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Like any other large and complex software systems, Service Based Systems (SBSs) must
evolve to fit new user requirements and execution contexts. The changes resulting from
the evolution of SBSs may degrade their design and quality of service (QoS) and may

often cause the appearance of common poor solutions in their architecture, called antipat-
terns, in opposition to design patterns, which are good solutions to recurring problems.
Antipatterns resulting from these changes may hinder the future maintenance and evolu-
tion of SBSs. The detection of antipatterns is thus crucial to assess the design and QoS of

SBSs and facilitate their maintenance and evolution. However, methods and techniques
for the detection of antipatterns in SBSs are still in their infancy despite their importance.
In this paper, we introduce a novel and innovative approach supported by a framework
for specifying and detecting antipatterns in SBSs. Using our approach, we specify ten

well-known and common antipatterns, including Multi Service and Tiny Service, and
automatically generate their detection algorithms. We apply and validate the detection
algorithms in terms of precision and recall on two systems developed independently, (1)

Home-Automation, an SBS with 13 services, and (2) FraSCAti, an open-source imple-
mentation of the Service Component Architecture (SCA) standard with more than 100
services. This validation demonstrates that our approach enables the specification and
detection of SOA antipatterns with an average precision of 90% and recall of 97.5%.

Keywords: Antipatterns; Service based systems; Service Component Architecture; Spec-
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ification; Detection; Quality of service; Design; Software evolution and maintenance.

1. Introduction

Service Oriented Architecture (SOA) is an emerging architectural style that is be-

coming broadly adopted in industry because it allows the development of low-cost,

flexible, and scalable distributed systems by composing ready-made services, i.e.,

autonomous, reusable, and platform-independent software units that can be ac-

cessed through a network, such as the Internet [1]. This architectural style can be

implemented utilizing a wide range of SOA technologies, such as OSGi, SCA, REST,

RPC, and Web Services. SOA allows building different types of Service Based Sys-

tems (SBSs) from business systems to cloud-based systems. Google Maps, Amazon,

eBay, PayPal, and FedEx are examples of SBSs. Spanoudakis and Mahbub defined

SBSs as the composite systems, which are dynamically composed with autonomous

Web services such that they are controlled by some composition processes [2]. We

further generalise the definition:

“SBSs are systems that are built on top of SOA principles and are composed of

services implemented with heterogeneous technologies as their building blocks.”

However, the emergence of such systems raises several software engineering chal-

lenges. Indeed, like any other complex software systems, SBSs must evolve to fit

new user requirements in terms of functionalities and Quality of Service (QoS).

SBSs must also evolve to conciliate new execution contexts, such as addition of new

devices, technologies, and–or protocols. All of these changes may degrade the design

and QoS of SBSs and may often result in the appearance of common poor solutions

to recurring problems, called Antipatterns—by opposition to design patterns, which

are good solutions to problems that software engineers face when designing and

developing systems. In addition to the degradation of the design and QoS, antipat-

terns resulting from these changes make it hard for software engineers to maintain

and evolve systems.

Multi Service and Tiny Service are two common antipatterns in SBSs and it has

been shown, in particular, that Tiny Service is the root cause of many SOA failures
[3]. Multi Service is an SOA antipattern that represents a service implementing a

multitude of methods related to different business and technical abstractions. Such a

service is not easily reusable because of the low cohesion of its methods and is often

unavailable to end-users because it is overloaded. Conversely, Tiny Service is a small

service with just a few methods, which only implements part of an abstraction. Such

service often requires several coupled services to be used together, leading to higher

development complexity and reduced flexibility. These two antipatterns represent

extreme in the balance between cohesion and coupling.

The automatic detection of such antipatterns is an important activity to as-

sess the design and QoS of SBSs and ease the maintenance and evolution tasks

of software engineers. However, few works have been devoted to SOA antipatterns

and methods and techniques for the detection of antipatterns in SBSs are still in
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their infancy. In this paper, we consider the SCA systems to analyse and to detect

antipatterns while keep other SOA technologies as our future work. However, the

availability of free SBSs as test bed is a major challenge that we might face.

Our goal is to assess the design and QoS of SBSs. To achieve this goal, we already

proposed a novel and innovative approach, SODA (Service Oriented Detection for

Antipatterns) supported by a framework, SOFA (Service Oriented Framework for

Antipatterns), to specify and detect SOA antipatterns automatically in SBSs [4].

This framework supports the static and dynamic analysis of SBSs, along with their

combination. Static analysis involves measurement of structural properties related

to the design of SBSs while dynamic analysis requires the runtime execution of SBSs

for the measurement of runtime properties, mainly related to QoS.

The SODA approach relies on the first language to specify SOA antipatterns

in terms of metrics. This language is defined from a thorough domain analysis of

SOA antipatterns from the literature. It allows the specifications of SOA antipat-

terns using high-level domain-related abstractions. It also allows the adaptation of

the specifications of antipatterns to the context of the analysed SBSs. Using this

language and the SOFA framework dedicated to the static and dynamic analysis

of SBSs, we generate detection algorithms automatically from the specifications of

SOA antipatterns and apply them on any SBSs under analysis. The originality of

our approach stems from the ability for software engineers to specify SOA antipat-

terns at a high-level of abstraction using a consistent vocabulary and from the use of

a domain-specific language for automatically generating the detection algorithms.

In our previous work [4], we assessed the effectiveness of the proposed approach

only on a small scale SBS, i.e., Home-Automation. The results indicated that we

had good precision (92.5%) and recall (100%) on Home-Automation, after specify-

ing SOA antipatterns and generating their detection algorithms automatically. In

the extension to our previous work, we apply SODA by specifying 10 well-known

and common SOA antipatterns and generating their detection algorithms. Then, we

validate the detection results in terms of precision and recall on two systems: (1)

Home-Automation, an SBS developed independently by two Masters students that

involves 13 services and (2) FraSCAti [5, 6], an open-source implementation of the

SCA standard with more than 100 services. FraSCAti is almost ten times bigger

than Home-Automation in terms of the number of constituent services. We also

consider two different versions of Home-Automation: (a) an original version, which

includes 13 services and (b) a version modified by adding and modifying services to

inject intentionally some antipatterns. We show that SODA allows the specification

and detection of a representative set of SOA antipatterns with an average precision

of 90.84% and a recall of 97.5%.

In summary, our contributions from [4] include:

(1) A first approach, SODA, for specifying and detecting SOA antipatterns sup-

ported by an underlying framework, SOFA;
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(2) An extensible domain specific language (DSL) to specify SOA antipatterns;

(3) A validation of the approach with a small scale SBS, i.e., Home-Automation.

This paper extends our previous work [4] with the following additional contribu-

tion: an extensive validation of the proposed approach with a large scale SBS, i.e.,

FraSCAti [5,6], which is an open-source implementation of the SCA standard, and

the largest SCA system available. We also complement our previous work [4] with

a more elaborated and up-to-date related work. In addition, we also specify three

new SOA antipatterns and perform their detection on FraSCAti. Thus, we extend

our domain specific language (DSL) to accommodate new metrics, and extend the

repository of detected antipatterns.

The remainder of this paper is organised as follows. Section 2 surveys related

work on the detection of antipatterns and patterns. Section 3 presents our specifica-

tion and detection approach, SODA, along with the specification language and the

underlying detection framework, SOFA. Section 4 presents experiments performed

on Home-Automation and FraSCAti for validating our approach. Finally, Section 5

concludes and sketches future work.

2. Related Work

Architectural (or design) quality is essential for building well-designed, maintain-

able, and evolvable SBSs. Patterns and antipatterns have been recognized as one

of the best ways to express architectural concerns and solutions. However, unlike

Object Oriented (OO) antipatterns, methods and techniques for the detection and

correction of SOA antipatterns are still in their infancy. The next few sections fo-

cus on works that deal with detecting SOA patterns, SOA antipatterns, and OO

antipatterns.

2.1. Detection of SOA Patterns

The current catalog of SOA design patterns is rich enough: there exists a number

of books on SOA patterns and principles [7–9] that provide guidelines and prin-

ciples characterizing “good” service-oriented designs. Such books enable software

engineers to manually evaluate the quality of their systems and provide a ground

for improving design and implementation. For example, Rotem-Gal-Oz et al. [9]

introduced 23 SOA patterns and four SOA antipatterns and discussed their conse-

quences, causes, and corrections. Erl, in his book [7], introduced more than 80 SOA

design-, implementation-, security-, and governance-related patterns.

However, there are a very few contributions on detecting patterns in the SOA

context. One prominent contribution towards detecting SOA patterns is by Upad-

hyaya et al. [10], in which the authors devised an approach based on execution log

analysis. The authors detected 9 service-composition related SOA patterns that are

mostly domain-specific and goal-oriented: if the application is related to the domain

of financial or supply-chain management, then the composition patterns can eas-
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ily be observed based on the use-case scenarios. However, the proposed approach

cannot assess the quality of an SBS design and its performance in general. There

are also a few works on detecting SOA patterns at service-level, i.e., similarities

among services [11], and at process-level, i.e., within workflows [12–14] but none

of them considered patterns at design-level. Unlike these works, we are interested

in patterns and antipatterns, that assess the quality of design and QoS to ease the

maintenance and evolution of SBSs.

2.2. Detection of SOA Antipatterns

Unlike SOA patterns, fewer books and papers deal with SOA antipatterns: most

references are Web sites where SOA practitioners share their experiences in SOA

design and development [15–17]. In 2003, Dudney et al. [18] published the first book

on SOA antipatterns. This book provides a catalog of 53 antipatterns related to the

architecture, design, and implementation of systems based on J2EE technologies,

such as EJB, JSP, Servlet, and Web Services. Most antipatterns described in this

book cannot be detected automatically and are specific to a technology and corre-

spond to variants of the Tiny and Multi Service. Král et al. [3] also described seven

SOA antipatterns, which are caused by an improper usage of SOA standards and

improper practices borrowed from the OO design style.

While the catalog of SOA antipatterns is growing, there are very few dedicated

approaches for detecting SOA antipatterns in SBSs, i.e., the approach proposed by

Trčka et al. [19] and ours in [4]. Trčka et al. [19] proposed a technique to discover

data-flow antipatterns based on model-checking. They specified using temporal logic

nine data-flow antipatterns (e.g., Missing Data, Inconsistent Data, Not Deleted on

Time, etc.) and detected them by analysing data dependencies within workflows

and improper data handling. In [4], we also proposed a means for the specification

and detection of SOA antipatterns that we recall in the following for consistency.

Trčka et al. focused on data-flow antipatterns whereas we focus on detecting an-

tipatterns to assess and improve the quality of design and QoS of SBSs. However,

we observe from the literature that due to the smaller ‘catalog size’ and limited

available resources, i.e., articles, books, journals, etc., the specification and detec-

tion of SOA antipatterns were not considered with greater importance by the SOA

community.

2.3. Detection of OO Antipatterns

In the contrary to the efforts given on detecting SOA patterns and antipatterns, a

number of methods and tools exist for the detection of antipatterns in OO systems
[20–25] and various books have been published on that topic. For example, Brown et

al. [26] introduced a collection of 40 antipatterns, Beck, in Fowler’s highly-acclaimed

book on refactoring [27], compiled 22 code smells that are low-level antipatterns in

source code, suggesting where engineers should apply refactorings.
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Among the previous works, DECOR [20] is a rule-based approach for the speci-

fication and detection of code and design smells in OO systems that can be related

to our work. The authors use a domain specific language to specify smells and then

automatically generate smell-detection algorithms, which are directly executable.

DECOR can detect smells in OO systems with a precision of 60.5% and recall of

100%. Later, Kessentini et al. [21] improved the detection precision by automating

the rule construction. The authors use genetic programming for finding an opti-

mal set of rules to maximize the smell detection. Also, Khomh et al. [28] proposed

an GQM-based (Goal Question Metric) approach relying on the definition of an-

tipattern rather than the rule card, and improved precision and recall from its

state-of-the-art approach, DECOR. However, being inspired from DECOR, we in-

tend to follow a similar approach in the context of the service-oriented paradigm

for detecting SOA antipatterns.

Other related works have focused on the detection of specific antipatterns re-

lated to system’s performance and resource usage and–or given technologies. For

example, Wong et al. [29] used a genetic algorithm for detecting software faults and

anomalous behavior related to the resource usage of a system (e.g., memory usage,

processor usage, thread count). Their approach is based on utility functions, which

correspond to predicates that identify suspicious behavior based on resource usage

metrics. For example, a utility function may report an anomalous behavior corre-

sponding to spam sending if it detects a large number of threads. In another relevant

work, Parsons et al. [30] introduced an approach for the detection of performance

antipatterns specifically in component-based enterprise systems (in particular, J2EE

applications) using a rule-based approach relying on static and dynamic analyses.

Moreover, there exists tools proposed by the industry and the academic com-

munity for automating the detection of OO code smells and antipatterns, such as

cbsdetector [31], FindBugs [32], iPlasma [33], JDeodorant [34], PatOMat [35], PMD
[36], SonarQube [37], SPARSE [38], etc.

2.4. Summary

One of the root causes of OO antipatterns is the adoption of a procedural design

style in OO system whereas for SOA antipatterns, it stems from the adoption of

an OO style design in SOA system [3]. OO detection methods and tools cannot

be directly applied to SOA because SOA focuses on services as first-class entities

whereas OO focuses on classes, which are at a lower-level of granularity. Moreover,

the highly dynamic nature of an SOA environment raises several challenges that

are not faced in OO development and requires more dynamic analyses.

Although different, all these previous works on OO systems, SOA patterns, and

performance antipattern detection form a sound basis of expertise and technical

knowledge for building methods for the detection of SOA antipatterns.
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3. The SODA Approach

In [4], we proposed a three-step approach, named SODA, for the specification and

detection of SOA antipatterns as shown in Figure 1. We recall this approach:

Step 1. Specify SOA antipatterns: This step lies in identifying properties in SBSs

relevant to SOA antipatterns. These properties can also be referred to as metrics.

Using those properties, we define a Domain-Specific Language (DSL) for specifying

antipatterns at a high level of abstraction.

Step 2. Generate detection algorithms: In this step, detection algorithms are gener-

ated automatically from the specifications defined in the previous step.

Step 3. Detect automatically SOA antipatterns: The third step consists of applying,

on the SBSs of interest, the detection algorithms generated in Step 2 to detect SOA

antipatterns.

Figure 1. The SODA Approach.

The following sections describe the first two steps. The third step is described

in Section 4, where we detail the experiments performed for validating SODA.

3.1. Specification of SOA Antipatterns

As a prerequisite to specify antipatterns, we perform a thorough domain analysis of

SOA antipatterns by studying their definitions and specifications in the literature
[3,9,18] and in online resources and articles [15–17]. This domain analysis allows us

to identify properties relevant to SOA antipatterns, including static properties re-

lated to their design (e.g., cohesion and coupling) and also dynamic properties, such

as QoS criteria (e.g., response time and availability). Static properties are proper-

ties that apply to the static descriptions of SBSs, such as WSDL (Web Services

Description Language, for Web Services) and SCDL (Service Component Definition

Language, for SCA) files, whereas dynamic properties are related to the dynamic

behavior of SBSs as observed during their execution. We use these properties as a

base vocabulary to define a DSL, in the form of a rule-based language for specifying

SOA antipatterns. The DSL offers software engineers with high-level domain-related

abstractions and variability points to express different properties of antipatterns de-

pending on their own judgment and context.
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1 rule card ::= RULE CARD:rule cardName { (rule )+ };
2 rule ::= RULE:ruleName { content rule };

3 content rule ::= metric | relationship | operator ruleType (ruleType )+

4 | RULE CARD: rule cardName

5 ruleType ::= ruleName | rule cardName

6 operator ::= INTER | UNION | DIFF | INCL | NEG

7 metric ::= id metric ordi value
8 | id metric comparator num value
9 id metric ::= NMD | NIR | NOR | CPL | COH | ANP | ANPT | ANAM | ANIM

10 | NMI | NTMI | RT | A
11 | NSE | TNP | NI | NUM
12 ordi value ::= VERY HIGH | HIGH | MEDIUM | LOW | VERY LOW
13 comparator ::= EQUAL | LESS | LESS EQUAL | GREATER | GREATER EQUAL

14 relationship ::= relationType FROM ruleName cardinality TO ruleName cardinality
15 relationType ::= ASSOC | COMPOS
16 cardinality ::= ONE | MANY | ONE OR MANY | num value NUMBER OR MANY

17 rule cardName , ruleName , ruleClass ∈ string
18 num value ∈ double

Figure 2. BNF Grammar of Rule Cards.

We specify antipatterns using rule cards, i.e., sets of rules. We formalize rule

cards with a Backus-Naur Form (BNF) grammar, which determines the syntax

of our DSL. Figure 2 shows an extended version of the grammar that we first

proposed in [4] and used to express the rule cards. A rule card is identified by the

keyword RULE CARD, followed by a name and a set of rules specifying this specific

antipattern (Figure 2, line 1). A rule (line 3 and 4) describes a metric, an association

or composition relationship among rules (lines 14-16) or a combination with other

rules, based on set operators including intersection, union, difference, inclusion,

and negation (line 6). Each rule returns a set of services. Therefore, it is possible

to apply a set operator between at least two rules and obtain the result of this set

operation again in the form of a set of services. A rule can refer also to another rule

card previously specified (line 4). A metric associates to an identifier a numerical

or an ordinal value (lines 7 and 8). Ordinal values are defined with a five-point

Likert scale: very high, high, medium, low, and very low (line 12). Numerical values

are used to define thresholds with comparators (line 13), whereas ordinal values are

used to define values compared to all the services of an SBS under analysis (line 12).

We define ordinal values with the box-plot statistical technique [39] to relate ordinal

values with concrete metric values while avoiding setting artificial thresholds.

The metric suite (lines 9-11) encompasses both static and dynamic metrics. The

static metric suite includes (but is not limited to) the following metrics: number of

methods declared (NMD), number of incoming references (NIR), number of outgoing

references (NOR), coupling (CPL), cohesion (COH), average number of parameters in

methods (ANP), average number of primitive type parameters (ANPT), average num-
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ber of accessor methods (ANAM), and average number of identical methods (ANIM).

The dynamic metric suite contains: number of method invocations (NMI), number

of transitive methods invoked (NTMI), response time (RT), and availability (A).

The DSL shown in Figure 2 can be extended by adding new metrics and–or

values. Later in Section 4.6 (see Table 6), we specify and detect three new SOA

antipatterns, which require four new metrics. We also add these metrics to our

DSL. The new metrics (line 11) include: number of services encapsulated (NSE),

total number of parameters (TNP), number of interfaces (NI), and number of utility

methods (NUM). Utility methods provide facilities with logging, data validation, and–

or notifications, rather than any business functionalities.

3.1.1. Example of Rule Cards

Figure 3 illustrates the grammar with the rule cards of the Multi Service and Tiny

Service antipatterns. The Multi Service antipattern is characterized by very high

response time and number of methods and low availability and cohesion. A Tiny

Service corresponds to a service that declares a very low number of methods and has

a high coupling with other services. For the sake of clarity, we illustrate the DSL

with two intra-service antipatterns, i.e., antipatterns within a service. However,

the DSL allows also the specification of inter-service antipatterns, i.e., antipatterns

spreading over more than one service. We provide the rule cards of such other more

complex antipatterns later in the experiments (see Section 4).

1 RULE CARD: MultiService {
2 RULE: MultiService {INTER MultiMethod HighResponse LowAvailability LowCohesion};
3 RULE: MultiMethod {NMD VERY HIGH};
4 RULE: HighResponse {RT VERY HIGH};
5 RULE: LowAvailability {A LOW};
6 RULE: LowCohesion {COH LOW};
7 };

(a) Multi Service

1 RULE CARD: TinyService {
2 RULE: TinyService {INTER FewMethod HighCoupling};
3 RULE: FewMethod {NMD VERY LOW};
4 RULE: HighCoupling {CPL HIGH};
5 };

(b) Tiny Service

Figure 3. Rule Cards for Multi Service and Tiny Service.

Using a DSL offers greater flexibility than implementing ad hoc detection algo-

rithms, because it allows describing antipatterns using high-level, domain-related

abstractions and focusing on what to detect instead of how to detect it [40]. Indeed,

the DSL is independent of any implementation concern, such as the computation

of static and dynamic metrics and the multitude of SOA technologies underlying

SBSs. Moreover, the DSL allows the adaptation of the antipattern specifications to
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the context and characteristics of the analysed SBSs by adjusting the metrics and

associated values.

3.2. Generation of Detection Algorithms

From the specifications of the SOA antipatterns described with the DSL, we auto-

matically generate the detection algorithms for all antipatterns like in [4]. In this

paper, we improved the process of generation of detection algorithms. In [4], we used

Kermeta [41] to automate the algorithm generation. However, in this paper, we used

Ecore [42] and Acceleo [43] which are more recent meta-modeling frameworks than

Kermeta.

Rule Cards 

of Antipatterns
Parsing Models of

Rule Cards

Visiting & Replacing
Generated 

Code

Templates

1 2

Figure 4. Generation of Detection Algorithms.

For the generation of the detection algorithms, first, we parse the rule cards of

each antipattern and represent them as models. Then, we use Ecore to syntacti-

cally validate the rule card models against the meta-model of our DSL. Ecore also

guarantees the correctness of the rule card models. We use a template-based code

generation technique provided by Acceleo. To do this, we define a unique template

for all rule cards consisting of well-defined tags to be replaced with the metric values

defined in the rule cards of antipatterns. Finally, the template is applied to a rule

card model resulting in a Java class, which is directly compilable and executable

without any manual involvement.

Figure 5 shows the template for the Multi Service that we use to generate the

detection code. In the first line of Figure 5, the template includes the meta-model of

our DSL. It also provides tags, which are identified in square brackets and correspond

to the variables to be replaced with rule card name, rule names, metrics, values,

and different operators. Only one template is required for all the rule cards. Thus,

it is easy to maintain them.

Figure 6 shows the detection code generated by Acceleo based on the rule card

and the template defined in Figure 5. This generation creates a Java class with

the operators and different metrics with their concrete values. The class generated

here is directly compilable and executable using the Java classloader. Engineers

only need to provide the concrete implementation of the metrics referred by the

rule card.

This generative process is fully automated to avoid any manual tasks, which

are usually repetitive and error-prone. This process also ensures the traceability

between the specifications of antipatterns with the DSL and their concrete detection

in SBSs using our underlying framework. Consequently, software engineers can focus
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Figure 5. The Snapshot of the template for the Multi Service.

Figure 6. The Snapshot of the generated code for the Multi Service.

on the specification of antipatterns, without considering any technical aspects of the

underlying framework.

3.3. SOFA: Underlying Framework

We develop a framework, called SOFA (Service Oriented Framework for Antipat-

terns), that supports the detection of SOA antipatterns in SBSs. This framework,

designed itself as an SBS and illustrated in Figure 7, provides different services

corresponding to the main steps for the detection of SOA antipatterns: (1) the

automated generation of detection algorithms; (2) the computation of static and

dynamic metrics; and (3) the specification of rules including different sub-services
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for the rule language, the box-plot statistical technique, and the set operators. The

Detection

Algorithm

Generation

SOFA Framework

Rule

Specification Rule

Operator

Boxplot

Metric

Figure 7. The SOFA Framework.

rule-specification and algorithm-generation services provide all constituents to de-

scribe models of rule cards as well as the algorithms to visit rule card models and

to generate detection algorithms from these models. These different constituents

rely on Model Driven Engineering techniques, which provide the means to define a

DSL, parse it, and check its conformance with the grammar. We also use Ecore and

Acceleo for generating the detection algorithms based on models of rule cards.

With respect to the computation of metrics, the generated detection algorithms

call sensors and triggers implemented using the services provided by FraSCAti.

These sensors and triggers, implemented as join points in an aspect-oriented pro-

gramming style, allow, at runtime, the introspection of the interface of services

and the triggering of events to add non-functional concerns, such as transactions,

debugging, and, in our case, the computation of metrics such as response time.

These sensors and triggers are provided at the deployment of the SBS under anal-

ysis. The code excerpt shown in Figure 8 presents the computation of the response

time as a join point at the service interface level. The sensor RTIntentHandler

(line 1) corresponds to an aspect that will intercept a service call and monitor the

service response time. An intent join point (line 2) corresponds to the interface

where a service invocation has been intercepted. The code enabling the computa-

tion of the response time is inserted before and after the invocation of the service

(line 5). This new monitoring aspect is then declared as a service and added to the

SOFA framework within the metric module (line 7).

SCA is a relatively new standard, advocated by researchers and major software

vendors, like IBM and Oracle, for developing technology-agnostic and extensible

SBSs. FraSCAti encompasses different modules for binding, deploying, running,

and monitoring SBSs. Such a platform, i.e., FraSCAti is essential for allowing the
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1: public class RTIntentHandler implements IntentHandler {

2: public Object invoke(IntentJoinPoint ijp) {

3: long startTime = System.currentTimeMillis();
4: Object ret = null;
5: ret = ijp.proceed();
6: long estimatedTime = System.currentTimeMillis() - startTime;

7: Metrics.setValue(“RT”,estimatedTime);

8: return ret;

9: }

10: }

Figure 8. The Example of the usage of Sensors and Triggers.

detection of SOA antipatterns at execution time [6], which provides also runtime

support for the SCA standard. Furthermore, the SOFA framework is implemented

itself as an SCA component to ease its use and evolution and to offer it as a service

to end-users concerned by the design and QoS of their SBSs. Currently, a prototype

version of SOFA is available on http://sofa.uqam.ca/soda.html.

4. Experiments

To demonstrate the completeness and extensibility of our DSL, the accuracy of

the generated algorithms, and the usefulness of the detection results with their

related performance, we performed experiments with 10 antipatterns on two differ-

ent service-based SCA systems, i.e., Home-Automation and FraSCAti [5]. In our

previous work [4], we presented detection results on Home-Automation only. In

this paper, we perform similar experiments on FraSCAti while keeping the same

assumptions as in [4].

4.1. Assumptions

The experiments aim at validating the following four assumptions:

A1. Generality: The DSL allows the specification of many different SOA antipat-

terns, from simple to more complex ones. This assumption supports the applicability

of SODA using the rule cards on 10 SOA antipatterns, composed of 13 static and

dynamic metrics.

A2. Accuracy: The generated detection algorithms have a recall of 100%, i.e., all

existing antipatterns are detected, and a precision greater than 75%, i.e., more than

three-quarters of detected antipatterns are true positive. Given the trade-off between

precision and recall, we assume that 75% precision is significant enough with respect

to 100% recall. This assumption supports the precision of the rule cards and the

accuracy of the algorithm generation and of the SOFA framework.
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A3. Extensibility: The DSL and the SOFA framework are extensible for adding

new SOA antipatterns. Through this assumption, we show how well the DSL, and

in particular the metrics, with the supporting SOFA framework, can be combined

to specify and detect new antipatterns.

A4. Performance: The computation time required for the detection of antipatterns

using the generated algorithms is reasonably very low, i.e., in the order of few sec-

onds. This assumption supports the performance of the services provided by the

SOFA framework for the detection of antipatterns.

4.2. Subjects

We apply our SODA approach using the SOFA framework to specify 10 different

SOA antipatterns. Table 1 summarizes these antipatterns that we specified in [4], of

which the first seven are from the literature and three others has been defined in our

previous work, namely, Bottleneck Service, Service Chain, and Data Service. These

new antipatterns are inspired from OO code smells [27]. In these summaries, we

highlight in bold the key concepts relevant for the specification of their rule cards

given in Figure 9.

4.3. Objects

We perform the experiments on two different service-based SCA systems, i.e., Home-

Automation and FraSCAti [5, 6]. Home-Automation has been developed indepen-

dently for controlling remotely many basic household functions for elderly home-

care support. It includes 13 services with a set of 7 predefined use-case scenarios

for executing it at runtime. We use two versions of Home-Automation: the original

version of the system, which includes 13 services, and a version modified by adding

and modifying services to inject intentionally some antipatterns. The modifications

on Home-Automation have been performed by an independent engineer to avoid

biasing the results.

Figures 11 and 12 show the high-level design for Home-Automationa and FraS-

CAtib respectively. Among more than 100 services, Figure 12 shows only the prin-

cipal service components of FraSCAti.

FraSCAti is itself implemented as an SCA system composed of 13 SCA compos-

ites, for a total of 91 SCA components, with 130 provided services. FraSCAti is the

largest SCA system currently freely available. It is an open source implementation

of the SCA standard, and supports components implementation with different tech-

nologies (BPEL, Java, Spring, OSGi, and Java supported languages, etc.) and also

multiple binding technologies for communication between components (i.e., RMI,

SOAP, REST, JSON, JNA, and UPnP). Like Home-Automation, in FraSCAti we

define a set of 6 scenarios and execute them to perform the detection.

awebsvn.ow2.org/listing.php?repname=frascati&path=/trunk/demo/home-automation/
bfrascati.ow2.org/doc/1.4/ch12s04.html
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1 RULE CARD: DataService {
2 RULE: DataService {INTER HighDataAccessor SmallParameter PrimitiveParameter HighCohesion};
3 RULE: SmallParameter {ANP LOW};
4 RULE: PrimitiveParameter {ANPT HIGH};
5 RULE: HighDataAccessor {ANAM VERY HIGH};
6 RULE: HighCohesion {COH HIGH};
7 };

(a) Data Service

1 RULE CARD: TheKnot {
2 RULE: TheKnot {INTER HighCoupling LowCohesion LowAvailability HighResponse};
3 RULE: HighCoupling {CPL VERY HIGH};
4 RULE: LowCohesion {COH VERY LOW};
5 RULE: LowAvailability {A LOW};
6 RULE: HighResponse {RT HIGH};
7 };

(b) The Knot

1 RULE CARD: ChattyService {
2 RULE: ChattyService { INTER TotalInvocation DSRuleCard};
3 RULE: DSRuleCard {RULE CARD: DataService};
4 RULE: TotalInvocation {NMI VERY HIGH};
5 };

(c) Chatty Service

1 RULE CARD: NobodyHome {
2 RULE: NobodyHome {INTER IncomingReference MethodInvocation};
3 RULE: IncomingReference {NIR GREATER 0};
4 RULE: MethodInvocation {NMI EQUAL 0};
5 };

(d) Nobody Home

1 RULE CARD: BottleneckService {
2 RULE: BottleneckService {INTER LowPerformance HighCoupling};
3 RULE: LowPerformance {INTER LowAvailability HighResponse};
4 RULE: HighResponse {RT HIGH};
5 RULE: LowAvailability {A LOW};
6 RULE: HighCoupling {CPL VERY HIGH};
7 };

(e) Bottleneck Service

1 RULE CARD: SandPile {
2 RULE: SandPile {COMPOS FROM ParentService ONE TO ChildService MANY};
3 RULE: ChildService {ASSOC FROM ContainedService MANY TO DataSource ONE};
4 RULE: ParentService {COH HIGH};
5 RULE: DataSource {RULE CARD: DataService};
6 RULE: ContainedService {NRO > 1};
7 };

(f) Sand Pile

1 RULE CARD: ServiceChain {
2 RULE: ServiceChain {INTER TransitiveInvocation LowAvailability};
3 RULE: TransitiveInvocation {NTMI VERY HIGH};
4 RULE: LowAvailability {A LOW};
5 };

(g) Service Chain

1 RULE CARD: DuplicatedService {
2 RULE: DuplicatedService {ANIM HIGH};
3 };

(h) Duplicated Service

Figure 9. Rule Cards for Different Antipatterns.
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Table 1. List of Antipatterns. (The first seven antipatterns are extracted from the literature and

three others are newly defined.)

Multi Service also known as God Object corresponds to a service that implements a multitude of methods
related to different business and technical abstractions. This service aggregates too many methods into
a single service, such a service is not easily reusable because of the low cohesion of its methods and
is often unavailable to end-users because of it is overloaded , which may also induce a high response
time [18].

Tiny Service is a small service with few methods, which only implements part of an abstraction. Such
service often requires several coupled services to be used together, resulting in higher development
complexity and reduced usability . In the extreme case, a Tiny Service will be limited to one method ,
resulting in many services that implement an overall set of requirements [18].

Sand Pile is also known as “Fine-Grained Services”. It appears when a service is composed by multiple
smaller services sharing common data. It thus has a high data cohesion. The common data shared may
be located in a Data Service antipattern (see below) [3].

Chatty Service corresponds to a set of services that exchange a lot of small data of primitive types,
usually with a Data Service antipattern. The Chatty Service is also characterized by a high number of
method invocations. Chatty Services chat a lot with each other [18].

The Knot is a set of very low cohesive services, which are tightly coupled . These services are thus
less reusable. Due to this complex architecture, the availability of these services may be low , and their
response time high [9].

Nobody Home corresponds to a service, defined but actually never used by clients. Thus, the methods
from this service are never invoked , even though it may be coupled to other services. Yet, it still requires
deployment and management, despite of its non-usage [16].

Duplicated Service, a.k.a. The Silo Approach, introduced by IBM, corresponds to a set of highly similar
services. Because services are implemented multiple times as a result of the silo approach, there may
have common or identical methods with the same names and–or parameters [15].

Bottleneck Service is a service that is highly used by other services or clients. It has a high incoming
and outgoing coupling . Its response time can be high because it may be used by too many external
clients, for which clients may need to wait to get access to the service. Moreover, its availability may
also be low due to the traffic.

Service Chain a.k.a. Message Chain [27] in OO systems corresponds to a chain of services. The Service
Chain appears when clients request consecutive service invocations to fulfill their goals. This kind of
dependency chain reflects the subsequent invocation of services.

Data Service, a.k.a. Data Class [27] in OO systems, corresponds to a service that contains mainly
accessor methods, i.e., getters and setters. In the distributed applications, there can be some services
that may only perform some simple information retrieval or data access to such services. Data Services
contain usually accessor methods with small parameters of primitive types. Such service has a high data
cohesion.

Table 3 shows different structural properties for the two different versions of

Home-Automation and FraSCAti. Details on the two versions of Home-Automation

system including all the scenarios and involved services are available online at

http://sofa.uqam.ca/soda. More details on FraSCAti design are also available on

the FraSCAti Web site (http://frascati.ow2.org).
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Table 2. List of Three New Antipatterns.

God Component in SCA technology corresponds to a component that encapsulates a multitude of ser-
vices. This component represents high responsibility enclosed by many methods with many different
types of parameters to exchange. It may have a high coupling with the communicating services. Being
at the component-level, God Component is at a higher level of abstraction than the Multi Service, which
is at the service-level, and usually aggregates a set of services [18].

Bloated Service is an antipattern related to service implementation where services in SOA become ‘blobs’
with one large interface and lots of parameters. Bloated Service performs heterogeneous operations with
low cohesion among them. It results in a system with less maintainability, testability, and reusability
within other business processes. It requires the consumers to be aware of many details (i.e., parameters)
to invoke or customize them [17].

Stovepipe Service is an antipattern with large number of private or protected methods that primarily
focus on performing infrastructure and utility functions (i.e., logging, data validation, notifications, etc.)
and few business processes (i.e., data type conversion), rather than focusing on main operational goals
(i.e., very few public methods). This may result in services with duplicated code, longer development
time, inconsistent functioning, and poor extensibility [18].

1 RULE CARD: GodComponent {
2 RULE: GodComponent {INTER HighEncapsulatedService MultiMethod HighParameter};
3 RULE: HighEncapsulatedService {NOSE HIGH};
4 RULE: MultiMethod {NMD VERY HIGH};
5 RULE: HighParameter {TNP VERY HIGH};
6 };

(a) God Component

1 RULE CARD: BloatedService {
2 RULE: BloatedService {INTER SingleInterface MultiMethod HighParameter LowCohesion};
3 RULE: SingleInterface {NOI EQUAL 1};
4 RULE: MultiMethod {NMD VERY HIGH};
5 RULE: HighParameter {TNP VERY HIGH};
6 RULE: LowCohesion {COH LOW};
7 };

(b) Bloated Service

1 RULE CARD: StovepipeService {
2 RULE: StovepipeService {INTER HighUtilMethod FewMethod DuplicatedCode};
3 RULE: HighUtilMethod {NUM VERY HIGH};
4 RULE: FewMethod {NMD VERY LOW};
5 RULE: DuplicatedCode {ANIM HIGH};
6 };

(c) Stovepipe Service

Figure 10. Rule cards for three new Antipatterns

4.4. Process

Using the SOFA framework, we generated the detection algorithms corresponding

to the rule cards of the 10 antipatterns. Then, we applied these algorithms at run-

time on the Home-Automation system using its set of 7 predefined scenarios and
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Figure 11. The Design of Home-Automation System.

Table 3. Structural properties for the two versions of Home-Automation and FraSCAti (NOS:
Number of Services, NOM: Number of Methods, NOC: Number of Classes).

System Name Version Size NOS NOM NOC

Home Automation 1.0 original 3.2KLOC 13 226 48
Home Automation 1.1 evolved 3.4KLOC 16 243 52
FraSCAti original 26.75KLOC 130 1882 403

on FraSCAti. Finally, we validated the detection results by analysing the suspicious

services manually to: (1) validate that these suspicious services are true positives

and (2) identify false negatives (if any), i.e., missing antipatterns. For this last

validation step, we use the measures of precision (Equation 1), recall (Equation 2)

and F1-measure (Equation 3) [44]. Precision estimates the ratio of true antipatterns

identified among the detected antipatterns, while recall estimates the ratio of de-

tected antipatterns among the existing antipatterns.

precision =
|{existing antipatterns} ∩ {detected antipatterns}|

|{detected antipatterns}|
(1)

recall =
|{existing antipatterns} ∩ {detected antipatterns}|

|{existing antipatterns}|
(2)

We also compute F1-measure, i.e., the weighted average of precision and recall,

to measure the accuracy of our detection algorithms.
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Figure 12. The Design of FraSCAti taken from FraSCAti Web site.

F1-measure = 2× precision× recall

precision+ recall
(3)

The validation for Home-Automation and FraSCAti has been carried out man-

ually by an independent software engineer. We provided him the complete descrip-

tions of the target SOA antipatterns, and the complete design of the two versions

of Home-Automation and FraSCAti. Manual validation is laborious task and may

require 1 to 3 days for an engineer to validate depending on the size of the target

SBS. We also reported the FraSCAti detection results to its development team. The

FraSCAti development team provided their feedback stating if they agree or not

with our preliminary detection results including the Multi Service, Tiny Service,

Chatty Service, The Knot, Bottleneck Service, and Data Service. They validate our

detection results based on the antipatterns textual descriptions and the rule cards

we defined, and they agreed with us on five out of these six antipatterns. They do

not validate the Multi Service because of the subjectivity of the rule card, that we

modified afterwards.
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4.5. Results

We present here the detection results for Home-Automation and FraSCAti followed

by a general discussion. We then discuss the assumptions for both the systems in

Section 4.6.

4.5.1. Results on Home-Automation

Table 4 presents the results for the detection of the 10 SOA antipatterns on the

original and evolved version of Home-Automation that we also presented in [4]. For

each antipattern, the table reports the involved services in the second column, the

analysis method: static (S) and–or dynamic (D) in the third, then the metric values

of rule cards in the fourth, and finally the detection times in the fifth. The three

last columns report the precision, recall, and F1-measure.

4.5.2. Details of the Results on Home-Automation

We briefly present the detection results of the Tiny Service and Multi Service. The

service IMediator has been identified as a Multi Service because of its very high

number of methods (i.e., NMD equal 13) and its low cohesion (i.e., COH equal 0.027).

These metric values have been evaluated by the Boxplot service respectively as high

and low in comparison with the metric values of other services of Home-Automation.

For example, for the metric NMD, the Boxplot estimates the median value of NMD in

Home-Automation as equal to 2. In the same way, the detected Tiny Service has a

very low number of methods (i.e., NMD equal 1) and a high coupling (i.e., CPL equal

0.44) with respect to other values. The values of the cohesion COH and coupling

CPL metrics range from 0 to 1. In the original version of Home-Automation, we did

not detect any Tiny Service. We then extracted one method from IMediator and

moved it in a new service named MediatorDelegate and then this service has been

detected as a Tiny Service.

We also detected seven other antipatterns within the original version of Home-

Automation (see Table 4), namely, Duplicated Service, Chatty Service, Sand Pile,

The Knot, Bottleneck Service, Data Service, and Service Chain. All these antipat-

terns involve more than one service, except Data Service and Duplicated Service.

The service PatientDAO has been detected as a Data Service because it performs

simple data accesses. Moreover, in the evolved version, we detected the Nobody

Home antipattern, after an independent developer introduced the service Use-

lessService, which is defined but never used in any scenarios. We detected a

consecutive chain of invocations of IMediator → SunSpotService → PatientDAO

→ PatientDAO2, which forms a Service Chain, whereas engineers validated IMe-

diator → PatientDAO → PatientDAO2. Therefore, we had precision of 75% and

recall of 100% for the Service Chain antipattern. Therefore, we had precision of 75%

and recall of 100% for the Service Chain antipattern. The SunSpotService was not

validated by the engineers and thus, it was considered as a false positive. However,
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Table 4. Results for the detection of 10 SOA Antipatterns in the original and evolved version of
Home-Automation system (S: Static, D: Dynamic).

AntipatternName ServicesInvolved Analysis Metrics Time Precision Recall F1

Tiny Service MediatorDelegate S
NOR=4

0.194s
[1/1] [1/1]

100%CPL=0.440
NMD=1 100% 100%

Multi Service IMediator S, D
COH=0.027

0.462s [1/1] [1/1] 100%NMD=13
RT=132ms 100% 100%

Duplicated Service
CommunicationService

S ANIM=25% 0.215s
[2/2] [2/2]

100%
IMediator 100% 100%

Chatty Service

IMediator

S, D

ANP=1.0;ANPT=1.0;

0.383s
[2/2] [2/2]

100%

NMI=3;ANAM=100%;
COH=0.167

PatientDAO
ANP=1.0;ANPT=1.0; 100% 100%
NMI=3;ANAM=100%;
COH=0.167

Nobody Home UselessService S, D
NIR>0

1.154s
[1/1] [1/1] 100%

NMI=0 100% 100%

Sand Pile HomeAutomation S

NCS=13

0.310s [1/1] [1/1] 100%
ANP=1.0
ANPT=1.0
ANAM=100% 100% 100%
COH=0.167

The Knot

IMediator

S, D

COH=0.027

0.412s
[1/2] [1/1]NIR=7

PatientDAO NOR=7 66.67%
CPL=1.0 50% 100%
RT=57ms

Bottleneck Service
IMediator

S, D

NIR=7;NOR=7;

0.246s
[2/2] [2/2] 100%CPL=1.0;RT=40ms

PatientDAO
NIR=4;NOR=4; 100% 100%
CPL=0.57;RT=2ms

Data Service PatientDAO S

ANAM=100%

0.268s
[1/1] [1/1] 100%COH=0.167

ANPT=1.0 100% 100%
ANP=1.0

Service Chain

IMediator

D NTMI=4 0.229s
[3/4] [3/3] 85.71%SunSpotService

PatientDAO 75% 100%
PatientDAO2

Average 0.387s
[15/17] [15/15]

95.24%
92.5% 100%

the detected chain exists in the system but only in one scenario. Engineers did not

consider the full chain as harmful and therefore did not classify it as an antipattern.

Also, our detection algorithm reported PatientDAO service as the Knot antipattern

because the availability (A) value was discarded, which was very high, i.e., 100%. In

contrast, we specified the availability (A) in the Knot antipattern as low. Moreover,

we detected the HomeAutomation itself as Sand Pile.

4.5.3. Results on FraSCAti

We perform another experiment with FraSCAti as a new contribution with respect

to Home-Automation from [4]. Table 5 presents the results for the detection of the

10 SOA antipatterns in FraSCAti. For each antipattern, the table also reports the
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suspicious services in the second column, the metric values of rule cards in the

third, and finally the detection times in the fourth. The three last columns report

the precision, recall, and F1-measure.

Table 5. Results for the detection of 10 SOA Antipatterns in the original version of FraSCAti (S:

Static, D: Dynamic).

AntipatternName ServicesInvolved Analysis Metrics Time Precision Recall F1

Tiny Service sca-parser S NMD=1;CPL=0.56 0.067s
[1/1] [1/1]

100%
100% 100%

Multi Service
juliac

S, D
COH=0.1;NMD=5;RT=1018ms

0.066s
[1/1] [1/2]

66.67%
Explorer-GUI n/a 100% 50%

Duplicated Service not present S n/a 0.302s
[0/0] [0/0]

100%
100% 100%

Chatty Service not present S, D n/a 0.057s
[0/0] [0/0]

100%
100% 100%

Nobody Home

NativeCompiler

S, D

NMI=0;NIR>0

0.057s
[3/4] [3/3]

85.71%
ServletManager NMI=0;NIR>0
WsdlCompiler NMI=0;NIR>0 75% 100%
BPELEngine NMI=0;NIR>0

Sand Pile not present S n/a 0.058s
[0/0] [0/0]

100%
100% 100%

The Knot sca-parser S, D CPL=0.84;COH=0.08;RT=44ms 0.07s
[1/1] [1/1]

100%
100% 100%

Bottleneck Service
sca-composite

S, D

RT=41ms;CPL=0.96;

0.086s
[1/2] [1/1]

66.67%
NIR=16;NOR=8

sca-parser
RT=45ms;CPL=0.84; 50% 100%
NIR=16;NOR=5

Data Service not present S n/a 0.07s
[0/0] [0/0]

100%
100% 100%

Service Chain

MembraneGeneration

D

NTMI=4

0.056s
[2/3] [2/2]

80%

Processor
ComponentFactory
MembraneGeneration
TypeFactory

NTMI=4
Processor
ComponentFactory 66.67% 100%
MembraneGeneration
Processor

NTMI=4
Processor
BindingFactory
PluginResolver

Average 0.089s 89.17% 95% 89.91%

4.5.4. Details of the Results on FraSCAti

We discuss some interesting detection results of FraSCAti reported in Table 5. We

detect juliac as Multi Service because of its very high response time (RT equal

1,018ms), low cohesion (COH equal 0.1), and high number of methods declared (NMD

equal 5). The median values estimated by the Boxplot service, i.e., median of RT is

4ms, COH is 0.1, and NMD is 1 compared to other services in FraSCAti classify juliac

as Multi Service. juliac is likely a true positive because it implements six different

features belonging to two different abstractions. Indeed, juliac provides services

for the membrane generation and the Java compilers. Therefore, it is low cohesive
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and highly used because each component needs a membrane, and each composite

file needs to be compiled by the Java compiler. Moreover, these actions are resource-

consuming and requires more execution time than other services. Manual inspection

by the engineer also validated this detection.

Subsequently, the inspection of FraSCAti also allowed the identification of

Explorer-GUI as a Multi Service. The FraSCAti development team confirmed that

this service uses a high number of other services provided by FraSCAti. Indeed,

this component encapsulates the graphical interface of FraSCAti Explorer, which

aims to provide an exhaustive interface of FraSCAti functionalities. SOFA was not

able to detect it because the execution scenarios did not involve the graphical inter-

face of FraSCAti Explorer. Therefore, with one service detected as true positive,

and with one missing occurrence of Multi Service, i.e., Explorer-GUI, we have a

precision of 100% and recall of 50%.

We also detect sca-parser as the Tiny Service with its small number of methods

(NMD equal 1) and a high coupling (CPL equal 0.56). The engineer and the FraSCAti

team also validated this detection. The boxplot median values are respectively 1 and

0.11 for NMD and CPL. After the manual inspection of FraSCAti implementation,

the independent engineer identified that sca-parser contains only one method,

i.e., parse(QName qname, ParsingContext parsingContex t). In some cases, for

a given metric, the median value and the high and–or low value might be identical if

the values of most services are equal. For example, the median and low values are the

same for NMD because out of 86 analysed services, 50 services have the NMD value of 1.

While concerned about the coupling CPL, sca-parser has dependency references

to five other services (i.e., sca-metamodel-*) that give a high coupling. In fact,

the coupling CPL values presented here are calculated on the logarithmic scale,

i.e., the more references a service has to other services, the more highly coupled it

is. The FraSCAti development team also validated sca-parser as a Tiny Service.

However, according to them, sca-parser is invoked alone when only a reading

for an SCA composite file is requested. However, FraSCAti performs more tasks

than just reading and–or parsing an SCA composite file, and these other tasks are

performed by other services such as AssemblyFactory. These several delegation

also explains the high outgoing coupling. The appropriate detection of only one

service as a Tiny Service leads to a precision and recall of 100%.

The sca-composite and sca-parser services are detected as Bottleneck Service

in FraSCAti with a high response time (i.e., RT values are 41ms and 45ms, respec-

tively) and a very high coupling (i.e., CPL values are 0.96 and 0.84). The coupling

CPL is calculated by means of NIR and NOR, which are also very high for these two

services. As estimated by the Boxplot service, the median for CPL and RT are 0.68

and 5ms respectively. After manually analysing the FraSCAti design, the engineer

found that only the sca-parser service is highly used by other services, and vali-

dated sca-parser as the only Bottleneck Service. The FraSCAti development team

also agreed with this manual detection result, and confirmed that if too many exter-

nal clients try to invoke the sca-parser service, they might wait to get the access.
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The precision and recall for Bottleneck Service are 50% and 100% respectively, with

one false positive. The sca-composite is detected as Bottleneck Service and is a

false positive again because of the value of availability (A), which is always very high,

i.e., 100%. For an SBS with several Composites, while the FraSCAti invokes the

sca-parser service to parse all the relevant Composites, the sca-parser service

naturally has the low availability. This low availability is mainly due to multiple

invocations simultaneously by several clients to parse their Composites using the

same sca-parser. Since, we have the availability (A) of 100% for all the components

and did not consider the value of availability while reporting suspicious services, the

sca-parser was reported as Bottleneck Service.

We also report three other detected SOA antipatterns in FraSCAti, namely

{NativeCompiler, ServletManager, WsdlCompiler, and BPELEngine} as No-

body Home, sca-parser as The Knot, and {MembraneGeneration, TypeFactory,

and Processor} as involved in a Service Chain. The BPELEngine has been detected

as a Nobody Home antipattern because its implementation does not support the

weaving of non-functional code such as sensors and triggers (see section 3.3). In

fact, all the BPEL implementations of FraSCAti are, by default, discarded from

the weaving algorithms provided by FraSCAti. We also detected one false positive

for the Service Chain (Processor → Processor → BindingFactory → PluginRe-

solver) that was not confirmed by the engineers. This detection was due to the fact

that the Processor service calls itself using a public method and artificially extends

the chain of calls. We may consider the modification of the Service Chain detection

algorithm in order to eliminate self calls. Our detection algorithms do not detect

any Duplicated Service, Chatty Service, Sand Pile, and Data Service antipatterns

in FraSCAti. The absence of Sand Pile and Chatty Service is obvious, as they are

related to Data Service and evidently, there is no such antipattern in FraSCAti, i.e.,

as confirmed by the FraSCAti team and our detection results. Our detection algo-

rithms do not identify any suspicious services, after calculating the metric values we

define in rule cards for those antipatterns. Indeed, as validated by FraSCAti team,

there are no Duplicated Service and Data Service antipatterns in FraSCAti, and our

detection algorithms do not filter any services as false positives either. Therefore,

we obtain a precision and recall of 100%. However, like in Home-Automation, the

availability (A) for the services in FraSCAti is 100%, because services are deployed

locally.

In summary, very few services, i.e., 10 are actually involved in 6 antipatterns

(4 antipatterns are not present) in FraSCAti, in comparison to the high number of

services, i.e., 130 services. FraSCAti is well designed with continuous maintenance

and evolution. Mostly, services (e.g., sca-parser and sca-composite-*) related

to parsing and handling the composite file are involved in the antipatterns. The

presence of such antipatterns in a system is not surprising because there is no other

way to develop a parser without introducing a high coupling among services. More

detailed on FraSCAti results are available at http://sofa.uqam.ca/soda.html.
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4.6. Discussion on the Assumptions

We now verify each of the four assumptions stated previously using the detection

results.

A1. Generality: The DSL allows the specification of many different SOA antipat-

terns, from simple to more complex ones. Using our DSL, we specified 10 SOA

antipatterns described in Table 1, as shown in rule cards given in Figure 3 and

9. These antipatterns range from simple ones, such as the Tiny Service and Multi

Service, to more complex ones such as the Bottleneck and Sand Pile, which involve

several services and complex relationships. In particular, Sand Pile has both the

ASSOC and COMPOS relation types. Also, both Sand Pile and Chatty Service refer in

their specifications to another antipattern, namely DataService. Thus, we show that

we can specify from simple to complex antipatterns, which support the generality

of our DSL.

A2. Accuracy: The generated detection algorithms have a recall of 100%, i.e., all

existing antipatterns are detected, and a precision greater than 75%, i.e., more than

three-quarters of detected antipatterns are true positive. For Home-Automation, as

indicated in Table 4, we obtain a recall of 100%, which means all existing antipat-

terns are detected, whereas the precision is 92.5%. We have high precision and recall

because the analysed system, Home-Automation is a small SBS with 13 services.

Also, the evolved version includes two new services. Therefore, considering the small

but significant number of services and the well defined rule cards using DSL, we

obtain such a high precision and recall. For the original Home-Automation version,

out of 13 services, we detected 6 services that are responsible for 8 antipatterns. Be-

sides, we detected 2 services (out of 15) that are responsible for 2 other antipatterns

in the evolved system.

Furthermore, for FraSCAti, as shown in Table 5, we achieve a recall of 95%

and a precision of 89.17%. The accuracy of our detection algorithms is acceptable,

considering the high of number of services in FraSCAti, i.e., 130 services (see Table

3). According to our detection results, in total 15 services are responsible for 10 an-

tipatterns in FraSCAti. We achieve our expected accuracy for detecting antipatterns

even for a large SBS like FraSCAti and can support the second assumption.

A3. Extensibility: The DSL and the SOFA framework are extensible for adding

new SOA antipatterns. The DSL has been initially designed for specifying the seven

antipatterns described in the literature (see Table 1). Then, through inspection of

the SBS and inspiration from OO smells, we added three new antipatterns, namely

the Bottleneck Service, Service Chain, and Data Service. When specifying these new

antipatterns, we reused four already-defined metrics and we added in the DSL and

SOFA four more metrics (ANAM, NTMI, ANP, and ANPT). The language is flexible in

the integration of new metrics. However, the underlying SOFA framework should

also be extended to provide the operational implementations of the new metrics.

To further show the extensibility of our DSL and our framework, apart from
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Table 6. List of new metrics added to Our DSL

Metric ID Description
NSE Number of Services Encapsulated
TNP Total Number of Parameters
NI Number of Interfaces
NUM Number of Utility Methods

the antipatterns in [4], we also specify three more new SOA antipatterns in this

paper, namely God Component, Bloated Service, and Stovepipe Service. Table 2

summarizes these three newly specified antipatterns and Figure 10 provides the

corresponding rule cards. We defined four new metrics for specifying these new

antipatterns. Table 6 lists these new metrics. The results of their detection on

FraSCAti is reported in Table 7. We report the suspicious services in column 2, and

corresponding metric values for each new antipattern in column 4. We also compute

and report the precision, recall and F1-measure for each antipattern (columns 6-

8). Such an addition can only be realized by skilled developers with our framework,

which may require from 1 hour to 2 days according to the complexity of the metrics.

Thus, by extending the DSL with these three new antipatterns and integrating

them within the SOFA framework for the detection, we support A3.

Table 7. Results for the detection of 3 new SOA Antipatterns in the original version of FraSCAti
(S: Static)

Antipattern ServicesInvolved Analysis Metrics Time Precision Recall F1

God Component
FraSCAti

S
NOSE=6;NMD=12;TNP=12

0.069s
[2/2] [2/2]

100%
component-factory NOSE=5;NMD=7;TNP=12 100% 100%

Bloated Service

component-factory

S

NOI=1;NMD=7;

0.071s

[3/3] [3/3]

100%

TNP=12;COH=0.066

factory
NOI=1;NMD=7;
TNP=12;COH=0.066 100% 100%

frascati-binding-http
NOI=1;NMD=5;
TNP=8;COH=0.065

Stovepipe Service not present S n/a
0.081s [0/0] [0/0]

100%
100% 100%

A4. Performance: The computation time required for the detection of antipatterns

using the generated algorithms is reasonably very low, i.e., in the order of few sec-

onds. We perform all experiments on an Intel Dual Core at 3.30GHz with 4GB

of RAM. Computation times include computing metric values, introspection delay

during static and dynamic analyses, and applying detection algorithms, and do not

include the time while targeted services are processing or the time belonging to

availability or response time metrics. The computation times for the detection of

antipatterns in Home-Automation is reasonably low, i.e., ranging from 0.194s to

1.154s with an average of 0.387s (see Table 4).

Moreover, even for a large scale SBS like FraSCAti, we record a bit lower detec-

tion time, i.e., ranging from 0.056s to 0.302s with an average of 0.089s. Given a larger
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SBS, the detection time for FraSCAti should be higher than Home-Automation.

However, we improved the SOFA implementation since our earlier work [4]. Previ-

ously in [4], we compute every metric for each antipattern whenever they appear

in the rule cards. In this paper, for FraSCAti, we improve the way SOFA compute

different metrics. Indeed, we now compute all the metrics only once and use them

for various rule cards. This new implementation strategy substantially reduces the

detection time.

The detection times depend mostly on computing some static metrics, such as

NMD, CPL, COH, or ANIM. Computing those metrics requires thorough inspection of

source code and sometimes a high number of pairwise comparisons among method

signatures and/or parameters. However, the complexity of our detection algorithms

are linear, i.e., O(n), with n represents the number of rules. Therefore, the cu-

mulative detection times will increase with the number of rules in each rule card,

and with the number of antipatterns to be detected in the target system. Such

low computation times suggest that SODA could be applied on SBSs even with a

larger number of services. Thus, we show that we support the fourth assumption

positively.

4.7. Threats to Validity

The main threat to the validity of our results in [4] concerned their external valid-

ity, i.e., the possibility to generalise our approach to other SBSs. In this paper, we

minimize the external validity by experimenting with another large scale SCA sys-

tem, i.e., FraSCAti. As a part of the future work, we plan to experiment with other

SBSs, if available. For internal validity, the detection results depend on the services

provided by the SOFA framework, and also on the antipattern specifications using

rule cards. We performed experiments on a representative set of antipatterns to

lessen this threat to the internal validity. The subjective nature of specifying and

validating antipatterns is a threat to construct validity. We try to lessen this threat

by defining rule cards based on thorough literature review and domain analysis,

and by involving an independent engineer and the FraSCAti team in the valida-

tion. We minimize reliability validity by automating the generation of the detection

algorithms, where each subsequent detection produce consistent sets of results with

anticipated precision and recall.

5. Conclusion and Future Work

The specification and detection of SOA antipatterns are important to assess the

design and QoS of SBSs and thus ease the maintenance and evolution of SBSs. In

this paper, we presented a novel approach, named SODA, for the specification and

detection of SOA antipatterns, and SOFA, its underlying framework. We proposed

a DSL for specifying SOA antipatterns and a process for automatically generating

detection algorithms from the antipattern specifications. We applied and validated
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SODA with 10 different SOA antipatterns on two SCA systems developed indepen-

dently: (i) an original and an evolved version of Home-Automation with 13 services

and (ii) FraSCAti, an open-source implementation of the SCA standard contain-

ing more than 100 services (almost 10 times bigger than Home-Automation). We

demonstrated the usefulness of our approach and discussed its precision and recall.

As future work, we want to explore other approaches for detecting SOA antipat-

terns, i.e., we may analyse execution traces of SBSs. We also intend to enhance the

detection approach with a correction approach to suggest refactorings, and automat-

ically, at runtime, correct detected SOA antipatterns, enabling software engineers

to improve the design and QoS of their SBSs. Furthermore, we intend to perform

other experiments on different SBSs from different SOA technologies, including

Web Services, REST and EJB. The approach may require some adaptations from

one technology to another because although SOA technologies share some common

concepts and principles, they also have their own specific characteristics and im-

plementation styles. Another targeted SBS is the SOFA framework itself since this

SBS will certainly evolve to handle various antipatterns and SBSs. We will thus

ensure that the evolution of the SOFA framework itself does not introduce any

service-oriented antipatterns.
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[19] Nikola Trčka, Wil M. Aalst, and Natalia Sidorova. Data-Flow Anti-patterns: Discov-
ering Data-Flow Errors in Workflows. In Proceedings of the 21st International Con-
ference on Advanced Information Systems Engineering, CAMISE ’09, pages 425–439,
Berlin, Heidelberg, 2009. Springer-Verlag.
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