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Abstract

Crowdsourcing in the form of human-based electronic services (people
services) provides a powerful way of outsourcing tasks to a large crowd of
remote workers over the Internet. Research has shown that multiple re-
dundant results delivered by different workers can be aggregated in order
to achieve a reliable result. However, basic implementations of this ap-
proach are rather inefficient as they multiply the effort for task execution
and are not able to guarantee a certain quality level. In this paper we
are addressing these challenges by elaborating on a statistical approach for
quality management of people services which we had previously proposed.
The approach combines elements of statistical quality management with
dynamic group decisions. We present a comprehensive statistical model
that enhances our original work and makes it more transparent. We also
provide an extendible toolkit that implements our model and facilitates
its application to real-time experiments as well as to simulations. A quan-
titative analysis based on an optical character recognition (OCR) scenario
confirms the efficiency and reach of our model.

Keywords: Crowdsourcing, statistical quality control, human computa-
tion, eServices, people services
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1 Introduction

The general idea of human-based electronic services is to leverage Web service
technology in order to access and tap the crowd of Internet users for human
workforce. The continuous popularity of Amazon’s Mechanical Turk (MTurk)
platform1 and the large number of companies that are basing their business
model entirely on that platform demonstrate the potential of this approach.
The MTurk platform acts as a broker between requesters who publish human
intelligence tasks (HITs) and workers who solve tasks in return for a typically
small monetary compensation. The most popular types of tasks on MTurk
are transcribing recorded speech, generating content, classifying or categorizing
items (e.g. images), collecting data and providing feedback (e.g. regarding Web
sites) [1].

Kern et al. proposed the term people services (pServices) for this type of
human-based electronic services [2]. As pServices enable the allocation of human
resources on demand, they promise to enhance the workforce scalability and
lower fixed labor costs by reducing the cost overhead (salaries, workplace costs
etc.) in times of low demand. However, they also pose problems of limited
control over individual contributors which might compromise the quality of work
results. This raises questions about adequate quality management mechanisms
for pService scenarios and their application in the context of today’s pService
platforms.

A general approach to quality assurance that is heavily used in practice and
can be applied to a broad set of pServices scenarios is the majority vote (MV)
mechanism, which introduces redundancy by passing the same task to multiple
workers and aggregating the results in order to compute the result with the
highest probability for correctness [3]. Existing MV applications typically apply
a fixed level of redundancy to each individual task, i.e. each task is performed by
multiple workers. From the perspective of quality management that means that
the quality of each individual task is validated. However, concepts of statistical
quality control (SQC) show that the quality management effort can usually be
drastically reduced by taking only samples rather than by performing a full
inspection of all individual items [4]. Moreover, a fixed degree of redundancy is
both inefficient and incapable of assuring a certain level of result quality because
the level of agreement (and so the expected result quality) varies depending
on the failure rates of the involved workers. Exploiting these potentials, we
propose a quality management (QM) approach for pServices, which improves
the traditional MV approach in three ways:

• It reduces the QM effort in a horizontal direction by validating only a
sample of tasks rather than all tasks.

• It reduces the QM effort in a vertical direction by dynamically adjusting
the level of redundancy rather than working with a fixed level of redun-
dancy.

1http://www.mturk.com/
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• It allows to guarantee a certain quality level.

Within the multifaceted dimensions of quality, our approach concentrates
on the correctness dimension as the ability to return a minimum percentage
of results that are free of errors [2]. According to Juran’s definition of quality
as fitness for use [5], the paper assumes that the service requester can clearly
categorize a task result as correct or incorrect. The level of correctness is de-
termined by a comparison with the ideal result (gold standard) provided by the
service requester.

While our QM approach for pService was first introduced at ICSOC 2010 [6],
this paper extends the underlying statistical model and puts it on a solid foun-
dation. Furthermore, a software toolkit was developed which is introduced by
this paper. The toolkit has enabled us to conduct live experiments on MTurk
in addition to the simulation runs that we had studied before.

After introducing the SQC fundamentals in section 2, section 3 presents the
QM approach for pServices. Section 4 describes the implementation of a QM
software toolkit for pService that has been used to evaluate the QM approach
based on an optical character recognition (OCR) scenario on top of the MTurk
platform. The results are provided in section 5. The paper closes with related
work, a discussion section and a summary and outlook in sections 6 through 8.

2 Fundamentals

This chapter describes some fundamentals of SQC required for developing the
QM approach in section 3.

2.1 Acceptance sampling

Acceptance Sampling is the process to decide based on a sample whether a
set of units meets certain quality requirements or not. Acceptance sampling
determines the probability of a lot of units being within the specified quality
levels, and accepts or rejects lots based on its quality characteristics. A sampling
plan is a procedure where a sample of n units is drawn from a lot of size N . If
the number of defects in the sample is higher than the acceptance number c, the
lot is rejected. Otherwise it is accepted. If the units do not occur in batches, but
in a continuous production, such as in line assembly or in a service scenario, the
process has to be decomposed into artificial batches. However, before a whole
batch has been handled, quality levels for this batch cannot be guaranteed and
the results of this batch cannot be further processed. In order to overcome this
restriction, continuous sampling plans have been developed.

2.2 Continuous Sampling Plans

Continuous Sampling Plans (CSPs) control the inspection frequency and re-
placement of defects in such a way that the outgoing stream of items exceeds a
certain average level of quality. Dodge developed the first continuous sampling
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Figure 1: Procedure of the continuous sampling plan CSP-1.

plan, the CSP-1. This plan has been further developed and adapted by Dodge
et. al and Lieberman et al. amongst others [7, 8]. The probably most cited and
most used continuous sampling plan still is the CSP-1. The reason is not only
its relative simplicity, but also its efficiency, which in few cases is exceeded by
other continuous sampling plans like the CSP-2 [9]. Dodge made the following
assumptions developing the CSP-1:

• Process of incoming units is under statistical control and follows a Bernoulli
distribution.

• Sample inspection is perfect.

• Defective units are replaced by good ones.

The sampling plan is designed for attributes, thus quality parameters are
categorized as either good or defective. This means that if the incoming pro-
cess is under statistical control i.e. the incoming fraction defective p does not
change over time, the process can be described by a Bernoulli process with de-
fect probability p. As illustrated by figure 1, the sampling plan starts with a
100% inspection phase. Once i consecutive units have been found free of defects,
the CSP-1 switches to a fractional inspection mode in which only a fraction f of
the units are inspected. As soon as a defective unit is found, the model returns
to 100% inspection, and so on. Defective units are either reworked or replaced
with good ones. The parameter i is called the clearance number and f is called
the sampling fraction [4]. The most important characteristic of the CSP-1 is
the average outgoing quality limit (AOQL) [4]. It is the highest average amount
of defective units that might be passing through without being inspected that
can be reached depending on the incoming fraction defective p.

There are multiple combinations of the parameters i and f which result in
the same value of AOQL. For a given AOQL, one of the parameters i and f
can be chosen depending on the needs of the scenario and the corresponding
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parameter can then be calculated according to (2.1):

f �

�
1�

�
1� 1

i

�i�1
� i �AOQL

p1�AOQLqi�1

��1

(2.1)

The following chapters describe two ways of choosing i and f which will be
needed in the remainder of the paper.

2.2.1 Short sequences of low quality

One possible objective of choosing i is to make the CSP-1 resistant against short
sequences of low quality [10]. Let P� be the quality level of a series of l items
within the continuous stream of items. In order to ensure that the probability
of accepting such a series is not higher than w̃, the sampling fraction f must be

f �
1

P�

�
1� w̃

1
l

	
. (2.2)

The corresponding clearance number i can be identified with (2.1) or (2.3) by
inserting different values of i until an f close to the desired one has been found.
As i must be a whole-number, only discrete values of f are possible.

2.2.2 Imperfect sample inspection

In many scenarios, the inspection of the samples is not perfect but an inspection
error applies to the sampling process. In case of imperfect inspection, two types
of inspection errors can be made:

• E1: A good item is classified as defective (type 1 inspection error).

• E2: A defective item is classified as good (type 2 inspection error).

Under the assumption of imperfect inspection, (2.1) is replaced by (2.3): [11]

f �
p1� p1� e2qp̂� p1� p̂qe1q

i � p1� AOQL
p̂ q

pp1� p1� e2qp̂� p1� p̂qe1qi � 1q � p1� AOQL
p̂ q � p1� e2q

(2.3)

The parameters e1 � P pE1q and e2 � P pE2q are the probabilities of a type 1
and type 2 inspection error. AOQL is the average outgoing quality limit and p̂
is the expected incoming fraction defective, i.e. the probability of processing a
defective item.

3 Statistical Quality Control for pServices

This chapter describes our statistical quality management approach for pSer-
vices. After introducing the underlying assumptions in section 3.1 and providing
an overview in section 3.2, the detailed process flow is covered by section 3.3.
Section 3.4 explains how statistical quality control is used within the model and
section 3.5 introduces the extended dynamic majority vote (DMV) approach
which is the main contribution of the paper.
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3.1 Assumptions

The basic scenario comprises three roles: The service requester, the crowdsourc-
ing platform and the workers. The platform acts as an intermediary between the
requester who publishes tasks and workers who pick tasks and work on them
in return for a compensation per task. There is typically a large number of
equivalent tasks of the same task type that consist of the same task description
but different task data. The task description primarily contains the instructions
for the workers on how to perform the task as well as information about the ex-
pected result quality. The task data is the variable part which might represent
different pictures to be annotated, different addresses to be validated or different
products to be classified. The paper makes some additional assumptions about
the underlying platform, the tasks as well as the workers.

3.1.1 Platform assumptions

In accordance with existing crowdsourcing platforms like MTurk it is assumed
that the platform allows for tracking individual workers based on an individual
worker ID which is returned to the requester for each response delivered by the
worker. The platform also supports multiple redundant assignments of the same
task and ensures that they are completed by different workers in order to use the
responses for group decisions. There are also means for defining worker pools
i.e. for making specific tasks only available to a subset of the workers. MTurk
implements that by offering so-called qualification tests which also ensure that
the workers having a certain qualification fall at least initially below a certain
failure rate when working on a specific type of tasks. The lower two boxes of
figure 2 give an overview of the basic crowdsourcing process.

3.1.2 Task assumptions

As the quality management approach presented here is a form of a majority
vote (MV) approach, it is restricted to deterministic tasks i.e. to such tasks for
which a certain well-defined optimal result is defined [12]. Therefore, redundant
responses delivered by multiple workers for assignments of the same task can be
compared to each other or can be aggregated into a single consolidated result. It
is further assumed that a large number of similar tasks is available that require
similar skills and that a fixed compensation is paid to the workers for each task
independent of the quality of the work results.

3.1.3 Worker assumptions

From a statistical perspective it is important that the workers are working inde-
pendently of each other. Most important, a worker who is working on a specific
task must not collaborate (e.g. agree on a response) with other workers working
on assignments of the same task. Therefore, there should be a large crowd of
workers who do not know each other. Another assumption is that a failure rate
can be attached to each worker which is the same for all tasks of a given task
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type and which only slowly changes over time, for example because workers are
improving their skills or because they are getting tired after performing a large
number of tasks.

3.2 Model overview

The objective of the model described in this paper is to leverage statistical
quality control in order to guarantee a certain long-run average outgoing quality
for a continuous stream of crowdsourcing results, while the inspection costs in
terms of labor work are minimized. As we assume a fixed payment per task, the
QM costs can be minimized by minimizing the total number of assignments.
The model can be seen as a quality management component on top of the
basic crowdsourcing platform outlined in section 3.1. The model consists of
two functional parts: A statistical quality control component and a sample
inspection component.

The statistical quality control component uses the continuous sampling plan
(CSP-1) with the extension of imperfect inspection presented in section 2. Be-
cause the workers are acting independently from each other, the sampling pro-
cess has to be performed at worker-level. The same AOQL is applied to all
workers who work on the same type of task i.e. the same response quality is
requested from all participating workers.

The CSP-1 requires a mechanism for sample inspection. For this purpose, a
dynamic majority vote approach (DMV) was designed which will be described in
detail in the following section. The DMV dynamically increases the redundancy
by including additional workers in the MV decision until a predefined inspection
quality level ϕmin is reached.

Although the difficulty of all tasks is assumed to be similar, there will always
be outliers which are harder to solve or which are even not solvable at all. Those
tasks are escalated back to the requester if they fall below a predefined escalation
limit εmin. That way, the requester can use the information to improve the task
design.

3.3 Process flow

The overall scenario is given by figure 2: A requester submits a task to the
quality management component which immediately publishes it to the crowd-
sourcing platform. A worker grabs the task, works on it and returns a response
which is fed back to the QM component in combination with the worker’s ID.
Depending on the CSP-1 status of that worker a sample inspection is initiated
or not. If not, the QM component accepts the worker’s response as the final
result and passes it back to the requester without further validation. In case an
inspection is required, the DMV is initiated: it publishes another assignment of
the same task and an additional (redundant) response is returned by a different
worker via the crowdsourcing platform. Based on the two available responses
and the historical failure rates of the workers, the probability ϕd of the most
probable response d is identified along with the appropriate escalation level εd.
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Figure 2: BPMN representation of the CSP/DMV quality management mechanism
in the context of the service requester, the crowdsourcing platform and the service
workers.

If the probability ϕd exceeds the predefined minimum inspection quality ϕmin,
response d is accepted as the final result and the failure rates of all participat-
ing workers are updated depending on whether their response matches d or not.
Then, the result is returned to the CSP-1 component where the CSP-1 status
indicators of all involved workers is updated as well, i.e. all responses different
from d are taken as defects and the CSP-1 status indicators of the appropriate
workers are switched to 100% inspection mode. If ϕd is still lower than ϕmin,
additional responses are required from other workers in order to come to a re-
liable result. Therefore, again another assignment of the task is published, and
so on. However, if the escalation level εd is falling below the specified escalation
limit εmin the loop is interrupted and the task is escalated back to the requester.

3.4 Statistical quality control / CSP-1

The rational for applying statistical quality control to pServices is based on
the two assumptions that there is a large number of similar tasks available and
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that a worker ID is returned by the crowdsourcing platform with each worker
response. The CSP-1 which was introduced in section 2.2 was chosen for the
following reasons:

• It supports ”real time” pService scenarios in which a continuous stream
of tasks need to be completed and for which response time matters.

• It works well with the DMV: The CSP-1 assumes that defective items are
replaced, i.e. if an incorrect worker response is detected, it will be replaced
by the correct one. The DMV supports that requirement as it implicitly
identifies the (most probable) correct result during the sample inspection
process.

• Extensions for imperfect sample inspection are available which are re-
quired because the DMV only supports a limited inspection quality level
ϕmin.

The assumption of the CSP-1 that the quality of the incoming worker results is
under statistical control is addressed in three ways: First, it is assumed that the
tasks are similar and require similar skills. Second, an escalation mechanism
is provided that identifies outliers. Third, in case sequences of exceptional bad
worker results are expected, the CSP-1 may be configured in a way that protects
it against them (see section 2.2.1).

For using the CSP/DMV model, the CSP-1 parameters need to be set in the
following way:

1. Chose a value for AOQL: Set it to the highest average amount of incorrect
results that is acceptable for the requester, e.g. a value of AOQL �
0.05 means that there is supposed to be a maximum average of 5 percent
incorrect results in the result stream.

2. Define an inspection quality level e1 � e2 � ϕmin ¡ AOQL that will
influence the calculation the CSP-1 parameters as well as the behaviour
of the DMV. As a conservative configuration, we recommend to set both,
the type 1 and the type 2 inspection error to the minimum inspection
quality ϕmin delivered by the DMV. As a lookahead to section 3.5, the
inspection quality level should be rather high in order to allow for a fair
assessment of the workers.

3. Specify the incoming level of response quality p̂ expected from the workers.
We recommend to use the same value as for initializing the worker failure
rates in section 3.5.4.

4. Determine i according to section 2.2.1 or select i depending on the typical
number of tasks that you expect a worker to complete in a row. For
example, it does not make sense to have a clearance number of i � 20 if a
worker only completes 20 tasks in a row because in that case the worker
would be always in the 100% inspection phase.
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5. Calculate the corresponding sample fraction f with (2.3) using the values
of AOQL, e1, e2, p̂ and i identified above.

3.5 Sample inspection / dynamic majority vote

This chapter provides the statistical foundation for the DMV. After defining
a set of terms in section 3.5.1, the model is developed in section 3.5.2 and
the resulting equations are presented in 3.5.3. Sections 3.5.4 and 3.5.5 provide
complementary information.

3.5.1 Definitions

Let A � ta1, a2, .., anu be the set of all n possible responses to a task. According
to the assumptions described in chapter 3.1, exactly one of the possible responses
a P A is the expected correct response for the task. Let

R̂ � Aw (3.1)

be the set of all possible response tuples that might be returned by a group
of w different workers who have worked on assignments of the same task. Let
R P R̂ be a concrete response tuple with R � pr1, r2, .., rwq and let the tuple
E P r0; 1s

w
with E � pp1, p2, .., pwq represent the individual historical failure

rates p1, p2, .., pw of the contributing workers. The set D � tr1, r2, .., rwu � A
is the set of all distinct responses in the response tuple R.

Let Ĉ � t0, 1u
w

and C P Ĉ be the correctness profile of the task. The
tuple C � pc1, c2, .., cwq indicates, which worker has returned a correct versus
an incorrect response, i.e. @j ¤ w:

cj �

"
0 if worker j has returned an incorrect response
1 if worker j has returned the correct response .

(3.2)

As an example, the correctness profile p1, 0q represents the case that the first
of two workers returns a correct response, while the second worker returns an
incorrect response.

3.5.2 Statistical considerations

The set S � R̂� Ĉ spans the sample space of all possible response tuples R P R̂
and correctness profiles C P Ĉ. An exemplary sample space for 2 workers is
provided by table 1, an example for 3 workers by table 4 (A). The probabilities
in each row sum up to the overall probabilities PEpRq of the response tuples R
and the probabilities in each column sum up to the overall probabilities PEpCq
of the correctness profiles. The index E indicates that all probabilities are
conditional given the failure rates E of the contributing workers.

Depending on the agreement between the workers, an arbitrary subset of
them might return a correct response. As the a priori probability for worker j

10



Table 1: Sample space of a scenario with 2 workers and 3 possible responses. The
rows represent the possible response tuples, the columns the correctness profiles. A
historical failure rate of p � 0.1 was assumed for both workers.

Correctness profile C
Response tuple R p0, 0q p0, 1q p1, 0q p1, 1q PEpRq

pa1, a1q 0.0011 0 0 0.2700 0.2711
pa1, a2q 0.0011 0.0150 0.0150 0 0.0311
pa1, a3q 0.0011 0.0150 0.0150 0 0.0311
pa2, a1q 0.0011 0.0150 0.0150 0 0.0311
pa2, a2q 0.0011 0 0 0.2700 0.2711
pa2, a3q 0.0011 0.0150 0.0150 0 0.0311
pa3, a1q 0.0011 0.0150 0.0150 0 0.0311
pa3, a2q 0.0011 0.0150 0.0150 0 0.0311
pa3, a3q 0.0011 0 0 0.2700 0.2711

PEpCq 0.0100 0.0900 0.0900 0.8100 1.0000

to deliver a correct vs. incorrect response is qj � p1 � pjq vs. pj , the a priori
probability PEpCq for observing a correctness profile C can be estimated as

PEpCq �
¹

@j|cj�1

qj
¹

@j|cj�0

pj . (3.3)

In order to define the most probable response, the conditional probabilities
PEpC | Rq of all possible correctness profiles given a specific response tuple R
and the tuple of failure rates E are calculated and then the correctness profile
C̃ with the highest probability is identified. The estimation is being performed
with Bayesian inference using the a priori information about the failure rates of
the involved workers and about the distribution of the possible response tuples.
PEpC | Rq can be calculated as the conditional probability for C given R and
E:

PEpC | Rq �
PEpC XRq

PEpRq
�

PEpR | CqPEpCq

PEpRq
(3.4)

Within (3.4), the conditional probability PEpR | Cq can be calculated as

PEpR | Cq �

"
1

mC
if Dk P D | @j : pcj � 1q ñ prj � kq, pcj � 0q ñ prj � kq

0 otherwise
(3.5)

with mC being the number of response tuples R that may be observed given a
specific correctness profile C. The underlying assumption is that the a priori
probability of all response tuples is equal. For example, if there are three possible
responses a1, a2 and a3, there are three response tuples in R̂, that apply to the
correctness profile p1, 1q: pa1, a1q, pa2, a2q and pa3, a3q. Other response tuples
like pa2, a3q have a probability of zero, because a2 and a3 cannot be correct at
the same time as there is only a single correct response a P A.
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The number mC is determined by

mC �

$''''&
''''%

n �
±

@t|ct�0

pn� 1q if Dj | cj � 0

nw if p@j | cj � 0q ^ pn ¡ wq

nw �
n°

t�0

�
n
t

�
pn� tqwp�1qt if p@j | cj � 0q ^ pn ¤ wq .

(3.6)

In the upper branch of (3.6), the response tuple contains the (unknown) correct
response a P A at least once so there are n options to chose it and pn � 1q
options for choosing each of the incorrect responses. In the middle and lower
branch, all responses of the response tuple are incorrect. If there are more
possible responses n than workers w, any of the nw response tuples in R̂ might
be incorrect. If the number of possible responses is lower than or equal to the
number of workers, Stirling numbers of the second kind [13] are used to exclude
those response tuples that that contain all possible responses out of A. They
cannot occur with the the correctness profile C � p0, 0, .., 0q because one of the
responses a P A must be correct.

The marginal probabilities P pRq are determined by

PEpRq �
¸

@CPĈ

PEpR | CqPEpCq . (3.7)

According to (3.5), PEpR | Cq and therefore PEpC | Rq is different from
zero only for such Ck,R P Ĉ for which all correct results can be mapped to a
specific distinct response k P D and none of the incorrect responses is equal to
k. Therefore, (3.4) can be written as:

ϕk � PEpCk,R | Rq �
PEpCk,Rq

mCk,R
� PEpRq

(3.8)

with
PEpCk,Rq �

¹
@j|rj�k

qj
¹

@j|rj�k

pj . (3.9)

3.5.3 Final equations

Using (3.5) through (3.9), this turns into the following two equations:

1. If there are more possible responses than workers, i.e. n ¡ w, we get

ϕk �

±
@j|rj�k

qj
±

@j|rj�k

pj

n �
±

@j|rj�k

pn� 1q �

� °
kPD

±

@j|rj�k

qj
±

@j|rj�k

pj

n�
±

@j|rj�k

pn�1q �

±

@j

pj

nw

� . (3.10)
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2. If the number of possible responses is less than or equal to the number of
workers, i.e. n ¤ w, we get

ϕk �

±
@j|rj�k

qj
±

@j|rj�k

pj

n �
±

@j|rj�k

pn� 1q �

�
� °

kPD

±

@j|rj�k

qj
±

@j|rj�k

pj

n�
±

@j|rj�k

pn�1q �

±

@j

pj

nw�
n°

t�0
pntqpn�tqwp�1qt

�


.

(3.11)

An example calculation of ϕk � PEpCk,R, Rq for the sample space of 2 workers
is provided in table 2 and for the sample space of 3 workers in table 5 (A).

Table 2: Conditional probability PEpC | Rq for observing a certain correctness pro-
file C given a specific response tuple R in a scenario with 2 workers and 3 possible
responses. A historical failure rate of p � 0.1 was assumed for both workers.

PEpC | Rq for correctness profile C
Response tuple R p0, 0q p0, 1q p1, 0q p1, 1q

pa1, a1q 0.0041 0 0 0.9959
pa1, a2q 0.0357 0.4821 0.4821 0
pa1, a3q 0.0357 0.4821 0.4821 0
pa2, a1q 0.0357 0.4821 0.4821 0
pa2, a2q 0.0041 0 0 0.9959
pa2, a3q 0.0357 0.4821 0.4821 0
pa3, a1q 0.0357 0.4821 0.4821 0
pa3, a2q 0.0357 0.4821 0.4821 0
pa3, a3q 0.0041 0 0 0.9959

The response d P D with the highest probability of correctness can finally
be calculated as

d P D | @k P D : ϕd ¥ ϕk . (3.12)

If the probability ϕd exceeds ϕmin, the response d is accepted as the correct
response. The escalation level is defined as the probability for observing the
correctness profile Cd given the failure rates E of the involved workers

εd � PEpCd,Rq �
¹

@j|rj�d

qj
¹

@j|rj�d

pj . (3.13)

Once the probability εd underruns εmin, the task is escalated to the requester.
The rational of this definition of the escalation level is the following: In general,
the quality management mechanism relies on the assumption that the historical
failure rates of the workers are good estimates for their future performance.
However, there are some tasks which require higher or different skills or which
are not solvable at all. For those tasks, the historical worker failure rates are no
good estimates and therefore the probability PEpCd,Rq of the correctness profile
can be much lower than for typical tasks.
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3.5.4 Initialization of worker failure rates

For applying the quality management model, initial values for the failure rates
pj of all workers are required. They can be determined by performing a qualifi-
cation test based on a series of tasks for which the expected results are already
known. Only such workers that initially meet a correctness level close to AQQL
should be allowed to work on the task by adding them to the worker pool. Work-
ers that don’t meet the quality needs would continuously stay in full inspection
mode and therefore would lead to high costs.
Note that even if a worker successfully completes all tasks of the qualification
test, the initial failure rate must not be set to exactly zero as that would com-
promise the calculation of ϕk. Because of the nature of human work it is obvious
that a failure rate of zero is not a realistic estimate for the future performance
of a worker. Therefore, at least one of the test results should be counted as a
defect. For example, in a test with 20 tasks, the minimum possible failure rate
to achieve would be p � 1

20 � 0.05.

3.5.5 Worker pool management

Depending on the availability of workers, a decision should be made as to which
workers are not profitable and should be removed from the worker pool. There-
fore, the maximum failure rate pmax can be introduced. If a worker’s failure
rate exceeds the maximum failure rate pj ¡ pmax, he may not participate.

4 Architecture and Implementation

Based on the concepts introduced so far we have implemented a prototype sys-
tem that provides functionalities to manage the quality of tasks on MTurk and
similar pService platforms either based on live interaction or simulations. The
system considers quality along the two dimensions of correctness and perfor-
mance. The focus of this paper is on managing the correctness of pService
results based on the CSP/DMV approach. Beyond the scope of this paper, we
are also experimenting with managing performance by adding time constraints
to the optimization problem.

From a software engineering point of view, the quality management system
has been designed as a software toolkit that can be utilized to realize a variety
of usage scenarios. For instance, the toolkit might act as a software framework
to implement third party quality management services that mediate between
pService requesters and a pService platform. Another use of the toolkit’s soft-
ware framework would be to enhance given pService client components with
the ability of directly managing pService quality. Finally, the toolkit can be
used as a software client for pServices as is. In particular, the toolkit allows to
run experiments with different quality management approaches and existing or
simulated pService platforms in order to produce empirical data.

The general toolkit architecture (Figure 3) is designed for extensibility with
respect to quality control mechanisms by means of plugins. It consists of an
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Figure 3: Architectural overview of the pService CSP/DMV toolkit.

infrastructure of core services that are used by separate and completely inde-
pendent quality control plugins. More concretely, the current implementation
comprises a correctness plugin and a time constraints plugin. The toolkit inter-
acts with specific pService platforms by means of an extensible platform wrapper
component. In our prototype, we have implemented a wrapper for the MTurk
platform leveraging its SOAP-based Web service interface for service requesters.

Core services include the worker pool manager that is responsible for creat-
ing qualification tests and evaluating results. Workers are sorted into pools to
control which group may access certain tasks and which may not. This compo-
nent also provides import and export functionality for worker data and triggers
synchronization with the pServices platform so that access rules are reflected
there as well and not only locally. The task result collector stores worker sub-
missions internally and persists them locally. As correctness control generally
requires redundant work, this component also groups redundant submissions for
the same task. Plugins may add worker submissions or lock and retrieve them
as complete sets. A set of submissions for a task that has been locked may
not be accessed by any other component. The task result fetcher periodically
polls the pServices platform for worker submissions and asserts that a single
submission is only processed once. Furthermore, it provides an internal queuing
system which may be used by plugins.

A correctness plugin generally requires three steps of application logic: (1)
retrieve a message from the incoming results queue, (2) process the message,
(3) return the data to the task result collector and release the lock. While these
steps are supported by the core services, concrete implementations need to refine
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them in order to implement a specific management method. Subsequently, our
prototype plugin uses CSP-1 and dynamic majority vote for processing the
message. It then updates worker statistics via the worker pool manager and
returns the results to the task result collector.

The time constraints plugin is work in progress that is mentioned to motivate
and illustrate our ongoing and future work in this area. The plugin leverages
the worker pool manager core service for sorting workers into pools and hence
controlling access of workers to tasks. The plugin monitors the progress of
task completion and adopts the pool sizes accordingly to complete all tasks at
a specified point in time. A trivial solution to complete all tasks by a dead-
line is to allow all workers to submit results for those tasks. This approach is
highly inefficient. Workers who produce poor results in terms of correctness are
allowed to participate. Using DMV and CSP-1 does not necessarily decrease
total correctness but increases the number of required inspections, thus increas-
ing the total cost. To improve efficiency we allow just a certain percentage of
known workers to participate and continuously adapt this fraction based on the
progress observed. The goal of the time constraints plugin is to complete all
tasks before but also as close as possible to the deadline. For this purpose, the
plugin offers a number of basic forecasting algorithms. While we have already
found promising experimental results, we will develop a rigorous formal method
as part of our future work.

The toolkit was developed using Java SE 6 and is currently maintained as an
Eclipse 3.6 project. All components described above are either implemented as
separate classes or as a set of classes. Extensibility is generally achieved through
usage of abstract classes and interfaces combined with reflections. Regarding
the physical design, the toolkit is primarily realized as a library which can
be used for multiple purposes, e.g. within a Web application or a standalone
tool. Initializer classes can easily be added by adapting the existing standalone
initialization class. The current implementation focuses on the MTurk platform
and, hence, includes an implementation of the platform wrapper component
for this provider. More details on specific implementation aspects have been
provided in a separate paper [14].

5 Evaluation

The CSP/DMV model was evaluated on the MTurk platform using an optical
character recognition (OCR) scenario. After describing the experimental design
in section 5.1, sections 5.2 and 5.3 provide the results of actual experiments.

5.1 Experimental design

The CSP/DMV approach was evaluated using the toolkit described in section 4
by performing an optical character recognition (OCR) scenario on top of MTurk.
Only such users were allowed to participate who had passed a qualification test.
The actual evaluation is divided into two parts: In the first part, the QM
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approach was simulated based on a batch of worker responses that had been
generated previously. In the second part, the approach was applied in real time.

Data revision, including scenarios such as classifying, tagging, summarizing
and revising content or audio and video transcription, and the recognition of
(hand) written texts is a class of scenarios which is widely used on Mechanical
Turk. Like many data revision tasks, optical character recognition (OCR) of
handwritten texts cannot be fully automated yet [15]. Even sophisticated tech-
nologies need human assistance in order to achieve satisfying results. The data
set consists of 1176 handwritten single words. In each of the tasks, a worker was
asked to type in a single handwritten word which was displayed as an image
file (JPEG). The expected optimal result (gold standard) was specified by the
author of the handwriting himself.

The MTurk platform provides means for limiting the access to tasks to those
workers who have successfully completed a so called qualification test. Such a
test can be designed individually for each type of task. The CSP/DMV approach
implicitly determines the failure rates of the workers, therefore there is typically
no need to restrict the participation to those who have passed a qualification
test. However, a qualification test was used to reduce the overall cost of the
experiment as it excludes spammers and workers who submit bad quality right
from the start. The test consisted of a series of 10 simple OCR tasks (10 words).
In the simulated experiments, the workers had to type in all of them correctly, in
the live experiments at least nine of the words had to be correct. According to
section 3.5.4 the same initial failure rate of p � 0.1 was assumed for all workers
who had passed the test.

5.2 Simulation based on a batch of raw results

In order to compare the CSP/DMV approach with the traditional majority vote
mechanism, the first part of the evaluation was performed as a simulation on the
basis of worker responses from a batch consisting of multiple redundant instances
per task. The simulation of the traditional majority vote was performed with a
fixed number of raw results. For simulating the approach, a varying number of
raw results were used according to the dynamic concept of the approach.

For generating the responses, a batch of 10 assignments per task was up-
loaded to the MTurk platform on February 1st, 2010. It was prohibited that
a worker handles more than one assignment of the same task. The payment
was $0.01 per task, with Amazon receiving a service charge of $0.005 for each
task. Consequently a total amount of 1, 176 � 10 � 11, 760 data sets has
been collected during the evaluation leading to total expenses of 11, 760 �
p$0.01�$0.005q �$176.40.

5.2.1 Execution performance

Probably the most astonishing result of the experiment was the speed with
which the worker responses were submitted. In the first pre-tests, a batch of
3,528 tasks was completed by 112 workers in less than 15 minutes at an execution
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Figure 4: Worker participation during an experiment on MTurk. Each dot represents
a single worker response. By and by, additional workers are joining as they finish their
work on other types of tasks.

rate of 14,088 tasks per hour. During other experiments we even observed total
execution speeds up to 3 times as fast, because of more workers participating.
We assume that the execution speed depends on the time of day, since most
workers are U.S.- or Indian citizens [16]. Figure 4 illustrates the execution of
the actual experiment in which 11,760 tasks have been processed by 38 workers
in about 2:30 hours. One can observe how workers successively join the process.

5.2.2 Full inspection

In order to examine the efficiency of the DMV independently from the CSP-1,
the first simulation was a full inspection in which the DMV was issued for all
tasks, i.e. the CSP-1 was not used at all. Running only the DMV, the specified
quality goal of ϕmin � 0.95 was even exceeded. Figure 5 illustrates the results
of the DMV compared to the traditional MV approach. The traditional MV
was simulated based on the same data as the DMV by averaging all possible
combinations of 2 to 9 answers within each set of 10 available answers per task
for the two-fold up to the 9-fold MV. For each combination, the most occurring
answer was chosen. If several answers occurred the same amount of times (tie),
a random choice between the answers occurring most was made, as suggested
by Snow et al. [17].

The 5th column of table 3 shows that with an accuracy of 0.983, the DMV
even outperforms the accuracy of a ninefold traditional MV (0.978). That is a
remarkable result given that the DMV is 4 times more efficient as it requires only
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Figure 5: Efficiency of the CSP/DMV approach compared to the traditional majority
vote approach. The vertical axis represents the accuracy of the results, the horizontal
axis shows the average redundancy i.e. the number workers per task.

2.16 workers per task compared to 9 workers per task for the basic ninefold MV
approach. In other words: The DMV approach has reduced the quality man-
agement effort by some 75 percent compared to the traditional MV approach.
The escalation limit was εmin � 0.01 which caused a number of 29 tasks (2.47%)
being escalated. The initial number of possible responses was set to n � 3 which
is the approximate average number of distinct responses expected in the OCR
scenario. If the actual number of distinct responses exceeded 3, n was increased
appropriately.

5.2.3 Random inspection with CSP-1

In a series of tests, the CSP/DMV approach has been evaluated for 3 different
values of AOQL (2nd through 4th column of table 3). For AOQL � 0.05, a
total of 1.51 assignments per HIT was observed on average, which is a significant
improvement even compared to the 100%-inspection with 2.16 assignments per
HIT. 21 HITs were escalated. Some 41 percent of all tasks are inspected. For
AOQL � 0.075 and even with AOQL � 0.025, the quality objectives are again
exceeded. However, there are situations where the model does not manage to
achieve the desired level anymore. The reason for that lies in the gap between
the gold standard and the majority decision of the workers: In several cases, the
majority of the workers identified a certain word (e.g. ”five”) even if the writer
(who represented the gold standard) had written a different word (e.g. ”fine”).
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Table 3: Results of the evaluation of the CSP/DMV quality management approach for
different types of experiments (simulation versus live) and different quality objectives.

Parameter Simulations Live tests

AOQL 0.025 0.050 0.075 full 0.050 full
i 5 6 1 inspection 6 inspection
f 0.582 0.233 0.036 0.233
ϕmin 0.990 0.990 0.990 0.950 0.990 0.950
εmin 0.010 0.010 0.010 0.010 0.010 0.010
Initial n 3 3 3 3 3 3

Accuracy 0.982 0.963 0.965 0.983 0.962 0.978
AFI 0.664 0.410 0.054 1.000 0.616 1.000
Avg. redundancy 1.800 1.510 1.250 2.157 1.828 2.250
Max. redundancy 5 5 4 4 5 5
Escalated tasks 30 21 19 29 95 44

5.3 Live experiments

For the live experiments, the same tasks were used as for the simulated ex-
periments. However, initially only one assignment of each task was published.
Depending on the result returned from the worker and depending on the worker’s
historical failure rate, the QM approach dynamically decided in real time whether
additional assignments had to be published.

5.3.1 Execution performance

In September 2011, two live experiments have been performed on the MTurk
platform using the complete data set of 1176 OCR tasks. For the first experi-
ment, the parameters have been the same as in the simulation of the full inspec-
tion in section 5.2.2, and for the second experiment the same as in the simulation
of the random inspection (AOQL � 0.05) described in section 5.2.3. Both, the
full inspection as well as the random inspection have resulted in an accuracy
comparable to that of the the simulation (table 3). Figure 6 shows the execution
performance of the CSP-1 live experiment which has a different characteristic
than the batch execution of tasks in figure 4. The number of remaining tasks
decreases rather linearly until most of the tasks have been performed. Then, the
execution performance slows down dramatically and asymptotically approaches
zero. This behavior can be explained by the fact that towards the end, the con-
tinuous stream of tasks is interrupted because there are temporarily no tasks
available any more. Therefore, the workers consider the process to be completed
and go find another task type to work on. However, as the DMV increases the
redundancy sequentially, new assignments might be published even after all the
available work had already been completed. This applies in particular to com-
plex tasks for which a higher level of redundancy is required because there is less
agreement among the workers. The effect is further increased by cherry-picking
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Figure 6: Performance of a live experiment with CSP-1 and DMV: Remaining tasks
plotted against the time.

of the workers: Some of the words are so difficult to read that hardly anybody
wants to take the risk of making a mistake. In order to avoid discontinuity and
speed up the finalization of the process, the QM mechanism should switch to a
fixed level of redundancy at the very end of the process. With 61.6% compared
to 41.0%, the average fraction inspected (AFI) of the live experiment with the
CSP-1 is considerably higher than for the simulation. This difference can be
explained with the dynamic nature of the DMV. There is a varying delay be-
fore the new assignments are grabbed by the workers and before they return a
response. As this delay is not covered by the simulation, it takes more time in
the live experiment until the workers build up reputation and until they reach
the random inspection phase of the CSP-1. Figure 7 is a modified version of the
corresponding one in the original paper [6]. It shows how the AFI changes as
the results are being returned to the requester. Note that the horizontal axis is
not time but it is the consecutive number of the tasks being returned. At the
beginning, the AFI is low and the comparison with figure 6 shows that only a
small number of results is being returned in that phase. This is because the
process starts with a 100% inspection phase for all workers: In the beginning,
at least two assignments are needed before a result can be returned which only
shows up in figure 7 after all assignments have been captured. The saw tooth
shape of the curve is caused by the alternating i- and f -inspection phases of the
workers. The AFI increases with the number of tasks, because more workers
are joining the process. In the end, only the most challenging tasks are left over.

6 Related Work

The concept of majority vote is widely used in the context of pServices. Re-
dundant task execution is a basic feature for quality improvement provided by
platforms like MTurk. Sorokin and Forsyth as well as Snow et al. have analyzed
the effect of the approach based on annotation scenarios [18, 17]. Snow et al.
have investigated how many non-experts out of the crowd are needed in order to
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Figure 7: Change of the average fraction inspected (AFI)over the task number during
the live experiment with AOQL � 0.05 .

achieve better results than one expert. Depending on the scenario, they report
a required number of non-experts between two and more than ten. Whitehill et
al. consider how to integrate labeler’s expertise into a majority vote mechanism
for image labeling [19]. They propose a probabilistic model and use it to simul-
taneously infer the label of each image, the expertise of each labeler, and the
difficulty of each image. Complementary approaches for quality management
of pServices include iterative work processes [20], review processes [12] and the
injection of gold standard tasks [18]. A maximum likelihood estimation can be
used to estimate worker failure rates as well as the correct categories of the task
results [21, 12]. The approach leverages the EM algorithm dating back to Dawid
and Skene [22]. Raykar et al. propose a specific form of an EM algorithm which
is capable of generating a gold standard [23]. A decision matrix was proposed
for choosing an adequate QM mechanism depending on the pService scenario [3].

The validity of the majority vote model has been first mathematically proven
by Condorcet’s Jury Theorem [24]. Under the assumption that one of two
outcomes is correct and each decision maker has the independent probability
p ¡ 0.5 to make the right decision, the probability for a correct group decision
is greater than the individual one. Latif-Shabgahi et al. have examined and
classified a large number of software voting algorithms used in safety-critical
systems [25]. In the field of machine learning, Littlestone and Warmuth de-
veloped a dynamic majority algorithm, that acts as a ”master algorithm” and
aggregates the answers of several prediction algorithms in order to determine
the best prediction possible [26]. The aggregation mechanism is a vital part of
each majority vote model. Revow et al. compare five combination strategies
(majority vote, Bayesian, logistic regression, fuzzy integral, and neural network)
and draw the conclusion that majority vote is as effective as the other, more
complicated schemes to improve the recognition rate for the data set used [27].
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7 Discussion

Crowdsourcing and specifically pServices are a far-reaching subject that might
have an extensive impact on the future of employment and human work. There-
fore, it needs no be investigated from an interdisciplinary perspective that goes
far beyond what we can capture within this paper. Our objective is to help
identifying conceptual opportunities and limits that can be utilized as a start-
ing point for a more comprehensive reflection of the topic. With regards to the
opportunities, being able to deliver high quality work results is certainly one of
the major requirements for a business use of pServices.

However, the proposed CSP/DMV approach goes along with two major re-
strictions: First, it can only be applied to a subset of scenarios that deal with
deterministic tasks. Second, it relies on the decision of a majority of workers
and cannot come to better results than the group does. Even if the pool of
contributing people was carefully selected, there remains a risk for a deliberate
or an unintended corruption of work results. For example, if multiple group
members are making the same mistake or if they research their responses from
the same faulty Wikipedia page, the group decision will be incorrect. Avoiding
systematic errors and preventing fraud are therefore certainly two important
aspects for further research.

8 Conclusion and Future Work

We have presented an enhanced statistical model for managing the correctness
of human-based electronic services (people services) which exploits continuous
sampling plans and group decision theory. The model consists of two parts:
The continuous sampling plan CSP-1 is used to track the contributions of each
worker individually based on samples taken from his or her work results. A dy-
namic majority vote (DMV) approach was introduced for the inspection of the
samples which leverages a group decision of multiple workers. The number of
workers participating in that group decision is adjusted dynamically depending
on their responses and on their individual failure rates. By validating only a
fraction of the tasks and keeping the validation effort per task at a minimum,
the model is capable of guaranteeing a certain predefined level of result quality
at minimum costs. We have implemented our model in form of an extendable
software toolkit that acts as a quality management (QM) component for peo-
ple service platforms. An evaluation on Amazon’s Mechanical Turk platform
has shown a reduction of the quality management effort of up to 75 percent
compared to the traditional majority vote approach.

In our ongoing research we are expanding our QM concepts to other aspects
of quality like performance and availability and to more complex use cases, e.g.
multi-labeling scenarios. In order to address situations in which the service
requester wants to balance the overall benefit with the quality management
costs rather than meeting a well defined quality objective at whatever costs, we
are investigating the application of a value of information (VoI) [28] approach.
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