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Abstract—Extracting useful knowledge from social network 

datasets is a challenging problem. To add to the difficulty of 

this problem, privacy concerns that exist for many social 

network datasets have restricted the ability to analyze these 

networks and consequently to maximize the knowledge that 

can be extracted from them. This paper addresses this issue 

by introducing the problem of data trustworthiness in social 

networks when repositories of anonymized social networks 

exist that can be used to assess such trustworthiness. Three 

trust score computation models (absolute, relative, and 

weighted) that can be instantiated for specific anonymization 

models are defined and algorithms to calculate these trust 

scores are developed. Using both real and synthetic social 

networks, the usefulness of the trust score computation is 

validated through a series of experiments.  

Keywords-social network; privacy; trustworthiness 

I. INTRODUCTION 

Social networks have been studied by various research 
communities for more than fifty years [11]. However, the 
advent of the online social networks and the wide adoption 
of such networks by our society have significantly increased 
the importance of obtaining useful information from those 
networks. Extracting useful knowledge from social network 
datasets proves to be a difficult problem and social network 
mining is currently identified as one of the most challenging 
problems in data mining research [31]. To add to the 
difficulty of this problem, privacy concerns exist for many 
social network datasets. Such concerns have resulted in 
limited accessibility to social network data and thus in 
reducing the quantity and quality of the knowledge that 
could be extracted from these datasets. Such knowledge 
may have important applications, such as disease spreading 
in    epidemiology, emergency management, protection from 
cyber-attacks, etc. 

While large online social networks such as Facebook 
and LinkedIn are well known and gather millions of users, 
small social networks are today becoming increasingly 
common. Currently, such small niche social networks such 
as GoFISHn and GoHUNTn are considered as the new trend 
in online social network usage [20]. Many corporations 
already use existing social networks to connect to their 
customers. Seeing the increasing usage of small social 
networks, such companies will likely start to create in-house 
online social networks where they will own the data shared 

by customers. Nowadays, for many services (insurance, 
airline miles, travel sites, etc.), users have individual 
accounts on company websites. However, there is no 
network structure connecting accounts of different users, 
and therefore the relationships that may exist among such 
users are not efficiently used by the company. The benefits 
that can be obtained from adding relationships among 
customers are significant and include increased possibilities 
to expand the customer base, increased usage of provided 
services by the current customers, better marketing 
opportunities, and so on. Future breakthroughs in social 
network mining will also expand these opportunities. A 
challenge is that users must have an incentive to connect 
among themselves in a company-owned social network. 
This is not a trivial problem and will likely be a difficult 
challenge to address. However, by using incentives, the 
users will start to connect to their friends or acquaintances in 
order to get better deals. For instance, an insurance company 
may use incentives such as 10% savings on their car 
insurance costs if a customer registers on his/her social 
networks site and recommends a minimum number of 
friends. Next, the amount of savings can be increased based 
on how many of his/her friends will buy insurance from the 
same company. Such incentives could also be used to 
motivate a user to complete his/her profile, and this would 
allow the insurance company to have a wealth of 
information about its users that could potentially be used to 
increase its business.  

It can be easily seen that such local social networks have 
many benefits for the organizations that own them. 
However, the users’ main motivation for joining and 
providing the required information is to get the desired 
service at a discount price or any other incentive associated 
with the use of this company-owned social networking site. 
Therefore, it is expected that users will be less likely to 
provide only accurate information in their profiles (due to 
privacy concerns or because of other advantages that could 
be obtained by partially faking profile information). An 
example of a possible advantage that could be obtained is as 
follows. A user can report his marital status as single 
although he is married. The reason of such reporting is that 
his wife may be under 25 years old and adding her in the 
profile may result in the insurance agency include her in the 
insurance policy and therefore in increasing the auto 
insurance rate. Other examples include misreporting of 



 

 

address, age, and so on. However, due to incentives and 
since relationships are approved by both participants, links 
in such social network will likely be accurate. This 
possibility of faking part of profile data will diminish the 
utility of the data. The organizations that own such data will 
benefit from it if they can assess the trustworthiness of such 
data and if identify possible fake information. 
Unfortunately, due to privacy regulations, large social 
network datasets that could potentially be used to verify 
local information are not available in clear due to privacy 
concerns. However, we can expect that anonymized social 
network datasets be available and they can be used to 
determine the trustworthiness of local data.   

To summarize, in our framework, one company will 
create and maintain a local social network (usually of their 
customers). This company also has access to one or more 
anonymized social network datasets that contain the nodes 
(customers) present in the local social network. Based on 
these anonymized networks, this company will compute a 
trust score of their customers and based on these score 
values will decide to make additional verifications regarding 
the validity of the reported data or take other actions. 

The main contributions of this paper are as follows:  

 To introduce the problem of data trustworthiness in 
social networks when repositories of anonymized 
social networks exist. To our knowledge there is no 
prior work that addresses data trustworthiness in 
social networks.  

 To present three trust score computation models 
(absolute, relative, and weighted) that can be 
instantiated for specific anonymization models.   

 To introduce algorithms to calculate the trust score 
for nodes (customers) from the local graph for an 
existing social network anonymization model. 

 To illustrate the validity of our trust score 
computation through experiments. We used both 
real and synthetic social networks in our 
experiments. 

The remaining of the paper is structured as follows. 
Sections 2 and 3 define the problem and introduce the 
notion of   trust score for customer profile information, 
respectively. Section 4 summarizes the social network 
anonymization model introduced by Campan and Truta [3] 
and presents an algorithm used to compute the trust score 
when such an anonymized social network is available. 
Experimental results of real and synthetic social network 
datasets are reported in Section 5. Section 6 reviews related 
work, whereas Section 7 concludes the paper and outlines 
future research directions. 

II. PROBLEM DEFINITION 

We assume that a company has created its own social 
network. Since this network is usually obtained from its 
own customers that willingly share their data with the 
company, we call such a company data owner. We use the 
term local social network to refer to the company-owned 

network. We model this local social network as a graph G = 

(N, E), where N is the set of nodes and E  N  N is the set 

of edges. Each node represents an individual entity such as a 
customer and each edge represents an existing relation 
between two nodes. Each node has an associated profile 
represented by a set of attributes. This set of attribute 
contains identifier, quasi-identifier, and occasionally 
sensitive attributes [3] that are supposed to be known by the 
data owner. We assume that all relationships in this local 
social network are binary. Moreover, we represent all 
relationships via unlabeled undirected edges. We use X or Y 
to represent individual nodes, and Xi, i = 1… n, to represent 
all the nodes in N, where n = |N |. We use the notation X.A 

to refer to the attribute A’s value for the node X. 

We assume that the owner of the local social network 
has access to one or more anonymized social networks. An 
anonymized social network is provided by an external 
organization (such as Facebook or LinkedIn) that protects 
the identity and the sensitive information in the social 
network data by using an anonymization process. We 
assume that there are s such anonymized social networks 
available. We represent these networks as AGj = (ANj, AEj) 

(j = 1…s). Each such anonymized social network is created 
by the external organization, owner of the social network, 
from an original graph. We label the corresponding original 
graphs as Gj = (Nj, Ej). It is worth noting that these graphs 

are large compared to the local social network. 

We initially assume that each anonymized social 
network contains all nodes from N. Moreover, we assume 

that all edges from the local social network are present in 
the underlying social networks from which the anonymized 

social networks were created. In other words, N Nj
 and E 

 Ej, for all j = 1… s. Since individuals from the local social 

network G are present in each anonymized social networks 

AGj, the set of attributes from N and the set of attributes 

from ANj are not disjoint. However, due to anonymization, 

all identifier attributes are removed from ANj. Also, the 

sensitive attributes are not shared between N and AN j (due 

to privacy concerns and/or regulations the sensitive data that 
might be owned by the owner of the local social network is 
not available to the external organization that create the 
anonymized networks). Based on these assumptions, only a 
subset of quasi-identifier attributes is common.  

We also assume that the owner of the local social 
network trusts the validity of some of the attributes shared 
with the anonymized networks, while consider other 
attributes less reliable.  The data owner wants to determine a 
trust score of nodes information with respect to those non-
trusted attributes and to perform additional verification if 
this score is low. As we discuss later, the data owner will 
compare the trust scores for all nodes and will select a 
percentage of the lowest scores for this additional 
verification. Without limiting the applicability of our 
approach, we assume that we have only one target attribute, 
labeled B, which may contain misreported / non-trusted 
information. When more attributes are non-trusted, we can 
compute the trust score for one attribute at a time. In order 



 

 

to assess the trustworthiness of values for this attribute B, 
the attribute must exist in each anonymized social networks 
(otherwise the anonymized social network is not useful and 
will not be considered). We denote the other trusted 
attributes existing in both the anonymized social network 
and the local social network with A1, A2,…, Aq, where q is 
the number of shared attributes. Note that this set depends 
on the selected anonymized social network; in other words, 
the set of common attributes is specific for each anonymized 
social network and changes for each selected anonymized 
social network (the number q also changes). Since in our 
analysis we use only one anonymized social network at the 
time (see Figure 1), for simplicity we use the same notation 
for each set of common attributes between local and 
anonymized social network. 

 

Figure 1.  Trust Score Computation Framework 

III. TRUST SCORES  

We use the notation TS(X.B) (trust score) to denote the 
trustworthiness for the attribute B’s value for the node X. 
For this measure we use all available s anonymized social 
networks. To obtain this measure, we use the intermediary 
trust scores that we compute for each anonymized social 
network. We use the notation TSj(X.B) (j = 1 .. s) when AG j 

is used in this intermediary measure. 

We compute such an intermediary trust score, TSj(X.B), 
by matching a node X from the local social network to nodes 
from an anonymized social network. We consider in this 
matching, the node attribute’s information (that is, the 
values of attributes B, A1,..., Aq) and the graph structure. The 
approach used to compute such score is not unique. For 
instance, we can consider the trust score as the percentage of 
nodes from the anonymized social network that could 
potentially be X. We refer to this approach as absolute trust 
score. A second approach first computes how many nodes 
from the anonymized network can be X when only the 
trusted attributes A1,..., Aq and the graph structure are used. 
We then find the subset of those nodes that match the value 
of the B attribute as well (note that a non-generalized value 
will match its ancestors on the value generalization 
hierarchy). The number of those nodes divided by the 
number of nodes that matches X based only on trusted 
values and graph structure is our second measure of trust. 
We refer to this measure as relative trust score. Our last 
approach to compute an intermediary trust score includes a 
weight that depends on how the values of attribute B are 

published in the anonymized social network. In most 
anonymized networks, generalization [26, 27] is used to 
anonymize the quasi-identifier attributes, and in this case we 
would like to differentiate between cases when a specific 
value (such as the exact name of a city) or a generalized 
value (such as the name of the country) is used. We thus 
extend the relative trust score computation approach by 
assigning a higher weight to matches of X with anonymized 
nodes that contain more specific information for B. More 
precisely, the weight associated with a specific value is 1, 
and the weight decreases when the amount of generalization 
increases. For example, considering the attribute city, the 
weight associated with a single value like Chicago is 1 and 
the weight associated with a generalized value like Illinois is 
1/10 assuming that there are 10 cities in Illinois in the value 
generalization hierarchy used for this attribute. We refer to 
this approach as weighted trust score.  

Before we formally represent these three measures in 
Definitions 1 – 3, we introduce the following notations:  

 nj: the number of nodes in the anonymized graph 
AGj. 

 matched_B(X, AGj):  the number of nodes in AGj 

that can potentially be X. All attributes (B, A1,..., Aq) 
and the graph structure are used in this 
determination.  

 matched_No_B(X, AGj):  the number of nodes in 

AGj that can potentially be X. Only trusted attributes 

(A1, .., Aq) and the graph structure are used in this 
determination.  

 matched_weighted_B(X, AGj): each node in AGj that 

can potentially be X will contribute with a weight in 
the interval (0, 1]. This weight is based on the 
amount of generalization for the attribute B’s value 
in the anonymized graph (see previous paragraphs 
for a discussion of weights). All such weights are 
added for the final result. All attributes (B, A1,..., Aq) 
and the graph structure are used in this 
determination. It can be easily noticed that for any 
X, matched_weighted_B(X, AGj) ≤ matched_B(X, 

AGj). 

Definition 1 (Intermediary Absolute Trust Score): The 
intermediary absolute trust score for a node X with respect 
to an anonymized network AGj, denoted by ATSj(X.B), is 

defined as:     (   )   
         (     )

  
 

Definition 2 (Intermediary Relative Trust Score): The 
intermediary relative trust score for a node X with respect to 
an anonymized network AGj, denoted by RTSj(X.B), is 

defined as:     (   )   
         (     )

            (     )
 

Definition 3 (Intermediary Weighted Trust Score): The 
intermediary weighted trust score for a node X with respect 
to an anonymized network AGj, denoted by WTSj(X.B), is 

defined as:     (   )   
                  (     )

            (     )
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The techniques for compuing those three intermediary 
trust score measures depend on the specific techniques used 
for the social network anonymization, and we defer their 
presentation to Sections 4. 

The range for any such intermediary trust score measure 
is between 0 and 1. The value of 0 is obtained when X does 
not match any node from the anonymized social network. 
The value of 1 is obtained in different situations depending 
of the used intermediary trust score measure. For the 
absolute trust score the value of 1 means that all nodes in 
the anonymized network can potentially be X. For the 
relative trust score a value of 1 is obtained when the use of 
the B attribute value will not limit the number of matches 
the node X has in the anonymized graph. For the weighted 
trust score the value of 1 is obtained when the relative trust 
score measure is 1 and the attribute B has specific values 
(non-generalized) in each matched node in the anonymized 
social network.  

Definition 4 (Trust Score): The trust score for a node X 
with respect to a non-trusted quasi-identifier attribute B 
value is defined as the average of intermediary trust score 
values computed for all anonymized social networks if all 
such values are strictly greater than zero and 0 if one such 
intermediary value is 0. Considering s anonymized social 
networks are available, the trust score is as: 

  (   )   {
                              (   )    

   
      

   (   )               

 

In Definition 4, we can use any intermediary trust score 
measure (absolute, relative, and weighted) and consequently 
we will obtain three different measures for the total trust 
score. We use ATS(X.B), RTS(X.B), and WTS(X.B) to denote  
those three total trust score measures. The following 
properties hold.  

Property 1: ATS(X.B), RTS(X.B), and WTS(X.B) take 
values in the interval [0, 1] for all nodes X.  

Property 2: If any trust score measure is 0 for a given 
node X, then the other two trust score values are also 0.  

Property 3: For any node X, ATS(X.B) ≤ RTS(X.B).  

Property 4: For any node X, WTS(X.B) ≤ RTS(X.B).  

Due to space limitations, we omit the proofs for Property 1 
to 4. Please refer to our technical report [35] for more 
details. 

The data owner computes the trust score for local nodes, 
either for all nodes or for a subset that it has already 
identified through other means as being less trusted with 
respect to their self-reported B attribute value. Of particular 
importance are nodes with a trust score of 0. Based on our 
problem assumptions such nodes have fake values for the 
attribute B. The data owner can extract the set of possible 
values for the attribute B that such a node X may have from 
each anonymized social network. This is executed by 
considering all B attribute values from all the nodes from 
each anonymized network that match a node X when only 

trusted attributes A1,..., Aq and the graph structure are used. 
Therefore a set of possible values for attribute B is obtained 
for each anonymized network. The last step in this 
procedure is to intersect all these sets of possible values. 
Again, due to the assumption that the underlying graphs 
contain only valid information, the set of possible B 
attribute values obtained by such intersection will never be 
empty. For those nodes that have a positive trust score, the 
data owner is in general not certain of the correctness of the 
B attribute value. The strategy for those nodes is to sort 
them based on trust score values and to consider a 
predefined number (or percentage) of nodes that have the 
lowest trust score values for a human analysis. These nodes 
have definitely a higher risk of misreported information.  

The weighted trust score measure has an interesting 
property. If the intermediary weighted trust score for a node 
X and an anonymized network AGj is 1, then matched_ 

No_B(X, AGj) is equal to matched_ weighted_B(X, AGj). 

This means that the set of nodes from AGj that matches X is 

the same whether the attribute B value of the node X is used 
or not. Moreover for each node from this set the 
corresponding attribute B value must be identical to the 
attribute B value of node X because if this value would be 
generalized the weight associated with the computation of 
matched_ weighted_B(X, AGj) would be strictly less than 1 

and the intermediary weighted trust score could not be 1. 
This means that the data owner knows with absolute 
certainty that the attribute B value for node X is correct, and 
thus node X is fully trustworthy. It is easy to notice that the 
other two trust measures do not have this interesting 
property. This observation leads us to the updated version of 
weighted trust score definition (see Definition 5).  

Definition 5 (Weighted Trust Score): The weighted trust score 
for a node X with respect to a non-trusted quasi-identifier attribute 
B value is defined as follows: 

   (   )   {

                               (   )    

                                       (   )    

   
      

    (   )             
 

IV. TRUST SCORES FOR K-ANONYMOUS CLUSTERED 

SOCIAL NETWORK 

A. Anonymization Model  

As our approach depends on the specific anonymization 
approach used, we first succinctly present the social network 
anonymization model introduced in [3]. Consider an initial 
social network to be anonymized. Using a grouping 
strategy, one can partition the nodes from this network into 
pairwise disjoint clusters. The goal is that any two nodes 
from any cluster are indistinguishable based on their 
relationships and quasi-identifier attributes values. To 
achieve these objectives, Campan and Truta developed 
intra-cluster and inter-cluster edge generalization techniques 
that were used for generalizing the social network structure. 
They also used generalization [26, 27] for quasi-identifier 
attributes values and each cluster will have its profile 
replaced by the generalization information of that cluster. 
This generalization information is defined next. 



 

 

Definition 6 (Generalization Information of a Cluster): 
Let cl = {X1, X2,…, Xu} be a cluster of tuples corresponding 
to nodes selected from IN, QN be the set of numerical quasi-

identifier attributes, and QC be the set of categorical quasi-

identifier attributes. The generalization information of cl 

w.r.t. quasi-identifier attribute set QI = QN   QC is the 

“tuple” gen(cl), having the schema QI, where: 

 For each categorical attribute C  QI, gen(cl)[C] is 

equal to the lowest common ancestor in HCj of { 

X1.C,  …, Xu.C }. We denote by HC the hierarchies 

(domain and value) associated with the categorical 
quasi-identifier attribute C. 

 For each numerical attribute N  QI, gen(cl)[N] is 

equal to the interval [min{X1.N,…, Xu.N }, max{ 
X1.N,…, Xu.N }]. 

For a cluster cl, its generalization information gen(cl) is 
the tuple having as value for each quasi-identifier attribute, 
numerical or categorical, the most specific common 
generalized value for all that attribute values from cl tuples. 
In an anonymized graph, each tuple from cluster cl will have 
its quasi-identifier attributes values replaced by gen(cl).  

The notion of k-anonymous anonymized social network 
is fully specified in the following two definitions. 

Definition 7 (Anonymized Social Network): Given an 
initial social network, modeled as a graph IG = (IN, IE), and 

a partition S = {cl1, cl2, … , clv} of the nodes set IN, 

⋃     
 
   = IN;    ⋂    = ; i, j  {1, 2, …, v}, i  j; the 

corresponding anonymized social network AG is defined as 

AG = (AN, AE), where: 

 AN  = {Cl1, Cl2, … , Clv},  Clj is a node 

corresponding to the cluster clj  S  and is described 

by the “tuple” gen(clj) (the generalization 
information of clj, w.r.t. quasi-identifiers) and the 
intra-cluster generalization pair (|clj|, |IEclj|); 

 AE  AN   AN ; (Cli, Clj)  AE iif Cli, Clj  AN  

and   X  clj, Y  clj, such that (X, Y)  IE. Each 

edge (Cli, Clj)  AE is labeled with the inter-cluster 

generalization value |IEcli,clj|.  

By construction, all nodes from a cluster cl collapsed 
into the generalized node Cl are indistinguishable from each 
other. In order to satisfy the k-anonymity property for an 
anonymized social network each cluster from partition S 

must have the size at least k.  

Definition 8 (K-Anonymous Social Network): An 
anonymized social network AG = (AN, AE), where AN = 

{Cl1, Cl2, … , Clv}, and Clj = [(|clj|, |IEclj|)], j = 1, …, v is k-

anonymous iff  |clj|  k for all j = 1, …, v. 

Campan and Truta developed a social network 
anonymization algorithm called Sangreea, which creates 
one cluster at the time. In each new formed cluster, nodes 
are included that are as similar as possible, both in terms of 
their quasi-identifier attribute values, and in terms of their 

neighborhood structure. We present an example of 
application of this anonymization model.  

Example 1: Consider the social network IG1 in Figure 2. 

IG1contains nine nodes, described by the quasi-identifier 

attribute: sex, age, and city. The age quasi-identifier is 
numerical, sex and city are categorical. The attribute sex can 
take two values (M and F) and these values can be 
generalized only to person (P). For this dataset, the attribute 
city takes only four values (Chicago, Detroit, Miami, and 
Seattle). The cities Chicago and Detroit have the value 
Midwest as their direct ancestor in the value generalization 
hierarchy. Miami, Seattle, and Midwest have US as their 
ancestor. 

  

 

 Sex Age City 

X1 M 20 Detroit 

X2 F 25 Detroit 

X3 F 30 Detroit 

X4 M 24 Chicago 

X5 M 32 Chicago 

X6 F 35 Miami 

X7 F 33 Seattle 

X8 F 40 Detroit 

X9 F 45 Detroit 
 

Figure 2.  The Social Network IG1 

 

Figure 3.  The k-Anonymous Social Network AG1 

 

Figure 4.  The k-Anonymous Social Network AG2 

In Figures 3 and 4, two 3-anonymous social networks, 
AG1 and AG2, are given. For generating the anonymized 

network in Figure 3, the structure was considered more 
important in the determination of clusters, while for the 
anonymized network in Figure 4, the quasi-identifiers 
attribute values were given priority. In each cluster we 
represent the generalization information of that cluster, 
followed by a pair of numbers that represent the number of 
nodes and the number of inter-cluster edges. Outside each 
cluster we represent the set of original nodes that were 
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clustered together. The edges’ weight represents the number 
of edges between nodes from the two connected clusters. 

B. Intermediary Trust Scores Computations  

In this section we present a method to compute the 
intermediary trust scores when the k-anonymous clustered 
model is used for anonymizing the social networks. We 
explain our approach through the following example which 
continues Example 1 from the previous subsection. 

Example 1 – Cont.: Suppose that the data owner has a 
local social network G1 shown in Figure 5. The data owner 

has access to both k-anonymous social networks AG1 and 

AG2 in Figures 3 and 4. The data owner fully trusts the 

values of the age and sex attributes, and wants to assess the 
trustworthiness of the city attribute. Note that all 
assumptions made in Section 2 are satisfied. Suppose now 
that three nodes in G1 contain fake information for the 

attribute city. These fake values are underlined and italicized 
in Figure 5. The data owner does not have access to IG1, and 

nodes labels are used just for illustration purposes. 

  

 

 

 
 

 

 

 

 Sex Age City 

X1 M 20 Chicago 

X2 F 25 Detroit 

X3 F 30 Miami 

X4 M 24 Chicago 

X5 M 32 Chicago 

X9 F 45 Seattle 
 

Figure 5.  The Local Social Network G1 

In order to compute the trust scores, the first step is to 
match each node from the local graph to clusters from each 
anonymized graph. We perform two types of matches. First, 
we use the graph structure and the sex and age attributes 
values. Second, we also add the non-trusted attribute city to 
this match process. Algorithms for these procedures are 
detailed later in this section. After these matches, we can 
directly compute the intermediary absolute and relative trust 
scores according to Definitions 1 and 2. For the weighted 
trust score, we define a set of weights as follows: for a 
single value in a cluster the weight is 1; for Midwest, the 
weight is 1/2 (there are two possible values, Detroit or 
Chicago); for US the weight is 1/4 (again, due to four 
possible city values). Now we have all the tools to compute 
the intermediary trust scores. Table 1 and Table 2 show the 
intermediary trust score computations with respect to AG1 

and AG2 respectively. Table 3 shows the results of the 

combined trust scores computed according to Definitions 4 
(for absolute and relative trust scores) and 5 (for weighted 
trust score). For two nodes (X1 and X9) the trust score is 0; 
based on this trust score the data owner is able to determine 
that the city attribute values reported by these two nodes are 
not correct. However, for X3, the trust scores values are 
positive, and the data owner does not know for certain if the 
values are correct or not. The data owner will use the strict 
positive values as follows. It will order them increasingly 

and will consider the ones with smaller values for additional 
verification. The data owner may select a specified 
percentage of values for this additional verification, or may 
consider a trust score value as a threshold. It is important to 
notice that the trust score values are relative to each other 
and the availability of more anonymized networks as well as 
the quality of those anonymized networks have a major 
impact on the values of those trust scores.  

TABLE I.  THE INTERMEDIARY TRUST SCORES FOR AG1 

 
Clusters 
matched 

using City 

Clusters 
matched 
no City 

matched
_B 

matched 
_No_B 

matched 
_weighted 

_B 

ATS1 RTS1 WTS1 

X1  cl1 0 3 0 0 0 0 

X2 cl1 cl1 3 3 3 1/3 1 1 

X3 cl2 cl1, cl2 3 6 3/4 1/3 1/2 1/8 

X4 cl2 cl1, cl2 3 6 3/4 1/3 1/2 1/8 

X5 cl2 cl2 3 3 3/4 1/3 1 1/4 

X9 cl3 cl3 3 3 3/4 1/3 1 1/4 

TABLE II.  THE INTERMEDIARY TRUST SCORES FOR AG2 

 
Clusters 
matched 

using City 

Clusters 
matched 
no City 

matched
_B 

matched 
_No_B 

matched 
_weighted 

_B 

ATS2 RTS2 WTS2 

X1 cl1 cl1 3 3 3/2 1/3 1 1/2 

X2 cl2 cl2 3 3 3/4 1/3 1 1/4 

X3 cl2 cl2, cl3 3 6 3/4 1/3 1/2 1/8 

X4 cl1 cl1 3 3 3/2 1/3 1 1/2 

X5 cl1 cl1 3 3 3/2 1/3 1 1/2 

X9  cl3 0 3 0 0 0 0 

TABLE III.  THE TRUST SCORES FOR NODES FROM G1 

 ATS RTS WTS 

X1 0 0 0 

X2 1/3 1 5/8 

X3 1/3 1/2 1/8 

X4 1/3 3/4 5/16 

X5 1/3 1 3/4 

X9 0 0 0 

We now introduce an algorithm for matched_No_B(X, 
AG ) that we used in our trust score computations. 

Algorithm Compute_Matched_No_B(X, AG)   is 

  Input  

  G = (N, E) – the local social network; 
  X – a node from G; 
  AG = (AN, AE) – a clustered anonymized social  
       network of a social network G’=(N’, E’); 

    N  N’;  E  E’; 
  All information from G’ is accurate; 

  All information from G is accurate with the 
    possible exception of B attribute values; 

Output  

    Matched_No_B(X, AG);  
 

   CL1 = ; 

   For each cl  AN 

     If (X  gen(cl)) then  
       /*  using A1, .., Aq attributes) */  

CL1 = {cl}  CL1; 

   CL2 = ; 

   For each cl  CL1 
     If (check_degree(X, cl) == true) then     

       CL2 = {cl}  CL2; 
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   CL3 = ; 

   For each cl  CL2 
      /* Neighbors_cl – is a set of clusters that 

         contain all clusters where neighbors of 

         a node from cl are; this includes cl. */ 

     Neighbors_cl = ; 

       If (|IEcl| > 0) then 

                  Neighbors_cl = {cl}  Neighbors_cl; 

       For each cl’  AN  

         If (|IEcl,cl’| > 0) then 

                      Neighbors_cl = {cl’}  Neighbors_cl; 
     For each neighbor Y of X 

          /* Y can be a neighbor of a node from cl 

          using degree and attribute’s values  

          (A1, .., Aq attributes only) */ 

       For each cl’  Neighbors_cl 
         If (check_degree(Y, cl’) == true) and  

     (Y  gen(cl’)) then 

           CL3 = {cl}  CL3; 

            Break; 

  Return the number of nodes that are contained in 

clusters from CL3;  

End Algorithm. 

 In parts B and C of the above algorithm in order to select 
only matching clusters based on possible degree of their 
nodes (function check_degree) we use the following 
property. 

Property 4: Given an anonymized social network AG 

(cfr. Definition 7), the degree of a node X that belongs to a 
cluster clj with | clj | ≥ 2 is bounded by [min_deg(X), 
max_deg(X)] where: 

        ( )     (  |     |  
(|   |   )  (|   |   )

 
)

  ∑    (  |        |  (|   |   )  |   |)
       
   

 

        ( )     ((|   |   ) |     |)  ∑    (|   | |        |)
       
   

 

Proof: Due to space limitations, we omit the proof here. 

In the Compute_Matched_No_B algorithm we consider 
a node X from the local graph that matches a cluster from 
the anonymized graph. Since the local graph is a subgraph 
of the original graph from which the anonymized graph was 
created, the degree of X in the local graph is less than or 
equal to the degree of X in the original graph. Therefore the 
min_deg(X) from Property 4 may not be a lower bound of X 
and we use value 0 instead in the function check_degree. On 
the other hand, max_deg(X) from Property 4 is used in this 
function. 

The algorithms for computing matched_B(X, AG) and 

matched_weighted_B(X, AG) are similar. For matched_ B(X, 

AG), for each cluster cl from CL3 found by 

Compute_matched_No_B(X, AG) we test if node X belongs 

to gen(cl) using the B attribute.  The function returns the 
number of nodes that are contained only in the clusters that 
satisfy this test. For matched_weighted_B(X, AG), in 

addition to this new test we also weigh each node based on 
the amount of generalization for the attribute B in the 
containing cluster. 

The weight associated with a node will be always in the 
interval (0, 1]. The value of 1 is obtained when the value of 
the B attribute from the node is identical to the B attribute 
value from the matching cluster. In other words, this value 
was not generalized in that cluster. The data owner can 
define such weights on the value generalization hierarchy 
for the attribute B (and if such a hierarchy does not exist the 
data owner can create one for this purpose [4]). There are 
just two properties that these weights must follow. First, all 
the leaf values must have a weight of 1. Second, each parent 
node must have a lower weight than that of all its children.  

The running time for part A and part B in 
Compute_Matched_No_B(X, AG) is proportional to the 

number of clusters, ⌈| |  ⁄ ⌉, in the anonymized graph AG. 

Thus the complexity of part A and part B is O(|N |). For part 
C, in the worst case, the number of neighbors that are 
checked for a given node X is |N|-1 and the number of 
clusters is ⌈| |  ⁄ ⌉. The complexity of part C is O(|N |

2
) and 

the overall complexity of this algorithm is O(|N |
2
).  

V. EXPERIMENTAL RESULTS 

In this section we evaluate the effectiveness and 
efficiency of our trust model and algorithms. We used two 
datasets in the experiments: the synthetic AB datasets (for 
Albert-Barabasi); and the Enron datasets [10]. For each 
dataset we selected 5,000 and 10,000 nodes as our initial 
datasets. To generate the synthetic dataset, we used the 
Albert-Barabasi model [2] to generate a random graph that 
follows the power-law distribution. For the Enron datasets 
the numbers of edges are 67,283 (for 5,000 nodes) and 
110,615 (for 10,000 nodes). For the AB datasets the 
numbers of edges are 97,503 and 197,248 (for 5,000 and 
10,000 nodes, respectively). 

To fit the need of our experiments, we extended the 
synthetic and real datasets by introducing the following 
attribute: age, sex, marital status, and city. We use a simple 
program to generate the attribute values for the synthetic 
and real social networks described above. To do this, we 
randomly select a single node and assign to this node values 
for all four attributes. Next, we run the breath first search 
(BFS) algorithm starting from this source node. Each time 
when a new node v is first discovered by BFS, we generate 
its age and city according to its parent u. For the age 
attribute, we define 6 possible intervals: [18, 27], [28, 37], 
[38, 47], [48, 57], [58, 67], and [68, 77]. We consider the 
probability that v is within the same age interval as its 
parent u to be 0.7. The probability that v is in any other 
interval used by our algorithm is 0.3/5. After the age 
interval of node v is decided, its actual age will be a 
randomly chosen integer within that interval. For gender 
attribute, a node is assigned the Male value with probability 
0.5 and the Female value with probability 0.5. To generate 
the values of marital status attribute for a node v, if v is of 
age greater than or equal to 70, with probability 0.5, its 
marital status will be Widowed, and with probability 0.5, its 
marital status will be randomly generated as one of one of 
the following values: Divorced, Never-married, Separated, 
Married-civ-spouse, Married-spouse-absent, Married-AF-
spouse. If v is of age less than 70, then v’s marital status 

P
a
r
t
 
C
 

 



 

 

will be generated as one of the values above with equal 
probability. For the city attribute, we consider 20 values as 
shown in Table 4. Similarly, the probability that v is in the 
same city as its parent u is 0.7. The probability that v is in 
any other 19 cities is 0.3/19. 

For each experiment, from an original dataset (Enron or 
AB; each with size 5,000 or 10,000) we generate one local 
dataset and one or more remote datasets. The local dataset 
is generated by taking 20% of the synthetic dataset/real 
dataset and modifying some of the records in them to create 
fake/incorrect values. In our experiments, the city attribute is 
the only attribute that contains fake values, in other words, it 
is the non-trusted attribute. The distance between two leaf 
nodes is defined as the height of their lowest common 
ancestor. For example, the distance between Tampa and 
Miami is 1, since their lowest common ancestor is FL and 
its height is 1. For the same reason, the distance between 
Boston and Tampa is 2 and distance between Miami and 
Detroit is 3. To generate the incorrect values, we take a 
portion (referred as p% in Table 5) of nodes in the local 
dataset and modify them according to a parameter (m) that 
controls distances. Among the candidates that share same 
distance between the original values, we randomly pick one. 

TABLE IV.   HIERARCHY STRUCTURE OF THE CITY ATTRIBUTE 

City 

East 
MA Boston 

FL Tampa, Miami 

Midwest 

MI Detroit 

IL Chicago 

IN Lafayette, Indianapolis, Bloomington 

OH Cincinnati, Columbus, Cleveland 

KY Lexington,  Louisville, Frankfort, Newport 

Mountain CO Aspen 

West 
CA Sacramento, Riverside 

WA Seattle, Redmond 
 

For remote datasets, we first take the same portion 
(20%) of the original dataset as local dataset without 
injecting any fake values. And then randomly pick 
remaining nodes in the original dataset until the size of the 
remote datasets reaches 80% of the original ones. In such a 
way, the remote datasets always contain the corresponding 
local one. 

Table 5 lists the parameters used in the experiments. p 
controls the percentage of fake values injected into the local 
dataset. m is the magnitude parameter of the fake values. 
For instance, when m=3, all distances between fake values 
and their original ones are 3. When a city attribute value 
does not have a sibling node with m=1 or 2 (e.g., Boston and 
Aspen), we will not modify its value and skip that node. k is 
the k-anonymity parameter for generating anonymization 
graphs. s is the number of nodes in the original dataset. In 
all our experiments when a parameter value is not specified, 
the one denoted in boldface in Table 5 is used. 

TABLE V.  EXPERIMENT PARAMETERS 

p 10%, 20%, 30%, 40%, 50% 

m 1, 2, 3 

k 3, 5, 10, 15, 20 

s 5000, 10000 

In our experiments we use two quantities to measure the 
effectiveness of our trust computation algorithms: (1) the 
ratio of average score of unmodified nodes (real) to the 
average score of modified nodes (fake), denoted as Score 
Ratio in the figure; and (2) the Recall that is the percentage 
of modified nodes that have been classified as “fake”. To 
classify the local nodes, we simply rank the nodes with 
respect to their ATS, RTS, and WTS and choose either p% or 
1.5p% nodes with the lowest trust scores as possible fake 
nodes. The data owner will then perform an additional 
investigation regarding these nodes to determine which of 
the determined nodes have fake values for the target 
attribute. For example, if p = 10% and size of the local 
dataset is 1000, we will classify 100 or 150 nodes with the 
lowest trust scores as fake nodes. It is worth noting that 
when no trust score is used and we do a random sampling to 
choose those 100 or 150 nodes, only p% (10 or 15 if p = 
10%) of nodes have fake values. 

Due to space limitation, all figures we reported below 
are based on Enron dataset with size 5,000. We observe 
almost identical trends in the experimental results on Enron 
dataset with size 10,000 and on synthetic AB datasets with 
sizes 5,000 and 10,000. 

In the experiments reported in Figure 6, one k-
anonymous clustered social network is used with the local 
graph to compute the trust scores. We observe the effects of 
changing p on the score ratio and the recall. We notice that 
the WTS score ratio is the highest among the three score 
ratios regardless of the p value. As for the recall, we observe 
that all three scores are effective and, among them, WTS 
performs the best.  Both ATS and RTS have more than 70% 
recall and WTS has more than 80% recall when p=10% and 
it increases when p grows. When p=10%, our approach can 
increase the recall by more than 7 times when ATS or RTS 
are used and more than 8 times when WTS is used.  

In the experiments reported in Figure 7, one k-
anonymous clustered social network is used and p is set to 
20%. We can see the effects of changing m on the score 
ratio and the recall. When m increases, all the score ratios 
increases, which is as expected because the larger the 
magnitude of error we inject into a node, the more easily 
this fake node will be detected. For the recall, it is obvious 
that recall increases with m and that WTS performs the best 
among those three scores. We can also observe that even for 
m = 1, the recall values are over 40% (ATS), 50% (RTS) and 
60% (WTS) (the baseline recall is 20%). 

In the experiments reported in Figure 8, we test how 
different k values impact the trust score computation results. 
One k-anonymous clustered social network with different k 
values is used. Both score ratio and recall decrease when k 
increases. This is due to the fact that larger k values increase 
information loss. We can also observe that WTS is more 
affected by k values. This is because WTS takes attribute 
weights into consideration. When the data is more 
generalized, it is more difficult for WTS to distinguish fake 
values from real ones, since the weight associated with each 
generalized values is very small. 



 

 

We also test the running time of our trustworthiness 
computation algorithms for different privacy models, values 
of k, and dataset sizes with 5,000 (1,000 local nodes and 
4,000 remote nodes) and 10,000 nodes (2,000 local nodes 
and 8,000 remote nodes). We observe that the running time 
first increases with k and this is because when k grows it 
introduces more neighbors. However, when k reaches a 
threshold the running time becomes stable and it starts to 
decrease slightly since the number of neighbors is no longer 

increasing. It is worth mentioning that both algorithms are 
much more efficient than the anonymization algorithms 
used to create anonymized social networks. For example, 
when k = 20, the clustered-based anonymization algorithm 
5,197 seconds (~ 1.44 hours) to anonymize a 8,000 nodes 
social network while it only takes the 
Compute_Matched_No_B algorithm less than 100 seconds 
to compute the trust scores. 

  

Figure 6.  One k-anonymous clustered social network, change p, m = 3, s = 5,000, Enron dataset 

 
Figure 7.  One k-anonymous clustered social network, change m, p = 20%, s = 5,000, Enron dataset 

 
Figure 8.  One k-anonymous clustered social network, change k, p = 20%, m = 3, s = 5,000, Enron dataset 

VI. RELATED WORK 

Computing trust for social networks based on external 
anonymized networks to our knowledge has not yet been 
investigated. The closest areas to our work are social 
network privacy and trust (reputation) in social networks. 
Other areas that are of interest include graph isomorphism 
and approximate graph matching. Social network privacy is 
a growing area by itself and there are a large number of 
papers in this field. Many recent studies including the two 
anonymization models used in this paper focus on 
protecting vertex identities in published social networks [3, 
5, 14, 19, 28, 30, 32, 33, etc.]. Most of these works focus on 
a k-anonymity like approach, while others use a 
randomization approach [32]. A different privacy model is 
proposed by Gehrke at al. [12] defined as an extension of 
differential privacy [9]. The focus of such model is on 
releasing information about the structure of the social 
network instead of an anonymized network. De-
anonymizing users in social network is also analyzed in 

several papers [1, 23, 14]. Backstrom et al. introduce 
passive and active attacks for de-anonymization of social 
networks [1]. Narayanan and Smatikov propose an 
algorithm that using the social network topologies aims at 
de-anonymizing the social network [23]. Hay et al. [14] use 
structural queries such as subgraph and hub fingerprint 
queries to de-anonymize social networks.  

Trust in social networks is in general considered at two 
levels: global and local. In global level, the trustworthiness 
of each node is computed based upon complete graph 
information, while in the local level, trust is computed with 
respect to the perspective of each specific user. Local trust 
models include a reputation system based on maximum 
flows [18], a system based on weighted paths [22], and a 
system based on spreading activation [34]. Global trust is in 
general computed based on social ties and high trust is 
typically associated with influential/authoritative nodes in 
the network. Methods such as Katz’s index [16], PageRank 
[24], and HITS [17] are used to find such relevant nodes in a 
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social network. Some recently developed websites [15, 8] 
also use the same idea of reputation system to detect and 
remove fake profiles from social networks. To our 
knowledge, there is no global trust computation approach 
for a local social network that is owned by an organization 
as in the problem that we address in this paper. 

Graph isomorphism and exact subgraph matching are 
well-known NP-problems [6, 29]. While improvements to 
the original backtracking algorithm proposed by Ullman 
[29] exist, they are not efficient for large networks [7]. More 
efficient approximate graph matching methods exist [13, 
25]. Unfortunately, they try to minimize node mismatches 
[13] or edge mismatches [25] and they are not applicable to 
our trust score computation. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, we have shown the importance of taking 
into account privacy when computing trustworthiness of 
social network data in applications such as deciding 
insurance rate. We have proposed three trust score 
computation models (absolute, relative, and weighted) and 
algorithms for computing them based on an anonymization 
model. An extensive experimental evaluation on both real 
and synthetic data has demonstrated the effectiveness and 
efficiency of our approach. 

In future work, we plan to investigate how to extend our 
techniques to multiple non-trusted attributes and unknown 
non-trusted attribute. We also plan to develop new 
approaches similar to attributes prediction [21] to see 
whether attribute values of a local node match our 
prediction. However, our goal is to create prediction models 
based on remote anonymized datasets and use those models 
to determine the trustworthiness of local datasets. 
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