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Abstract 

 
Development of agent systems is without question a complex task when autonomous, reactive and proactive 
characteristics of agents are considered.  Furthermore, internal agent behavior model and interaction within the agent 
organizations become even more complex and hard to implement when new requirements and interactions for new 
agent environments such as the Semantic Web are taken into account. We believe that the use of both domain specific 
modeling and a Domain-specific Modeling Language (DSML) may provide the required abstraction and support a 
more fruitful methodology for the development of Multi-agent Systems (MASs) especially when they are working on 
the Semantic Web environment. Although syntax definition based on a metamodel is an essential part of a modeling 
language, an additional and required part would be the determination and implementation of DSML constraints that 
constitute the (formal) semantics which cannot be defined solely with a metamodel. Hence, in this paper, formal 
semantics of a MAS DSML called Semantic Web enabled Multi-agent Systems (SEA_ML) is introduced. SEA_ML 
is a modeling language for agent systems that specifically takes into account the interactions of semantic web agents 
with semantic web services. What is more, SEA_ML also supports the modeling of semantic agents from their 
internals to MAS perspective. Based on the defined abstract and concrete syntax definitions, we first give the formal 
representation of SEA_ML’s semantics and then discuss its use on MAS validation. In order to define and implement 
semantics of SEA_ML, we employ Alloy language which is declarative and has a strong description capability 
originating from both relational and first-order logic in order to easily define complex structures and behaviors of 
these systems. Differentiating from similar contributions of other researchers on formal semantics definition for MAS 
development languages, SEA_ML’s semantics, presented in this paper, defines both static and dynamic aspects of the 
interaction between software agents and semantic web services, in addition to the definition of the semantics already 
required for agent internals and MAS communication. Implementation with Alloy makes definition of SEA_ML’s 
semantics to include relations and sets with a simple notation for MAS model definitions. We discuss how the 
automatic analysis and hence checking of SEA_ML models can be realized with the defined semantics. Design of an 
agent-based electronic barter system is exemplified in order to give some flavor of the use of SEA_ML's formal 
semantics. Lessons learned during the development of such a MAS DSML semantics are also reported in this paper. 
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1. Introduction 
 

Agents can be defined as encapsulated computer systems, mostly software systems, situated in an 

environment and capable of flexible autonomous action in this environment in order to meet their design 

objectives (Wooldridge and Jennings, 1995). These autonomous, reactive and proactive agents have also 

social ability and they constitute systems called Multi-agent Systems (MASs) in which they can interact 

with other agents in order to accomplish their tasks. 

 

Development of agent systems is naturally a complex task when aforementioned characteristics are 

considered. In addition, internal agent behavior model and interaction within the agent organizations 

become even more complex and hard to implement when new requirements and interactions for new agent 

environments such as the Semantic Web (Berners-Lee et al., 2001; Shadbolt et al., 2006) are taken into 

account. 
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The Semantic Web (Shadbolt et al., 2006) improves the current World Wide Web (WWW) such that web 

page contents can be organized in a more structured way tailored toward specific needs of end-users. The 

web can be interpreted with ontologies (Berners-Lee et al., 2001) that help machines to understand web 

content. Within the Semantic Web environment, software agents can be used to collect Web content from 

diverse sources, process the information and exchange the results. Besides, autonomous agents can also 

evaluate semantic data and collaborate with semantically defined entities of the Semantic Web such as 

semantic web services by using content languages (Kardas et al., 2009). Semantic web services can be 

simply defined as web services with semantic interface to be discovered and executed (Sycara et al., 2003). 

In order to support semantic interoperability and automatic composition of web services, capabilities of 

web services are defined in service ontologies that provide the required semantic interface. Such interfaces 

of semantic web services can be discovered by software agents and then the agents may interact with those 

services to complete their tasks. Engagement and invocation of a semantic web service are also performed 

according to the service’s semantic protocol definitions. 
  

However, agent interactions with semantic web services add more complexity for both design and 

implementation of MASs. Therefore, it is natural that methodologies are being applied to master the 

problems of defining such complex systems. One of the possible alternatives represents domain-specific 

languages (DSLs) (van Deursen et al., 2000; Mernik et al., 2005; Pereira et al., 2008; Fowler, 2011) that 

have notations and constructs tailored toward a particular application domain (e.g. MAS). The end-users of 

DSLs have knowledge from the observed problem domain (Sprinkle et al., 2009), but usually they have 

little programming experience. Domain-specific modeling languages (DSMLs) further raise the abstraction 

level, expressiveness and ease of use, since models are specified in a visual manner and they represent the 

main artifacts instead of software codes (Schmidt, 2006; Gray et al., 2007). 

 

We believe that both domain specific modeling and use of a DSML may provide the required abstraction 

and support in creating a more fruitful methodology for the development of MASs especially when they 

are working on the Semantic Web environment. Within this context, prior to work discussed in here, we 

first sketched out the general perspective (Kardas et al., 2010) and defined a metamodel in several 

viewpoints (Challenger et al., 2011) for a MAS DSML which is called Semantic web Enabled Agent 

Modeling Language (SEA_ML). Later, we presented the concrete syntax of SEA_ML and provided 

supporting visual modeling tools (Getir et al., 2011). Furthermore, an interpreter mechanism for SEA_ML 

has also been defined over model-to-model transformations which pave the way of the code generation for 

the implementation of SEA_ML agents in various agent platforms (e.g. JADE (Bellifemine et al., 2001), 

JADEX (Pokahr et al., 2005) or JACK (Howden et al., 2001)). 

  

Although syntax definition based on a metamodel is an essential part of a modeling language, an additional 

and required part would be the determination and implementation of DSML constraints that constitute the 

(formal) semantics which cannot be defined solely with a metamodel. Usually, these constraints are given 

in some dedicated constraint languages (e.g. Object Constraint Language (OCL) (OMG, 2012)). With 

these constraints, the semantics of a DSML includes some rules that restrict the instance models created 

according to the language. In other words, the formal semantics presents the meaning of associations and 

constraints for the language in a formal way. Moreover, formal representation of the semantics helps to 

identify an unambiguous definition and precise meaning of a program and to have a possibility for more 

accurate code generation of language-based tools (Bryant et al., 2011). A successful system verification 

and validation can also be achieved with a proper formal semantics definition. To define the formal 

semantics of a language, a definition is required by means of mathematics. Unfortunately there is a big gap 

between model engineering and formal mathematics.  Plus, there is no standard formalism to specify the 



semantics of modeling languages even though the syntax of modeling languages is commonly specified by 

metamodels. The lack of a formal definition of DSML semantics contributes to several problems (e.g. 

difficulty in tool generation and analysis, formal language design and composition of modeling language) 

as listed in (Bryant et al., 2011). 

 

Considering the advantages discussed above, defining the formal semantics of a DSML is one of the 

crucial tasks of a DSML’s development. On that account, in this paper, we present the formal semantics of 

SEA_ML and discuss the use of the related semantics definitions on MAS model checking and validation. 

In this way, accurate models, conforming to the predefined specifications and constraints of  SEA_ML can 

be achieved which in turn leads to more feasible code generation for real implementation of SEA_ML 

models in various MAS platforms in the future. Differentiating from similar contributions of other 

researchers on formal semantics definition for MAS DSL/DSMLs (e.g. (Hilaire et al., 2000), (Brandao et 

al., 2004), (Boudiaf et al., 2008), (Hahn and Fischer, 2009)), SEA_ML’s semantics presented in this paper 
defines both static and dynamic aspects of the interaction between software agents and semantic web 

services, in addition to the definition of the semantics already required for agent internals and MAS 

communication. 

 

In order to implement the defined formal semantics of SEA_ML, we employ Alloy language (Jackson, 

2012) which is based on first order and relational logics. As can be noticed in further sections of the paper, 

implementation with Alloy makes the definition of SEA_ML’s semantics to include relations and sets with 
a simple notation for MAS model definitions. Moreover, we also discuss how the automatic analysis and 

hence checking of SEA_ML models can be realized with the defined semantics. Finally, a demonstration 

of the model checking in question is given with a case study in the paper. 

 

The remainder of the paper is organized as follows: In section 2, a brief discussion of Alloy language is 

given to warm up for the following discussion of SEA_ML’s semantics. Semantics of SEA_ML along 

with defined language syntax is discussed in section 3. Analysis and checking of SEA_ML instance 

models by using the defined semantics are discussed and demonstrated in section 4. In section 5, related 

work is given and finally, the paper concludes in section 6.  

 

 

2. The Alloy Language 

 

In this paper, we define formal semantics of SEA_ML with Alloy specification language which also has a 

useful tool, Alloy analyzer, to check defined model and validate instance models according to the 

constraints. Alloy analyzer can find counter-examples that violate the system constraints. This is fulfilled 

by using a Satisfiability (SAT) solver (Jackson et al., 2000). In this way, contradictions among rules can be 

extracted. Alloy constructs yields efficient representations containing static and dynamic semantics for 

SEA_ML structures. Alloy logic comprises objects, relations and functions which are all based on first 

order predicate and relational logic. Atoms are primitive entities which constitute sets and relations. The 

relations can be composed of atoms with various arities (such as unary, binary and ternary). 

  

Inspired from Z language (Spivey, 1988), Alloy (Jackson, 2002) has a strong description capability 

with presenting a declarative language based on first-order logic to define complex structures and 

behaviors of systems. Everything is considered as a relation in Alloy and therefore it does not propose 

a specialized logic for state machines, traces and concurrency to keep simplicity. Alloy is also based 

on the idea of finding counter-examples that detects the system faults. 



 

SEA_ML semantics benefits from the system constraints by representing Alloy signatures and 

constraints. Signatures represent meta-elements and their relations as meta-attributes allowing 

inheritance and subset/superset hierarchy. Constraint Paragraphs include Facts, Predicates and 

Functions. Fact constraints are always held for metamodel element relations whenever a model is 

checked. Predicates are reusable constraints to analyze the model during its evolution. On the other 

hand, Functions are reusable expressions to omit recurrent operations in the model. Assertions are 

conjectures to check the model by considering the facts. Considering Commands, one of them is Run 

which runs the predicates and finds some instance models according to defined Alloy model. The 

other command is Check which generates counter-examples for Assertions (Jackson, 2012). 

 

While defining the rules of the SEA_ML, we represented all meta-model elements with Signatures 

and added appropriate relations and attributes as Fields in Signatures. Most static semantic constraints 

which come from the metamodel are represented with multiplicity properties such as one, some and 

set which means “exactly one”, “at least one” and “zero or more” respectively in signatures (Sig) (for 

meta-elements) and fields in signatures (for relations or attributes). Time signature is also added to 

realize the dynamic semantics. 

 

Additionally, each relation field implicitly defines a relation from a domain set to a co-domain set by 

using Cartesian product (→). On the other hand, Dot join (e.g.: p.q) is handled by taking every 

combination of a tuple in relation p and same for relation q and their join if it exists. Transitive 

closure (p^) bases on the transitive operation in mathematics such that every transitive combination of 

tuples in a relation p is added to transitive closure of p until there is no combination. Transpose 

operation (~p) replaces the atoms in every tuples such that ~ (A1, B1) = (B1, A1). Cardinality (#p) 

gives the number of all elements in a relation (Jackson, 2012). 

 

While choosing a specification language, we considered its semantic complexity and tool possibility 

among variable languages for the SEA_ML semantics definition. In addition to Alloy’s widely-

accepted capabilities and tool support, a more enhanced way of describing dynamic semantics 

contributed in our preference to use Alloy instead of its alternatives such as Z (Spivey, 1992), Object-

Z (Duke et al., 1995; Smith, 2000), OCL (OMG, 2012) or Maude (Meseguer, 2000; Clavel et al., 

2002). Regarding tool support, Alloy analyzer gives developers the chance to simulate runtime issues 

and show possible scenarios (instance models) visually. Alloy’s easy specification, appropriate kernel 

semantics and formal specification style within its analyzer tool make it suitable for our DSML’s 
semantics definition.  

 

 

3. Semantics of SEA_ML 

 

In a Semantic Web enabled MAS, software agents can gather Web contents from various resources, 

process the information, exchange the results and negotiate with other agents. Within the context of these 

MASs, autonomous agents can evaluate semantic information and work together with semantically defined 

entities like semantic web services using content languages. 

 

SEA_ML’s abstract syntax which basically describes MAS concepts and their relationships is provided by 

SEA_ML’s platform independent metamodel (PIMM). This PIMM, which will be discussed in this paper, 

is an extended and updated version of the metamodel introduced in (Challenger et al., 2011). The PIMM is 



divided into eight viewpoints supporting the modeling of agent internals, MASs architecture and semantic 

web service interactions. Before going into the depths of their explanations, these viewpoints are listed and 

briefly described as below: 

 

1. Agent’s Internal Viewpoint: This viewpoint is related to the internal structures of semantic web 

agents (SWAs) and defines entities and their relations required for the construction of agents. It 

covers both reactive and Belief-Desire-Intention (BDI) (Rao and Georgeff, 1995) agent 

architectures.  

2. Interaction Viewpoint: This aspect of the metamodel expresses the interactions and 

communications in a MAS by taking messages and message sequences into account. 

3. MAS Viewpoint: This viewpoint solely deals with the construction of a MAS as a whole. It 

includes main blocks which compose the complex system as an organization.    

4. Role Viewpoint: This perspective delves into the complex controlling structure of the agents. All 

role types such as OntologyMediatorRole and RegistrationRole are modeled in this viewpoint. 

5. Environmental Viewpoint: Agents may need to access some resources (e.g. services and 

knowledgebase covering the facts about the surrounding) in their environment. Use of resources 

and interaction between agents with their surroundings are considered in this viewpoint. 

6. Plan Viewpoint: This viewpoint especially deals with an agent’s Plan’s internal structure. Plans 
are composed of some Tasks and atomic elements such as Actions.  

7. Ontology Viewpoint: SWAs know various ontologies as they work with Semantic Web Services 

(SWSs) and also some ontological concepts which constitute agent’s knowledgebase (such as 
belief and fact). 

8. Agent - SWS Interaction Viewpoint: It is probably the most important viewpoint of SEA_ML’s 
metamodel. Interaction of agents with SWSs is described within this viewpoint. Entities and 

relations for service discovery, agreement and execution are defined. Also the internal structure 

of SWSs is modeled. 

 

SEA_ML semantics is constituted by defining the system constraints and investigating both static 

semantics and dynamic semantics (which concentrates on behavioral actions and runtime issues).  

 

During the determination of the static semantics for each viewpoint, some controls are considered such as 

min-max detection which restricts all multiplicity properties for MAS and SWS entities. Moreover, these 

controls enable the check on instance creation such as preventing null attribute assignments or setting 

unique names.  

 

One of the important controls pertaining to SEA_ML’s dynamic semantics is to provide the execution 
ordering among agent Plans. We provide ordering constraints among Plans in two state diagrams that 

consider both ordering of Plan types’ execution during the SWS interactions and transitions of the possible 

behavior flow for a Plan type. Hence, we provide both internal Plan constraints and intra-Plan constraints. 

Finally, Time module in our semantic definitions not only contributes to building up a dynamic structure of 

the elements, but also gives a facility to order relations for the same element or among the elements. 

Specifically these two features of SEA_ML's semantics cause SEA_ML to be advantageous in MAS 

design comparing with other alternatives. Remaining controls covered in SEA_ML’s dynamic semantics 
can be listed as: communication control of agents by defining some operations for message passing among 

agents, mutual execution and resource sharing control and finally providing the consistency between the 

beliefs of an agent and the facts in the environment within a time period. 

  



Alloy has enabled us to neatly represent the static and dynamic semantics of SEA_ML. As mentioned in 

section 2, SEA_ML meta-elements are defined as signatures and relations; and attributes are defined as 

fields in the signatures. Constraints are defined as facts, predictions and functions. In addition, assertions 

are used to certify the constraints. In order to provide clear understanding and simplicity, defined semantics 

for SEA_ML is discussed in the following subsections each focusing on a specific viewpoint of the 

language. 

  

Some transitions among viewpoints are needed during the definition of some semantic rules. Transitions 

among the viewpoints and meta-elements that play an important role for these transitions are shown in 

Figure 1. For instance, SWA meta-entity, which in fact belongs to Agent’s Internal viewpoint of SEA_ML, 
is imported and used in the description of the semantics for MAS viewpoint. Such transitions are shown in 

the figure with dotted arrows. Throughout the listing and discussion of the semantics definitions, all Alloy 

keywords are given in bold.  Also, all meta-entities belong to SEA_ML’s metamodel and facts are given in 

italic inside the text. Moreover, names of the relations between the meta-entities are used as verbs in the 

sentences throughout the paper. 

 

 
Figure 1: Overview of SEA_ML viewpoints (VPs) 

 
3.1 MAS Viewpoint  
 

SEA_ML’s MAS viewpoint solely deals with the construction of a MAS as an overall aspect of the 

metamodel. It includes main blocks which compose the complex system as an organization (Figure 2). 

Semantic Web Organization (SWO) entity of SEA_ML metamodel is the main element of this viewpoint 

and includes SWAs which have various goals or duties. SemanticWebAgent (SWA) is imported from 

Agent’s Internal viewpoint and Role is imported from the Role viewpoint. Alloy signature definitions 

which belong to MAS viewpoint are presented in Figure 3. 

 



 
Figure 2: SEA_ML’s MAS viewpoint 

 

An agent cooperates with one or more agents inside an organization (Figure 3, Line 6) and it may also 

reside in more than one organization by playing various roles over time (Figure 3, line 5). SWOs include 

various roles that are to be played by the agents in the organization in accordance with their goals (Line 

16). We provide the denotation of this change in an agent’s role bound to the change on the MAS 
organization with “Time” column. More precisely, let                          and           . Then, combination of atoms can be exemplified in the time T=1 and T=2 such that we can 

have                and               .  
 

Moreover, a SWO can include several agents at any time and also each organization can be composed of 

several sub-organizations recursively (Line 15). Each organization interacts with an Environment (Line 17) 

which by itself includes all of the resources, services and non-Agent concepts such as a database. Hence, 

SWAs use the resources of a SWO in which they work.  

 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 

sig SWA { 
 disj name,description, 
 property,agent_type, 
 agent_state:one Name,  
 works_in:SWO one->Time,  
 cooperates: some SWA 
} 
sig Environment{ 
 name: one Name 
} 

13 
14 
15 
16 
17 
18 
19 
20 
21 
 

sig SWO {  
 name:one Name, 
 contains:set SWO,   
 has:some Role,   
 interacts_with: one Environment 
} 
sig Role{ 
 name:one Name 
} 

Figure 3: Signature definitions of MAS viewpoint meta-elements 
 

As a basic rule of a MAS, there should be at least two agents in the system which is given in the MASInit 

fact (Figure 4). The cardinality of SWA set is greater than or equal to 2. As it is seen in the metamodel, 

SWA and SWO elements have self-relations. Therefore, there is a need for some constraints to handle these 

relationships. irreflexive predicate in Figure 4 controls some relation r (r  univ→univ) not to be reflexive. 
asymmetric predicate controls the relation r not to be symmetric. On the other hand, acyclic predicate 

controls the relation r not to contain a cycle. Therefore, all these constraints are used in the 

selfRelationControl fact for the relation contains of SWO. That is because no SWO instance can contain 

itself, which means it cannot be reflexive. In other words, if SWO1SWO then (SWO1, SWO1)  contains, 



but contains is an asymmetric relation. For instance, let SWO1, SWO2SWO then (SWO1, SWO2)  

contains and (SWO2, SWO1) contains. 

  

The third operation is added to prevent the cycles from contains relation. It is not claimed that contains is 

acyclic just because it is not asymmetric and irreflexive. For example, if (SWO1, SWO2)  contains and 

(SWO2, SWO3)  contains, then an element like (SWO3, SWO1) does not break the irreflexive and 

asymmetric predicates. However, SWO1 contains SWO3 via SWO2 (due to transitiveness). Therefore, an 

opposite relation of (SWO3, SWO1) is a kind of a contradiction for contains relation as it is one directional 

relation. This rule can also be provided by fulfilling the statement “relations r’s transitive closure is 
asymmetric”. Precisely, for a relation r which is not reflexive and symmetric, representation not (^r & 
iden) and asymmetric [^r] provides that r is acyclic (that means they are equal). 

  

On the contrary, SWA’s cooperates relation should be irreflexive as a SWA does not cooperate with itself. 

Hence, irreflexive [cooperates] is added in Figure 4, line 13. For cooperates relation, asymmetric or a 

cyclic constraint cannot be added, since a cooperation can be in different directions and contain different 

cycles. 

 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 

fact MASInıt{ #SWA>=2 
} 
pred irreflexive[r: univ -> univ] { 
 no (iden & r) 
} 
pred asymmetric[r: univ -> univ] { 
 no (r & ~r) 
} 
pred acyclic [r: univ->univ]{ 
 no (^r & iden) 
} 
fact selfContainment{  irreflexive[contains] &&   
 irreflexive[cooperates] &&  asymmetric[contains] &&   
 acyclic[contains] 
} 

Figure 4: Constraint definitions of MAS viewpoint 

 
3.2 Agent’s Internal Viewpoint  

 

This viewpoint, as a part of whole metamodel, focuses on the internal structure of every agent in a MAS 

organization. As it can be seen in Figure 5, SWA in the SEA_ML abstract syntax stands for each agent 

which is a member of Semantic Web enabled MAS. Hence the main element of this viewpoint is SWA. A 

SWA is an autonomous entity which is capable of interacting with both other agents and semantic web 

services within the environment. They can play roles and use ontologies to maintain their internal 

knowledge and infer about the environment based on the known facts. 

 



 
Figure 5: Agent’s Internal viewpoint of SEA_ML 

 

SWAs can be associated with more than one Role (multiple classifications) and can change these roles 

over time (dynamic classification). Taking different types of roles into consideration, an agent can play for 

instance a Manager role, a Broker role or a Customer Role. Signature definitions of meta-elements are 

presented in Figure 6. As it is mentioned in section 3.1, “Time” column enables the agent to change its role 
over time. As an example, let                     and           , then atom 

examples              and              mean that agent plays different roles in the time      and     (Figure 6, Line 5). 

 

“description” and “property” attributes represent the definition and general features of an agent 
respectively (Figure 6, Lines 2-3). An agent can also have a type (Agent Type) during its life based on the 

application in which it is going to take part, such as buyer agent/shopping bot, user/personal agent, 

monitoring-and-surveillance agent, or data mining agent (Haag et al., 2003). During the execution, agent 

state can change in different cases. Therefore agent state attribute is considered in the agent 

communication (Line 4). An agent can only have one state (Agent State) at a time, e.g. waiting state in 

which the agent is passive and waiting for another agent or resource. Similarly, it can be active while doing 

the internal or external processes. Therefore, it helps an agent to decide about communication with another 

agent by considering its state. In addition, an agent can include zero, one or more Capabilities (Line 6).  

SEA_ML's abstract syntax supports both reactive and BDI agents. As discussed in (Vidal et al., 2001), a 

reactive agent does not maintain information about the state of its environment but simply reacts to current 

perceptions. In fact, it is only an automation that receives input, processes it and produces an output 

(Ferber, 1999). On the other hand, in a BDI architecture (Rao and Georgeff, 1995), an agent decides on 

which Goals to achieve and how to achieve them. Beliefs represent the information an agent has about its 

surroundings, while Desires correspond to the things that an agent would like to achieve. Intentions, which 

are deliberative attitudes of agents, include the agent planning mechanism in order to achieve goals. 

 

A Belief in a SEA_ML model is a representation of the knowledge of an agent about the environment. 

“update_type” attribute of Belief shows that Belief is updated according to environment variants or Belief 



is independent from sensors (Figure 6, Line 32). For this reason, update type can be defined as dynamic or 

static. The update frequency can depend on the update frequency variable. 

 

An agent in a BDI architecture has some goals to realize its final aim. “retry” attribute of Goal gets 

Boolean values in case the Goal is unsuccessful to process the Goal again. Hence, Goals are reconsidered 

or given up (Figure 6, Line 24). 

  

Agents execute Plans to achieve their Goals. Goal meta-entity should be realized by the Plan which is 

applied for that Goal (Figure 6, Line 27). On the other hand, Goal meta-element is in an interaction with 

every “Event” of the agent. According to this interaction, Goal is connected to Belief with precondition 
before an event (Line 33) and Belief is connected to Goal with post-condition after an event (Line 25). In 

this case, during an event by SWA, precondition which belongs to the Goal is retrieved by Belief and 

informed to Belief after the event.  The Event column is defined as a signature in the definitions, but it does 

not belong to the metamodel. It is added as a Time column. Apart from the “Time” column, the Event 

column enables a dependency between these two meta-elements, Goal and Belief. For instance, let                   and            , then the instances such as            and            mean that same Goal and Belief instances can depend on each other with different Events. 

 
01 
02 
03 
04 
05 
06 
07 
08 
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10 
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14 
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16 
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19 
20 
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sig SWA { 
 disj name, description, 
 property, agent_type, 
 agent_state: one Name, 
 plays: Role -> Time,  
 includes: Capability 
} 
sig Capability { 
 disj name: one Name, 
 priority: one Int, 
 appliesPlan: some Plan, 
 includesBelief: set  Belief, 
 usesGoal: set Goal 
} 
sig Plan { 
 disj name, type, 
 description: one Name, 
 priority: one Int, 
} 
sig Event{ 
} 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

sig Goal { 
 disj name, description:  one 
 Name, retry: one  Bool, 
 postcondition: set Belief-> 
 one Event, 
 realized_by: some Plan 
} 
sig Belief { 
 disj name, description:  one 
 Name,  
 update_type:one Type, 
 precondition: set  
 Goal-> one Event 
} 
sig Role { 
 name: one Name, 
 has: Goal  
} 
abstract sig Type {} 
one sig Dynamic, Static extends 
Type{} 

Figure 6: Signature definitions of Agent’s Internal viewpoint 
 

Considering BDI supported agent platforms (e.g. JADEX (Pokahr et al., 2005) and JACK (Howden et al., 

2001)), Capability, which covers Plans, Goals and Beliefs, is included in this viewpoint. Capability 

provides reusability by collecting the BDI elements together. Plan, Belief and Goal meta-elements are 

connected to Capability by the relations appliesPlan, includesBelief and usesGoal respectively (Figure 6, 

Lines 11-13). 

 

In a BDI architecture, a capability which obtains functionality for the “library routines” (Padgham and 
Winikoff, 2004) should be a well-defined collection of Plans, Beliefs and Goals. CapabilityComposition 

and CapabilityCoverage facts in Figure 7 provide related BDI elements inside a Capability. This presents 

modularity of SEA_ML Agent’s Internal viewpoint. Line 3 in Figure 7 states that if a Goal is realized by a 

Plan, the Goal and the Plan should be in the same Capability.  An example for the left hand side operation 

is as follows: 



 

Let                          and                             then                                 and                       . 
 

Right hand side: 

Let                             and                          then                              and                        
 

Hence,                     and    and    are in the same   . Therefore, dot join (.) operation here 

yields to compare Capabilities.  

 

Lines 4-5 in Figure 7 provides a similar constraint which means that for all Goal and Belief elements, if a 

Capability uses a Goal element and a Goal element is connected to a Belief with postcondition depending 

on an “Event”, then that Belief is in the same Capability which the Goal is used by. Firstly, dot join 

operator in Line 5 is used between Goal and postcondition relation elements (this gives the tuples like 

G.(G,B,E) = (B,E)) then, that operator joins the result with “Event” ((B,E).E = B). The final result gives a 

set of Belief to check whether this set of Belief is in the same Capability with Goal. 

 

On the other hand, modeling relationships such as composition and aggregation are not defined in Alloy 

(Anastasakis et al., 2007). Therefore, CapabilityComposition fact controls existence of BDI elements in a 

Capability. Line 9 of Figure 7 holds that for all Plans, a Capability which applies the Plan cannot be an 

empty set (!none) which means every Plan is connected to a Capability. For example,                          and                            , then,                                . (  .             ) is a non-empty set and is equal to   . 

The same rule is given in Line 9 of Figure 7 for Belief elements. However, such a rule is unnecessary for 

Goal elements, because metamodel forces a Goal to have at least one Plan and Lines 2-3 already forces 

the Plan and the Goal to be in the same Capability. 

 

Unlike Beliefs, both Plans and Goals can be sharable in a MAS since agents can apply various plan codes 

and have common Goals. Therefore, a fact called ForbiddingSharing is added (Figure 7, Lines 11-15) for 

Belief instances. According to this fact, there is no such a Belief that it is included by a Capability which is 

included by a different SWA.  
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fact CapabilityCoverage {  
 all g:Goal|some  p:Plan| 
 g.realized_by = p && p.~appliesPlan = g.~usesGoal 
 all b:Belief,g:Goal|some  c:Capability,e:Event|c.usesGoal=g  
 && g.postcondition.e=b => b in c.includesBelief 
} 
fact CapabilityComposition{  
 all p:Plan,  b:Belief| 
 p.~appliesPlan!=none && b.~includesBelief ! = none 
} 
fact ForbiddingSharing{ 
 no b:Belief|some disj swa1,swa2:SWA|some 
 c:Capability|c.includesBelief=b && 
 (swa1.includes=c&&swa2.includes=c) 
} 

Figure 7: Semantic constraints of Agent’s Internal viewpoint 
 
 



3.3 Role Viewpoint  
 

SWAs and SWOs (as a whole) can play roles and use ontologies to maintain their internal knowledge and 

infer about the environment based on the known facts. As discussed in subsection 3.2, agents can also use 

several roles and can alter these roles over the time. Role is a general model entity and should be 

specialized in the metamodel according to architectural and domain tasks (Figure 8). 

  

 
Figure 8: SEA_ML’s Role viewpoint 

 

An ArchitectureRole defines mandatory roles for a Semantic Web enabled MAS which should be played 

with at least one agent inside the platform regardless of the organization. On the other hand, a DomainRole 

depends completely on the requirements and task definitions of a specific SWO created for a specific 

business domain. Since a Role can have various duties, it can have different interactions with different 

agents. So Roles realize the Interaction in which they participate. Two specialization of the 

ArchitecturalRole are also defined in the model: RegistrationRole and OntologyMediatorRole. 

RegistrationRoles are played by one or more SWAs which store capability advertisements of SWSs. 

OntologyMediatorRole in the metamodel defines basic ontology management functionality that should be 

supported by some agents in the SWO. Signature definitions for Role viewpoint are given in Figure 9. 
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sig Role { 
 name: one Name, 
 realizes: some  Interaction, 
} 
sig Interaction{ 
 name: one Name, 
} 
sig RegistrationRole extends 
ArchitectureRole{ 
} 
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sig ArchitectureRole extends 
Role{ 
} 
sig DomainRole extends Role{ 
} 
sig OntologyMediatorRole  
extends ArchitectureRole{ 
} 

Figure 9: Signature definitions of Role viewpoint 

 

In this viewpoint, it is provided that a SWO has Role instances and each role is played by an agent. This 

control is given with RoleModularity fact listed in Figure 10.  SWO - Role and SWA - Role relations are 

added from other viewpoints (see Figure 3, Line 16 and Figure 6, Line 5) to Role entity in Alloy model to 

support this constraint. 

  

Figure 10: Role Modularity 
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fact RoleModularity{ 
 all r:Role|  r.~has!=  none || r.~plays!= none 
} 



According to this rule, the dot join of Role and the transpose of the relation has (SWO×Role=has) will be a 

set of SWO and should be a non-empty set. Or the dot join of Role and the transpose of plays relation 

(SWA×Role = plays) will be a SWA set and this should be a non-empty set. 

 

3.4 Environment Viewpoint 

 

SEA_ML’s Environment viewpoint (Figure 11) focuses on the relations between agents and what they 
access.  Environment, in which agents reside, contains all non-agent Resources (e.g. database, network 

device), Facts and Services. Each service may be a web service or another service with predefined 

invocation protocol in real-life implementation. Facts are environment-based which means they can 

change over time, in case the Environment has new knowledge from different resources. 

 

Environment meta-entity, which is the main element of this viewpoint, has a relation to Fact, Service and 

Resource with hasFact, hasService and hasResource respectively as can be seen in the signature 

definitions in Figure 12 (Lines 9-11). SWA, which is imported from Agent’s Internal viewpoint, has access 
to Environment in order to use its components (Line 5).  Fact meta-entity is extended from ODM OWL 

Class (which is imported from Object Management Group’s (OMG) Ontology Definition Metamodel 

(ODM) (OMG, 2009)) and has a triple structure. Therefore, it has “subject”, “predicate” and “object” 
attributes forming a Resource Description Framework (RDF) triple structure (Lines 18-20). Fact inherits 

these attributes from ODM OWL Statement, however ODMOWLStatement is not included in this 

viewpoint. The relation of Fact and ODMOWLStatement is included in the Ontology viewpoint (see 

subsection 3.7). 

  

 
Figure 11: SEA_ML’s Environment viewpoint 
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sig SWA { 
   disj name, description, 
 property,agent_type, 
 agent_state : one Name, 
   access_to: some  Environment 
} 
sig Environment { 
   name: one Name, 
   hasFact: set Fact, 
   hasService: set Service, 
   hasResource: set Resource  
} 
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sig Service{ name: one Name } 
sig Fact { 
   name: one Name, 
   subject: one Name, 
   predicate: one Name, 
   object: one Name 
} 
sig Resource{ 
   name: one Name 

   IsSharable: Boolean 
} 

Figure 12: Signature definitions of Environment viewpoint 



 

To enable Resource, Service and Fact to exist within Environment, EnvironmentComposititon fact is built 

(Figure 13). That provides the composition of Resource, Service and Fact in Environment as similar to 

Capability modularity constraint. According to this constraint every Environment set is a non-empty set 

which is related to Service, Fact and Resource (Figure 13, Lines 2-5). 

 

One of the required constraints is a control for sharing mechanism when agents use Resources. On the 

other hand, access from an agent to resource is a kind of dynamic behavior. There is no direct relation 

between an agent and resource in the metamodel. This relation is provided indirectly with the relations 

“SWA (SemanticWebAgent) accesses to Environment” and “Environment has some Resources”. This can 
be seen in ResourceAccess fact in Figure 13. Therefore, in Line 8, the Time column which provides the 

dynamic behavior is added to the dot join of access_to and hasResource. 

  

More precisely, let               ;                   and          ,          ,                     . It means that agent      accesses to Environment   , while agent      

accesses to both Environments    and
 

  . Let                    and                                    . Since there is no direct relation from SWA to Resource, 

dot join of access_to and hasResource relations gives the relation set SWA and Resource. Then, 

 access_to.hasResource =                                                                                                              .  
 

In this case,     is not in the intersection set but       are. Resources SWA0 and SWA1 are able to access 

R0 and R1. This access should happen at different times. When we get the Cartesian (“arrow”) product of 
this set and “Time” column,                     ;  

access_to.hasResource →Time = {(           ), (            (           ),            ), (           ), (           ), (           ),            ), 

(           ), (           )}.  

 

In Line 8, the created set is assigned to access set by using let keyword. For all SWAs, if dot join of SWAs 

and access are equal to each other (this operation results like (R,T) TimesourceRe ), then SWA 

instances are equal to each other. For example, one of the elements of (           ) and 

(           ), one of the elements of              and (           ), one of the elements of 

(           ) and (           ) or one of the elements            ) and            ) 

should be removed from access set to order this constraint true. As a result, this constraint provides that 

different agents cannot access the same non-sharable resource at the same time. Note that such complex 

constraint is provided easily with this language. 

 

One of the semantic rules, which provides transition between viewpoints, is given with EnvAccess fact in 

Figure 13 (Lines 12–16). SWO element from MAS viewpoint, SWA element from agent internal viewpoint 

and their relations are added to this constraint. In this manner, for all SWAs and such a SWO in which these 

SWAs work, SWAs can access the Environment to which this specific SWO interacts at any time.  
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fact EnvironmentComposition { 
  all s:Service, f:Fact, r:Resource|  
  s.~hasService != none &&  
  f.~hasFact != none &&  
  r.~hasResource != none  
} 
fact ResourceAcccess{ 
 let  access = access_to.hasResource ->Time { if  
 all a1,a2:SWA|  a1.access=a2.access => a1=a2  
 } 
} 
fact EnvAccess{ 
 all swa: SWA | some t:Time, swo: SWO |  
 swa.works_in.t =swo  && 
 swa.access_to in swo.interacts_with 
} 

Figure 13: Semantic rules for Environment viewpoint 

 
3.5 Plan Viewpoint 
 

Plan viewpoint defines the internal structure of an agent's plans. Plan entity is the main element of this 

viewpoint and has some attributes such as name, type, description and priority as illustrated in Figure 14. 

Plan viewpoint elements are defined with signatures given in Figure 15. When an agent applies a Plan, it 

executes its Tasks which are composed of the atomic elements called Actions. Send and Receive elements 

extend Action (Figure 15, Lines 14 and 17). These action types are connected with a Message entity. 

Sending a message to another agent or querying an ontology are some examples of Action. 

 

 
Figure 14: SEA_ML’s Plan viewpoint 

 

Some constraints are required during the Plan executions according to their priorities. Priority attribute can 

define the execution order.  For this purpose, some functions such as next and prev from Alloy ordering 

module are imported and used (Figure 16, Line 2). Ordering module can be used to order sets mostly 

states, numbers and so on (Jackson, 2012).  As Plans and internal components represent states and state 

transitions in our system, we use ordering module for these components as states. Therefore, we define 



ordering module such as Util/Ordering[Plan], Util/Ordering[Action] and Util/Ordering[Task]. Function 

Next[] returns the next element of an element and Prev[] returns the previous element of the element in the 

ordering. Prevs and Nexts return the set which is the previous set and the next set of the element 

respectively.  
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sig Plan { 
 disj name, type,   
 description: one Name,   
 priority: one Int, 
 composed_of: set Task 
} 
sig Task{ 
 id: one Int, 
 composed_of: set Action, 
} 
sig Action{ 
 id: one Int 
} 
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sig Send extends Action{ 
 send: one Message 
} 
sig Receive extends Action{ 
 receive: one Message 
} 
sig Message{ 
 content,    
 content_language,   
 message_type,   
 performative: one Name, 
 sender: one SWA, 
 receiver: some SWA 
} 

Figure 15: Signature definitions of Plan viewpoint 

 

PlanPriority fact in Figure 16 provides that Plans with a smaller priority number execute earlier. The same 

control is supplied for Task and Action inside the Plan internal. In Line 5, Task, which has a smaller id, is 

executed first. It is similar with the control for Action elements in Line 6. 

 

The other constraint is about the composition relations. Every Plan executes as a composition of Tasks and 

every Task executes as a composition of Actions. Therefore in Lines 9-11, Plan set which belongs to Task 

and Task set which belongs to Action are non-empty sets. 

 

On the other hand, processing of a message shows that it is either a “send message” or “receive message”. 
Hence, for all Messages, a Message is connected to either Send or Receive entity (Lines 14 and 15).  
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fact PlanPriority{ 
 all p1, p2:Plan| p1.priority<p2.priority => plan/prev[p2]=p1 
} 
fact ActionTaskOrdering{ 
  all disj T1,T2: Task| T1.id<=T2.id => task/next [T1] = T2 
  all disj A1,A2: Action| A1.id<=A2.id =>action/next[A1] = A2 
} 
fact PlanInternal{ 
 all t:Task, a:Action|  
  t.~composed_of != none &&  
  a.~composed_of != none  
} 
fact MessageFact{ 
 all m:Message| some s:Send, r:Receive | m.~send=s || 
 m.~receive=r 
} 
fact MessageAccess{ 
 some rl: Role, g:Goal, t:Task, s:Send, r:Receive, 
 i:Interaction, p:Plan| all m:Message |  
 rl.has = g && g.realized_by = p && p.composed_of = t && 
 {t.composed_of = r || t.composed_of = s} && 
 {s.send = m || r.receive=m} => rl.realizes=i && i.includes=m 
} 

Figure 16: Semantic rules for Plan viewpoint  

 



MessageAccess constraint which provides the transition between the Plan viewpoint and the other 

viewpoints is given in Figure 16 (Lines 17-23). The whole constraint, in summary, enables the control of 

identification and uniqueness of each Message element by accessing the same Message instance over 

different relationship paths. Interpretation of the constraint is illustrated in Figure 17. Interaction set from 

Interaction viewpoint; Goal set from Agent’s Internal viewpoint, Role set from Role viewpoint are added 

to the model as signatures. This constraint suggests that the Message received by ‘Receive’ or sent by 
‘Send’ actions (already in the agent’s Task contained by the Plan that figured out the Goal is owned by the 
Role (path 2 in Figure 17)) should be the same with the Message which is contained by the Interaction 

realized by the same Role (path 1 in Figure 17). 

 
Figure 17: Transition among the viewpoints for the MessageAccess rule 

 
3.6 Interaction Viewpoint 
 

This viewpoint focuses on agent communications and interactions in a MAS and defines entities and 

relations such as Interaction, Message, and MessageSequence (Figure 18). Interaction is the main element 

of this viewpoint (Figure 19, Line 12). Agents interact with each other based on their social abilities. Each 

interaction, by itself, consists of some Message submissions (Figure 19, Line 17) each of which should 

have a message type, (Figure 19, Line 3) such as "inform", "request", or "acknowledgement". Specifically, 

each communication between initiator and participant agents can be modeled with Messages which can 

also have performative property (e.g. inform, query, or propose) compatible with IEEE FIPA standards 

(FIPA, 2002a). The content language property of Message entity is used for the communication between 

agents and can be one of the communication languages such as Knowledge Query and Manipulation 

Language (KQML) (Finin et al., 1994) or FIPA Agent Communication Language (ACL) (FIPA, 2002b). 

Interaction element extends FIPAContractNet element. FIPAContractNet represents IEEE FIPA's 

specification for the interactions of agents, which applies the well-known Contract Net Protocol (CNP) 



(Smith, 1980). In addition, each Interaction should have a MessageSequence to control the communication 

flow (Figure 19, Line 16). Communication of distributed agents can be handled by a sequence diagram or 

an activity diagram with using this entity. 

 

 
Figure 18: SEA_ML’s Environment viewpoint 

 

Agent interaction rules are important for this viewpoint. In Figure 19, Lines 5, 6 and 10, a co-domain set of 

the relations is defined as SWA. Notice that, a SWA actually is not included in this viewpoint; however, a 

part of SWA signature set is defined here again to model this viewpoint and to define the rules (Figure 19, 

Lines 22-24). 
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sig Message{ 
   content, content_language,  
      message_type,   
      performative: one  Name, 
   sender: one SWA, 
   receiver: some SWA 
} 
sig MessageSequence { 
   id: one Int, 
   agent_set: some SWA   
} 
sig Interaction extends   
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FIPAContractNet{ 
   name: one Name, 
   has: one 
 MessageSequence, 
   includes: some Message,  
} 
sig FIPAContractNet{ 
   spec_no: one Int 
} 
sig SWA { 
   cooperates: set SWA 
} 

Figure 19: Signature definitions of Environment viewpoint 

 

In Figure 20, AgentTalking fact provides cooperation for sender and receiver agents. In Line 2, for all 

Messages and for any two SWAs, let swa1 in SWA’s receiver set and let swa2 in SWA’s sender set, either 

swa2 should be in the set which swa1 cooperates with or swa1 should be in the set which swa2 cooperates 

with. Shortly, if two SWAs send messages to each other, they should be in cooperation. 

  

On the other hand, AgentSet fact in Figure 20 provides that all sender and receiver SWA sets are in the set 

which message sequence includes. In Line 7, for all Interactions and MessageSequences and for such a 

Message; a Message is in the set “Interaction includes” and MessageSequence is in the set “Interaction 

has” (Line 8). Therefore the receiver and the sender of the same Message should be in a SWA set of the 

same MessageSequence (Line 9).  

 

SelfMessage fact provides that sender and receiver of a Message should not be the same agent. Since 

Message concept is considered as a structure for messaging between the agents, messaging between the 

internal components of the agents are prevented. 
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fact AgentTalking{ 
 all m: Message| some swa1,swa2: SWA| swa1 in m.receiver 
 &&swa2 in m.sender=>swa2 in swa1.cooperates || swa1 in 
 swa2.cooperates 
} 
fact AgentSet{ 
 all i:Interaction | some m:Message, ms: MessageSequence|  
 m in i.includes && ms in i.has &&  
 m.receiver in ms.agent_set && m.sender in ms.agent_set  
} 
fact SelfMessaging{ 
 all m:Message| m.sender != m.receiver 
} 

Figure 20: Semantic rules for Interaction viewpoint 

 

At the same time, some constraints are supplied to be used during the model analysis such as functions or 

predicates for reusability especially on message sending and receiving. These constraints can be defined as 

pred or fun in Alloy (Taghdiri and Jackson, 2003). Pred definition is preferred here to be able to run the 

cases separately. MsgReceivePrecondition in Figure 21 supplies the preconditions for message receiving. 

Message Receiving is provided with ReceiveMsg predicate and sending message is provided with 

SendMsg predicate. 

  

A relation called getMessage to associate a Message with “Time” (their Cartesian product with SWA) is 

defined in Line 2 of Figure 21 for MsgReceivePrecondition predicate. In Line 3, it is provided that current 

Message is not in the set of received Messages before and in Line 4 the Message is in the set of sent 

Messages to be able to be received. Precondition operation is used in Line 8 for ReceiveMsg predicate and 

t’ is the previous time before t. Following messages are defined (Line 10) similar to the one in Line 2. 
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pred MsgReceivePrecondition (swa: SWA, msg:Message, t:Time){    
   let getMessage = SWA->Time->Message {  
      msg !in swa.getMessage[prev[t]]  
      msg.sentTime in prevs[t]  
 } 
} 
pred ReceiveMsg (swa: SWA, t:Time, msg: Message){ 
   MsgReceivePrecondition [swa, msg, t] 
   let t' = prev[t] { 
      let getMessage = SWA->Time->Message{ 
         swa.getMessage[t] =  swa.getMessage[t'] + msg 
      }   
   } 
   msg.receiver = SWA 
} 
pred SendMsg (swa: SWA, t:Time, msg: Message){ 
   let t' = prev[t] { 
      let sendMessage = SWA->Time->Message{ 
         swa.sendMessage[t] = swa.sendMessage[t'] + msg 
      }  
   } 
   msg.sender = SWA && msg.sentTime =t 
} 

Figure 21: Messaging Constraints 

 

Finally, current message set is defined as the union of current message and previous messages (Line 11).  

Current message is associated with aforementioned SWA’s receiver (Line 14). On the other hand, there is 
no precondition for message sending. SendMsg predicate is defined in a similar way to receiveMsg. 

Additionally, current Message’s sender is associated with the SWA and current time is associated with the 

SWA’s sent time (sentTime).  



 

3.7 Ontology Viewpoint 
 

A MAS Organization in Semantic Web is inconceivable without ontologies. An ontology represents any 

information gathering and reasoning resource for MAS members. SEA_ML’s Ontology viewpoint brings 
all ontology sets and ontological concepts together as shown in Figure 22. Signature definitions for the 

elements of this viewpoint are shown in Figure 23. ODM OWL Ontology from OMG's ODM (OMG, 

2009) is the adopted standard for all of our ontology sets such as Role, Organization and Service 

Ontologies. Therefore, they extend the ODM OWL Ontology class (in Figure 23, Lines 9, 12 and 15 

respectively) which has the attribute description and contains one or more ODMOWLStatements and 

ODMOWLClasses. 

 

According to this viewpoint, all of the ontologies are known by their related elements. Collection of the 

ontologies creates knowledgebase of the MAS that provides domain context. These ontologies are 

represented in SEA_ML models as OrganizationOntology instances. Inside a domain role, an agent uses a 

RoleOntology which is defined for the related agent role concepts and their relations. Semantic interfaces 

and capabilities of SWSs are described according to ServiceOntologies. 

 

 
Figure 22: SEA_ML’s Ontology viewpoint 

 

Finally, for the Semantic Web environment, each fact or an agent's belief is an ontological entity and they 

are modeled as an extension of ODMOWLStatement. ODMOWLStatement has a structure as a triple of 

RDF in semantic web: “subject”, “predicate”, “object” (Lines 20-22). Although Belief and Fact elements 

have the same attributes; they have different interpretations. For instance, a Fact in the Environment keeps 

the current market value as 1.803 TL (Turkish Liras) for one US dollar. An agent extracts this information 

and keeps it in its knowledgebase. However, when the value changes to 1.700 TL, agents may not update 

the information. Therefore, Fact and Belief may keep different values for the same variable. This can result 



in an agent having inconsistencies in its knowledgebase regarding the real world. Some constraints can 

provide an updated Beliefbase with some frequencies such as the abovementioned example.  

 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

sig ODMOWLOntology{ 
   name: one Name, 
   description:one Name, 
   includesStatement: some            
 ODMOWLStatement, 
   includesClass: some
 ODMOWLClass 
} 
sig RoleOntology extends  
   ODMOWLOntology{ 
} 
sig OrganizationOntology extends    
   ODMOWLOntology{ 
} 
sig ServiceOntology extends  
   ODMOWLOntology{ 
} 
sig ODMOWLStatement{ 
   name: one Name, 
   subject: one Name, 
   predicate: one Name, 
   object: one Name 
} 
sig ODMOWLClass{  
   name: one Name } 
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sig Fact extends  
   ODMOWLStatement{ 
} 
sig Belief extends  
ODMOWLStatement{ 
   description: one Name, 
   update_type: one Type 
}  
sig Role { 
  name: one Name, 
  knowsOrganizationOntology:    
    some OrganizationOntology, 
  knowsRoleOntology:   
    some RoleOntology, 
}  
sig SWO { 
   has: some Role, 
   knowsOrganizationOntology:   
     some OrganizationOntology 
} 
sig SWS{ 
   name: one Name, 
   depends_on:  
      some ServiceOntology 
} 

Figure 23: Concepts of Ontology viewpoint 

 

KnowledgeConsistency predicate is written to eliminate the inconsistencies between Belief and Fact by 

comparing their corresponding attributes (see Figure 24). For this, it is appropriate to compare a SWA’s 
Belief and Fact which is accessed by the same SWA. Therefore SWA, Capability and Environment sets are 

added with required relations. Exemplarily, this pred can run for the triples (weather, is, 15 degrees 

Celcius) and (weather, is, 30 degrees Celcius) without conflict. 

  

Another constraint is needed to control the relationships between the meta-elements and the ontologies 

they use. OntologyDependency fact in Figure 24 associates a SWO and a Role which use 

OrganizationOntology. According to this constraint, if a SWO knows an OrganizationOntology and a Role 

knows that OrganizationOntology, then the SWO has that Role. 

 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 

pred KnowledgeConsistency (b:Belief, f:Fact){ 
 all swa:SWA| some e:Environment, c:Capability| 
 e in swa.access_to && f in e.hasFact &&  
 c in swa.includes && b in c.includesBelief &&  
 f.subject = b.subject && f.predicate = b.predicate => 
 f.object = b.object 
} 
fact OntologyDependency{ 
 all swo:SWO, r:Role | some OrgOnt:   
 OrganizationOntology| swo.knowsOrganizationOntology =   
 OrgOnt && r.knowsOrganizationOntology = OrgOnt =>   
 swo.has = r  
} 

Figure 24: Ontological constraints 

 
 
 
 



3.8 Agent – Semantic Web Service Interaction Viewpoint 
 

Agent-SWS Interaction viewpoint (Figure 25), models the interaction between agents and SWSs. Concepts 

and their relations for appropriate service discovery, agreement with the selected service and execution of 

the service are all defined in this viewpoint. Furthermore, the internal structure of SWS is modeled inside 

this viewpoint. The preliminary version of the semantics pertaining to this viewpoint is first discussed in 

(Getir et al., 2012). 

 

Semantic Web Agents apply Plans to perform their tasks. In order to discover, negotiate and execute 

Semantic Web Services dynamically, the extensions of the Plan entity are defined in the metamodel. 

Semantic Service (SS)_Finder Plan is a Plan in which the discovery of candidate semantic web services 

takes place. SS_AgreementPlan involves the negotiation on QoS metrics of the service (e.g. service 

execution cost, running time or location) and agreement settlement. After service discovery and 

negotiation, the agent applies the SS_ExecutorPlan to execute appropriate semantic web services. As we 

discussed before, Semantic Service Matchmaker Agents (SS_MatchmakerAgent) which are extensions of 

SWAs represent service registry for agents to discover services according to their capabilities. In addition, a 

SS_RegisterPlan can be applied with a SS_MatchmakerAgent to register a new SWS. 

 

 
Figure 25: SEA_ML’s Agent–SWS Interaction Viewpoint 



 

SWS modeling approaches (e.g. OWL-S (Martin et al., 2004)) mostly cover three important pieces of 

information about semantically enriched web services which are also modeled in SEA_ML: Service 

Interface, Process Model and Physical Grounding. Service Interface is the capability representation of the 

service in which service’s inputs, outputs and any other necessary descriptions are listed. Process Model 

defines service’s internal combinations and service execution dynamics. Finally, Physical Grounding 

defines the service’s real execution protocol. Since the operational part of today’s semantic services is 
mostly a web service, Web Service concept is also included in SEA_ML’s metamodel associated with the 
physical grounding mechanism. These meta-entities are shown in Figure 25 with Interface, Process and 

Grounding entities respectively. These components can use Input, Output, Precondition and Effect (a.k.a. 

IOPE), which model the fundamental properties of a service and extend OWLClass from OMG’s ODM 
(OMG, 2009). The meta-elements of this viewpoint are also defined in Alloy signatures which are shown 

in Figure 26. 
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sig SWA { 
 plays: Role some -> Time, 
 applies: some Plan, 
} 
sig SS_MatchmakerAgent extends SWA{ 
 appliesSS_RegisterPlan: 
     SS_RegisterPlan some->one Time, 
 playsRegistrationRole:RegistrationRole some->one Time 
} 
sig Role { 
 name: one Name, 
 interacts_with: some SWS, 
} 
sig RegistrationRole extends Role { 
 advertises: some SWS 
} 
sig SWS{ 
 name: one Name, 
 composed_of: set WebService 
} 
sig Interface{ 
 presents: some SWS 
 hasInputt:Input, 
 hasOutput:Output, 
 hasEffect:Effect, 
 hasPrecondition:Precondition  
} 
sig Process{ 
 described_by: some SWS 
 hasInputt:Input, 
 hasOutput:Output, 
 hasEffect:Effect, 
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 hasPrecondition:Precondition  
} 

sig Grounding{ 
 supports: some SWS 
 calls: one WebService 
} 
sig Input extends ODMOWLClass{} 
sig Output extends ODMOWLClass {} 
sig Effect extends ODMOWLClass {} 
sig Precondition extends ODMOWLClass {} 
sig Service{ 
 name: one Name 
} 
sig WebService extends Service{ 
} 
sig Plan { 
 disj name,type,description:one Name,priority:one Int, 
} 
sig SS_RegisterPlan extends Plan{ 
 advertises: Interface some ->Time 
} 
sig SS_FinderPlan extends Plan { 
 interacts_with: some SS_MatchmakerAgent 
 discovers: set Interface, 
} 
sig SS_AgreementPlan extends Plan{ 
 negotiates: some Interface 
} 
sig SS_ExecutorPlan extends Plan{ 
 executes: some Process, 
 uses: some Grounding  
} 

Figure 26: Concepts of Agent–SWS Interaction 

 

One type of static semantic rules we define for this viewpoint deals with the composition relationships 

between Service-Environment and SWS–WebService elements.  For instance, ServiceComposition fact is 

provided (in Figure 27, between Lines 1 and 4). According to that fact, every WebService should be 

connected to SWS via composed_of relation. 

  

On the other hand, SEA_ML metamodel specifically focuses on agent-SWS interaction. As a result of that, 

Agent_SWS_Interaction fact in Figure 27 guaranties that if there is a WebService in an Environment, there 

is at least one interaction between an agent and that web service (over related web service’s semantic 



interface). Line 7 in Figure 27 stipulates that each Environment has a Web Service. This provides a SWS in 

the environment since a WebService requires at least one SWS as a precondition of implication. There are 

two ways which provide the interaction between an agent (SWA) and a SWS. sws1 represents the first way 

which yields that a SWA plays a Role and this Role interacts_with the SWS. On the contrary, sws2 

represents the second way for agent-SWS interaction which means a SS_FinderPlan is applied by a SWA 

and this plan discovers an Interface and the Interface presents the SWS. Finally cardinality sum of sws1 

and sws2 should be at least one. The other ways from SWA through the plan types to SWS are not added as 

a constraint, because the other plan types cannot be applied without an existence of a SS_FinderPlan. In 

other words, if there is a SWS in the environment, a SWA should interact with it anyway.  In order to make 

a clear understanding of this semantics, the visualization of this constraint’s application is illustrated in 
Figure 28. Path 1 represents sws1 variable and path 2 represents sws2 variable in Agent_SWS_Interaction 

fact. 

 

A SWA can apply all kinds of plan types. However, in this system a SWA focuses on finder, agreement 

and execution plan types and registration is not its task. But according to inheritance, a SWA can apply 

SS_RegisterPlan as it extends Plan. Therefore, InheritanceBreak fact is added to break the effect of this 

inheritance (see Figure 27). In Line 17, this control is fulfilled. SS_MatchmakerAgent’s task is to register 
the services, advertise them and help SWAs to find them. 
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fact ServiceComposition{ 
 all s:Service | s.~has != none 
 all wb:WebService | wb.~composed_of != none 
} 
fact Agent_SWS_Interaction{ 
 all e: Environment| some ws:WebService  
 ws in e.hasService => 
 {some swa1,swa2:SWA, sws1,sws2:SWS, r:Role, 
 t1,t2,t3,t4:Time, f:SS_FinderPlan, i:Interface, x:Int 
 |swa1.plays.t1= r && r.interacts_with.t2=sws1 
 && swa2.applies.t3 = f && f.discovers.t4 =i && 
 i.presents= sws2 
  && #sws1 =x && x.plus[#sws2] >=1 
 } 
} 
fact InheritanceBreak{ 
 no a:SWA,rp:SS_RegisterPlan, t:Time|  a.applies.t= rp 
} 

Figure 27: Static semantics control for Agent–SWS Interaction 

 

Another behavioral control is given with the InterfaceControl fact in Figure 29. This control restricts meta-

elements such as SS_FinderPlan, SS_AgreementPlan and SS_ExecutorPlan to reach an unregistered 

Interface. In other words, a SS_FinderPlan should try to discover a new Interface which is in the set of 

Interface(s) that is advertised by a SS_RegisterPlan earlier (Line 4). Analogously, a SS_AgreementPlan 

should try to negotiate with an Interface which is in the set of Interface(s) discovered previously (Line 5 in 

Figure 29). It is also similar for a SS_ExecutorPlan’s Interface access (Lines 7- 8). For this reason, (in) 

relations on Interface subset are held in this fact. 

 



 
Figure 28: Agent–SWS Interaction Paths 
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fact InterfaceControl{ 
  all f:SS_FinderPlan, r:SS_RegisterPlan,  
  a:SS_AgreementPlan | some  t1,t2,t3: Time|  
  f.discovers.t3 in  r.advertises.t1 &&   
  a.negotiates.t1 in f.discovers.t2  
  all i:Interface, p:Process, g:Grounding, e:SS_ExecutorPlan |  
 p in e.executes && g in e.uses && 
 p.described_by in i.presents  && g.supports in i.presents  
} 

Figure 29: Behavioral controls 

 

Additionally, the SWS which is supported by a Grounding that a SS_ExecutorPlan uses and the SWS 

element which is described by a Process that a SS_ExecutorPlan executes should be in the SWS set which 

is presented by an Interface (Lines 6-8 in Figure 29). 

 

In our study, behavioral and dynamic semantics are especially detailed for supporting the execution 

ordering of SWA Plans. Required state transitions are illustrated with two state diagrams as depicted in 

Figure 30. Figure 30-a focuses on the sequence of plan types that needs an exact order and Figure 30-b 

focuses on the execution of all plan types which handle cascading records of SWS discovery, agreement 

with SWS and execution of SWS processes. It draws the whole procedure of agent-SWS interaction steps 

within plan types. 

  



 
Figure 30: State diagram of Plan types in SEA_ML. a) execution order of Plan types b) Agent-SWS 

Interaction Procedure 

 

To order the Plan states, we used util/ordering module of Alloy. This is appropriate to define the order of 

plan types for the intra-plan control. These transitions are provided with PlanStates fact (Figure 31) which 

explains that previous element of a SS_FinderPlan can be a SS_RegisterPlan (Line 3), previous element of 

a SS_AgreementPlan can be a SS_FinderPlan (Line 4) and finally previous element of a SS_ExecutorPlan 

can be a SS_AgreementPlan (Line 7). This order provides a dependency among plan types for the SWS 

Interaction process. 
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fact PlanStates{ 

   all disj f:SS_FinderPlan| some  r:SS_RegisterPlan|  
      prevs[f]=r   
   all  a:SS_AgreementPlan|  some f:SS_FinderPlan |  
      prevs[a] =f 
   all e:SS_ExecutorPlan|some a:SS_AgreementPlan |   
      prevs[e]=a 
} 

Figure 31: Semantics of plan state transitions 

 

We model the inner relation ordering from the beginning of the interaction between agent and SWS until 

the execution of SWS. SWSInteractionProcedure fact in Figure 32 handles this procedure. Line 6 extracts 

the times of relations “SS_MatchmakerAgent applies SS_RegisterPlan” and “SS_RegisterPlan advertises 
Interface” to the t1 and t2 time variables respectively. In Line 7, we order them in such a way that events 

pertaining to t1 should be realized before t2 (prev[t2]=t1).We use util/ordering module to order the times 

as well, since a definition like t1<t2 is not allowed in Alloy. While prev[] and next[] are used for the 

predecessor and successor element, prevs[] and nexts[] are used for an element of processor and successor 

sets. Line 8 extracts the time “SWA applies the SS_FinderPlan” and assigns it to the time t3. Before 

applying the SS_FinderPlan, at any time, there should be a registration in the previous events. Therefore, 

we add the prevs[t3]=t2 constraint. On the other hand, roles played by a SWA or SS_MatchmakerAgent can 

be realized at any time in the system. 

 

Line 9 in Figure 32 extracts the times of events “SS_FinderPlan interacts_with SS_MatchmakerAgent” 
and “SS_FinderPlan discovers Interface” and orders in such a way that t3<t4<t5 (Line 10). Similar 

assignments of t6 and t7 are handled for the events “SWA applies SS_AgreementPlan” and 
“SS_AgreementPlan negotiates Interface”. If the result of SS_FinderPlan (finding_result) exists, we order 

the events in the order of t5<t6<t7 (Line 12 in Figure 32), otherwise, event times of “SWA applies 
SS_AgreementPlan” and “SS_AgreementPlan negotiates Interface” are assigned as an empty set (Line 13 

in Figure 32). Analogously, in Lines 13, 14 and 16, the times t8, t9, t10,t11 are assigned to events “SWA 
applies SS_ExecutorPlan”, “SS_ExecutorPlan executes Process”, “SS_ExecutorPlan uses Grounding” and 



“Grounding calls WebService” respectively. If the result of SS_AgreementPlan (agreement_result) is 
negative (Line 14 in Figure 32), t8 and t9 will be assigned as empty sets (not applied) (Line 15). 

Otherwise, we order the events in an ordering such as t8<t9<t10<t11 (Lines 15 and 17 in Figure 32). 
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fact SWSInteractionProcedure { 
 all a: SWA, ma:SS_MatchmakerAgent,  rp:SS_RegisterPlan, 
 fp:SS_FinderPlan,  ap:SS_AgreementPlan,ep:SS_ExecutorPlan, 
 i:Interface, p:Process,  g:Grounding,ws:WebService | some 
 t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11: Time | 
 ma.appliesSS_RegisterPlan[rp]=t1 && rp.advertises[i]  = t2 &&  
 prev[t2]=t1  && 
 (a.applies[fp] =  t3&&  prevs[t3]=t2 &&   
  fp.interacts_with[ma]=t4 &&  fp.discovers[i]=t5 &&  
 prev[t5] = t4 &&  prev[t4]=t3) && (a.applies[ap] = t6  && 
 ap.negotiates[i]=t7&& (fp.finding_result = True =>   
  (next[t5]=t6 &&  next[t6]= t7) else   
  (t6=none && t7=  none)))&&(a.applies[ep] = t8 &&   
 ep.executes[p]=t9  && (ap.agreement_result!=True =>   
 (t8=none && t9=  none) else (next[t7]=t8 && next[t8]=t9 && 
 (ep.uses[g] =  t10&& g.calls[ws] =t11 &&  
 (next[t9] =  t10 && next[t10] = t11)))))  
} 

Figure 32: Semantics of Agent–SWS interaction based on Time 

 

The “Time” column is added for ordering the relations during agent–SWS interaction. Every event is 

realized in a specified time. System sequence is provided by ordering these events, in other words, times of 

events. This constraint is important because it represents the events based on time. Time ordering gives a 

representation to sort every event in an exact order. However, this constraint needs a huge memory and 

time complexity during the analysis and creating the subset space as is discussed in Section 4.1 of this 

paper. Therefore, another type of constraint with subset definitions, which provides the meaning of 

ordering plan types by reducing to two dimensional relations, is also supplied in our study (Figure 33). 

According to Agent-SWSPlanOdering constraint, if a SS_FinderPlan is applied by a SWA, at least one 

SS_RegisterPlan should be applied by a SS_MatchmakerAgent (Lines 3- 4 in Figure 33). Other plan types 

are controlled in the same way. If SS_AgreementPlan is applied, SS_FinderPlan should already be in the 

related set. In other words, “SS_FinderPlan should be applied before SS_AgrementPlan” constraint is 
provided (Lines 5-6). Same constraint is applied for SS_ExecutorPlan in Lines 7-8.   
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fact Agent_SWSPlanOrdering { 
 all swa:SWA, sm:SS_MatchmakerAgent|  
 (SS_FinderPlan in swa.applies =>  
      #(sm.appliesSS_RegisterPlan) >=1)&& 
 (SS_AgreementPlan in swa.applies  =>  
      SS_FinderPlan  in  swa.applies) && 
 (SS_ExecutorPlan  in swa.applies =>  
      SS_AgreementPlan  in swa.applies) 
} 

Figure 33: Semantics of Agent–SWS process based on Subset definitions 

 

 

4. Formal Model Analysis 

 

Model analysis contributes in three ways to the abstraction of software. Firstly, it supports to simulate 

some possible scenarios by generating concrete examples. Secondly, it keeps the model and instance 

consistent. Finally, it can extract the faults which could be seen later (Jackson, 2012). On the other hand, 

model checking and model analysis are becoming critical in the use of DSMLs. Since DSMLs deal with 



complex systems’ domains, they have huge instances and models. Therefore, it needs a system simulation 

and checking in the abstract level before applying the system. For example, complicated structure of some 

agent behaviors or interactions of agents with semantic web services should be taken into account during 

the development of SEA_ML instance models. 

 

Development with Alloy specification language is also supported with a fully automated analyzer tool 

which visualizes and checks the models, and produces instances. Every analysis in this tool works through 

the aim of solving a constraint that either produces a counter-example or produces an instance. Alloy 

analyzer translates constraints (facts) to Boolean constraints and then these constraints are transferred to an 

off-the-shelf SAT solver (Moskewicz et al., 2001; Goldberg and Novikov, 2002). 

 

Alloy model analyzer is based on the idea of finding counter-examples and witnesses which come from 

model checking (Clarke et al., 2000).  This idea is applied with scope size which defines the maximum 

number of instances for every element in the instance model that Alloy analyzer generates. Counter-

examples find the system faults by generating the negative formula of claim. Hence, they can detect the 

possible errors according to the assertions.  

 

On the other hand, Alloy simulates the possible scenarios by generating some combinations from instance 

space. It is also possible to specify an instance model and check it. In this case, analyzer looks for this 

model inside the instance model combination sets.  It does not mean that Alloy finds the model which the 

user intended if no restriction is applied. However, if a user specifies the predicates and restricts the scope 

for every instance, it is possible to create intended model within this scope. If a model is not found, it 

means that there is no instance model that satisfies the needs of the intended model; in other words Alloy 

cannot find an instance for that specific scope. Assertion checking or model finding can be performed in 

some scope. As the scope size increases, it may take too much time to find a result. Hence, scope size is a 

limitation of Alloy.  

 

Considering the DSML perspective, the analyzer has a model structure control. When the analyzer is 

executed, it controls all sets. Some static semantics which come from the metamodel such as multiplicity 

relations can be provided easily in set definitions. Dynamic semantics can be defined based on logic and 

simulated with the analyzer by using the Time column to observe system behavior in runtime. Analyzer 

does not only check the runtime execution of a rule, but also it detects the inconsistencies among all 

constraints (facts) and set definitions. Following subsections discuss scope analysis and use of the defined 

semantics within a case study.  

 

4.1 Scope Analysis 

 

Scope size defines the maximum number of element instances in a model. Every analysis scans all 

instances in the space of defined scope until finding an instance. If there is not any instance, the result 

returns null. If the command is an assertion it means that there is no example which disproves the formula 

in that scope. Unfortunately it does not guarantee that there is no instance in a larger scope. If the 

command is a predicate, it does not have this kind of scenario in this scope, but it may have in larger 

scopes. Default scope size is three in Alloy. Scope size can be specified differently for all elements in the 

model. If Alloy analyzer finds an instance or a counter-example, it means that it will find in the larger 

scope as well. This case is called Scope Monotonicity. Hence, it provides simplicity for instance models or 

scenarios.  

 



Property Checking:  

We provided model validation with particular assertions in particular scopes. Scope size defines the 

maximum number of every super set (non-subset) in the instance model. According to the relations in the 

model, we can define a scope size which can be increased step by step until finding an example. As the 

scope size increases, it may take hours to have a result. However, it is quite valuable if we can show 

validation of the model for a possible scope size. 

 

We created some assertions according to SEA_ML properties and obtained results in different scopes. 

Properties are held for agent-SWS interaction viewpoint since it is crucial for evaluating SEA_ML 

capabilities. Some of the defined assertions are given in Figure 34. All assertions are checked in a 

computer with Intel i7 1.73 Ghz CPU and 4 GB RAM. Achieved results are presented in Table 1. 

  

SWSInteractionProcedure fact given previously in Figure 32 creates a huge space for analysis. Assertions 

in Figure 34 were tried to be tested with this constraint. However, even for the scope size 4, it lasted 3 

hours and resulted with out-of-memory error in the computer with above mentioned configuration. The 

same example was tried for one month with a better computer which has Intel i7 3.20 Ghz CPU and 16 GB 

RAM. No result was obtained after one month nonstop execution. Therefore, to reduce the space from 

triples to binary, Agent_SWSPlanOrdering fact (Figure 33), which gives the same meaning in a different 

way, is considered for simulations and property checking. 

 

During Agent-SWS interaction, SWA’s plan types are expected to be applied in an order. 
PlanTypeProperty assertion (Figure 34) claims that if the number of SS_AgreementPlan is greater than or 

equal to 1 (which means an SS_AgreementPlan exists in the instance model being processed), 

SS_FinderPlan is also greater than or equal to 1. Same stands for SS_AgreementPlan and 

SS_ExecutorPlan. It is expected that there is no counter-example which breaks this order and we 

experienced no counter example until scope size 25 (Table 1). This scope size is selected based on our 

processing machine power and implies that all combinations of maximum 25 elements for each signature 

are considered to find possible instances. In the system, services should be registered by 

SS_MatchmakerAgent before a SWA applies a plan and executes them. Hence, RegistrationProperty 

claims that if the set of Plans which SWA applies is not empty then SS_RegisterPlan set, which 

SS_MatchmakerAgent applies, should not be empty too. 
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assert PlanTypeProperty {  
 all fp: SS_FinderPlan, ap:SS_AgreementPlan,  ep:SS_ExecutorPlan| 
  #ap>=1 => #fp >=1 && #ep >=1 => #ap >=1 
} 
assert RegistrationProperty{ 
 all swa:SWA,  sm:SS_MatchmakerAgent|  
 swa.applies !=none => sm.appliesSS_RegisterPlan ! = none 
} 
assert NoConflictProperty{ 
 no ma:SS_MatchmakerAgent|  
 some rp:SS_RegisterPlan | ma.applies= rp 
} 
assert EnvironmentProperty{ 
 no wb:WebService|#wb.~has=0  
} 

Figure 34: Assertions pertaining to the agent-SWS interaction viewpoint 

 

A SWA can apply different kinds of plans during its interaction with SWS. Since SS_MatchmakerAgent is 

a specialization of SWA, naturally it inherits "applies" relation from SWA. As mentioned before, applying 

SS_RegisterPlan is a plan type that can only be applied by SS_MatchmakerAgent instances. However, the 



relation between SS_RegisterPlan instances and SS_MatchmakerAgent instances is not represented with 

the ordinary "applies" relationship. It is represented with "appliesSS_RegisterPlan". Therefore the 

constraint called InheritanceBreak is provided (See Figure 27) to prevent accidentally establishing 

"applies" relation between a SS_MatchmakerAgent and a SS_RegisterPlan. NoConflictProperty claims that 

a SS_MatchmakerAgent does not have applies relation with SS_RegisterPlan because it has another 

relation to access the same SS_RegisterPlan. 

 

EnvironmentProperty claims that a WebService can exist inside an environment. More precisely, the 

container set which contains a WebService is a non-empty set. No counter-example is expected because of 

the composition control of these two elements. However analyzer results a counter-example in a large 

scope (see Table 1). Therefore this constraint was investigated again and changed as follows. No counter-

example is found in a larger scope after that modification.  

 
assert EnvironmentProperty2{ 
 no wb:WebService|wb.~has !=none  

} 
 

Table 1: Results of scope analysis on some of the properties of Agent-SWS Interaction viewpoint 

Assertion Scope 

Size  

Counter-examples Elapsed 

time (ms) 

Number 

of Clauses 

PlanTypeProperty 

3 

4 

10 

25 

No counterexample 

is found, assertion 

may be valid. 

842 

125 

374 

1357 

5474 

9857 

89465 

1567426 

PlanTypeProperty 
50 Fatal error: Memory 

exceed 

- - 

EnvironmentProperty 

5 

10 

15 

No counterexample 

is found, assertion 

may be valid 

115 

260 

380 

17127 

92925 

304693 

EnvironmentProperty 

20 Counterexample is 

found. Assertion is 

invalid. 

8967 304693 

RegistrationProperty 

10 

25 

30 

No counterexample 

is found, assertion 

may be valid 

246 

1736 

2271 

92862 

1590572 

2964157 

NoConflictProperty 

10 

20 

30 

No counterexample 

is found, assertion 

may be valid 

360 

1305 

2982 

92893 

758873 

2964248 

 

Model Finding: 

As the second task of the analyzer, predicates can generate instance models in a visual or textual manner 

by searching a binding that is true for model formula. Further, in the case that the user specifies the   

predicates, defines properties of the instance model, and restricts the scope for every instance, an intended 

model can be created within this scope in the instance set. If the analyzer finds an example in a scope, 

Alloy claims that it will also find an instance in larger scopes on the basis of scope monotonicity. If it 

cannot find any example in a reasonable scope (due to computer memory and/or time limitations), it means 

that Alloy cannot find an instance model according to the specifications in the predicate in that scope.  

Nevertheless, there may be an instance model in a bigger scope. 



 

Within our study, different predicates are experienced in different scopes and resulted in Table 2. Some 

predicates are presented in Figure 35. As it is possible to create models without any input, first of all pred 

simple {} is run to control the constraint whether they are consistent with each other. Screenshot in Figure 

36 is created in the scope size 1, 2, 1 for SWA, Role and Plan elements respectively. It simulates that a 

SWA plays different Roles at different times. 
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pred simple {} 
pred Initialize { 
 one appliesSS_RegisterPlan 
} 
pred SWAstart { some SWA && one SS_MatchmakerAgent &&  
one SS_FinderPlan && SS_MatchmakerAgent.applies = none 
} 

Figure 35: Predicates for agent-SWS interaction viewpoint 

 

 
Figure 36: Pred Simple simulation screenshot. A SWA can play different roles at different times 

 

Note that the projection feature of Alloy is used during model generation. When a predicate is run and an 

instance model is found, signature instances exist as elements in the model as can be seen in Figure 36. But 

some elements, for example Name and Time, do not belong to the metamodel. Therefore, it is not required 

to keep them as an instance element and instead, their projections are used as seen in Figure 36 for Time 

instance. Projection is also used for attribute elements in the metamodel. For example, name, description 

and property seem as some attributes since Name set is projected. Time projection also provides evidence 

of the behavior of the system at different times by generating different instance models for the same 

predicate. 

 

Initialize predicate in Figure 35 represents the initialization of the system. SS_MatchmakerAgent applies 

SS_RegisterPlan and plays RegistrationRole.  System starts with the Registration. The smallest scope size 

is found with 3 and 2 for Plan (Table 2). 

  



SWAstart predicate executes the system. In this scenario, a SWA enters the system and applies a 

SS_FinderPlan to fulfill the user’s request.  Before a SWA, a SS_MatchmakerAgent should have already 

been in the system for registration of semantic web services. The smallest scope size is fixed as 3 and 2 for 

SWA and Plan respectively. Example atoms are represented in Table 2.  

 

Table 2: Results of scope analysis within Agent-SWS Interaction viewpoint and model finding 

Predicate Scope Size  Instance Model Spent Time 

(millisecon

ds) 

Number 

of 

Clauses 

Initialize 2, exactly 1 Plan Not found. Predicate may be inconsistent. 401 1467 

Initialize 
2, exactly 2 Plan Not found. Predicate may be inconsistent. 

47 2375 

Initialize 3, exactly 1 Plan Not found. Predicate may be inconsistent. 275 3362 

Initialize 

3, exactly 2 Plan Pred is consistent: univ={-1, -2, -3, -4, -5, -6, -

7, -8, 0, 1, 2, 3, 4, 5, 6, 7, Environment$0, 

Interface$0, Name$0, Name$1, Name$2, 

Plan$0, RegistrationRole$0, Role$0, 

SS_MatchmakerAgent$0, SS_RegisterPlan$0, 

SWS$0, Time$0, Time$1, Time$2, 

WebService$0, aplan/Ord$0, atime/Ord$0, 

boolean/False$0, boolean/True$0} 

109 4459 

SWAstart 2 Not found. Predicate may be inconsistent. 2142 468 

SWAstart 
2, but exactly 2 

Plan, 2 SWA 

Not found. Predicate may be inconsistent. 
2142 172 

SWAstart 
2 but exactly 3 

Plan, 3 SWA 

Not found. Predicate may be inconsistent. 
3413 125 

SWAstart 
3, but exactly 3 

Plan, 3 SWA 

Found. Smaller scope size is tested. 
5351 561 

SWAstart 

3, but exactly 2 

Plan, 2 SWA 

{-1, -2, -3, -4, -5, -6, -7, -8, 0, 1, 2, 3, 4, 5, 6, 7, 

Environment$0, Grounding$0, Interface$0, 

Name$0, Name$1, Name$2, 

RegistrationRole$0, Role$0, 

SS_FinderPlan$0, SS_MatchmakerAgent$0, 

SS_RegisterPlan$0, SWA$0, SWS$0, Time$0, 

Time$1, Time$2, WebService$0, 

aplan/Ord$0, atime/Ord$0, 

boolean/False$0, boolean/True$0} 
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4.2 Case study: An Agent-based E-barter System  
 

In this section, we discuss the design of an agent-based electronic barter (e-barter) system in order to give 

some flavor of the use of SEA_ML's formal semantics. An agent-based e-barter system consists of agents 

that exchange goods or services for their owners without using any currency. In our example, a Barter 

Manager agent (shown in Figure 37), who is implemented as a SWA, manages all trades in the system. 

This agent is responsible for collecting barter proposals, matching proper barter proposals and tracking the 

bargaining process between customer agents. To infer about semantic closeness between offered and 

purchased items based on some defined ontologies, barter manager may use SWS. Conforming to its 

Barter Role definition, Barter Manager needs to discover the proper SWS, interact with the candidate 

service and realize the exact execution of the SWS after an agreement. More information on the 

development of such a system can be found in (Demirkol et al., 2011). 



 

 
Figure 37: e-Barter Scenario (illustration is taken from (Kardas et al., 2010)) 

 

In the system, suppose that a Barter Manager agent needs to interact with semantic web services to match 

bidden and demanded goods and determine the value of the exchange. For instance, two customer agents 

(one from the automotive industry and other from the healthcare sector) may need to exchange their 

offered goods and services such that: A car manufacturer offers to sell car spare parts to a health insurance 

company (e.g., for company’s service cars) and wants to procure health insurance for its employees. 

Consider that the intention of the health insurance company is vice versa. During the bargain between the 

agents of the car manufacturer and the health insurance company, our Barter Manager agent may use SWS 

called Barter Service. In order to invoke that service, Barter Manager first needs to discover the proper 

semantic web service. Then, Barter Manager interacts with the candidate service(s) and after an agreement; 

the exact execution of the semantic web service is realized (Kardas et al., 2010). 

 

SWA, SS_FinderPlan, SS_AgreementPlan, SS_ExecutorPlan, Role, Interface, Process, Grounding and 

SWS elements are used in modeling of the e-barter system according to SEA_ML's agent-SWS interaction 

viewpoint. For instance, BarterManager is a kind of SWA. This agent applies Discover, Haggle and 

Invoke plans which are instances of SS_FinderPlan, SS_AgreementPlan and SS_ExecutorPlan 

respectively. BarterManager agent plays BarterRole. For Barter operations, it uses BarterService which is 

a kind of SWS. BarterSevice owns appropriate interface and execution mechanism. In order to create the 

model of the e-barter system, eBarter predicate (Figure 38) is written. It is worth noting that predicates of 

such instance models can only be written manually due to Alloy restrictions. Alloy does not provide a 

graphical editor to visually create or modify the instance models which may lead also to the automatic 

generation of the required predicates. Currently, Alloy only provides a visual and an uneditable 

representation of a model after creating this instance model with manually given predicates. 

 

In order to execute eBarter predicate, scope size for Plans is defined as 4, since the number of Plan types is 

4. Furthermore, RegistrationRole, SWS, Interface, Process, Grounding, WebService and Environment 

instances are created exactly as (1,1,1,1,1,1,1). Each instance is an argument in the predicate such as 

“BarterManager is a SWA”. BarterManager, BarterRole, BarterService, BSInterface, BSGrounding, 

BSProcess, TradingService, Discover, Haggle and Invoke are arguments of the predicate. In the body of 

the predicate, the relation of instances can be defined. If there are wrong bindings, analyzer will give the 

“inconsistent model” result. In line 5 of Figure 38, the given constraint is to provide BarterManager not to 



be a SS_MatchmakerAgent in this system. Therefore, it applies all plans except the one for the service 

registration (Line 6).  

 

Model of the system is generated according to the above defined semantics (see Figure 39). The analyzer 

checks the relations and arguments and then generates the model if it is consistent. If the model is missing, 

the analyzer is capable of supplementing the instance based on SEA_ML's semantics definitions. For 

example SS_MatchmakerAgent instance is not defined in the predicate given in Figure 38. However 

according to SEA_ML constraints there should be at least one SS_MatchmakerAgent for SWS 

registrations. As it can be observed in Figure 39, SS_MatchmakerAgent has been generated automatically 

and the model is now completed. Nevertheless, if the user specifically does not want to define 

SS_MatchmakerAgent by assigning null in the predicate, then the analyzer cannot find any consistent 

instance model in any scope size since at least one SS_MatchmakerAgent is mandatory for the system 

initialization. Hence, beyond the model analysis in some scope, we can also check the instance model 

according to defined semantics. This provides the generation of consistent instance models for SEA_ML. 
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pred eBarter (BarterManager:SWA, BarterRole: Role, BarterService: SWS, 
BSInterface: Interface,BSGrounding:  Grounding, BSProcess: Process, 
TradingService: WebService,  Discover: SS_FinderPlan,  
Haggle:SS_AgreementPlan,  Invoke:SS_ExecutorPlan ){some t:Time| 
 BarterManager not in SS_MatchmakerAgent && 
 SS_MatchmakerAgent.applies= none &&  
 BarterManager.plays.t = BarterRole &&  
 Discover in  BarterManager.applies  &&  
 Haggle in BarterManager.applies  &&  
 Invoke in BarterManager.applies &&  
 Discover.discovers =  BSInterface&&  
 Haggle.negotiates = BSInterface  && Invoke.executes = BSProcess &&  
 Invoke.uses=Grounding && 
 BSProcess.described_by=BarterService  &&   
 BSGrounding.supports =BarterService&& 
 BSGrounding.calls=TradingService &&   
  BSInterface.presents=BarterService &&   
 BarterService.composed_of=TradingService 
} 

Figure 38: E-Barter predicate which models the e-barter system according to the agent-SWS viewpoint 

 

 

 

 



 
Figure 39: Generated model of the e-Barter system 

 

Let us consider the Ontology viewpoint of the designed system. According to the scenario, Barter 

Manager agent first searches for a semantic web service which can match a “Car_Spare” OWL 
concept with a “Health_Insurance” OWL concept and then executes the service to find counterpart of 

a bargained car spare part: an OWL individual for BMW 520 Tyre. BMW520Tyre and 

GlobalInsurance are ODMOWLClass instances for the exchange and they are included in 

BarterOntology and BarterOrgOntology respectively. These ontologies are known by the BarterRole 

which is played by the BarterManager. BarterOntologies predicate (Figure 40) is run with the scope 

size 3 for all elements and we obtain the generated model shown in Figure 41 within these 

specifications. Agent’s belief update type is static at Time0 (upper left snapshot in Figure 41) while it 

is dynamic when a new fact is generated at Time1 (lower right snapshot in Figure 41) which means 

the belief base should be updated. Marking the update status of a belief base as static or dynamic 

originates from the related attribute specification in SEA_ML metamodel. Hence, if the belief base 

remains same from its initialization up to that specific runtime, it is marked as static. In case of belief 

(base) modification or new fact insertion, it is marked as dynamic. 
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pred BarterOntologies(BarterManager: SWA,  
BarterOntology: RoleOntology,  
BMW520Tyre: ODMOWLClass, BarterRole:Role, BarterOrgOntology: 
OrganizationOntology, 
GlobalInsurance:ODMOWLClass){ 
 some t:Time | BarterOntology.includesClass=BMW520Tyre  
 && BarterRole.knowsRoleOntology = BarterOntology  
 && BarterManager.plays.t = BarterRole && Barter 
  Role.knowsOrganizationOntology=BarterOrgOntology 
  && BarterOrgOntology.includesClass= GlobalInsurance 
} 

Figure 40: e-Barter model with Ontologies 

 

 
Figure 41: Generated model for BarterOntologies 

 

In order to demonstrate a formal check of the dynamic aspects of the developed model, let us suppose 

there exists a change in the scenario in the course of time; such that a new semantic web agent enters to the 

current system and wants to interact with the semantic web services for bartering. For this purpose, we 

refer to the two snapshots of the model taken in two different times. According to the first snapshot of the 

system (previously given in Figure 39), a barter agent succeeded all plans and found a semantic web 

service in the system at Time0 (Note that it is not a real time interval property. Time0 here just represents 

the time “before” Time1 in temporal logic language). In this snapshot (Figure 39), a barter manager agent 

was looking for a web service to bargain health insurances with car spare parts (see also Figure 41) and 

he/she was playing the Barter role. Barter manager applied all plans to find, agree with and execute a 

service and hence achieved his/her goal. In Time1 (second snapshot of the system), a new semantic web 

agent (called SWA0) has joined the system (see Figure 42) in order to interact again with a web service 

that enables bartering health insurances with car spare parts. By playing the Barter Role, SWA0 applied a 

finder plan (SS_FinderPlan) to achieve this goal. However, as can be seen from Figure 42, SWA0 currently 

can apply neither an agreement (SS_AgreementPlan) nor service execution (SS_ExecutorPlan) plan. The 

reason is that SEA_ML dynamic semantics does not allow an agent to agree with or execute a semantic 

web service before finding the service. In other words, this is the snapshot of the system that reflects the 

instant change in the scenario. It simulates the moment when the BarterManager agent just completed the 



application of all types of plans and a new SWA entered into the system and started to search for a new 

web service. At the same moment, that new agent can not apply SS_AgreementPlan or SS_ExecutorPlan. 

In fact, if we gave another snapshot of the system (say the third snapshot after the second snapshot) while 

the new agent was executing the semantic web service by applying the execution plan, we would clearly 

see that both the finder and agreement plans had already been applied. Those dynamic semantics checks 

are automatically performed for the developers during MAS modeling via utilizing the ordering module of 

Alloy inside SEA_ML's formal definition on the agent plan orderings based on time (as previously 

discussed in Section 3.8). 

 

Finally, it is worth indicating that the Barter Manager agent had already played the Barter Role before 

Time1 and according to the dynamic semantics definitions of SEA_ML, he/she now changes his/her role 

into another role in the environment exactly at Time1 (Figure 42). Although it is not specified in the 

predicate definition, the new role, called Role 2, is automatically assigned by Alloy analyzer in order to 

comply with this SEA_ML’s dynamic semantics constraint. Further, the new agent has started to play 

BarterRole which was already specified and also used by BarterManager in the past (before Time1).  

 

 
Figure 42: Generated model of the e-Barter system that shows a different scenario at a different time 

 

 

5. Related Work 

 

Studies on DSL and DSMLs for agents are recently emerging. For instance, a DSL called Agent-DSL is 

introduced in (Kulesza et al., 2005). Agent-DSL is used to specify the agency properties that an agent 

could have to accomplish its tasks. The proposed DSL is presented only with its metamodel for the visual 

modeling of the agent systems according to some agent features, such as knowledge, interaction, 

adaptation, autonomy and collaboration. Likewise, Rougemaille et al. (Rougemaille et al., 2008) introduce 



two dedicated agent modeling languages and call those languages as DSMLs. The languages are described 

by metamodels which can be seen as representations of the main concepts and relationships identified for 

each of the particular domains again introduced in (Rougemaille et al., 2008). However, the study includes 

just the abstract syntax of the related DSMLs and neither gives the concrete syntax nor semantics of the 

DSMLs. In fact, the study only defines generic agent metamodels for model driven development of MASs. 

  

Hahn (Hahn, 2008) introduces a DSML for MAS called DSML4MAS. The abstract syntax of the DSML 

is derived from a PIMM for agents (Hahn et al., 2009), possessing different aspects of such systems 

including MAS, agent, role and behavior. Hahn also discusses the use of Object-Z (Duke et al., 1995; 

Smith, 2000) in definition of the static semantics of the individual concepts which ensures that all concepts 

are statically well-formed by including the formalization of their attributes and invariants. Furthermore, 

DSML4MAS supports the deployment of modeled MASs both in JACK (AOS, 2001) and JADE 

(Bellifemine et al., 2001) agent platforms by providing an operational semantics over model 

transformations. In order to provide a concrete syntax, the appropriate graphical notations for the concepts 

and relations of DSML4MAS are defined in (Warwas and Hahn, 2008). DSML4MAS can be considered 

as to be one of the first complete DSMLs for agents with all of its specifications including the formal 

semantics (Hahn and Fischer, 2009) which will be discussed later in this section.  

 

Another DSML is provided for MASs in (Gascuena et al., 2012) including the abstract syntax, the concrete 

syntax and related development tools. The abstract syntax is presented using Meta-object Facility (MOF) 

(OMG, 2002), the concrete syntax and its tool are provided with GMF (Eclipse, 2006), and finally the code 

generation for the JACK agent platform is realized with model transformations. Introduced syntax is 

derived from the metamodel of the well-known Prometheus (Padgham and Winikoff, 2004) MAS 

development methodology. Hence, Prometheus model of the system can be constructed as first. Then, 

intermediate code of the model is achieved by using the tools also presented in (Gascuena et al., 2012). 

Finally, the intermediate code is imported into the JACK Development Environment in order to provide 

code completion and exact system implementation. Agents on the Semantic Web and the interaction of 

Semantic Web enabled agents with other environment members such as semantic web services are not 

considered in (Gascuena et al., 2012). 

 

Originating from a well-formalized syntax and semantics, Ciobanu and Juravle define and implement a 

high-level DSL for mobile agents in (Ciobanu and Juravle, 2012). A text editor with auto-completion and 

error signaling features is generated and a way of code generation for agent systems starting from their 

textual description is presented. The introduced DSL solely takes into account the mobile agents domain 

which differs from the domain of SEA_ML. 

 

The service composition architecture introduced in (Fujii and Suda, 2006) dynamically combines 

distributed components based on the semantics of the components in order to create a web application. 

Implementation of the proposed architecture is based on the well-known web service definition and 

execution standards. Authors also propose an appropriate way of migrating existing web services into the 

architecture without implementing those services from scratch. In order to support collaboration of agents 

and web services, Sycara et al. (Sycara et al., 2003) propose a capability representation mechanism for 

semantic web services and discuss how they can be discovered and executed by agents. Likewise, a set of 

architectural and protocol abstractions that serves as a foundation for agent - web service interactions is 

introduced in (Burstein et al., 2005). Based on this architecture, how agents and semantic web services can 

be integrated are discussed in (Gümüs et al., 2007) and (Gürcan et al., 2007). Instead of semantic web 



service profiles, use of OWL-S process models during the service discovery is proposed in (Paulraj et al., 

2011). Hence, it is aimed to find and match more relevant services with the proposed algorithm. But, 

service composition and execution by the agents are open issues in the study. Varga et al. (Varga et al., 

2004) propose an approach in which descriptions of the agents providing the semantic web service are 

generated for the migration of existing web services into the Semantic Web via agents. Our study 

contributes to abovementioned agent-based service composition and execution studies by supporting the 

model-driven engineering of the interaction between software agents and semantic web services. 

 

The work in (Kardas et al., 2009) presents a methodology based on OMG’s well-known Model Driven 

Architecture (MDA) (OMG, 2003) for modeling and implementing agent and service interactions on the 

Semantic Web. A PIMM for MAS and model transformations from instances of this PIMM to two 

different MAS deployment platforms are discussed in the paper. But neither a DSML approach nor 

semantics of service execution is covered in the study. Hahn et al. (Hahn et al., 2008) define a DSML for 

agents and provide extensions for this DSML to integrate semantic web service execution into MAS 

domain. In addition to the MAS metamodel described first in (Hahn, 2008), a new metamodel, called 

PIM4SWS, is proposed for semantic web services. A relationship between these two metamodels is 

established in such a way that the MAS metamodel is extended with new meta-entities in order to support 

semantic web services interoperability, and it also inherits some meta-entities from PIM4SWS. That 

approach based on the use of two separate metamodels differs from SEA_ML’s in which the modeling of 
agent and semantic web services’ interactions is provided with the inclusion of a special viewpoint into 
MAS metamodel. The semantic internal components of agents, like an agent's knowledgebase, could also 

be modeled using SEA_ML. Moreover, presenting a dedicated metamodel for SWS brings some benefits. 

For instance, PIM4SWS provides the platform-independent modeling of semantic web services. After 

modeling, counterparts of those semantic web service models conforming to various platform-specific 

metamodels of SWS description languages (e.g. OWL-S) can be generated by employing structural and 

semantic transformations as discussed in (Klusch et al., 2008). Structural transformation is applied based 

on the syntactic mapping between corresponding SWS modeling concepts while semantic transformation 

enables formal verification of the mappings. Z formal specification language (Spivey, 1988) is used for the 

definition of PIM4SWS’s semantic transformation. Klusch et al. (Klusch et al., 2008) also describe a 

model-driven semantic web service matchmaker in which semantic service selection and composition for 

implementing business process workflows are provided with the help of the abstraction brought by 

PIM4SWS.  

 

On the other hand, there are some studies directly related to the formal semantics definition of agent 

systems. For instance, the study in (Hahn and Fischer, 2009) uses the Object-Z language (Smith, 2000) to 

define the formal semantics of DSML4MAS (Hahn, 2008). In this way, the system designer is supported 

in validating and verifying the generated design. An Object-Z class for each concept in the metamodel is 

given in order to define operational and denotational semantics. While denotational (static) semantics is 

provided by introducing some semantic variables and invariants, operational (dynamic) semantics is 

defined by introducing semantic operations and invariants. Boudiaf et al. (Boudiaf et al., 2008) present a 

framework to support formal specification and verification of DIMA multi-agent models using Maude 

language (Clavel et al., 2002) based on rewriting logic. DIMA model aims to decompose complex 

behavior of an agent within a set of specialized behaviors. Further, DIMA allows implementing agents 

having diverse granularities e.g. size, internal behavior or knowledge. Formalization of both a DIMA 

agent’s behavior and inter-agent control mechanism is given in (Boudiaf et al., 2008). In (Hilaire et al., 

2000), the authors believe that Object-Z and statecharts are not powerful enough individually to specify the 

complex MASs and hence they combine Object-Z and statecharts to define MASs based on an 



organizational model. Models are shown semi-formally over statecharts. AgentZ (Brandao et al., 2004) 

extends Object-Z for specifying MASs with adding new constructs to improve its structure with adding 

new agent-oriented entities such as agents, organizations, roles and environments. However, only the static 

semantics is supported while our work considers both static and dynamic semantics in MAS modeling. 

Furthermore, the Semantic Web environment and the interactions of agents inside this new environment 

are not covered in these formal semantics definition studies.  

 

Validation of the designed agent systems by applying formal methods can also be critical during MAS 

development. Related worthwhile approaches are extensively discussed in (Dastani et al., 2010) and 

(Fallah-Seghrouchni et al., 2011). Considering the use of Alloy in MAS development, Podorozhny et al 

(Podorozhny et al., 2007) present an approach to design a robust MAS and check the properties of 

coordination, interaction, and agent’s data structures using Alloy analyzer. Additionally, Haesevoets et al. 

(Haesevoets et al., 2010) formally define the relations between the interactions, the exposed information 

and provided policies and laws of an agent middleware by using Alloy. In this way, they guarantee a 

number of properties which are important in the use of this middleware. Any kind of full-fledged DSL or 

DSML is not provided in these studies. 

 

 

6. Conclusion 

 

In this paper, formal semantics and validation of MAS models, conforming to an agent DSML called 

SEA_ML, are presented using Alloy specifications2. Semantics of agent internal structures, MAS 

organizations and interactions between software agents and SWSs are discussed in both static and dynamic 

aspects with their appropriate definitions and modules. Additionally, SEA_ML instance model validations 

are completed by using Alloy analyzer tool. SEA_ML properties are discovered and possible scenarios, 

which can occur in SEA_ML domain, are observed by using formal models. Furthermore, MAS model 

analysis, based on both instance model generation and the application of rules pertaining to counter-

example model checking, is performed. We believe that the study contributes to formal semantics 

definition of agent DSMLs in general and DSMLs for semantic web enabled agent systems in particular. 

 

Modeling and validation of the interoperability between software agents and the semantic web services are 

achieved with the inclusion of the semantic web service entity and its related components into the 

definition of SEA_ML's formal semantics. Hence, based on both the defined constrains and the relations 

between these entities and the classical MAS entities, agent developers can design the whole MAS by 

including the semantic web service entities and especially checking all the behavioral and dynamic 

semantics of the agent-service interaction such as the execution ordering among agent plans required for 

the semantic web service discovery, agreement and invocation. Furthermore, correct transitions of the 

possible behavior flow for each plan type needed for the interaction steps are automatically supported. This 

may lead autonomous web service composition for agents within the semantic web environment. We 

believe that those features, originating from the integration of semantic web service components into the 

SEA_ML's formal semantics, also pave a way for the concrete implementation of the widely-known 

protocols (e.g. extensively discussed in (Burstein et al., 2005) and (Kumar, 2012)) which are used by the 

                                                           

2 Complete SEA_ML metamodel, all written semantics rules along with instance models as Alloy files, 

and instructions for running them are available as a bundle at: 

http://mas.ube.ege.edu.tr/downloads/sea_ml.zip 



agents in order to interpret and reason with semantic descriptions in the deployment of semantic web 

services. 

 

Lessons learned during the development of such a MAS DSML by using Alloy are worth reporting. Alloy 

language provides an easy representation capability with its understandable syntax and semantics. Also, it 

does not require a prior modeling language experience. We found Alloy quite useful to prepare the MAS 

domain concepts and relations, which constitute the metamodel in terms of DSMLs. Since Alloy originates 

from set theory, relational logic and predicate logic, constraints on agent internals, MAS organization and 

service interactions can be defined based on mathematics. In fact, constraints provide the core of SEA_ML 

semantics. Although some relationship types such as Unified Modeling Language's (UML) composition 

and aggregation are not defined in Alloy, they can be obtained by using operations in constraints. 

 

In SEA_ML, ontologies are utilized for modeling both semantic web services and agent internal belief 

bases. When taking into account the representation and use of these ontologies inside Alloy, we examined 

that the subject-predicate-object structure of RDF-based ontologies can easily be constructed in Alloy with 

the use of Alloy signatures and relation entities. Specifically, ontologies conforming to ODM (OMG, 

2009) (e.g. ontologies prepared by using OWL) can be represented in Alloy with all of their classes, 

statements, properties and relations. Within this context, Alloy meets the requirements of ontological 

aspects of SEA_ML. In addition to our experience, studies like (Wang et al., 2006; Song et al., 2012) also 

show that Alloy is capable of verifying ontologies with the help of its analyzer. For instance, OWL 

ontologies can be parsed and converted into an Alloy model and the consistency of an ontology model can 

be checked automatically. That feature may enable the reasoning for these ontologies. However ontology 

reasoning capabilities of Alloy is not within the scope of our current work and hence not covered during 

our evaluation. Furthermore, Alloy’s scalability limitation we encountered during model finding has also 

been reported in (Wang et al., 2006) for reasoning large ontologies. 

 

Alloy analyzer is a strong analyzer which is surrounded with SAT solvers and based on model checking 

theorems within concepts. We observed that the generated MAS models are consistent with the 

expectations. Additionally, instance models can be presented as both textual and graphical. Analyzer also 

purveys some information about the executed predicates and assertions for the models such as spent time, 

number of clauses and so on. 

 

We run the predicates of SEA_ML models by running them in different scope sizes to determine whether 

the models are consistent or not. The main idea is to find the desired instance in the subset space of that 

model considering the constraints (facts) and scope. Hence, MAS model checking is accomplished within 

that scope. However, when Alloy cannot find an instance or the defined model is inconsistent, source of 

that problem (e.g. what is the missing part and/or how the predicate should be altered) is not given by the 

tool. This can be considered as a disadvantage of the tool. Besides, control of the triples or analyzing the 

triples can get complicated and achieving a result consumes reasonable time and a huge memory. 

 

Finally, we experienced that counter-example approach is a good way to detect the possible system errors 

in the abstract level for complex systems like the ones modeled via SEA_ML. Also, model finding is a 

suitable way to observe possible scenarios of the big systems. During these analyses, scope sizes are 

increased and decreased according to the results. As can be seen in Table 1 and 2, increase in the scope 

size does not always increase the time elapsed for achieving the results. In some cases, when the scope size 

is determined according to the model properties and constraints and the scope size is held different for each 

element, it is possible to get faster results.  



 

In our future work, we plan to add more dynamic semantics such as message controls during the 

interaction between agents and sequence controls among agents. Moreover, we plan to integrate semantic 

checking controls introduced in this paper into the MAS DSML development tool presented in (Getir et al., 

2011). Such an integration will provide both automatic generation and modification of predicates 

pertaining to the MAS model instances. Alloy does not currently support the modification of the generated 

instance text definitions as previously discussed in Section 4.2. Therefore, an integration between our 

graphical tool for MAS DSML and Alloy enables the creation of signature definitions and instance models 

automatically which also provides a convenient way for the developers to write and modify the semantic 

rules. In order to realize the integration, our aim is to define and execute transformations between Alloy 

models and Ecore (Eclipse, 2005) models that can be interpreted by the DSML tool in question.  
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