
DECISION-MAKING SUPPORT FOR THE CORRECTNESS
OF INPUT DATA AT RUNTIME IN BUSINESS PROCESSES

MAR ÍA TERESA G ÓMEZ-L ÓPEZ and RAFAEL M. GASCA ∗

Departmento de Lenguajes y Sistemas Informticos, University of Seville
Seville, Spain

JOSÉ MIGUEL PÉREZ- ́ALVAREZ †

Intelliment Security
Tomares, Seville, Spain

In a business process, the information that flows between the activities can be introduced by those users who
interact with the process. This introduced information could be incorrect due to a lack of knowledge or a
mistake. For this reason and to make the business process execution consistent, we propose a Decision
Support System (DSS) to inform the user about the possible and correct values that the input data can take.
The DSS takes into account the business process model and the policy of the company. The policy concerning
the input data and dataflow that the company manages can be represented by constraints (called Business
Data Constraints). In order to ascertain all the possible values of the input data that permit the execution of
the process following the defined goals, the DSS analyses the business process model and the Business Data
Constraints, using the constraint programming paradigm.

Keywords: Business processes; Input Data; Decision-making support; Numerical tech-niques; Process
Instance Conformity.

1. Introduction

A business process consists of a set of activities that are performed in coordina-
tion within an organizational and technical environment 1. In a business process,
the information that flows between the activities can be introduced by the users.
Sometimes, the user must decide the value to introduce while taking into account
the potential actions in order to make the process instance correct. In the business
process scenario, this implies the analysis of all the possible branches that can be
executed, and the decisions that can be taken in the future. If the decision made is
incorrect, it will affect other decisions in the future, or it may even make it impos-

∗{maytegomez, gasca}@us.es. www.lsi.us.es/∼quivir
†jmperez@intellimentsec.com, http://www.intellimentsec.com/

1

sible to finish the instance correctly (following the goals defined for the company).
The requirement for decision support frequently arises when decisions have to be

made in complex, uncertain, and/or dynamic environments 36. For this reason, we
propose a solution where the decision-making support for input data can be inte-
grated into the business process instances to inform the user about the possible
values of the input variables, thereby making the instance of the business process
consistent. From the point of view of input data values, the correctness of a busi-
ness process is based on the correctness of the compliance rules that describe the
policy of the company; a correct input value is therefore the value of a variable that
satisfies all the rules defined by the company.

Numerous studies propose a variety of taxonomies to classify the definition of

business compliance rules 2, 3, 4, 5, such as a specification, a policy or a stan-
dardized procedure, that represent a natural step towards the inclusion of semantic
requirements between business functionality and data. However if the relation be-
tween the values of the dataflow variables has to be described, then Business Data
Constraints (henceforth referred to as BDCs) have the capacity to describe Business

Compliance Rules 6. These BDCs are understood as a type of business compliance
rules, which represent the semantic relation between the data values that are intro-

duced, read and modified during the execution of the business process instances 7.
The use of BDCs in decision-making support can be decisive, since humans must
often make decisions about the input data in a business process instance that may
result in being incorrect for the working order of the process. If all the potential
scenarios in the future are taken into account in the decision-making support for
input data, then late identification of non-conformities of input data with respect
to the BDCs can be prevented. Therefore, we propose the use of BDCs to assist in
the decisions of the users, despite the complication that the BDCs can be associated
with one activity, a set of activities, or to the whole business process, and hence
the assistance must integrate the model of the business process. The BDCs respond
to the demand for the processing of data by providing more semantic content in
the business process, which leads to a better understanding of the properties of the
data used in the business process.

In order to explain our proposal, an example of web services selection is de-
picted in Figure 1, where a very simple business process model is shown. We have

used the BPMN 2.0 notation 13 for input and output data. The BDCs are rep-
resented by means of annotations in BPMN associated to the activities. In this
process, the values of data items DE (Data Encryption) and NR (max Number of
Requests) are decided and introduced by a human into different activities, since
they are variables that can participate in a decision-making process. The value of
TS (Throughput Saturation) is derived by Select Service Level, and hence cannot be
defined as an objective of the decision-making process. Depending on the value of
DE (DE≤2 or DE>2), one of the branches of the process is executed (XOR gateway
for the different providers of services). An example of input data decision could in-

Select Service
Level

Select Provider
A

Select Provider
B

DE<=2

DE>2

Data
Encryption
(DE)

Throughput
Saturation
(TS)

Max Number of
Requests (NR)

Option 1

Option 2

0<=DE<=3
300<=TS<=2000

TS<=400*DE
DE:1..3

(0<=DE<=3
300<=TS<=2000

TS<=400*DE) AND

(DE>=2 � NR<=TS

500<=NR<=2000)
OR

(NR<=1.3*TS

600<=NR<=2000)

DE:2..3

NR<=TS

500<=NR<=2000

NR<=1.3*TS

600<=NR<=2000

0<=DE<=3
300<=TS<=2000
TS<=400*DE

Fig. 1. Simple example of Business Process Instance for decision-making support for input data
support

volve the determination of the possible correct values of DE in Select Service Level
activity. As mentioned above, each BDC can be associated with one activity, a set
of activities, or to the whole process: therefore each activity has several BDCs asso-
ciated, for example Select Service Level is associated to {0≤DE≤3, 300≤TS≤2000,
TS≤400*DE}. In order to decide the correct values that the variable DE can take
to satisfy all the BDCs in the future, either those BDCs related with only Select
Service Level (Option 1 of Figure 1) can be taken into account, or all the BDCs
related directly or indirectly with DE. This implies analysing all the possible paths
from Select Service Level, while considering the conditions associated with the con-
trol flows and evaluated at runtime (DE in the example), and the BDCs of Select
Provider A and Select Provider B (Option 2 of Figure 1). Option 1 presents an
interval with the possible values of the variable DE ([1..3]) when solely the BDCs
related to the activity Select Provider A are analysed; and Option 2 shows how the
interval with possible correct values of DE are reduced ([2..3]) if the BDCs related
to the variable NR are also included in the analysis. For example, in Option 1 it is
possible to introduce the value 1 for the variable DE, and to assign 350 to the vari-
able NR ({TS ≤ 400 ∗DE}). The problem arises when the activity Select Provider
A is executed, and it is discovered that there are no valid values for the variable
NR to satisfy the BDC {NR ≤ TS}.

From the previous example, it can be observed that the BDCs could help to
introduce consistent data in business process instances. These BDCs constitute
the basic knowledge for a Decision Support System (DSS). This knowledge can be
enriched by including the analysis of the business process model, and the conditions
associated with the sequence flows. This decision-making support for input data can
also be used to guarantee the existence of a correct instance of the process, thereby
obtaining a more fault-tolerant process.

In order to support this assistance with the DSS for input data, the following

aspects have been considered:

• The use of Business Data Constraints to help in the decision-
making support for input data. BDCs can assist in the decision-making
support by reporting on the possible correct values of the data introduced
in each instance; however not all of the values of the BDC variables are yet
known and instantiated.

• The development of an algorithm to traverse the process model.
To bring the relevant parts of the business process together and allow them
to contribute towards decision-making support, an analysis of the process
model and the BDCs of each activity is necessary. We propose an algorithm
that traverses the business process model and combines the BDCs related
to each activity in order to obtain a representation of the correct values
that the variables can assume.

• The generation of the Numerical representation of the possible
correct values of the input data. To generate a set of qualified solution
alternatives, instead of providing only one solution, we propose obtaining
the possible ranges of the decision variables by means of Constraint Pro-
gramming.

• The implementation of an application to integrate our proposal
into business process modeller software. In order to facilitate the
decision-making process description, we have developed an application for
the DSS (called MARTIN: MAking Reasoning for daTa INput) that allows
the user to define the BDCs for each activity, and connect the symbolic and
numerical solvers with the process in order to obtain the possible correct
values for the input data in each instance. This application offers the re-
quired agility and flexibility to the organizations so that they can comply
with changes in policy and legislation, and apply them in the DSS.

For these reasons, this paper is organized as follows: Section 2 explains the gram-
mar of BDC used in this paper. Section 3 presents a motivating example where
decision-making support for input data is used. Section 4 states the necessary def-
initions to formalize the proposal. Section 5 analyses how to traverse a business
process model to study all the possible correct values of a variable, and to propose
an algorithm for its development. Once the BDCs involved in the decision-making
support are known, how Constraint Programming is applied to Decision-Making
support is analysed in Section 6. In Section 7, the details of the DSS that we pro-
pose, the implemented application to include BDCs in the decision-making support,
and a case of study are explained. Section 8 discusses previous work related to our
proposal. Finally, conclusions are drawn and future work is presented.

2. Representation of the Decision-Making Objectives

As mentioned above, BDCs are a subset of the business compliance rules, oriented
to dataflow values. BDCs can be used to represent the relation between the values of
the variables that flow in a business process instance, by helping in the description
of the policy of the company and in the decision-making support for input data.
Although there are several language constructs for the design of business compli-
ance rules, most are based on the use of IF-THEN rules or their derived extensions
of ECA rules (event-condition-action rules) or ECAA rules (event-condition-action-
alternative rules). The languages for representing business rules vary between re-
search prototypes (e.g. N3), vendor specific formats (e.g. Drools, Fair Isaac Blaze
Advisor, ILOG JRules and Jess), and proposals for the XML-based exchange of
business rules (e.g. SRML, PRR, and SBVR). Another possibility is the Business

Process Compliance Language (BPCL) 8, which defines inclusion, precedence, and
existence conditions for business rules by means of Object Constraint Language
(OCL) expressions, which specify correctness and compliance checks. That version

of BPCL was improved in 6 to develop a semantic approach to business rule man-
agement that allows intuitive modelling and analysis of business process compliance.

In 7, a grammar for BDCs is presented. In this paper, we extend this grammar to
include new operators that can facilitate the description of the policy of the com-
panies. This extension is inspired by the idea of viewing a BDC as a Constraint: a
Boolean combination of equations and inequations that follows the metamodel of

Figure 2 based on that presented in 9.
A BDC can be an atomic constraint, a negation of a constraint, or a binary

constraint formed by two constraints joined with a Boolean operator (AND, OR,
IMPLY). An atomic constraint is formed by two functions and a comparator (<, ≤,
≥, . . .). Each function can be a unary function (a variable), a constant, or a binary
function joined with an operator (+, ∗, −, /).

The metamodel is based on the recursive definition of Constraint, since two
constraints can be combined into a new one, by using one of the Logic Operators
or a Negation. For example, the constraints: {a+b ≤ c ∧ c > 8} and {a*b ≥ 5 ∨
¬(c ≤ 15)}, can be combined into a new constraint, for example by using the ∨
operator, thereby obtaining the new constraint: {(a+b ≤ c ∧ c > 8) ∨ (a*b ≥ 5 ∨
¬(c ≤ 15))}. We therefore define four methods for the combination of a BDC (c)
with another (c’):

• c.and(BDC c’) returns a new constraint: {c ∧ c’}
• c.or(BDC c’) returns a new constraint: {c ∨ c’}
• c.not() returns a new constraint: {¬ c}
• c.imply(BDC c’) a new constraint: {c → c’}

These methods will be used in Algorithm 5.2 to build the BDC that will represent
all possible values of a variable in accordance with the model of the business process.

Constraint
- domain : VariableType
- name : String

Variable

- FLOAT
- INTEGER
- NATURAL

<<enum>>
VariableType

- isDefinedBy

* 1

- NOT_EQUAL
- EQUAL
- GREATER_EQUAL
- GREATER
- LESS_EQUAL
- LESS

<<enum>>
Comparator

- comparator : Comparator

AtomicConstraint NegationConstraint

- booleanOp : LogicOperator

BinaryConstraint

- IMPLY
- OR
- AND

<<enum>>
LogicOperator

Function

- isFormedBy2

1

UnaryFunction

- has

1

- value : String

Constant

- funcOperator : FunctionOperator

BinaryFunction

- DIVIDE
- MULTIPLY
- MINUS
- PLUS

<<enum>>
FunctionOperator

- has

2

1

- relates

2

- negates

1

Fig. 2. Constraint Metamodel

3. A motivating example

The motivating example used in this paper is the well-known example of the orga-
nization of a conference, for which a reduced model is presented in Figure 3. This
business process shows an example where decisions about input data must be made
at various points of the business process, where the future values of several vari-
ables remain unknown, since they are introduced into activities that have yet to be
executed. First of all, the organizing committee has to determine the early and late
registration fees several months before the number of participants is known, and
this decision cannot be changed after the call for papers has been made. A similar
situation exists when deciding the number of proceedings that will be printed, but
although the final number of participants remains unknown until the conference
ends, there is a significant relationship between the number of accepted papers and
the number of participants. Other decisions, such as which restaurant to book for
the gala dinner and lunches, have to be made although the number of participants
can influence the determination of the price and the choice of restaurant. Although
this information is unknown, it is necessary to make many decisions before the
conference starts. In the example, nine different input data variables participate in
the data decision-making process (early registration fee, late registration fee, lunch
price, dinner price, number of proceedings to print, local speaker cost, international
speaker cost, publicity and venue cost). There are other input variables, but their

Establish
Conference

Rate

Contact
Partner

Print
Proceedings

Final report
and make
payments

Invite
Local

Speaker

Invite
International

Speaker

Author
Notification

Regsiter
Early

Income-totalCost<4000

/

Book
Dinner

Book
Lunch

Paper
Submission

Sent Paper Accepted Paper

Num Early
registrations

Num Late
Registrations

Hold
Conference

Sponsorship

AND1 AND2

XOR1

OR1

Early Registration Fees
Late Registration Fees

Venue Cost

publicity

Proceeding Price

NumberOfProceedings
Conference lunch price
Conference dinner price

sponsorship>=5000

sponsorship>=8000

interSpeakerCost

localSpeakerCost

Fig. 3. Example of a conference organization process

values are determined in a mandatory way, for example the number of accepted pa-
pers, or the final number of participants that belong as part of the data flow. Since
decisions have to be made by the organizing committee, two questions arise: Would
it be more conducive towards the success of the conference to take into account all
the potential facts in the future, and the possible branches that will be executed
depending on the specific values of each process instantiation? How it can be done?

Obviously, if there is no information about the relationship between the vari-
ables earlyRegistrationFee, lateRegistrationFee, lunchPrice, etc, no type of inference
about the possible correct values can be taken. For this reason, BDCs are necessary.
Examples include:

• {sentPaper*0.3 ≤ acceptedPapers ≤ sentPaper*0.8} associated with the
activity Paper Submission.

• {numEarlyParticipant*0.8 ≤ acceptedPapers ≤ numEarlyParticipant *
1.2} associated with the activity Author Notification.

• {numOfProceedings ≥ 1.1 * numberOfParticipants} associated with the
activity Print Proceedings.

• {Income*0.80 ≤ TotalCost ≤ Income*0.9} associated with the activity
Hold Conference.

These BDCs, combined with the process model and the conditional sequence
flows presented in Figure 3, can be applied in order to ascertain the decision vari-
ables, for example lunchPrice in the activity Book Lunch. All the variables and

BDCs are explained in detail in the Appendix of the paper.

4. Formalization of the Decision-making support for input data in
Business Processes

In this section, basic notation and concepts are introduced and the formalism used
to express our problem is briefly described. A DSS for input data in business pro-
cesses undertakes tasks such as an evaluation of alternatives, and communicates
its conclusions by taking into account the BDCs that must be consistent in future
decisions and in the process model. Therefore, the same model can be involved at
different points of decision-making according to the decision variables that the user
needs to ascertain, and to the specific values instantiated for the variables of the
dataflow. Therefore, two aspects are combined in the decision-making support: the
modelM (<P, BDC, DF>), formed by activities and control flows, the BDCs associ-
ated to each activity, and the dataflow variables; and the decision point DP, formed
by the decision variables (whose possible values need to be ascertained) and all the
instances of the dataflow variables until the moment <DV, DFI>. According to
these two descriptors, the decision-making support can be performed by obtaining
all the possible DVI tuples of values for DV that satisfy DBC and the DFI. A DSS
for the input data of a business process can therefore be specified by means of the
Decision Process Model:

Definition of Decision Process Model: This is formed by means of the
business process model (M), and the decision points (DP). Each of these parts are
defined at the same time as:
M = <P, BDC, DF>

DP = <DV, DFI>
By using these two parts of the description, the decision-making support for

input data obtains the DVI, which is a set of correct tuples of instantiation of DV:
<M, DP> → DVI | ∀ vdi ∈ DVI, {BDC ∪ DFI ∪ vdi} ` >
The following subsections formalize the model, the decision points, and specify

how to obtain the decision-making support in detail.

4.1. Business Process Model (M)

A part of the Decision Process Model is the process model P, and is composed of:

• SE, one start event to initialize the process.
• EE, a set of end events, with at least one element.
• A, a set of activities that defines the model of the process.
• CF, a set of control flow patterns (AND, OR, XOR) that describes the

possible branches to execute.
• Cond, a set of conditions associated with the control flows OR and XOR,

that describes the paths that the process can take depending on the values
of the variables in the dataflow. These conditions are evaluated at runtime,

A1

A2

A3

A4

BDC1

BDC2

BDC3

BDC4

BDC5

BDC6

BDC7

Activities Business Data
Constraints

Fig. 4. Function relation between Activities and BDCs

when the values of the variables are known.

The BDCs associated to each activity of the process (BDC) are defined with the
dataflow variables DF; the DF can then be defined for a range of possible values to
assist in the decision support (DFR). The relationship between activities and BDCs
is presented in Figure 4, where there is a surjective correspondence between the
Activity and the Business Data Constraint sets. The importance of the integration of
business rules and business processes was analysed in 33. Every BDCi in a Business
Data Constraint set has a corresponding element Aj in the Activity set, such that
f(Aj) = BDCi, whereby multiple activities might be turned into the same BDC by
applying f, although not all the Activity elements must have a relation with the
elements of the Business Data Constraint set. Therefore, the BDC is described by
means of the tuple: BDC = < DFR, f : A → BDCs>.

The BDCs that describe the range of the possible values for each dataflow vari-
able are assigned to the whole process.

For the process example presented in Figure 3, the components of the process
according the definitions above are:

• A = {Establish Conference Rate, Contact Contribution, Paper submission,
Author Notification, ...}.

• CF = {AND1, AND2, XOR1, OR1}.
• Cond of the control flow pattern XOR1 is {Income-totalCost < 4000}, and

for the control flow pattern OR1 are {sponsorship ≥ 5000, sponsorship ≥
8000}.

• BDC is composed of:

– DFR = {5000 ≤ totalCost ≤ 50000}, {5000 ≤ income ≤ 60000}, {50
≤ numEarlyParticipants ≤ 200}, ...

– f : A → BDCs = Establish Conference Rate→ {1.2 * earlyReg-
istrationFee ≤ lateRegistrationFees ≤ 1.5 * earlyRegistrationFee, fix-

Cost = venueCost + publicity},
Paper Submission→ {sentPaper*0.3 ≤ acceptedPapers ≤ sentPa-
per*0.8}, ...

• DF = {earlyRegistrationFee, lateRegistrationFee, sponsorship, acceptedPa-
per, numEarlyParticipants, numberOfProceedings, proceedingsPrice, . . .}

4.2. Decision Points for Decision-Making Support

For the same process model and BDCs, various evaluations can be obtained, de-
pending on the decision variables for which the user requests assistance, and the
instantiations of the dataflow that are defined. Therefore, the decision variables
DV constitute a set of input data (vd1, vd2, . . ., vdn), and the DFI is a partial
assignment of values to DF.

For the example of Figure 3, one decision point could be:

• DV = {numberOfProceedings}
• DFI = {500, 600, 2500, 123, 56, 60, null, null, . . .}, which is a partial as-

signment of the set DF = {earlyRegistrationFee, lateRegistrationFee, spon-
sorship, acceptedPaper, numEarlyRegistration, numberOfProceedings, pro-
ceedingsPrice, . . .} carried out during the partial execution of the business
process up to this decision point.

4.3. Support obtained for the Decision-Making for Input Data

In a consistency-based approach, a decision-making support for input data returns,
for the decision variables DV = {dv1, dv2, . . ., dvn}, a set of m tuples (one set
for each possible tuple of values), where each tuple has n values, which are as
many values as they are decision variables DV. Therefore, the tuples returned have
the form: DVI = {<dv1

1, dv1
2, . . ., dv1

n>, . . ., <dvm
1 , dvm

2 , . . ., dvm
n >}, where dvj

i

represents a possible value of instantiation of the decision variable dvi in the j-th
tuple of the possibilities presented.

The obtained DVI ⊆ DV1 × . . . × DVm, where DVi represents the domain of
dvi, and ∀ dv ∈ DVI, {dv ∪ BDC ∪ DFI} ` >.

The problem is that showing the user all these possible DVI tuples, which repre-
sent the possible correct values of the decision variables, would not be very helpful,
since the combination of possibilities can be very large, or even infinite, and diffi-
cult to analyse. For this reason, we propose presenting the information by means of
intervals for each decision variable:

Since the set of tuples DVI is equal to {<dv1
1, dv1

2, . . ., dv1
n>, . . ., <dvm

1 , dvm
2 ,

. . ., dvm
n >}, then the interval representation returns a set of intervals of the form:

<[dve
1 .. dvi

1] .. [dvh
1 .. dvj

1], [dve
2 .. dvi

2]..[dvh
2 .. dvj

2], . . ., [dve
n .. dvi

n]..[dvh
n ..

dvj
n]>, where ∃{v1, v2, ..., vn} | v1 ∈ [dve

1 .. dvi
1] ∪...∪ [dvh

1 .. dvj
1], v2 ∈ [dve

2 .. dvi
2]

∪...∪ [dvh
2 .. dvj

2], . . ., vn ∈ [dve
n .. dvi

n] ∪...∪ [dvh
n .. dvj

n].

The tuple of values {v1, v2, ..., vn} satisfies all the BDCs, thereby assuring that
there is a tuple of values contained in the intervals for which the instance can be
executed correctly according to the BDCs. It should be noted that the BDCs are
not always satisfies by all the possible combinations of values for {v1, v2, ..., vn}. To
assure that any combination of input values for decision variables is consistent at a
decision point, only one decision variable can participate at the same time, since it
would be possible to violate a BDC if more than one value were introduced.

To summarize, the decision-making support for input data is developed in two
phases:

(1) Obtaining the process model at design time for the decision-making
support. Although the parts of the model have been described, the way in
which the combination of the BDCs related to the activities is achieved needs
to be explained. Section 5 presents how to obtain a new BDC that represents
all potential decisions. This algorithm takes into account the business process
model, the conditions associated with the control flows, and the BDCs related
to each activity. This step has to be reexecuted whenever the business process
model or the BDCs change.

(2) Evaluating the decision points at runtime for the decision-making
support. The output of the DSS will depend on the decision point, that is, on
the decision variables and the instantiation of the dataflow variables. How to
obtain the numerical representation is explained in 6.

4.4. Scope of Applicability of our Proposal

As a consequence of the Business Process Model described in the previous subsec-
tions, the scope of application of our proposal is limited by three characteristics:

• The knowledge concerning the possible values of the variables man-
aged during the business process instance. If the possible values of the
variables, and their relations, remain unknown, it will not be possible to help
the user during the business execution. The inference of the possibility of cor-
rect input values is derived from the Business Data Constraints associated to
the model.

• The possible BDCs that can be used, since the limitation is centred
on the capacity of their expressiveness as allowed by the grammar
and type of variables. These BDCs constitute the formal representation of
the relations between the data that forms the business process. The limitations
of use of the proposal appear when the constraints cannot be represented by
numerical relations, data type, or the operators included in this proposal, such
as when a relation among two variables is described by means of a trigonometric
function. The limitation of the data domain and the operations that can be used
are established by the solver used for the Constraint Programming Problem,
explained in Section 6. Most of the commercial solvers maintain the capacity

to include Float, Integer, Sets, and Boolean variables in the model, thereby
making it possible to cover a significant number of problems and their business
data constraints.

• The model of the process (M) follows the BPMN representation,
but only with a subset of artefact. The components allowed are: activi-
ties, control-flows (AND, OR and XOR, split and join), sequence flow, flow-
condition, one stat event, and end events. Only the process models that can
be transformed into a correct process graph (as defined in Section 5) can be
studied.

5. Obtaining the BDCs from the Decision Process Model

As stated earlier, since the BDCs tend to be associated with various activities in
a business process, then the BDCs associated with the activity where the decision
point is executed are not the only influence on the possible values of a data in-
troduced in this activity. The question therefore becomes: in which sense can the
business process model and the conditions associated with the control flows influence
the decision? By analysing the most common patterns of control flow in business
process models (Sequence, AND, OR, and XOR), the possibilities are determined
as:

• Sequence. By using the example of Figure 6, in order to ascertain the possible
values of the variable earlyRegistrationFee in the Activity Establish Conference
Rate, then the BDCs of the activities Contract Partner, Paper submission, ...
have to be taken into account with an AND Boolean relation between their
BDCs, since all the instances must execute these activities, and satisfy their
BDCs (Figure 5.a).

• AND Split. Similarly with the AND split control flow, all the instances have
to execute all the activities of the different branches, although the order is
unknown. Therefore, the BDCs of all these activities will be combined by means
of an AND Boolean combination, as presented in Figure 5.b.

• XOR Split. In the case of the XOR control flow, where only one branch can
be executed for an instance, the condition associated with each branch will
be combined with the BDCs of the activities for each branch. The BDCs of
the activities of a branch have to be satisfied only if the branch is executed:
this occurs when the condition associated to the XOR control flow is true for
the values of the instantiation. For the example of Figure 6, the Activities
Local invitation or International invitation can only be executed if the condition
{sponsorship ≥ 8000} is true, and hence the correctness of the BDCs of these
activities is conditioned to the value of the variable sponsorship. As presented
in Figure 5.c, the BDCs of the activities of the different branches will have
an OR Boolean relation between them, and the conditions are combined with
an AND Boolean relation with the BDCs of the activities for each branch. A
special treatment is performed for the default branch, where the conditional

Ai Aj Ak

Ca...Ck Cl...Cm Cn...Cp

(Ca ...Ck) ˄ (Cl ...Cm) ˄ (Cn ...Cp)

(Ca ...Ck) ˄ … ˄ (Cl ...Cm)

(Ci ˄ (Ca...Ck)) ˅ (Cj ˄ (Cl...Cm))
˅ … ˅

((¬Ci ˄¬Cj ˄...)˄(Cp...Cr))

(Ci ˄ (Ca...Ck)) ˅ … ˅ (Cj ˄ (Cl...Cm))

a)

b)

c)

d)

Aj+

Branch1

Branchn

Ai +

Ca...Ck

Cl...Cm

...

Ajo

Branch1

Branchn

Ai o

Ci

Cj

Cl...Cm

Ca...Ck

...

Ajx

Branch1

Branch2

Ai x
Ci

Cl...Cm

Ca...Ck

Branchn

Cj

... ...Cp...Cr

Fig. 5. Combination of BDCs in terms of the control flows and their conditions

flow of execution implies the non-compliance of the condition for the rest of the
branches, thereby implying the negation of the rest of the conditions.

• OR Split. OR control flow is very similar to XOR, the only difference being
that more than one branch can be executed, and hence the default option negat-
ing the rest of the branches does not appear since this would make no sense, as
presented in Figure 5.d.

In order to traverse the model, by combining the structures with the concepts of
the control flows presented above, we propose building a process graph that is used
to represent the business process details. The construction of the process graph
is based on the annotated graph presented in 10, but includes some differences:
for example it employs a different way to label the graph to model the conditions
associated with the branches for the OR and XOR splits, and varies the number of
possible end nodes.

Definition of a Process Graph: A process graph is a labelled directed graph
composed of nodes (N) and edges (E), G = <N, E>, where N is the disjoint union
of {n0} (start node), N+ (end nodes), NT (task nodes), NPS (parallel splits), NPJ
(parallel joins), NORS (or splits), NORJ (or joins), NXS (xor splits), and NXJ
(xor joins). For n ∈ N, IN(n)/OUT(n) denotes the set of incoming/outgoing edges
of n.

In order to determine that a business process model described by a process graph
is correct, it is required that:

(1) For each split node n, |IN(n)| = 1 and |OUT(n)| > 1;
(2) For each join node n, |IN(n)| > 1 and |OUT(n)| = 1;
(3) For each n ∈ N T, |IN(n)| = 1 and |OUT(n)| = 1;
(4) For n0, |IN(n)| = 0 and |OUT(n)| = 1, and vice versa for n ∈ N +;
(5) Each node n ∈ N is on a path from the start to an end node.
(6) If |IN(n)| = 1, then IN(n) is identified with its single element, and similarly for

OUT(n);
(7) The outgoing edges of n ∈ {NXS ∪ NORS} have to be labelled with a condition

to describe when this branch is executed.
(8) One and only one of the labels for the outgoing edges of a node ∈ NXS can be

labelled as default, or none of them can be labelled as default.

We suppose that the business process model is correct, which implies that it
follows the aforementioned rules and that it demands that the conditions of the
XOR branches cannot be overlapped, and that all the splits are closed in a join or
in an end node. The graph that we obtain from the example of Figure 3 is presented
in Figure 6.

Establish
Conference

Rate

Contact
Partner

Print
Proceedings

Final report
and make
payments Invite

Local
Speaker

Invite
International

Speaker

Author
Notification

Register
Early

Income-totalCost<4000

Book
 Dinner

Book
Lunch

Paper
Submission

Hold
Conference sponsorship>=5000

sponsorship>=8000

AND1 AND1 AND2
AND2

XOR1XOR1

OR1OR1

START

END
/

Fig. 6. Process Graph for the Conference example

Once the graph is created, the next step is to ascertain how to traverse the graph
to combine all the BDCs of its activities, to obtain the model that represents the
possible values of the dataflow variables, by including the topological characteristics
explained in this subsection. To this end, we propose an algorithm to traverse a
process graph and to obtain a BDC that represents, in a symbolic way, all the
valid values of the decision variables. We have developed the recursive Algorithm
GraphTraversal (Algorithm 5.2), whose complexity is linear for the number of nodes,
since each node is analysed only once. The input parameters of Algorithm 5.2 specify

the graph to traverse, the node used to start the algorithm, and the input/output
constraint that represents the BDC obtained from the execution of the algorithm.
The output of the recursive function consists of the subsequent node analysed in
the process of traversing. In order to initialise the call to recursive Algorithm 5.2,
Algorithm 5.1 has been defined, which starts with the necessary first call.

The line of reasoning in the algorithm follows the definition of the process graph
presented in the previous section, where the graph has special characteristics, for
example there is no node n with |IN(n)|> 1 and |OUT(n)|> 1, and for all n ∈ N T,
|IN(n)|= 1 and |OUT(n)|= 1. This algorithm enables us to approach a business pro-
cess as a sequence of activities, where each activity itself can also be a process graph
(a subprocess). In order to traverse the graph, the list of activities or subprocesses
that form it must be looped in (line 2 of Algorithm 5.2). The problem is how to
detect the subprocesses: this implies determining where they start, and where they
end. We define that a subprocess starts when a split control flow is found in the
traversing process (line 4 of Algorithm 5.2), and ends when a join control flow (line
33) or an end node (line 2) is found. When a subprocess is detected, a recursive call
is used to traverse each branch (line 20). The outputs of these recursive calls are
also BDCs, which are combined according to the control flow and the conditions
(lines 18 and 24), following the instructions of Figure 5 (from line 20 to 31). Since
it is supposed that the graph represents a correct model, all the branches have to
finish in the same join control flow, or in an end node. For this reason, when all the
recursive calls for the different branches end, and by using all the nodes returned
from these calls, the node which is distinct from an end node will be used as the
next node in the loop (line 32).

Algorithm 5.1 Algorithm to initialize the traversing of a process graph
1: function GraphTraversal(Graph g)
2: Constraint c = new Constraint();
3: Node n = g.obtainNeighbour(”Start”);
4: GraphTraverse(g, n, c);
5: return c
6: end function

The BDC obtained for the graph of Figure 6 is the following, where, for the sake
of simplicity, the BDCs of the activities are presented as the name of the activity:

Establish Conference Rate ∧ Contact Partner ∧ Paper Submission ∧
Author Notification ∧ (Early Registration ∧ Print Proceedings) ∧
(Book Dinner ∧ Book Lunch) ∧
(((Income-totalCost<4000) ∧ (true)) ∨ (¬(Income-totalCost<4000)

∧ ((sponsorship≥5000)∧(Local invitation) ∨ ((sponsorship≥8000) ∧ (International
invitation))))) ∧

Hold Conference ∧

Algorithm 5.2 Recursive Algorithm to t a process graph
1: function GraphTraversal(Graph g, Node n, Constraint c)
2: while n is not an END node do
3: if n is an Activity then
4: if c == new Constraint() then
5: c = n.obtainConstraint();
6: else
7: c.and(n.obtainConstraint());
8: end if
9: n = g.obtainNeighbour(n);

10: . A single node is returned (for line 3 of Process Graph definition).
11: else if n.type is a Split Control Flow then
12: Set nodes = g.obtainNeighbour(n);
13: . Several neighbours are obtained, one for each branch.
14: Node n1 = nodes.get();
15: Constraint c1 = new Constraint();
16: Array ArrayNodes[] = new Nodes[nodes.size()];
17: ArrayNodes[0] = GraphTraversal(g, n1, c1);
18: c1.add(g.label(n,n1));
19: integer i = 1;
20: while nodes.next() do
21: Node n2 = nodes.get();
22: Constraint c2 = new Constraint();
23: ArrayNodes[i++] = GraphTraversal(g, n2, c2);
24: c2.and(g.label(n, n2));
25: if n is an OR or an XOR control flow then
26: c1.OR(c2);
27: else
28: c1.AND(c2)
29: end if
30: end while
31: c.and(c1);
32: n = theNodeDistinctOfEnd(ArrayNodes);
33: else . Any join control flow
34: n = g.obtainNeighbours(n);
35: . A single node is returned (for line 2 of Process Graph definition).
36: return n;
37: end if
38: end while
39: return n
40: end function

Final report and make payments

Any BDCs defined for the whole process, and not just for a specific activity,
will be included with an AND Boolean relation with the BDCs obtained from the
execution of the algorithm. If there is an activity without any associated BDC, it
will be equal to not including a constraint or including a true constraint in the BDC

obtained.

6. Evaluating the Decision Process Model at the Decision Points

As mentioned in Section 4, an important key to the decision-making support for
input data is how to present the information so that it is useful to the user. In
order to obtain a numerical representation by means of intervals, we propose the
use of the Constraint Programming paradigm to assure that the decision model
can be evaluated in an efficient way. This assurance is thanks to the CSP formal
representation being very similar to the formal representation of the decision model
presented in this paper. Therefore, we propose modelling and evaluating a Con-
straint Satisfaction Problem with the BDC obtained from Algorithm 5.2, and for
the instantiated variables of dataflow.

A Constraint Satisfaction Problem (CSP) represents a reasoning framework con-
sisting of variables, domains and constraints. Formally, it is defined as a tuple <X,
D, C>, where X = {x1, x2, . . ., xn} is a finite set of variables, D = {d(x1), d(x2),
. . ., d(xn)} is a set of domains of the values of the variables, and C = {C1, C2,
. . ., Cm} is a set of constraints. Each constraint Ci is defined as a relation R on a
subset of variables V = {xi, xj , . . ., xl}, called the constraint scope. The relation
R may be represented as a subset of the Cartesian product d(xi) × d(xj) × . . . ×
d(xl). A constraint Ci = (Vi,Ri) simultaneously specifies the possible values of the
variables in V in order to satisfy R. Let Vk = {xk1 , xk2 , . . ., xkl

} be a subset of X,
and an l-tuple (xk1 , xk2 , . . ., xkl

) from d(xk1), d(xk2), . . ., d(xkl
) can therefore be

called an instantiation of the variables in Vk. An instantiation is a solution if and
only if it satisfies the constraints C.

In order to solve a CSP, a combination of search and consistency techniques is
commonly used 11. The consistency techniques remove inconsistent values from the
domains of the variables during or before the search. During the search, a propaga-
tion process is executed which analyses the combination of values of variables where
the constraints are satisfiable. Several local consistency and optimization techniques
have been proposed as ways of improving the efficiency of search algorithms.

In a CSP, the inclusion of a constraint in the set C has the same effect as
including this constraint with an ∧ relation with the set C . For this reason, in this
case the CSP will be composed of the variables of the dataflow, both instantiated
and non-instantiated, of the BDC obtained from Algorithm 5.2, and of the BDCs
defined for the whole process. The parts of the CSP according to the definition of
Decision Process Model are therefore:

• X: DF
• D: DFI
• C: {BDCs defined for the whole process} ∪ {BDC obtained from the execution

of the algorithm GraphTraversal}
Since the CSP returns all the possible values of the variables (DF in this case),

it is necessary to reduce it to present only the values of the decision variables (DV).
To this end, the decision variables are defined as objectives during the propagation
process where the variables are instantiated. This enables the search to stop the
instantiation in the branches where no new values of decision variables can be
found, thereby bounding the unnecessary combinations of values. For each solution
found, each value of the decision variables is stored in a sorted list. Each of these
sorted lists is treated in order to return the list of intervals for each variable of
decision. For example if the values {1, 2, 3, 5, 8, 9, 10} are found for the variable
x, the list of intervals built is {[1, 3], [5, 5], [8, 10]}.

For the example of Figure 3, the CSP built to analyse the possible valid values of
the variable of decision NumberOfProceedings in the activity PrintProceeding (which
uses the variables and BDCs presented in the Appendix) is:

//All the variables of the dataflow

totalCost, numEarlyParticipant, numLateParticipant, ... Integer

//The variables instantiated until the decision point

EarlyRegistrationFee = 500

LateRegistrationFee = 750

. . .

//Range of the dataflow variables and BDCs for the whole process

totalCost[5000..50000] Integer

numEarlyParticipants[50..200] Integer

numLateParticipants[10..100] Integer

numParticipants[60..300] Integer

CostPerParticipant = 3*lunchPrice+dinnerPrice+proceedingsPrice

. . .

//BDCs obtained from the algorithm GraphTraversal

BDCs of the Activity Establish Conference Rate

BDCs of the Activity Contact Partner

...

(((Income-totalCost<4000) ∧ (true)) ∨ (¬(Income-totalCost<4000) ∧
(sponsorship≥5000)∧(Local invitation) ∨

((sponsorship≥8000) ∧ (International invitation))))

//BDCs of the Activity Hold Conference

//BDCs of the Activity Final report and make payments

Goal for branching(numOfProceedings)

The CSP solver used in our proposal is ChocoTM 12. Once the resolution of the
CSP has finished, the list of intervals obtained is used to inform the user about the
possible correct values. For the example, once earlyRegistrationFees, lateRegistra-
tionFees, venueCost, sponsorship, sentPapers and acceptedPapers have been instan-
tiated in the process with the values {500, 750, 2500, 8500, 150} respectively, in the
activity Print Proceedings the interval {[67, 123]} is obtained in order to ascertain

Process Layer

Business
Data

Constraints
Repository

Presentation
Layer

Application Layer

Persistence Layer

Data Input
Decision Making
Support Layer

Numerical Solver Symbolic Solver

Fig. 7. DSS for Decision-making support for Input Data

the possible values of the decision variable numberOfProceedings.

7. Implementation details in a Case of Study

In order to show the benefits of the decision-making support for input data in
business process instances, we have implemented a solution based on the Process
Aware Information System (PAIS) framework and illustrated how to facilitate the
input data support into a commercial solution.

7.1. Decision Support System for Input Data in Business

Processes

In order to permit the decision-making support for input data at various points of
the process based on the BDCs, this paper is based on an extension of the classic
PAIS framework 16, as presented in 17, and shown in Figure 7. In general, a PAIS
architecture 18 can be viewed as a 4-tier system as presented in 16, where, from
top to bottom, the layers are: Presentation Layer, Process Layer, Application Layer
and Persistency Layer. As a fundamental characteristic, PAIS provides the means
to separate process logic from application code.

Data decision-making support and business process layers are two parallel and
”independent” systems. They are considered independent since they can be simul-
taneously executed in separate machines, for different applications. However, this
independence fails from the point of view of dataflow information, since, for the
various decision points, the Data Input Decision layer uses the instantiated vari-

ables in the dataflow and uses the decision variables that the process needs. With
the presented DSS, it is possible to design both the business process model and
the BDCs, thereby achieving higher levels of flexibility and agility in the business
process management. One of the items that also needs to be studied is how to store
the BDCs, and how to define the relation between each of them and the activities of
the process. When a great deal of BDCs have to be handled, the use of a database to
store and manage these constraints is mandatory, especially when not all the BDCs
are established for the whole business process, and the relation between activities
and BDCs has to be defined.

The necessity to store the business compliance rules was analysed in 19, but
failed to take data semantics into account. However, BDCs cannot be stored in
a classic relational database, since storing a BDC also implies storing all the de-
tails related to its variables, the domain of variables, and data persistence relation-
ships. The difficulty in storing BDCs arises due to the problem of how to store the
constraints themselves as data, since they do not belong to a type supported by
commercial databases. In order to manage constraints, we propose the use of Con-
straint Database Management Systems (CDBMS) as explained in 20. That proposal
is based on an envelope for a database management system to manage Constraints
as a classic type, which has been proposed for the description of the BDCs. A sim-
ilar way to store BDCs was used in previous work 7. This solution shields the user
from unnecessary details on how the BDCs are stored and queried.

Once how to store the BDCs is ascertained, the next question is how each BDC
is related to each activity and with the rest of the process. Figure 8 represents
the relations necessary to describe that a Process has a set of Dataflow variables,
available for the Activities. Each BusinessDataConstraint can be associated with
a set of activities or to the whole process, while each Activity can have several
associated BDCs. These associations are established in the table Activity/BDC.

Activities

 (pk) IdActivity: int
 Name: String

Activity/BDC

 (pk) IdBR: int
 (pk) IdActivity: int

1..1

 0..n

Business Data Constraints

 (pk) IdBDC: int
 rule: Constraint

0..n

 1..1

Business Processes

 (pk) IdProcess: int
 Name: String
 bpmn2.0: XML

DataFlowVars

 (pk) IdVariable: int
 Name: String
 Type: String

1..1 0..n

1..1

 1..n0..n

 0..1

Fig. 8. Relations between BDCs and Activities

Presentation
Layer

}

Connector

MARTIN
(MAking Reasoning for

daTa INput)

Process Layer

Data Input Decision-Making
Support Layer

1

4

2

3

Fig. 9. DSS for the decision-making support for input data with tools

7.2. Computational application for the Decision-Making support

for Input Data

In order to facilitate the creation of BDCs and the decision-making of the process,
we have implemented an application and a connector that follow the DSS presented
in Section 7.1. This solution uses a specific set of technologies that could be replaced
by another set. The specific configuration that we have implemented is presented in
Figure 9, which describes a possible combination of tools to execute the decision-
making support for input data. We have prepared a video 21 where the steps for
the design and execution of the decision support are shown. The steps to configure
and use the application are:

(1) Modelling the business process and defining the dataflow variables (P,
DF): The business process and the dataflow variables can be modelled in any
Business Process Management System, for example: IntalioTM , ActivitiTM , and
Bonita Open SolutionTM . In the case of study presented, we have used Bonita
Open SolutionTM since it is an open-code application with free distribution, and
is commonly used in the private company sector. Once the process is modelled,
the designer of the process must decide on the decision points associated with
any activity.

(2) Locating the decision points and decision variables (DV): If a designer
considers allocating a decision point into a determined activity, then a connec-
tor must be added in the activity to relate it with the software that executes
the decision. We have implemented a connector (as shown in the video 21) to
facilitate the relation between the decision point and the reasoning software
(MARTIN) that obtains the possible and correct values of the decision vari-
ables. When a connector is included in an activity, it is necessary to define the
decision variables. In the connector, called ”Data Decision-Making Connector”,
all the dataflow values and the decision data variables are sent at runtime to

the software that executes the evaluation of the decision-making support for
the model obtained at design time, as explained in Section 6.

(3) Creating the BDCs (BDC): Once the process model is defined, it is necessary
to create the BDCs and associate them to each activity, using the solution of
Figure 8. The decision-making process uses all the variables instantiated in the
dataflow at runtime, and the BDCs that represent the possible correct values in
the future. To this end, we have implemented an application called MARTIN:
MAking Reasoning for daTa INput, to facilitate the creation of BDCs, and the
association of the BDCs to the activities. Most commercial tools provide an
XML representation of the created process that follows the BPMN 2.0 13. For
this reason, we have implemented a transformation from a .bpmn file that repre-
sents the type models described in this paper (formed by activities and control
flows), into our Process Graph. When the XML of the process is analysed, the
tables Business Process, Activities, and DataflowVar shown in Figure 8 are filled
in automatically, since the XML of the process holds all this information. It is
then possible to create and/or assign BDCs to the various activities. In order to
provide a simple way for the business expert to add BDCs, the interface (shown
in Figure 10.a) enables the business process model to be viewed, and BDCs to
be assigned to the activities that belong to the business process (Figure 10.b).

a) Creating BDCs b) Assigning BDCs

Fig. 10. Connector to create and assign BDCs to activities

(4) Instantiating the business process model (DFI) and obtaining the de-
cision variables instantiation (DVI). Once the business process model has
been designed in a Business Process Management System, the execution pro-
cess can be performed. When a business process instance executes an activity
with a Data Decision-Making Connector, the dataflow values of that instance

and data decision are sent to the Data Input Decision-Making Support layer
which implements the evaluation of models, as explained in Section 6. Figure
11 presents an example of the form that shows the possible intervals for each
decision variable.

Fig. 11. Form of Activity Establish Conference Rate at runtime

8. Related Work

Decision-making support in business processes carries significant contributions re-
lated to how to model the process, which in turn help the designer to decide the
best combination of activities to achieve an objective. A simulation-based approach
to decision-making support is proposed in 22 with respect to complex dynamic sys-
tems, and includes uncertain data. A methodology to optimize a process where the
description is not clear (fuzzy) is put forward in 23. However, in both papers, the
help in the business process has been oriented towards the design of the model, or
the redesign of the business process 24, by looking at the quality of the process
at design time, but not how this process works at runtime, thereby missing the
importance of the variables of the dataflow. Data has also been involved in other
studies related to decision support; for example 25 proposes an operational decision
support for the construction of process models based on historical data to simulate
processes. That proposal includes a generic approach to a business process for op-
erational decision support, and includes business process modelling and workflow
simulation with the models generated, by using process mining. Other work related
to how to model the processes, such as that in 26, proposes a framework of assis-
tance to create models which take the necessary resources involved in the process
into account. In that paper, the data that describe the resources of the execution
of the process are used, but not the data that flows at runtime, nor does it consider
how this assistance can help at runtime.

In general, papers found in the literature related to decision-making support

are not focused on the assistance of the user for the input data. Although work

such as 27 is oriented towards auditing the process in order to detect gaps between
the information system process flow and the internal control flow in the business
process, the quality of the data values at runtime is not a cause of concern for
the authors. This detection can be derived from the existence of an oversight in the
description of the semantics of data in the business processes. The use of compliance
rules has traditionally been used for the validation of the business process, not for
user assistance. The validation of business process traces has been a field of intense

research over recent years using business compliance rules: see 28 as an entry point
into this literature. However, these types of proposal cannot be used in the decision-
making support for input data, since they are focused on the compliance of the

process model structure 29, 30.
Regarding how to model data-aware compliance rules, studies such as 10, 31,

32, and 34, have defined graphical notations to represent the relationship between
data and compliance rules by means of data conditions. These types of compliance
rules cannot therefore be used to infer the possible values of the variables that are

involved in the decisions. In 35, ”semantic constraints” and the SeaFlows framework
for enabling integrated compliance support are proposed. Furthermore, in 37, a
preprocessing step to enable data-aware compliance checking in an efficient manner
is presented: the data describe under what conditions the activities can be executed.
In general, many examples can be found where data objects are used for compliance
verification, for instance, the semantically annotating activities with preconditions

and effects that may refer to data objects are introduced in 38, but none of these
factors assist the user with this information at runtime.

Summarizing, to the best of our knowledge, only one preliminary study 17 exists
that uses the knowledge of the business process model and the BDCs for decision-
making support for input data, while the rest of the proposals are focused on the
design or re-design of the business process model. The current paper constitutes an
improvement on the previous paper by: including the process graph definition to
represent the model; defining the algorithm to traverse the graph; and by imple-
menting an application that can be integrated with commercial tools.

9. Conclusions and Future work

In this paper, the use of BDCs is proposed to infer the possible input data values in
a business process instance, by taking into account the model of the process and the
decision points where the assistance must be executed. In order to meet this chal-
lenge, two different parts have been distinguished: an analysis of the process model
at design-time, by means of an algorithm to traverse the business process model;
and an evaluation of the decision model at runtime, to obtain the possible values
of the decision variables using constraint programming. In order to implement this
proposal, a case of study has been developed using Bonita Soft and an application
called MARTIN has been included in order to create, include, and evaluate the

BDCs in the business process model.
One aspect that can be improved in this work is the presentation of the possible

and correct values of the decision variables to the user. In the case of numerical
decision support, this improvement could be attained by showing the user the pos-
sible combinations for various decision variables simultaneously, instead of solely
presenting the intervals for each variable. As future work, we also plan to include a
symbolic representation of the possible correct variables instead of interval values.

Further research could be analysed in greater depth, such as: a) In the current
proposal, all the BDCs are defined for all instances, but it would be possible, de-
pending on the values of the dataflow or the moment where the instance is executed,
that a different set of BCDs could be involved in the decision support. b) Related to
the above proposal, there is also the possibility of including new BDCs for the user
at runtime, which would render the decision-making support for input data more
customized. This would help the user to include, for example, reductions of the
domains for determined decision variables associated with future decision points,
even before the final value is introduced. If, at a decision point, there are no possi-
ble values for a decision variable, it implies that no BDC is consistent. For future
work, we propose reinforcing the detection of the minimum set of BDCs that are
not satisfiable, and ascertaining how this situation can be fixed by means of input
data decisions.

Acknowledgement

This work has been partially funded by the Junta de Andalućıa by means of la Consejeŕıa
de Innovacíon, Ciencia y Empresa (P08-TIC-04095) and by the Ministry of Science and
Technology of Spain (TIN2009-13714) and the European Regional Development Fund
(ERDF/FEDER).

Appendix

Dataflow Variables:

• totalCost, income is the total cost and income of the conference respectively
• numEarlyParticipants is the number of people attending, registered in the

early period
• numLateParticipants is the number of people attending, registered in the late

period
• numParticipants is the final number of participants
• costPerParticipant is the cost per participant, and includes lunch and dinner,

cost of proceedings, etc.
• earlyRegistrationFee is the cost of early registration
• lateRegistrationFee is the cost of late registration
• sponsorship is the income from the companies that sponsor the event
• dinnerPrice is the price of the gala dinner

• lunchPrice is the price of the lunch
• proceedingsPrice is the price of printing one copy of the proceedings
• numOfProceedings is the number of proceedings printed
• acceptedPapers is the number of accepted papers
• sentPapers is the number of sent papers
• speakerCost is the cost of inviting a speaker to the conference, local or inter-

national
• localSpeakerCost is the cost of inviting a local speaker to the conference
• interSpeakerCost is the cost of inviting an international speaker to the con-

ference
• venueCost is the cost of booking the place to hold the conference
• publicity is the cost of publicizing the conference
• fixCost is the fixed cost independent of the number of attending people, the

venue and the publicity cost

Range of the Dataflow Variables and Business Data Constraints for the whole
process:

• {5000 ≤ totalCost ≤ 50000}
• {5000 ≤ income ≤ 60000}
• {50 ≤ numEarlyParticipants ≤ 200}
• {10 ≤ numLateParticipants ≤ 100}
• {60 ≤ numParticipants ≤ 300}
• {0 ≤ costPerParticipant ≤ 900}
• {120 ≤ earlyRegistrationFee ≤ 1000}
• {120 ≤ lateRegistrationFee ≤ 1000}
• {1000 ≤ sponsorship ≤ 10000}
• {30 ≤ lunchPrice ≤ 100}
• {60 ≤ dinnerPrice ≤ 250}
• {5 ≤ proceedingsPrice ≤ 20}
• {10 ≤ numOfProceedings ≤ 400}
• {0 ≤ acceptedPapers ≤ +∞}
• {0 ≤ sentPapers ≤ +∞}
• {0 ≤ speakerCost ≤ 7000}
• {0 ≤ localSpeakerCost ≤ 2000}
• {0 ≤ interSpeakerCost ≤ 4000}
• {2000 ≤ venueCost ≤ 3500}
• {1000 ≤ publicity ≤ 2500}
• {0 ≤ fixCost ≤ 9000}
• {speakerCost = localSpeakerCost + interSpeakerCost}
• {costPerParticipant=3*lunchPrice+dinnerPrice+proceedingsPrice}

Business Data Constraints for activities:

• Establish Conference Rate

– {1.2*earlyRegistrationFee ≤ lateRegistrationFees ≤ 1.5*earlyRegistra-
tionFee}

– {fixCost = venueCost+publicity}
• Paper Submission

– {sentPaper*0.3 ≤ acceptedPapers ≤ sentPaper*0.8}
• Author Notification

– {numEarlyParticipant*0.8 ≤ acceptedPapers ≤
numEarlyParticipant*1.2}

• Print proceedings

– {costPerParticipant*0.05 ≤ proceedingsPrice ≤ costPerParticipant*0.15}
– {numOfProceedings ≥ 1.1 * numberOfParticipant}

• Early Registration

– {1.2*numEarlyParticipants ≤ numParticipant ≤ 1.4*numEarlyPartici-
pants}

• Book Lunch

– {costPerParticipant*0.10 ≤ lunchPrice*3 ≤ costPerParticipant*0.35}
• Book Dinner

– {costPerParticipant*0.10 ≤ dinnerPrice ≤ costPerParticipant*0.60}
• Invite Local Speaker

– {sponsorship*0.3 ≤ localSpeakerCost ≤ sponsorship*0.5}
• Invite International Speaker

– {sponsorship*0.3 ≤ interSpeakerCost ≤ sponsorship*0.5}
• Hold Conference

– {totalCost = numParticipant∗costPerParticipant + inviteSpeaker
+numOfProceedings∗proceedingsPrice + fixCost}

– {income*0.7 ≤ totalCost ≤ income*0.9}
• Final Report & Make Payment

– {numParticipants = numEarlyParticipants + numLateParticipants}
– {Income = numEarlyParticipants ∗ earlyRegistrationFee +

numLateParticipants ∗ lateRegistrationFee + sponsorship}

References

1. M. Weske, Business Process Management: Concepts, Languages, Architectures,
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

2. S. Cetin, N. I. Altintas, R. Solmaz, Business rules segregation for dynamic process
management with an aspect-oriented framework, in: Proceedings of the 2006 inter-
national conference on Business Process Management Workshops, BPM’06, Springer-
Verlag, Berlin, Heidelberg, 2006, pp. 193–204.

3. D. Hay, K. A. Healy, J. Hall, C. Bachman, J. Breal, J. Funk, J. Healy, D. Mcbride,
R. Mckee, T. Moriarty, et al., Defining business rules. What are they really? The
business rules group, Business (2000) 4–5.

4. R. G. Ross, What is a business rule? Practicable business rules, Business.
5. N. Sponsor, Business rules and business processes, Information Systems Journal 1 (10)

(2008) 20–24.
6. J. Becker, C. Ahrendt, A. Coners, B. Wei, A. Winkelmann, Modelling and analysis

of business process compliance., M. Nttgens, A. Gadatsch, K. Kautz, I. Schirmer,
N. Blinn (Eds.), Governance and Sustainability in Information Systems, Vol. 366 of
IFIP Publications, Springer, 2011, pp. 259–269.

7. M. T. Gómez-López, R. M. Gasca, Run-time monitoring and auditing for business
processes data using contraints, in: International Workshop on Business Process In-
telligence, BPI 2010, Springer, 2010, pp. 15–25.

8. R. Wörzberger, T. Kurpick, T. Heer, Checking correctness and compliance of inte-
grated process models, in: SYNASC, 2008, pp. 576–583.

9. M. T. Gómez-López, R. M. Gasca, A. Reina-Quintero, Model-driven engineering for
constraint database query evaluation, in: Workshop Model-Driven Engineering, Logic
and Optimization: friends or foes?, MELO 2011, Springer, 2011, pp. 5–20.

10. I. Weber, J. Hoffmann, J. Mendling, Semantic business process validation, in:
SBPM’08: 3rd international workshop on Semantic Business Process Management
at ESWC’08, 2008.

11. R. Dechter, Constraint Processing (The Morgan Kaufmann Series in Artificial Intel-
ligence), Morgan Kaufmann, 2003.

12. G. Rochart, N. Jussien, X. Lorca, Choco. A java constraint programming library,
Reference Manual. http://www.emn.fr/z-info/choco-solver/.

13. OMG. Documents Associated With Business Process Model And Notation (BPMN)
Version 2.0. January 2011. http://www.omg.org/spec/BPMN/2.0/.

14. S. Basu, Algorithms in semi-algebraic geometry, ph D thesis (1996).
15. W. Hodges, Some Strange Quantifiers. Structures in Logic and Computer Science,

1997, pp. 51–65.
16. B. Weber, S. W. Sadiq, M. Reichert, Beyond rigidity - dynamic process lifecycle sup-

port, Computer Science - R&D 23 (2) (2009) 47–65.
17. M. T. Gómez-López, R. M. Gasca, L. Parody, D. Borrego, Constraint-driven approach

to support input data decision-making in business process management systems, in:
International Conference on Information System Development, ISD 2011, Springer,
2011, pp. 15–25.

18. H. Ma, Process-aware information systems: Bridging people and software through
process technology: Book reviews, J. Am. Soc. Inf. Sci. Technol. 58 (3) (2007) 455–
456.

19. S. Rinderle-Ma, S. Kabicher, L. T. Ly, Activity-oriented clustering techniques in large
process and compliance rule repositories, in: Business Process Management Workshops
(2), 2011, pp. 14–25.

20. M. T. Gómez-López, R. Ceballos, R. M. Gasca, C. D. Valle, Developing a labelled
object-relational constraint database architecture for the projection operator, Data
Knowl. Eng. 68 (1) (2009) 146–172.

21. M. T. Gómez-López, R. M. Gasca, J. M. Pérez-Álvarez, Decision support system for in-
put data in business processes, http://www.lsi.us.es/~quivir/mayte/martin.html

22. P. Volkner, B. Werners, A decision support system for business process planning,
European Journal Of Operational Research 125 (3) (2000) 633–647.

23. P. Vlkner, B. Werners, A simulation-based decision support system for business pro-

cess planning. Fuzzy Sets and Systems 125 (3) (2002) 275–287.
24. N. Kock, J. Verville, A. Danesh-Pajou, D. DeLuca, Communication flow orientation

in business process modeling and its effect on redesign success: Results from a field
study, Decision Support Systems 46 (2) (2009) 562–575.

25. Y. Liu, H. Zhang, C. Li, R. J. Jiao, Workflow simulation for operational decision
support using event graph through process mining, Decis. Support Syst. 52 (3) (2012)
685–697.

26. I. Barba, B. Weber, C. D. Valle, Supporting the optimized execution of business
processes through recommendations, in: Business Process Management Workshops
(1), 2011, pp. 135–140.

27. S.-M. Huang, D. C. Yen, Y.-C. Hung, Y.-J. Zhou, J.-S. Hua, A business process gap
detecting mechanism between information system process flow and internal control
flow, Decis. Support Syst. 47 (4) (2009) 436–454.

28. F. Chesani, P. Mello, M. Montali, F. Riguzzi, M. Sebastianis, S. Storari, Checking
compliance of execution traces to business rules, in: Business Process Management
Workshops, 2008, pp. 134–145.

29. S. W. Sadiq, M. E. Orlowska, W. Sadiq, Specification and validation of process con-
straints for flexible workflows, Inf. Syst. 30 (5) (2005) 349–378.

30. L. T. Ly, S. Rinderle, P. Dadam, Integration and verification of semantic constraints
in adaptive process management systems, Data Knowl. Eng. 64 (1) (2008) 3–23.

31. L. T. Ly, S. Rinderle-Ma, P. Dadam, Design and verification of instantiable compliance
rule graphs in process-aware information systems, in: CAiSE, 2010, pp. 9–23.

32. J. Hoffmann, I. Weber, G. Governatori, On compliance checking for clausal constraints
in annotated process models, in: Information Systems Frontiers, Vol. 14, Num. 2, 2012,
pp. 155–177.

33. M. zur Muehlen, M. Indulska, Modeling languages for business processes and business
rules: A representational analysis, in: Information Systems, Vol. 35, Num. 4, 2010,
pp.379–390.

34. A. Awad, M. Weidlich, M. Weske, Visually specifying compliance rules and explaining
their violations for business processes, J. Vis. Lang. Comput. 22 (1) (2011) 30–55.

35. L. T. Ly, S. Rinderle-Ma, K. Göser, P. Dadam, On enabling integrated process compli-
ance with semantic constraints in process management systems, Information Systems
Frontiers (2009) 1–25.

36. S. Ermon, Y. Xue, J. Conrad, C. Gomes, B. Selman, Combinatorial Decision Making
in Complex, Uncertain, and Highly Dynamic Environments, 3rd International Con-
ference on Computational Sustainability (2012).

37. D. Knuplesch, L. T. Ly, S. Rinderle-Ma, H. Pfeifer, P. Dadam, On enabling data-aware
compliance checking of business process models, in: ER, 2010, pp. 332–346.

38. G. Governatori, J. Hoffmann, S. W. Sadiq, I. Weber, Detecting regulatory compliance
for business process models through semantic annotations, in: Business Process Man-
agement Workshops, Vol. 17 of Lecture Notes in Business Information Processing,
Springer, 2008, pp. 5–17.

https://www.researchgate.net/publication/273035813

