
in order to generate Nuinscripts from the platform specific MAS models conforming
to NUIN PSM. We implemented the related transformation by using the well-known
MOF model to text transformation language called MOFScript.?® MOFScript is a
language specifically designed for the transformation of models into text files and it
deals directly with metamodel descriptions (Ecore files) as input. Also, it provides
a tool as an Eclipse plugin®® in which MOFScript transformations can be written

297

Model Driven Development of Semantic Web Enabled Multi-Agent Systems

= = ﬂl S VG&&F‘
)/ m%m. Aef Q“ gu_nnn_s._u._m; L] N

"9DIATIOG™ONOAU] PI[[BD SSB[D UOIPRY [NHOVIS o) 10j uorpersusas apo) T “Siq
TiEp | esupyews | e | ol i
(<] | a 3| [
- RQ wbng | tessa
A XMW@ [Ty | [l | @
0 o | oos00> () | ooouas (O | sonuedoid [57 60003 (5 | onempaq)| pRaRe | wargoad)
A B /»
SaTNS93 UOTIVIOAUT IWODINO I0F AUSMMOD 23ITI8 0AOL = @
an/ = ALY
BUTPUNOIS S A0 PIIFITIE 29900 Ijywarad
/= H o _
‘BUIPUROIN § IR0 PIIVITIS IUOTSTAOIM JOF IUICMOD IITAM 04OL & @ o SRy
s/ = E oYU RUURd waleas abanpary | iSSEpaednd
18690014 § A0 PR3a23Ta38 2123(Go ajearad 7 , = x
7 . : R rw] peise])
*2832034 § A0 PIIDITIF UOTSTA0Id I0F IUNMIOD I3ATIA 0AOL = papegexd awipd &ttvo b L TORE
sa/ — | oﬁgf PO O
) UOTADY SPUIIXD IDTAIIS IYOAUI SSeTD nﬂ—.asa “ vq.‘koq\nww)
/s L -
202WIASTUTHPY T0YINLEH
*SOTAISG SNOAUI INOCE UMD IITIA 0G0 v (A gsmog [nnﬂ—m.\oowib, :0beipRd
/= B e — N P T S
a3 _ osmBIg _ IS RUURIIROYRI0H | 1IO0J 9205
INoTasy 'uay - asuuerd-jusbess b3 nps a1 jaoduy
{poyasyuoTINIaxy *uoTIvIouUE - IsuneTd - aushHeas aba ‘npas‘aa jaoduy. ! o 204 505 CAREOROD
0 uoesauan apog a24Nos BAB(LONIY NIH
M_ teuwerday - aba npac 11 abeyoed

-_)

| wiopeyd wedy

S 30 SRS sy 1B W1

| oo 9 52 TS

BPIV | ¢ -2BF -D-0-%:iF " .01

eﬁiggggﬁn&g%{xsﬂwnﬂﬁ

298 @. Kardas et al.

&) NuN.ecore | = 0l(Bzox\ =0

sformation NUIN PSM_2 NUINScript (im nuin:“http:///NUTN") ([a] |l mNuIN_PSM_2_|
main () {
//Find each NUIN agent in the model
nuin.objectsOfType (nuin.NUINAgent) ->forEach (agent) { \ \
; = |
; agent .createScript () =8 ‘1
) [a]
* Nuinscript for the agent: Hotel Client_ Agent |
//Generates script files for each NUIN age, * Script template generated at: 2/2/2008 21:36:33
nuin.NUINAgent::createScript() {
file (self.name+".ns")
TEERTRERRAES *a //declaration of namespace (s)
"\n* Nuinscript for the agent: '<+self.na) use ag for <urn:x-nuin-hotelreservation:agent:>.
A Script template generated at: '+dat
I\nFrsEssERRAARRASARERRARREAsAssasasssss| //declaration of starting fact(s)
axioms AgentRole.owl, HotelReservationMAS.owl
//Namespace declarations end.
‘\n\n//declaration of namespace(s)'
//Declare the default namespace 1% ‘
‘\nuse ag for <urn:x-nuin-hotelreservatij * The main entry point - triggered by the startup event
//Declare other namespace(s) if any =/ ‘
self. b { : nu plan ag:main 1
‘Ynuse '+namespace.name+' .’ trigger ‘ =
¥ on event| event:startup)
‘\n' do
println("Starting up ...")
//Agent's beliefs (knowledgestore) invoke ag:Hotel Client's_Service_Invocation_Plan():
'‘\n//declaration of starting fact(s)' invoke ag:Hotel Client's_Service_Discovery Plan():
self.believe->forEach(knowledgeStore: nu println{ "All done.”)
if {'knowledgeStore.containOntology.isl] end.
"\naxioms !
knowvledgeStore.containOntology->£orE. VA
if (knowledgeStore.containOntolos * Composed plans
else ontology.name+', ' */
;¥ plan ag:Hotel Client's_Service_Invocation Plan()
¥ do
if ('knowledgeStore.containiAxiom.isEmp Invoke_Service(); //related plan step definiton :es;
‘\naxioms contains' end. &
knowledgeStore.containAxion->forEach plan ag:Hotel Client's_Service_Discovery Plan()
‘\n'+axiom.name+' .’ do [v]
) sl [[2]
lglans] @)

Fig. 12. The MOFScript transformation for the generation of Nuinscripts from NUIN PSMs and
the template Nuinscript generated for the NUIN Agent called Hotel Client Agent.

and directly executed from the Eclipse environment. These advantages caused us to
prefer MOFScript as our implementation language for NUIN model to Nuinscript
code generations.

In Fig. 12, an excerpt from the prepared MOFScript transformation is given in
the background. This text transformation uses the same metamodel of the Nuin-
script in Ecore which is employed as one of the PSMs in our above discussed model
to model transformations. The transformation, in here, reads a MAS model con-
forming to the metamodel of the NUIN and creates Nuinscripts for each NUIN
Agent in the model. When the transformation is executed on a NUIN MAS model
(again given in Ecore), each NUIN Agent instance is determined and related script
files with “.ns” extensions are created.

Template scripts for each agent are generated in appropriate Nuinscript syntax
by taking into consideration agent’s namespace declarations, beliefs (given as knowl-
edgestores in the model) and intentions (given as NUIN Plans with composition of
Plan Steps in the model). A developer completes this generated template script
for the exact implementation. For instance, we executed the above MOFScript
transformation on the NUIN MAS model, which is the counterpart of our plat-
form independent tourism MAS, obtained after the model to model transformation

Model Driven Development of Semantic Web Enabled Multi-Agent Systems 299

previously discussed in Sec. 6. After the execution of the model to text transforma-
tion, we achieved the template Nuinscript file for each NUIN Agent in the model.
Again in Fig. 12, template Nuinscript generated for the Hotel Client Agent is listed.

8. Evaluation

Our MDA approach on Semantic Web enabled MAS development was used in a
commercial project in which the design and the implementation of a tourism system
based on the SEAGENT framework were realized. The project included adaptation
of an existing hotel reservation system into the Semantic Web environment. The
existing system was one of the products of a national software company called
ODEON.Y The company’s main business domain is hotel management systems.
The system had been previously based on the web service architecture and the
project aimed to provide both semantic interfaces of the web services in use and to
realize an online system in which software agents reserve hotel rooms on behalf of
their human users.

The objectives were the evaluation of the approach’s usability in a commercial
project and optimization of the development process if required according to the
user feedbacks. The developers used the metamodels and the model to model trans-
formation process discussed in this study during the design phase of the project.
Since code generation step was not included in our MDD process (and also sup-
porting software tool was not implemented) at the time of that system development
took place, it can be said that the process evaluation only considered generation of
the platform specific MAS model.

At first, the developers determined the domain-based meta-constructs which
could be considered as agents, roles, semantic services, etc. and associated those
constructs with the elements of our PIM. Afterwards they designed the ecore model
of the MAS conforming to the PIM. Finally, the target model of the system in the
SEAGENT environment was obtained by applying the transformation. The output
model was used both in the system modeling and further phases of the project.

The development team was composed of 5 software engineers with system devel-
opment experiences ranging from 1 to 6 years. Following is the feedback on the
application of our MDD process gained from the team. The feedback was obtained
from the conversations with the team members.

First of all, the developers in general found the MAS architecture and the related
metamodel especially helpful in the derivation of the real system’s components.
They also used a slightly different version of our PIM in documenting their software.
The metamodel was found as an interesting extension of FIPA’s ACSM with respect
to agent planning. Some of the developers claimed that the approach in question
justified the role of MDA in current software engineering practices and particularly
for AOSE. Finally, the developers agreed that applying the transformation and

dODEON Hotel Management Systems (http://www.myodeon.com).

300 G@G. Kardas et al.

generating the software model of the system as a result of the model transformation
were helpful in their agile code development style due to our MDA approach’s
support for clarification and determination of entity relationships between agent
and service structures.

However, some of the developers complained about the use of the ATL environ-
ment in model representation during model transformations. They found the source
model representation in Ecore a bit confusing and error prone. They expressed the
requirement of a tool in which the user can simply draw model elements and their
associations according to the PIM. After the model is pictured, the tool automat-
ically generates the codes for the Ecore representation of the model for the model
transformation process. They also suffered from the problems encountered during
the installation of the ATL plug-in. Although those complaints are directly related
to the ATL and its environment, we also included them in the evaluation discussed
here as one of the drawbacks of our approach. This is because model transformation
is vital in our process and current application of the transformation is realized by
the ADT within the process.

Furthermore some of the developers also suggested enrichment of the process
by introducing interaction/collaboration diagrams in addition to the Semantic Web
enabled MAS metamodel. Since the metamodel is both based on and extends the
UML 2.0 superstructure; these developers expressed that inclusion of the appro-
priate UML diagram usage into the process would also support the metamodel.
In fact, the developers agreed that the collaborations in question were already
described implicitly within the heuristic rules prepared for the model transforma-
tion and hence that exposed another benefit of our approach. However, they also
denoted that documenting of those relations explicitly within the corresponding
UML diagrams would also strengthen the design process.

The application of the proposed development process within the abovemen-
tioned project also provided us to evaluate the approach as its owners. We exam-
ined that a MDA-based MAS development extended the learning and process
adaptation curves for MAS developers. Like other MDD projects, adaptation of
the developers — who are naturally accustomed to code centric development —
into a model centric development also needed a great effort and took time in our
case. Although some of the developers were a bit familiar with the MDD, the rest
of them got newly acquainted to the metamodeling and model transformations.
Hence, persuasion and adaptation of those developers was a big challenge and a
change was required within the software development organization.

On the other hand, we experienced how the definition of reusable metamodels
and model transformations facilitate system development. The metamodel reusabil-
ity is particularly crucial. If the MAS metamodels are not designed in a reusable
manner, we need to reorganize those metamodels and possibly we have to redesign
the whole transformation process in every change of the application domain. This
causes a more time consuming and an expensive development process when we
compare it with the traditional code centric software development. Fortunately, our

Model Driven Development of Semantic Web Enabled Multi-Agent Systems 301

defined metamodel is designed by taking into account of a generic MAS architec-
ture and it does not depend on the application domain. Hence, choosing such an
architectural approach instead of the domain centric process definition provides
reusability of the model transformation in various system developments with slight
modifications. For instance, obtaining the platform specific model of a MAS work-
ing on the banking domain instead of the aforementioned tourism system, needs
changes only in the source model, not in our architecture centric metamodels and
the transformation process due to their domain independency.

9. Related Work

Recently, model driven approaches have been recognized and become one of the
major research topics in AOSE community. As briefly discussed below, some of the
studies intend to apply the whole MDD process for MAS development while some of
them only utilize either metamodels or model transformation as needed. Also some
studies focus on the conceptual MDA definitions and MDA-based MAS research
directions e.g. Refs. 60-62.

Depke et al.% first introduced an approach to agent-oriented modeling based on
UML notation and concepts of typed graph transformation systems. The theory of
graph transformation also provides the mathematical background to formalize their
study. Bauer and Odell discussed the use of UML 2.0 and MDA for agent-based
systems in Ref. 61. They also evaluated which aspects of a MAS could be considered
at the CIM and the PIM. The Cougaar MDA introduced in Ref. 62 provides a higher
application composition for agent systems by elevating the composition level from
individual components to domain level model specifications in order to generate
software artifacts.

Jayatilleke et al.3 described a conceptual framework of domain independent
component types that can be used to formulate and modify an agent system. They
provide a toolkit for their approach in Ref. 64 in order to make their approach
consistent with MDD and use agent models to generate executable codes.

Defining meta-models and model transformations for MDD of MASs seems to be
an emerging agent research track. Some of the studies also include interoperability
of agent systems and service-oriented architectures (SOA). For instance, Zinnikus,

et al.%®

proposed a new framework for rapid prototyping of SOAs. It contains a
modeling part concerned with applying MDD techniques, a flexible communication
platform for Web services and an autonomous agent part for negotiation and bro-
kering in SOAs. Their framework follows the MDA approach and defines a PIM for
SOA and PSM for BDI agents. Likewise in Ref. 66, the focus is on PIM to PSM
transformation development in which a PIM for SOAs and a PSM for agent tech-
nologies are presented. The transformation mechanism introduced in that study
has similarities with our transformation process in the way of defining metamodels,
granting mappings and implementing the transformation. However, they provide
a transformation from an agent-free SOA domain (PIM4SOA) to a MAS domain

302 @G. Kardas et al.

and deals with the interoperability between agents and web services. On the other
hand, we define a transformation between two domains that both include agents
as the first class entities and we support the interoperability between autonomous
agents and semantic web services.

The study defined in Ref. 67 applies the transformation pattern of MDA which
is previously depicted in Fig. 1. Perini and Susi®” use TEFKAT model transfor-
mation language!'® to implement the transformation process in automating conver-
sions from Tropos* structures to UML models. The Malaca UML Profile discussed
in Ref. 68 provides the stereotypes necessary to create Malaca models on UML
modeling tools. In their transformation pattern, Tropos design model and Malaca
model are considered as PIM and PSM respectively.

While the abovementioned studies cover metamodeling and model transforma-
tion for agent systems, some of the agent development methodology owners reor-
ganize their approaches according to the MDA. For example, in Ref. 13, Pavon
and his friends reformulate their agent-oriented methodology called INGENIAS in
terms of the MDD paradigm. This reformulation increases the relevance of the
model creation, definition and transformation in the context of MASs. A simi-
lar MAS methodology revision is discussed in Ref. 69. Ideas and standards from
MDA are adopted in refining the modeling process algorithm and building tools of
Tropos methodology? within this study. Likewise, the study presented in Ref. 70
aims to add a MDD phase to ADELFE methodology™* according to adaptive MAS
paradigm by considering two adaptation levels called functional and operational.
The functional level is application dependent and close to the decision process of
agents while operational level is related to elementary skills of agents.

Regarding all of the above studies, we can conclude that the current application
of the MDD on MAS development is in its preliminary phase. Neither a complete
MDD process nor a common MAS metamodel has been developed. On the other
hand, Semantic Web!! technology and its required constructs on MASs are not
supported within those studies as mentioned before. We believe this shortage in
question is crucial when development of future MASs is considered. Therefore pro-
viding a Semantic Web enabled MDD process for MAS development is the key
difference between our study and those previous studies.

On the other hand, the interactions between agents and semantic web services
should be considered during environment modeling. The study depicted in Ref. 41
is a good example to apply MDA techniques to semantic web service development.
Grgnmo et al.*' propose a UML profile for semantic web services that enables
the use of high-level graphical models as an integration platform for semantic
web services. This UML profile enables generating different platform dependent
semantic web service language documents like OWL-S?” and WSMO?® documents
from the PIM. As discussed in related sections of this paper, we utilize this UML
profile also in our PIM. Within the same perspective, Pahl™ extends the use of
web ontology languages in MDD frameworks by presenting a layered, ontology
transformation-based semantic modeling approach for software services. MDD is

Model Driven Development of Semantic Web Enabled Multi-Agent Systems 303

adapted to service architecture using ontology technology as the integrating tool.
Although those studies provide brilliant model driven approaches for semantic web
service development, they do not consider the development of a system which inte-
grates agents and semantic web services as directly supported in our work.

10. Conclusion and Future Work

The constructs and development steps for MDD of Semantic Web enabled MASs
are discussed in this study. We first define an architecture for Semantic Web enabled
MASSs and then provide a metamodel which consists of the first class meta-entities
derived from this architecture in order to model such MASs. We believe that the
metamodel in here helps to bridge the gap of modeling agent and Semantic Web
constructs in a single environment by defining entities of a Semantic Web enabled
MAS at first time.

The study herein also presents a whole model transformation process in which
source and target metamodels, entity mappings and implementation of the trans-
formations for two real MAS frameworks called SEAGENT'” and NUIN3 are all
included. The realization platform in here may differ. In that case we only need to
prepare metamodel of this new platform and utilize this metamodel as the PSM in
our MDD process. Model to text transformation step of our process is also discussed
by exemplifying Java code and Nuinscript generations for the SEAGENT and the
NUIN PSMs respectively.

Utilization of the process in a real commercial project shows the practical rele-
vance of our approach. Evaluation of the process within this context also helps us to
determine future work for our study. We aim to support the MAS metamodel with
related collaboration diagrams for the entities considering the interaction aspect
of the study. The first attempt will be the definition of the entity interactions by
employing the Agent UMLs (AUML) sequence, activity and collaboration diagrams
and statecharts. AUML" provides agent-based extensions for UMLs package, tem-
plate, sequence diagrams, activity diagrams and class diagrams. As mentioned in
the evaluation section, the appropriate inclusion of such diagrams seems easy since
our metamodel is already based on and extends UML 2.0 superstructure. However,
AUML does not include Semantic Web components and probably we will need to
bring new extensions for the AUMLSs related interaction diagrams.

Requirement engineering for the business domain and traceability of system
specifications from CIM to PIM composes an important step of our MDD process.
However, the present state of this process step is immature and hence it is not
covered in this paper in order to provide consistency. Currently, we are working on
reformulation of this step by taking into account of specification, validation and
formatting of system requirements as a CIM.

Meanwhile, we also intend to improve mappings and model transforma-
tions introduced in the study. These improvement efforts will cover the issues
like elaborating mappings in entity attribute level and clarifying input/output

304 @G. Kardas et al.

and precondition/effect representations of semantic web service entities on the
model.

On the other hand, we believe that a tool support for our MDD process in
model generation will ease preparation of the metamodels for the transformations.
Therefore, our aim is to provide another software tool with a GUI in which users
can draw their model elements and specify related entity associations visually. Upon
completion of the model preparation in graphics, the tool automatically generates
corresponding KM3 representation or EMF encodings of the model which will be
used by the ADT during the model transformation.

The improvement of the code generation tool for the SEAGENT framework
introduced in this paper is also an important future work. As discussed in Sec. 7,
the editor for the code generation is currently GEF based. There exists an ongoing
study to provide integration of the EMF into the editor infrastructure by utilizing
Eclipse Graphical Modeling Framework (GMF)™ instead of GEF. One important
benefit of this new release will be the full support for Ecore models and automatic
integration with the ATL environment.

Acknowledgments

This work is partially funded by The Scientific and Technological Research Coun-
cil of Turkey (TUBITAK) Electric, Electronic and Informatics Research Group
(EEEAG) under grant 106E008 and TUBITAK National Scholarship Program for
PhD Students.

The authors wish to thank the software development team of the SEAGENT
laboratory and the ODEON Co. for their great effort and collaboration in this
study. The authors also thank Dr. E. Turhan Tunali for his helpful comments on
formatting the early drafts of the paper. Finally, the authors thank anonymous
reviewers for their accurate comments on the initial version of the paper. We were
able to improve both our study and the paper significantly by taking their critical
comments into account.

References

1. S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach (Pearson
Education, USA, 2003).

2. K. Sycara, Multiagent systems, AI Magazine 19(4) (1998) 79-92.

3. M. Wooldridge, N. R. Jennings and D. Kinny, The Gaia methodology for agent-
oriented analysis and design, Autonomous Agents and Multi-Agent Systems 3(3)
(2000) 285-312.

4. P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia and J. Mylopoulos, Tropos: An
agent-oriented software development methodology, Autonomous Agents and Multi-
Agent Systems 8(3) (2004) 203-236.

5. S. A. DeLoach, M. F. Wood and C. H. Sparkman, Multiagent systems engineering,
Int. J. Software Engineering and Knowledge Engineering 11(3) (2001) 231-258.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Model Driven Development of Semantic Web Enabled Multi-Agent Systems 305

. A. Omicini, SODA: Societies and infrastructures in the analysis and design of agent-

based systems, Lecture Notes in Computer Science 1957 (2000) 185-193.

F. Bergenti, M.-P. Gleizes and F. Zambonelli, Methodologies and Software Engineer-
ing for Agent Systems: The Agent-Oriented Software Engineering Handbook (Kluwer
Academic Publishers, Boston, USA, 2004).

. C. Bernon, M. Cossentino, M.-P. Gleizes, P. Turci and F. Zambonelli, A study of some

multi-agent meta-models, Lecture Notes in Computer Science 3382 (2005) 62-77.
A. Molesini, E. Denti and A. Omicini, MAS Meta-models on Test: UML vs OPM in
the SODA Case Study, Lecture Notes in Artificial Intelligence 3690 (2005) 163-172.
FIPA Modeling TC, Agent Class Superstructure Metamodel (2004),
http://www.omg.org/docs/agent /04-12-02.pdf

T. Berners-Lee, J. Hendler and O. Lassila, The semantic web, Scientific American
284(5) (2001) 34-43.

B. Selic, The pragmatics of model-driven development, IEEE Software 20 (2003)
19-25.

J. Pavon, J. Gomez and R. Fuentes, Model driven development of multi-agent systems,
Lecture Notes in Computer Science 4066 (2006) 284-298.

S. Sendall and W. Kozaczynski, Model transformation — the heart and soul of model-
driven software development, IEEE Software 20 (2003) 42-45.

OMG, MDA Guide Version 1.0.1., OMG Document Number: omg/2003-06-01 (2003),
http: //www.omg.org/docs/omg/03-06-01.pdf

OMG, Meta Object Facility (MOF) Specification, OMG Document Number: AD /97-
08-14 (1997), http: //www.omg.org/docs/ad/97-08-14.pdf

O. Dikenelli, R. C. Erdur, O. Gumus, E. E. Ekinci, O. Gurcan, G. Kardas, 1. Sey-
lan and A. M. Tiryaki, SEAGENT: A platform for developing semantic web based
multi agent systems, in Proc. the Fourth Int. Joint Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2005) (Utrecht, the Netherlands, 2005) (ACM Press),
pp. 1271-1272.

A. Agrawal, G. Karsai, S. Neema, F. Shi and A. Vizhanyo, The design of a language
for model transformations, Software and Systems Modeling 5(3) (2006) 261-288.

K. Duddy, A. Gerber, M. Lawley, K. Raymond and J. Steel, Model transformation:
A declarative, reusable patterns approach, in Proc. Seventh IEEFE Int. Enterprise
Distributed Object Computing Conf. (EDOC’03) (IEEE Computer Society 2003),
pp. 174-185.

F. Jouault and I. Kurtev, Transforming models with ATL, Lecture Notes in Computer
Science 3844 (2006) 128-138.

A. Kalnins, J. Barzdins and E. Celms, Model transformation language MOLA, Lecture
Notes in Computer Science 3599 (2005) 62-76.

G. Kardas, A. Goknil, O. Dikenelli and N. Y. Topaloglu, Metamodeling of semantic
web enabled multiagent systems, in Proc. the Multiagent Systems and Software Archi-
tecture (MASSA), Special Track at Net.ObjectDays - NODe 2006 (Erfurt, Germany,
2006), pp. 79-86.

P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord and
J. Stafford, Documenting Software Architectures: Views and Beyond (Pearson Educa-
tion, USA, 2003).

FIPA, Foundation for Intelligent Physical Agents (FIPA) Specifications (2002),
http://www.fipa.org

G. Kardas, O. Giimiis and O. Dikenelli, Applying semantic capability matching into
directory service structures of multi agent systems, Lecture Notes in Computer Science
3733 (2005) 452-461.

306 G. Kardas et al.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

K. Sycara, M. Paolucci, A. Ankolekar and N. Srinivasan, Automated discovery, inter-
action and composition of Semantic Web Services, J. Web Semantics 1 (2003) 27-46.
OWL-S Coalition, OWL-S: Semantic Markup for Web Services (2004),
http: //www.daml.org/services/owl-s/1.1/overview/

WSMO Working Group, Web Service Modeling Ontology (WSMO) (2005),
http: //www.wsmo.org/index.html

M. Paolucci, T. Kawamura, T. R. Payne and K. Sycara, Semantic matching of web
services capabilities, Lecture Notes in Computer Science 2342 (2002) 333-347.

L. Li and I. Horrocks, A software framework for matchmaking based on semantic web
technology, in Proc. the WWW’2008 (Budapest, Hungary, 2003), pp. 331-339.
JENA, A semantic web framework for Java (2003), http://jena.sourceforge.net.

O. Dikenelli, R. C. Erdur, G. Kardas, O. Giimiis, I. Seylan, O. Gurcan, A. M. Tiryaki
and E. E. Ekinci, Developing multi-agent systems on semantic web environment using
SEAGENT platform, Lecture Notes in Artificial Intelligence 3963 (2006) 1-13.

M. Williamson, K. Decker and K. Sycara, Unified information and control flow in
hierarchical task networks, in Proc. the AAAI-96 Workshop (California, USA, 1996),
pp. 142-150.

I. Dickinson and M. Wooldridge, Agents are not (just) web services: Considering BDI
agents and web services, in Proc. the Workshop on Service-Oriented Computing and
Agent-Based Engineering (SOCABE 2005) (Utrecht, the Netherlands, 2005).

OMG, Object Management Group UML 2.0 Superstructure Specification (2004),
http: //www.omg.org/technology /documents/formal /uml.htm.

D. Djuric, MDA-based Ontology Infrastructure, Computer Science Information Sys-
tems 1(1) (2004) 91-116.

J. Ferber and O. Gutknecht, A meta-model for the analysis and design of organizations
in multi-agent systems, in Proc. the Third International Conference on Multi-Agent
Systems (IEEE Computer Society, 1998), pp. 128-135.

J. Odell, M. Nodine and R. Levy, A metamodel for agents, roles and groups, Lecture
Notes in Computer Science 3382 (2005) 78-92.

G. Kardas, A. Goknil, O. Dikenelli and N. Y. Topaloglu, Modeling the interaction
between semantic agents and semantic web services using MDA approach, Lecture
Notes in Artificial Intelligence 4457 (2007) 209-228.

W3C, World Wide Web Consortium Resource Description Framework (RDF) (2004),
http: //www.w3.org/RDF/.

R. Grgnmo, M. C. Jaeger and H. Hoff, Transformations between UML and OWL-S,
Lecture Notes in Computer Science 3748 (2005) 269-283.

G. Kardas, A. Goknil, O. Dikenelli and N. Y. Topaloglu, Model transformation for
model driven development of semantic web enabled multi-agent systems, Lecture Notes
in Artificial Intelligence 4687 (2007) 13-24.

I. Dickinson and M. Wooldridge, Towards practical reasoning agents for the semantic
web, in Proc. the Second Int. Joint Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2003) Melbourne, Australia (ACM Press, 2003), pp. 827-834.

J. R. Graham, K. S. Decker and M. Mersic, DECAF — A flexible multi-agent systems
infrastructure, Autonomous Agents and Multi-Agent Systems T(1-2) (2003) 7-27.

F. Bellifemine, A. Poggi and G. Rimassa, Developing multi-agent systems with a FIPA-
compliant agent framework, Software Practice and Experience 31 (2001) 103-128.

K. Sycara, M. Paolucci, M. Van Velsen and J. Giampapa, The RETSINA MAS Infras-
tructure, Autonomous Agents and Multi-Agent Systems 7(1-2) (2003) 29-48.

D. L. McGuiness and F. van Harmelen, OWL Web Ontology Language Overview
(2004), http://www.w3.org/TR/owl-features/.

48.

49.

50.

51.
52.

53.

54.

53.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Model Driven Development of Semantic Web Enabled Multi-Agent Systems 307

0. Giircan, G. Kardas, O. Giimiis, E. E. Ekinci and O. Dikenelli, An MAS infras-
tructure for implementing SWSA-based semantic services, Lecture Notes in Computer
Science 4504 (2007) 118-131.

A. Rao and M. Georgeff, BDI Agents: From theory to practice, in Proc. the First
International Conference on Multi-Agent Systems (ICMAS-95), San Francisco, USA
(1995), pp. 312-319.

1. Dickinson, BDI Agents and the Semantic Web: Developing User-Facing Autonomous
Applications, PhD Thesis, University of Liverpool (2006).

NUIN, NUIN Framework (2006), http://www.nuin.org.

J. Warmer and A. Kleppe, Object Constraint Language: The Getting Your Models
Ready for MDA (Pearson Education, USA, 2003).

Eclipse Community, Eclipse Open Development Platform (2003), http://www.
eclipse.org.

ATLAS Group, ATL User manual (2006), http://www.eclipse.org/m2m/atl/
doc/ATL_User_Manual[v0.7].pdf.

Eclipse Community, Eclipse Modeling Framework (2004), http://www.eclipse.org/
emf.

F. Jouault and J. Bezivin, KM3: A DSL for metamodel specification, Lecture Notes
in Computer Science 4037 (2006) 171-185.

Eclipse Community, Graphical Editing Framework (2006), http://www.eclipse.org/
gef.

J. Oldevik, T. Neple, R. Grgnmo, J. Aagedal and A. J. Berre, Toward standardised model
to text transformations, Lecture Notes in Computer Science 3748 (2005) 239-253.
Eclipse Community, MOFScript model to text transformation language and tool
(2005), http://www.eclipse.org/gmt/mofscript/.

R. Depke, R. Heckel and J. M. Kiister, Agent-oriented modeling with graph transfor-
mations, Lecture Notes in Computer Science 1957 (2001) 105-120.

B. Bauer and J. Odell, UML 2.0 and Agents: How to build agent-based systems
with the new UML standard, Engineering Applications of Artificial Intelligence 18(2)
(2005) 141-157.

D. Gracanin, H. L. Singh, S. A. Bohner and M. G. Hinchey, Model-driven architecture
for agent-based systems, Lecture Notes in Artificial Intelligence 3228 (2005) 249-261.
G. B. Jayatilleke, L. Padgham and M. Winikoff, Towards a component-based develop-
ment framework for agents, Lecture Notes in Computer Science 3187 (2004) 183-197.
G. B. Jayatilleke, L. Padgham and M. Winikoff, Evaluating a model driven devel-
opment toolkit for domain experts to modify agent based systems, Lecture Notes in
Computer Science 4405 (2007) 190-207.

I. Zinnikus, G. Benguria, B. Elvesaeter, K. Fischer and J. Vayssiere, A model driven
approach to agent-based service-oriented architecture, Lecture Notes in Artificial
Intelligence 4196 (2006) 110-122.

C. Hahn, C. Madrigal-Mora, K. Fischer, B. Elvesazter, AJ. Berre and I. Zinnikus,
Meta-models, models, and model transformations: Towards interoperable agents, Lec-
ture Notes in Artificial Intelligence 4196 (2006) 123-134.

A. Perini and A. Susi, Automating model transformations in agent-oriented modeling,
Lecture Notes in Computer Science 3950 (2006) 167—178.

M. Amor, L. Fuentes and A. Vallecillo, Bridging the gap between agent-oriented
design and implementation using MDA, Lecture Notes in Computer Science 3382
(2004) 93-108.

L. Penserini, A. Perini, A. Susi and J. Mylopoulos, From stakeholder intentions to
software agent implementations, Lecture Notes in Computer Science 4001 (2006)
465-479.

308 @G. Kardas et al.

70.

71.

2.

73.

4.

S. Rougemaille, F. Migeon, C. Maurel and M.-P. Gleizes, Model driven engineer-
ing for designing adaptive multi-agent systems, in Proc. the Eighth Annual Interna-
tional Workshop on Engineering Societies in the Agents World (ESAW 2007) (Athens,
Greece, 2007).

C. Bernon, M.-P. Gleizes, S. Peyruqueou and G. Picard, ADELFE: A methodology
for adaptive multi-agent systems engineering, Lecture Notes in Artificial Intelligence
2577 (2003) 156-169.

C. Pahl, Semantic model-driven architecting of service-based software systems, Infor-
mation and Software Technology 49 (2007) 838-850.

B. Bauer, J. P. Muller and J. Odell, Agent UML: A formalism for specifying mul-
tiagent software systems, Int. J. Software Engineering and Knowledge Engineering
11(3) (2001) 207-230.

Eclipse Community, Eclipse Graphical Modeling Framework (2007), http://www.
eclipse.org/gmf/.

