
Artifact Lifecycle Discovery

Viara Popova1, Dirk Fahland2, Marlon Dumas1
1 Institute of Computer Science,
University of Tartu, J. Liivi 2,

Tartu 50409, Estonia
{viara.popova, marlon.dumas}@ut.ee
2 Eindhoven University of Technology

The Netherlands
d.fahland@tue.nl

April 16, 2018

Abstract

Artifact-centric modeling is a promising approach for modeling business processes based
on the so-called business artifacts - key entities driving the company’s operations and
whose lifecycles define the overall business process. While artifact-centric modeling shows
significant advantages, the overwhelming majority of existing process mining methods
cannot be applied (directly) as they are tailored to discover monolithic process models.
This paper addresses the problem by proposing a chain of methods that can be applied to
discover artifact lifecycle models in Guard-Stage-Milestone notation. We decompose the
problem in such a way that a wide range of existing (non-artifact-centric) process discovery
and analysis methods can be reused in a flexible manner. The methods presented in this
paper are implemented as software plug-ins for ProM, a generic open-source framework and
architecture for implementing process mining tools.

Keywords: Artifact-Centric Modeling, Process Mining, Business Process Modeling

1 Introduction

Traditional business process modeling is centered around the process and other aspects such as
data flow remain implicit, buried in the flow of activities. However, for a large number of processes,
the flow of activities is inherently intertwined with the process’ data flow, often to the extent that
a pure control-flow model cannot capture the process dynamic correctly. A prime example is
a build-to-order process where several customer orders are collected, and based on the ordered
goods multiple material orders are created. Typically, one customer order leads to several material
orders and one material order contains items from several different customer orders. These n-to-m
relations between customer orders and material orders influence process dynamics, for instance
if a customer cancels her order. Such complex dynamics cannot be represented in a classical
activity-flow centric process model.

Artifact-centric modeling is a promising approach for modeling business processes based on
the so-called business artifacts [5, 19] – key entities driving the company’s operations and whose
lifecycles define the overall business process. An artifact type contains an information model with
all data relevant for the entities of that type as well as a lifecycle model which specifies how the
entity can progress responding to events and undergoing transformations from its creation until
it is archived.

Most existing work on business artifacts has focused on the use of lifecycle models based on
variants of finite state machines. Recently, a new approach was introduced – the Guard-Stage-

1

ar
X

iv
:1

30
3.

25
54

v1
 [

cs
.S

E
]

 1
1

M
ar

 2
01

3

Milestone (GSM) meta-model [14, 15] for artifact lifecycles. GSM is more declarative than the finite
state machine variants, and supports hierarchy and parallelism within a single artifact instance.

Some of the advantages of GSM [14, 15] are in the intuitive nature of the used constructs which
reflect the way stakeholders think about their business. Furthermore, its hierarchical structure
allows for a high-level, abstract view on the operations while still being executable. It supports a
wide range of process types, from the highly prescriptive to the highly descriptive. It also provides
a natural, modular structuring for specifying the overall behavior and constraints of a model of
business operations in terms of ECA-like rules.

Process mining includes techniques for discovery and analysis of business process models (such
as conformance checking, repair, performance analysis, social networking and so on) from event logs
describing actual executions of the process. While artifact-centric modeling in general and GSM
in particular show significant advantages, the overwhelming majority of existing process mining
methods cannot be applied (directly) in such a setting. The prime reason is that existing process
mining techniques are tailored to classical monolithic processes where each process execution can be
described just by the flow of activities. When applied to processes over objects in n-to-m relations
(expressible in artifacts), classical process mining techniques yield incomprehensible results due to
numerous side effects [8].

This paper addresses the problem by proposing a chain of methods that can be applied to
discover artifact lifecycle models in GSM notation. We decompose the problem in such a way
that a wide range of existing (non-artifact-centric) process discovery and analysis methods can be
reused in the artifact-centric setting in a flexible manner. Our approach is described briefly in the
following paragraphs.

Typically, a system that executes a business process in a process-centric setting records all
events of one execution in an isolated case; all cases together form a log. The cases are isolated
from each other: each event occurs in exactly one case, all events of the case together describe
how the execution evolved.

Traditional methods for automatic process discovery assume that different process executions
are recorded in separate cases. This is not suitable in the context of artifact-centric systems.
Indeed, artifact-centric systems allow high level of parallelism and complex relationships between
multiple instances of artifacts [8]. This can result in overlapping cases and one case can record
multiple instances of multiple artifacts. Therefore, we do not assume that the logs given as input
are structured in terms of cases. Instead, all events may be recorded together, without any case-
based grouping, as a raw event log.

Such a raw log contains all observed events where each event includes a timestamp reflecting
when the event occurred and a collection of attribute-value pairs, representing data that is read,
written or deleted due to the occurrence of the event. Fig. 4 gives an example of how such a raw
log might look like. The specific format might differ depending on the system that generates it.

Taking such a log as a starting point, we propose a tool chain of methods that can produce a
model in GSM notation which reflects the behavior demonstrated in the event log. We decompose
the problem in three main steps which would allow us to take advantage of the vast amount of
existing research in process mining and reuse some of the existing tools for process discovery.

Fig. 1 shows the proposed overall architecture of the artifact lifecycle discovery process. First,
based on the data incorporated in the events, the artifact decomposition of the problem is deter-
mined, i.e. how many artifacts can be found and which events belong to which instances of which
artifact. Using this information, the log can be decomposed to generate so-called artifact-centric
logs where each trace contains the event for one instance of one artifact and each log groups the
traces for one artifact.

The artifact-centric logs can then be used to discover the lifecycle of each artifact. For this,
any existing method can be used most of which generate models in Petri Net notation. Therefore,
as a final step, we apply a method for translating Petri Net models into GSM notation.

The methods presented in this paper are implemented as software plug-ins for ProM [31], a
generic open-source framework and architecture for implementing process mining tools. The imple-
mentation is part of the ArtifactModeling package which is available from www.processmining.org.

The paper is organized as follows. Section 2 presents a working example used for illustration

2

Figure 1: The overall architecture of the artifact lifecycle discovery process.

of the proposed methods and Section 3 reviews the necessary background knowledge. Section 4
presents the artifact structure discovery step of the tool chain. Section 5 discusses the artifact
lifecycle discovery step and Section 6 presents the method for translating Petri net models to
GSM. Finally, Section 7 concludes the paper with a discussion and directions for future work.

2 The Build-to-Order Scenario

As a motivating example used to illustrate the proposed methods, we consider a build-to-order
process as follows. The process starts when the manufacturer receives a purchase order from a
customer for a product that needs to be manufactured. This product typically requires multiple
components or materials which need to be sourced from suppliers. To keep track of this process,
the manufacturer first creates a so-called work order which includes multiple line items – one for
each required component. Multiple suppliers can supply the same materials thus the manufacturer
needs to select suppliers first, then place a number of material orders to the selected ones.

Suppliers can accept or reject the orders. If an order is rejected by the supplier then a new
supplier is found for these components. If accepted, the items are delivered and, in parallel, an
invoice is sent to the manufacturer. If the items are of sufficient quality then they are assembled into
the product. For simplicity we do not include here the process of returning the items, renegotiating
with the supplier and so on. Instead it is assumed that the material order will be marked as failed
and a new material order will be created for the items to a different supplier. When all material
orders for the same purchase order are received and assembled, the product is delivered to the
customer and an invoice is sent for it.

Fig. 2 shows the underlying data model for the build-to-order example which indicates that
we can distinguish two artifact types: Purchase order and Material order and one Purchase order
corresponds to one or more Material orders.

Fig. 3 shows one way of modeling the lifecycle of the Material order artifact type using Petri
net notation. The details of the Petri net notation are explained in the next section. Fig. 4 gives
an example of how a raw log recording actual executions of a build-to-order process might look
like.

3

Figure 2: The underlying data model of the build-to-order process.

3 Background

We first give the necessary background in order to present the artifact lifecycle discovery methods
by a very brief introduction to the relevant modeling approaches.

3.1 Petri nets

Petri nets [18] are an established notation for modeling and analyzing workflow processes. Its
formal basis allow to perform formal analysis w.r.t. many static and dynamic properties. Petri
nets are expressive while still being executable which makes them appropriate for application in
realistic scenarios. They have been used in a wide variety of contexts and a great number of the
developed process mining techniques assume or generate Petri nets.

A Petri net is a directed bipartite graph with two types of nodes called places (represented by
circles) and transitions (represented by rectangles) connected with arcs. Intuitively, the transitions
correspond to activities while the places are conditions necessary for the activity to be executed.
Transitions which correspond to business-relevant activities observable in the actual execution of
the process will be called visible transitions, otherwise they are invisible transitions. A labeled
Petri net is a net with a labeling function that assigns a label (name) for each place and transition.
Invisible transitions are labeled by a special label τ .

An arc can only connect a place to a transition or a transition to a place. A place p is called a
pre-place of a transition t iff there exists a directed arc from p to t. A place p is called a post-place
of transition t iff there exists a directed arc from t to p. Similarly we define a pre-transition and
a post-transition to a place.

At any time a place contains zero or more tokens, represented graphically as black dots. The
current state of the Petri net is the distribution of tokens over the places of the net. A transition
t is enabled iff each pre-place p of t contains at least one token. An enabled transition may fire.
If transition t fires, then t consumes one token from each pre-place p of t and produces one token
in each post-place p of t.

A Petri net N is a workflow net if it has a distinguished initial place, that is the only place
with no incoming arcs, a distinguished final place, that is the only place with no outgoing arcs,
and if every transition of the net is on a path from initial to final place. The initial place is also
the only place with a token in the initial marking.

N is free-choice iff there is a place p that is a pre-place of two transitions t and s of N (t and s
compete for tokens on p), then p is the only pre-place of t and of s. In a free-choice net, a conflict
between two enabled transitions t and s can be resolved locally on a single place p. N is sound iff
every run of N starting in the initial marking can always be extended to a run that ends in the
final marking (where only the final place of N is marked), and if for each transition t of N there
is a run where t occurs.

In order to model interactions between artifacts in artifact-centric systems, we can use Pro-
clets [27] notation where each proclet represents one artifact type as a Petri net and constructs

4

Figure 3: A Petri net model for the lifecycle of the Material Order artifact, part of the build-to-
order example

such as ports and channels can be used to represent different types of interactions between the
artifacts. In this paper we concentrate on the artifact lifecycles. The difference to classical pro-
cess discovery is that classical discovery considers just one monolithic process model (Petri net),
whereas we consider sets of related Petri nets.

Fig. 3 shows one way of modeling the lifecycle of the Material order artifact type from the
build-to-order example using Petri net notation.

3.2 Guard-Stage-Milestone meta-model

The Guard-Stage-Milestone meta-model [14, 15] provides a more declarative approach for modeling
artifact lifecycles which allows a natural way for representing hierarchy and parallelism within the
same instance of an artifact and between instances of different artifacts.

The key GSM elements for representing the artifact lifecycle are stages, guards and milestones
which are defined as follows.

Milestones correspond to business-relevant operational objectives, and are achieved (and pos-
sibly invalidated) based on triggering events and/or conditions over the information models of
active artifact instances. Stages correspond to clusters of activities preformed for, with or by an
artifact instance intended to achieve one of the milestones belonging to the stage.

5

11-24,17:12 ReceivePO items=(it0), POrderID=1
11-24,17:13 CreateMO supplier=supp6, items=(it0), POrderID=1, MOrderID=1
11-24,19:56 ReceiveMO supplier=supp6, items=(it0), POrderID=1, MOrderID=1
11-24,19:57 ReceiveSupplResp supplier=supp6, items=(it0), POrderID=1, MOrderID=1, answer=accept
11-25,07:20 ReceiveItems supplier=supp6, items=(it0), POrderID=1, MOrderID=1
11-25,08:31 Assemble items=(it0), POrderID=1, MOrderID=1
11-25,08:53 ReceivePO items=(it0,it1,it2,it3), POrderID=2
11-25,12:11 ShipPO POrderID=1
11-26,09:30 InvoicePO POrderID=1
11-26,09:31 CreateMO supplier=supp1, items=(it1,it2,it3), POrderID=2, MOrderID=2
11-28,08:12 ReceiveMO supplier=supp1, items=(it1,it2,it3), POrderID=2, MOrderID=2
11-28,12:22 CreateMO supplier=supp4, items=(it0), POrderID=2, MOrderID=3
12-03,14:34 ClosePO POrderID=1
12-03,14:54 ReceiveMO supplier=supp4, items=(it0), POrderID=2, MOrderID=3
12-03,14:55 ReceiveSupplResp supplier=supp1, items=(it1,it2,it3), POrderID=2, MOrderID=2, answer=accept
12-04,15:02 ReceivePO items=(it1,it2), POrderID=3
12-04,15:20 ReceiveSupplResp supplier=supp4, items=(it0), POrderID=2, MOrderID=3, answer=accept
12-04,15:33 CreateMO supplier=supp2, items=(it2), POrderID=3, MOrderID=4
12-04,15:56 ReceiveMO supplier=supp2, items=(it2), POrderID=3, MOrderID=4
12-04,16:30 CreateMO supplier=supp5, items=(it1), POrderID=3, MOrderID=5
12-05,09:32 ReceiveMO supplier=supp5, items=(it1), POrderID=3, MOrderID=5
12-05,09:34 ReceiveItems supplier=supp4, items=(it0), POrderID=2, MOrderID=3
12-05,11:33 ReceiveItems supplier=supp1, items=(it1,it2,it3), POrderID=2, MOrderID=2
12-05,11:37 Assemble items=(it0), POrderID=2, MOrderID=3
12-05,11:50 ReceiveSupplResp supplier=supp2, items=(it2), POrderID=3, MOrderID=4, answer=reject
12-05,13:03 ReceiveSupplResp supplier=supp5, items=(it1), POrderID=3, MOrderID=5, answer=accept
12-06,05:23 Assemble items=(it1,it2,it3), POrderID=2, MOrderID=2
12-06,05:25 ReassignSupplier items=(it2), POrderID=3, MOrderID=4
12-06,07:14 ReceiveItems supplier=supp5, items=(it1), POrderID=3, MOrderID=5
12-06,07:15 Assemble items=(it1), POrderID=3, MOrderID=5
12-06,07:25 InvoicePO POrderID=2
12-06,09:34 ShipPO POrderID=2
12-12,20:41 CreateMO supplier=supp5, items=(it2), POrderID=3, MOrderID=6
12-12,20:50 ReceiveMO supplier=supp5, items=(it2), POrderID=3, MOrderID=6
12-13,03:20 ReceiveSupplResp supplier=supp5, items=(it2), POrderID=3, MOrderID=6, answer=accept
12-13,03:21 ReceiveItems supplier=supp5, items=(it2), POrderID=3, MOrderID=6
12-13,04:30 ClosePO POrderID=2
12-13,08:36 Assemble items=(it2), POrderID=3, MOrderID=6
12-13,08:37 InvoicePO POrderID=3
12-13,08:38 ShipPO POrderID=3
12-13,08:39 ClosePO POrderID=3

Figure 4: An example of a raw log.

6

ReceiveMO
created

ReceiveSuppl
Resp

Invoice
MO

Receive
Items

Complete
MO

Reassign
Supplier

received

all ok

accepted

accepted

create

rejected

CreateMO
create

Assemble
MO

Items ok

Items
not ok

Close
MO

completed

reassigned

Figure 5: A GSM model for the lifecycle of the Material Order artifact, part of the build-to-order
example

Guards control when stages are activated, and, as with milestones, are based on triggering
events and/or conditions. A stage can have one or more guards and one or more milestones. It
becomes active (or open) when a guard becomes true and inactive (or closed) when a milestone
becomes true.

Furthermore, sentries are used in guards and milestones, to control when stages open and
when milestones are achieved or invalidated. Sentries represent the triggering event type and/or
a condition of the guards and milestones. The events may be external or internal, and both the
internal events and the conditions may refer to the artifact instance under consideration, and to
other artifact instances in the artifact system.

And finally, stages can contain substages which can be open when the parent stage is active.
If a stage does not contain any substages, it is called atomic.

Fig. 5 shows the Material order artifact type as a GSM model. The stages are represented as
rectangular shapes. A diamond on the left side of the stage represents a guard with its name and
a circle at the right side of the stage represents a milestone. The dotted lines between stages are
not part of the model and were only added to give an indication of the control flow that is implicit
through the guards and milestone sentries which are expressed in GSM in terms of logics.

4 Artifact Structure Discovery

The first problem to cope with when discovering models of artifact-centric processes is to identify
which artifacts exist in the system. Only then a lifecycle model can be identified for each artifact.

In order to discover the artifact structure and subsequently generate the artifact-centric logs,
we explore the implicit information contained in the data belonging to the events. As a first step
we apply data mining and analysis methods to the raw log data to discover correlation information

7

between the events which allows to build the underlying Entity-Relationship (ER) model. This
includes methods for discovering functional and inclusion dependencies which allow us to discover
which event types belong to the same entity and how entities are related to each other.

Using the discovered ER model, we perform analysis which then suggests to the user which
entities should be chosen as artifacts and provides support in the selection process.

Finally, for the entities designated as artifacts, we can extract artifact instance-specific traces
which can be used to discover the lifecycle of each artifact. The collection of such traces is called
artifact-centric logs.

The rest of this section presents each of these steps in more detail, as also shown in Fig. 6.

Figure 6: Artifact structure discovery.

4.1 Entity Discovery

Each event in a raw log belongs to an event type, for example the event type CreateMO can have
one or more instances in the log with specific timestamps and for specific orders being created.
Each event contains a timestamp, one or more data attributes and belongs to exactly one event
type. Formally, we define a raw log as described in the following paragraphs.

Definition 1 (Event). Let {A1, A2, . . . , An} be a set of attribute names and {D1, D2, . . . , Dn}
- a set of attribute domains where Di is the set of possible values of Ai for 1 ≤ i ≤ n. Let
Σ = {a1, a2, . . . , am} be a set of event types. Event e is a tuple e = (a, τ, v1, v2, . . . , vk) where

1. a ∈ Σ is the event type to which e belongs,

2. τ ∈ Ω is the timestamp of the event where Ω is the set of all timestamps,

3. for all 1 ≤ i ≤ k vi is an attribute-value pair vi = (Ai, di) where Ai is an attribute name
and di ∈ Di is an attribute value.

All events of an event type a are called event instances of a.

Note that the definition allows for multiple attribute-value pairs of the same event to refer to
the the same attribute name. In such cases we talk about multi-valued attributes. For example
event type ReceivePO has a multi-valued attribute items.

Definition 2 (Raw log). A raw log L is a finite sequence of events L = e1e2 . . . en. L induces the
total order < on its events with ei < ej iff i < j.

8

The order of events in L usually respects the temporal order of their timestamps, i.e. if event
e precedes event e′ temporally then e < e′ .

To present the methods proposed in this Section, we adopt notation from Relational Al-
gebra [24]. A table T ⊆ D1 × . . . × Dm is a relation over domains Di and has a schema
S(T) = (A1, . . . , Am) defining for each column 1 ≤ i ≤ m an attribute name Ai. For each entry
t = (d1, . . . , dm) ∈ T and each column 1 ≤ i ≤ m, let t.Ai := di. We write A(T) := {A1, . . . , Am}
for the attributes of T , and for a set T of tables, A(T) :=

⋃
T∈T A(T). The domain of each

attribute can contain a special value ⊥ which indicates the null value, i.e., the attribute is allowed
to have null values for some entries. The set of timestamps Ω does not contain the null value.

All instances of an event type form a data table where each row corresponds to an event
instance observed in the logs and consists of the values of all data attributes for that event. In
order to transform this table into second normal form (2NF) we need to separate the multi-valued
attributes and treat them differently - this will be discussed later. In the following, a single-valued
attribute A for event type a is an attribute for which, for each event e of type a in raw log L, e
contains at most one attribute-value pair (Ai, di) where Ai = A.

Formally, this can be expressed as follows.

Definition 3 (Event type table). Let a be an event type in the raw log L and let E =
{e1, e2, . . . , en} be the set of events of type a, i.e. ei = (a, τi, vi1 , vi2 , . . . , vim) where m ≥ 1 for all
1 ≤ i ≤ n and vij = (Aj , dij) and Aj is a single-valued attribute for ei. An event type table for a
in L is a table T ⊆ Ω×D1∪{⊥}× . . .×Dm∪{⊥} s.t. there exists an entry t = (τ, d1, . . . , dm) ∈ T
iff there exists an event e ∈ E where e = (a, τ, (A1, d1), (A2, d2), . . . , (Ak, dk)) and di ∈ Di ∪ {⊥}
for 1 ≤ i ≤ m. The first attribute of the table is called the timestamp attribute of the event type
and the rest are the data attributes of the event type.

Note that the events of the same type might in general have a different number of attributes
and the schema of the event type table will consist of the union of all single-valued attribute names
that appear in events of this type in the raw log. Therefore there might be null values for some
attributes of some events.

Fig. 7 shows two of the event type tables for the raw log in Fig. 4, namely for event types
ReceivePO and CreateMO.

The set of event type tables for a given raw log forms a database which implicitly represents
information about a number of entities. Such entities can be detected by discovering their identi-
fiers in the data tables of the event types. For example if the attribute POrderID is the identifier
of both event types ReceivePO and ShipProduct then we can assume that these two events refer to
the same entity, in this case the entity PurchaseOrder.

These identifiers will be keys in the data tables and can be detected using algorithms for
discovering functional dependencies between data attributes. By selecting a primary key, the
table is transformed into 2NF.

Definition 4 (Key). A set of data attributes A = {A1, A2, . . . , An} is a key in an event type table
T iff:

1. for every data attribute A′ in T and every pair of entries t, t′ ∈ T if t.A′ 6= t′.A′ then
(t.A1, t.A2, . . . , t.An) 6= (t′.A1, t.A2, . . . , t.An), and

2. no subset of A is also a key.

Note that the timestamp attribute of a table cannot be part of a key.
For example {POrderID} is a key in the ReceivePO table in Fig. 7 and {MOrderID} is a key in

the table CreateMO.
A table can have multiple keys from which only one is selected as the primary key. The

multi-valued attributes can then be represented as additional data tables in the following way.
For each multi-valued attribute A in event type a with primary key {A1, . . . , An} a new table
T is constructed, T ⊆ D1 × . . . × Dn × D such that: D is the domain of A, Di is the domain

9

POrderID ReceivePO
1 11-24,17:12
2 11-25,08:53
3 12-04,15:03

MOrderID POrderID supplier CreateMO
1 1 supp6 11-24,17:13
2 2 supp1 11-26,09:31
3 2 supp4 11-28,12:22
4 3 supp2 12-04,15:33
5 3 supp5 12-04,16:30
6 3 supp5 12-12,20:41

Figure 7: Event type tables for ReceivePO and CreateMO discovered from the raw log in Fig. 4

POrderID items
1 it0
2 it0
2 it1
2 it2
2 it3
3 it1
3 it2

Figure 8: The additional table for multi-valued attribute items of event type ReceivePO from the
raw log in Fig. 4

of Ai for 1 ≤ i ≤ n and for each tuple t ∈ T , t = (t.A1, . . . , t.An, t.A) there exists event e =
(a, τ, (A1, t.A1), . . . , (An, t.An), (A, t.A), . . .).

An example of such an additional table is the table in Fig. 8 which represents the multi-valued
attribute items of event type ReceivePO. An event type table together with all the additional
tables associated with it is called an event type cluster.

Event type tables share keys if their primary keys have the same attribute names. An entity is
a set of event type tables that share primary keys. The shared primary key is called an identifier
for the entity. Every value of the identifier defines an instance of the entity.

Definition 5 (Entity, identifier, instance). Let T = {T1, T2, . . . , Tm} be the set of tables of a
set of event type clusters in the raw log L. Let A = {A1, A2, . . . , An} be the (shared) primary
key for the tables in T . An entity E for T is defined as E = (T ,A) and A is referred to
as an instance identifier for E. An instance s of E is defined as s = ((A1, d1), . . . , (An, dn),
(An+1, dn+1), . . . , (Al, dl)) where an attribute-value pair (Ai, di) is in s, n+ 1 ≤ i ≤ l, iff there
exists an entry t ∈ T , T ∈ T , s.t. t.Ai = di and for all 1 ≤ k ≤ n t.Ak = dk.

In this context, we are not discovering and analyzing all entities in the sense of ER models. The
specific entities that we discover in the execution logs have behavior, and therefore a non-trivial
lifecycle, i.e., go through different states. The changes of state are represented by events in the
logs which in turn are reflected in timestamp attributes.

For the raw log in Fig. 4, we find two entities - one with a shared primary key {POrderID} and
the other one with {MOrderID}.

The primary key becomes the instance identifier for the corresponding entity. For example
an instance of the entity with instance identifier POrderID = 1 will be s = ((ReceivePO, τ1),
(ShipPO, τ2), (InvoicePO, τ3), (ClosePO, τ4)) where τ1=11-24,17:12, τ2=11-25,12:11, τ3=11-26,
09:30 and τ4 = 12-03,14:34. Names for the entities can be assigned based on the names of the
attributes in their instance identifiers or more meaningful names can be given by the user if needed.

The event type tables of the same entity can be combined into one table where attributes with
the same name become one attribute. The only exception is when data attributes of the same
name which are not part of the primary key have different values for the same value of the primary
key. Then they should be represented by different attributes so that both values are present in
the joined table. This does not occur in the example of Fig. 4.

An example of an entity table for entity PurchaseOrder is given in Fig. 9. In the following we
refer to the combined entity table by the name of the entity.

10

POrderID ReceivePO ShipPO InvoicePO ClosePO
1 11-24,17:12 11-25,12:11 11-26,09:30 12-03,14:34
2 11-25,08:53 12-06,09:34 12-06,07:25 12-13,04:30
3 12-04,15:02 12-13,08:38 12-13,08:37 12-13,08:39

Figure 9: The combined table for the entity PurchaseOrder

Once the entities have been discovered then any relationships among them need to be identified.
This can be done using algorithms for detecting inclusion dependencies, which discover candidate
foreign keys between data tables. From the set of candidate foreign keys the user selects the
foreign keys which are meaningful in the specific application.

A database D = (T ,K) is a set T of tables with corresponding schemata S(T), T ∈ T s.t.
their attributes are pairwise disjoint, and a key relation K ⊆ (A(T)×A(T))N.

The key relation K expresses foreign-primary key relationships between the tables T : we say
that

(
(A1, A

′
1), . . . , (Ak, A

′
k)
)
∈ K relates T ∈ T to T ′ ∈ T iff the attributes A1, . . . , Ak ∈ A(T)

together are a foreign key of T pointing to the primary key A′1, . . . , A
′
k ∈ A(T ′) of T ′.

In our context we are interested in foreign-primary key relationships between entities. A foreign
key in entity E1 of entity E2 is an attribute in E1 which is a foreign key to the instance identifier
in E2.

A foreign key in entity E1 which refers to entity E2 indicates a relationship between E1 and E2.
The foreign keys provide us with the necessary correlation information of how specific instances
of one entity relate to specific instances of another entity.

The additional tables associated to event type tables contain foreign keys to the primary key
of the event type table - such foreign keys do not need to be discovered as they are already known
and included by design.

Closer examination of the foreign keys values allows us to find the multiplicities of the discov-
ered relationships.

The collection of entities and their relationships in a raw log L forms an ER model.
For instance, (MaterialOrder.POrderID,PurchaseOrder.POrderID) is a primary-foreign key rela-

tion from the table of entity MaterialOrder to the table of entity PurchaseOrder.
Applying the proposed method to the example raw log we discover an ER

model similar to the one in Fig. 2 with the exception of a few of the at-
tributes (PurchaseOrder.CreateWO, PurchaseOrder.DetermineSuppl, MaterialOrder.InvoiceMO,
MaterialOrder.CompleteMO and MaterialOrder.CloseMO) since they were not present in the log.

4.2 From Entities to Artifacts

After discovering the underlying ER model, one additional step is needed in order to discover
which entities will become artifacts. Intuitively, an artifact can consist of one or more entities
from which one is the main entity which determines which events belong to the same instance, i.e.
the primary key of the main entity becomes the artifact identifier and all events with the same
value of the artifact identifier belong to the same instance of the artifact.

As with any modeling process, there is always a subjective element in deciding what is impor-
tant and needs to be represented more prominently in the model. Such decision is also domain-
specific and depends on the goals and purpose of the model. In the context of artifact-centric
modeling, this applies to the decision which entities are important enough to be represented as
separate artifacts. However certain guidelines do exist and they were used here to provide heuris-
tics for pruning the options that are not appropriate and for assisting in the selection process.

First of all, an artifact needs to have a lifecycle which means that at least one event type has
to be associated with it.

Secondly, m-to-n relations between entities signify that they should belong to different artifacts.
For example if a purchase order can be realized by multiple material orders and a material order
combines items from different purchase orders then combining them in one artifact is not a good
design solution - an instance of such an artifact will overlap with multiple other instances of the
same artifact.

11

Finally, we use the intuition that an entity whose instances are created earlier than the related
instances (through foreign key relations) of another entity has a higher probability of being more
important. If an entity is not preceded in this way by another one then it should be chosen to
become a separate artifact in the artifact-centric model. This for example represents the case where
instances of one entity trigger the creation of (possibly multiple) instances of another entity. In
the build-to-order example this is the case for the PurchaseOrder since one purchase order triggers
the creation of one or more material orders and material orders cannot exist if no purchase order
exists.

These considerations will be defined more precisely in the rest of this Section.
Let E be the set of discovered entities. Let E,E′ ∈ E be entities and let the tuple

((A1, A
′
1), (A2, A

′
2), . . . , (An, A

′
n)) ∈ K be a primary-foreign key relationship which defines a rela-

tionship between E and E′.
Given such a relationship, we say that an instance s of E identifies a set of instances

{s′1, s′2, . . . , s′m} of E′ if s.Ai = s′j .A
′
i for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. Here s.A denotes the

value of attribute A for the instance s. If, for all instances s in E and for all primary-foreign key
relations between E and E′, s identifies at most one instance of E′ then we say that E uniquely
identifies E′.

The function H : E → P(E) denotes the logical horizon of an entity [11] where an entity E1 is in
the logical horizon of another entity E2 if E2 uniquely (and transitively) identifies E1. For example
the entity MaterialOrder uniquely identifies the entity PurchaseOrder while PurchaseOrder does not
uniquely identify MaterialOrder. Therefore PurchaseOrder ∈ H(MaterialOrder) and MaterialOrder /∈
H(PurchaseOrder).

For each instance of entity E ∈ E , one attribute signifies the timestamp of the creation of this
instance - the earliest event that refers to this instance, i.e. the earliest timestamp in the instance.
Based on this, for each two instances of the same or different entities we can find out which was
created before the other one.

Definition 6 (precedence, top-level entity). An entity E1 ∈ E precedes an entity E2 ∈ E, denoted
by E1 ≺ E2, iff E2 ∈ H(E1) and for each instance of E1, its creation is always earlier than the
creation of the corresponding instance of E2. An entity is a top-level entity if it is not preceded
by another entity.

In the build-to-order example, PurchaseOrder is a top-level entity if the raw logs are sufficiently
close to the description of the process. Therefore it will become a separate artifact. MaterialOrder
can also become an artifact if the user considers it sufficiently important. For example an entity
which has a lot of event types (i.e. a more elaborate lifecycle) might be a better choice for
an artifact than a smaller entity - still domain-specific aspects and the context of the modeling
process need to be considered as well. In this particular example it seems a good choice to make
MaterialOrder an artifact as well.

After artifacts are selected, the remaining entities can be joined with artifacts with which they
have a key-foreign key relation. If multiple such artifacts exist, then input from the user can be
provided to select the most appropriate choice. The resulting grouping of the entities is called an
artifact view which is defined more precisely as follows:

Definition 7 (Artifact View). Let D = (T ,K) be a database of event type tables. Let {E1, . . . , En}
be the entities over D. A set Art ⊆ {E1, . . . , En} of entities is an artifact iff:

1. Art contains exactly one designated main entity main(Art) whose identifier is designated as
the artifact instance identifier,

2. Art contains at most one top-level entity top(Art) and, if it exists, top(Art) = main(Art).

A set {Art1, . . . ,Artk} of artifacts is an artifact view on D iff there is an artifact for each entity
in the set of top-level entities {E1, . . . , Em}, m ≤ k.

12

4.3 Artifact-Centric Logs

In order to be able to discover an artifact’s lifecycle, we need an explicit representation of the
executions of its instances based on the events in the raw log. For this purpose, here we introduce
the notion of an artifact-centric log. As a result of the raw log analysis steps discussed in the
previous subsections, the data is now represented in a database in 2NF. A set of entities are
represented in the database where each entity has a corresponding table whose primary key is the
identifier of the entity and the table contains all the event types belonging to the entity. A set
of artifacts are also defined where each artifact consists of one or more entities. Each artifact has
as identifier the identifier of one of its entities while the rest are connected through foreign key
relations to this entity. In this way, for each artifact we can determine which event types belong
to it (the event types of its entities) and which specific events belong to the same instance of the
artifact (determined by the same value of the artifact identifier).

Given is a database D, its set of artifacts and their instance identifiers I = {A1,A2, . . . ,An}.
In the following, I(T) denotes the set of instance identifiers present in a set of tables T (and their
underlying ER model). Each instance identifier A = (A1, A2, . . . , Am) has a domain D1×. . .×Dm.
For simplicity we denote by I(A) = {id1, . . . , idk} the set of unique values of the instance identifier
A present in the database, id i ∈ D1 × . . .×Dm. This corresponds to the set of unique instances
of the entity for which A is the instance identifier.

Definition 8 (Instance-aware events). Let Σ = {a1, a2, . . . , an} be a finite set of event types and
I the set of values of instance identifiers. An instance-aware event e is a tuple e = (a, τ, id) where:

1. a ∈ Σ is the event type,

2. τ ∈ Ω is the timestamp of the event,

3. id ∈ I is the instance for which e occurred.

Let E(Σ, I) denote the set of all instance-aware events over Σ and I.

Definition 9 (Artifact case, lifecycle log). An artifact case ρ = 〈e1, . . . , er〉 ∈ E(Σ, I) is a finite
sequence of instance-aware events that

1. occur all in the same instance defined by a value of an instance identifier A ∈ I, i.e., for all
ei, ej ∈ ρ holds idi = idj, and

2. are ordered by their stamps, i.e., for all ei, ej ∈ ρ, i < j implies τi ≤ τj.

An artifact lifecycle log for a single artifact is a finite set L of artifact cases. An artifact lifecycle
log for an artifact system is a set {L1, . . . , Ln} of lifecycle logs of single artifacts.

We can now address the problem of extracting from a given database D (containing event
information from a raw log) and for a given artifact view V , an artifact-centric log that contains
a life-cycle log for each artifact in V .

Technically, we need to correlate each event in a table belonging to the artifact to the right
instance of that artifact. Once this is done, all events of an artifact are grouped into cases (by
the values of the artifact’s indentifier), and ordered by time stamp. As the instance identifier for
an event can be stored in another table the event’s time stamp, we need to join the tables of the
artifact to establish the right correlation. This requires some notion from relational algebra that
we recall first.

Relational algebra defines several operators [24] on tables. In the following, we use projection,
selection, and the canonical crossproduct. For a table T and attributes {A1, . . . , Ak} ⊆ A(T),
the projection ProjA1,...,Ak

T restricts each entry t ∈ T to the columns of the given attributes
A1, . . . , Ak. Selection is a unary operation Selϕ(T) where ϕ is a boolean formula over atomic
propositions A = c and A = A′ where A,A′ ∈ A(T) and c a constant; the result contains entry
t ∈ Selϕ(T) iff t ∈ T and t satisfies ϕ (as usual). We assume that each operation correspondingly
produces the schema S(T ′) of the resulting table T ′.

13

ΣPurchaseOrder = {ReceivePO,CreateMO,ReceiveMO,ReceiveSupplResponse,ReceiveItems,Assemble,ReassignSupplier,
ShipPO, InvoicePO,ClosePO},
Inst(ΣPurchaseOrder) = POrderID

event type a ∈ ΣPurchaseOrder TS(a) Pathi(a)
ReceivePO ReceivePO {(PurchaseOrder.POrderID,PurchaseOrder.POrderID)}
CreateMO CreateMO {(MaterialOrder.POrderID,PurchaseOrder.POrderID)}
ReceiveMO ReceiveMO {(MaterialOrder.POrderID,PurchaseOrder.POrderID)}
ReceiveSupplResponse ReceiveSupplResponse {(MaterialOrder.POrderID,PurchaseOrder.POrderID)}
ReceiveItems ReceiveItems {(MaterialOrder.POrderID,PurchaseOrder.POrderID)}
Assemble Assemble {(MaterialOrder.POrderID,PurchaseOrder.POrderID)}
ShipPO ShipPO {(PurchaseOrder.POrderID,PurchaseOrder.POrderID)}
InvoicePO InvoicePO {(PurchaseOrder.POrderID,PurchaseOrder.POrderID)}
ClosePO ClosePO {(PurchaseOrder.POrderID,PurchaseOrder.POrderID)}
ReassignSupplier ReassignSupplier {(MaterialOrder.POrderID,PurchaseOrder.POrderID)}

Table 1: The artifact view for artifact PurchaseOrder

We define the partial function Path : 2A(T)×2A(T) 6→ K∗ that returns for two sets of attributes
the sequence of key relations needed to connect the attributes. Technically, Path(As,Ae) =
(A1,A′1) . . . (Ak,A′k) where:

1. for all i = 1, . . . , k, (Ai,A′i) ∈ K or (A′i,Ai) ∈ K, and

2. there exist tables T1, . . . , Tk ∈ T such that As,A1 ∈ A(T1),A′k,Ae ∈ A(Tk) and for all
i = 1, . . . , k − 1, A′i ∈ A(Ti) and Ai+1 ∈ A(Ti).

Let T (Path(As, Ae)) = {T1, ..., Tk} denote the tables of this path.
To relate the values of As and Ae to each other, we need to join the tables of the path that

connects both attribute sets. Let Path(As, Ae) be the path from As to Ae and let {T1, ..., Tk} =
T (Path(As, Ae)) be the involved tables. Then Join(Path(As, Ae)) = Selϕ(T1 × ... × Tk) where
ϕ =

∧
(A,A′)∈Path(As,Ae)(A = A′) selects from the cross product T1 × ... × Tk only those entries

which coincide on all key relations.
Path defines for each event type associated with a specific artifact the path to the instance

identifier attribute associated to this artifact. The definition does not impose any restrictions
on these paths however in practice it often makes sense to choose the shortest path between the
tables. Classical graph theory algorithms such as Dijkstra algorithm can be used for finding all
shortest paths.

For the sake of illustrating these definitions, let us assume that MaterialOrder was not chosen as
a separate artifact and was joined with PurchaseOrder through the foreign key relation provided by
the attributes MaterialOrder.POrderID and PurchaseOrder.POrderID. Table 1 presents the artifact
view for the artifact PurchaseOrder for this variation of our running example.

Log Extraction. After specifying an artifact view, an artifact log can be extracted fully auto-
matically from a given database D.

Let TSi be the set of all timestamp attributes in Ti, i.e. TS ∈ TSi iff there exists table T ∈ Ti
and TS ∈ A(T) with domain of T being Ω.

Definition 10 (Log Extraction). Let D = (T ,K) be a database and let {E1, . . . , En} be the
entities over D. Let {Art1, . . . ,Artk} be an artifact view on D.

For each artifact Art i, the artifact life-cycle log of Art i is extracted as follows.

1. Let (T̂i, Âi) = main(Art i) be the main entity of Art i with identifier Âi. Let Ti =⋃
(T ,A)∈Arti

T be the set of all tables of Art i.

2. For each timestamp attribute TS ∈ TSi we define the table T+
TS =

Proj Âi,TSJoin(Path({TS}, Âi).

3. Each entry t = (id, ts) ∈ T+
TS defines an instance aware event e = (TS, ts, id) of type with

timestamp TS in instance id.

4. The set of all instance-aware events of artifact i is Ei = {(TS, ts, id)|∃TS ∈ TSi, (ts, id) ∈
T+
TS}, let Ii = {id | (TS, ts, id) ∈ Ei} be the instance identifiers of Art i.

14

Join({PurchaseOrder,MaterialOrder}, K)
PurchaseOrder MaterialOrder MaterialOrder MaterialOrder MaterialOrder . . .
.POrderID .POrderID .supplier .ReceiveMO .MOrderID

1 1 supp6 11-24,19:56 1 . . .
2 2 supp1 11-28,08:12 2 . . .
2 2 supp4 12-03,14:54 3 . . .
3 3 supp2 12-04,15:56 4 . . .
3 3 supp5 12-05,09:32 5 . . .
3 3 supp5 12-12,20:50 6 . . .

Table 2: Intermediate table when extracting events of artifact order.

5. For each id ∈ Ii, the artifact case ρid contains all events (TS, ts, id) ∈ Ei ordered by their
timestamps.

6. The artifact log Li = {ρid | id ∈ Ii} contains all artifact cases of Art i.

We illustrate the log extraction using our running example from Sect. 2. We consider the
artifact view on PurchaseOrder as specified in Tab. 1. We explain event extraction on event type
ReceiveMO.

1. First join the tables PurchaseOrder and MaterialOrder on
(PurchaseOrder.POrderID,MaterialOrder.MOrderID); Tab. 2 shows a part of the resulting ta-
ble.

2. Projection onto the instance identifier Inst(PurchaseOrder) = POrderID and the timestamp
attribute ReceiveMO yields six entries (1, 11-24,19:56), (2, 11-28,08:12), (2, 12-03,14:54) and
so on.

Similarly, events for the other event types of artifact PurchaseOrder can be extracted to construct
full cases.

In general we extract one log for every artifact and they can be considered independently to
discover the lifecycle of each artifact. This will be discussed in the next Section.

5 Artifact Lifecycle Discovery

Using the artifact-centric logs, we apply process mining techniques in order to discover the lifecycle
of each artifact independently. A great number of algorithms for process discovery exist with
varying representational and search bias [26, 25]. The representational bias refers to the chosen
formalism for representing the process model. Most approaches use some form of a directed graph,
for example Petri Nets [28, 3, 29, 32], Finite State Machines [6], Causal Nets [33], Process Trees [4],
and so on. A few use other representations such as temporal logic [21] or user-defined constraint
templates [17].

The search bias refers to the algorithm used to traverse the solution space and the criteria
used to select the final answer (i.e., the generated process model). Many approaches have been
proposed including Markov Models [6], Genetic Algorithms [7, 28, 4], Neural Networks [6], Integer
Linear Programming [34], custom algorithms [29, 3, 32, 33] and so on.

The primary goal of the process discovery approaches is to generate models that accurately
represent the behavior of the system as evidenced by the logs. A number of criteria were defined as
well as measures for assessing to what degree the model reflects the desired behavior, as discussed
in [26]. The four prominent measures are fitness (to which degree a model can replay each trace
in the log), generalization (to which degree a model allows replaying traces that are similar to the
traces in the log and considered as part of the process), precision (to which degree a model allows
replaying traces that are not contained in the log, but different from the traces in the log and not
considered part of the process), and structural simplicity of the model. These four measures are
partly contradictory, e.g. the simplest model has a very low precision, a perfectly fitting model
can require very complex structure and thus a low simplicity. For this reason, different algorithms
consider different subsets of these criteria.

15

For complex processes, the importance of the readability (i.e. simplicity) measure for the
process model increases. Different approaches to increasing the readability of the generated models
have been proposed including model simplification [9], abstraction [3], fuzzy models [30, 12], trace
clustering to generate simpler process variants [2], block-structured models [4] and so on.

As an illustration, we briefly describe two of the successful algorithms with their advantages
and disadvantages.

The ILP Miner [34] uses an Integer Linear Programming approach based on the language-based
theory of regions. It generates models that are guaranteed to be consistent with the logs. However
it can produce models that are not very structured and less readable (i.e. spaghetti models). As
an example, Figure 10 shows a Petri net model mined from logs for the PurchaseOrder artifact in
a variation of the build-to-order example.

Figure 10: Petri Net mined using the ILP Miner.

The Tree Miner [4] uses a Genetic Algorithm for generating a model where the fitness function
is balanced between the four criteria for model quality: replay fitness, precision, simplicity and
generalization. The internal representation of the model is in the form of a process tree which has
activities as leaves and the internal nodes represent operators such as sequence, parallel execution,
exclusive choice, non-exclusive choice and loop execution. This guarantees that the generated
models will be block-structured and sound. However the models are not guaranteed to have
perfect fitness and therefore might not be consistent with the logs. Another disadvantage is that
the algorithm takes significantly more time than for example the ILP miner.

Figure 11 shows a Petri net model mined from the same logs of the PurchaseOrder artifact
using the tree miner. We can clearly see that the model is more structured and readable than
the one in Figure 10. The downside is that this model deviates somewhat from the logs - for
example a couple of the activities that appear in the logs are not present in the model. Running
the algorithm multiple times until a better fitness is achieved could potentially result in a better
model though this will additionally increase the necessary time.

16

Figure 11: Petri Net mined using the Tree Miner.

In addition to the wide range of process discovery algorithms, a number of other relevant
approaches have been proposed for tasks such as conformance checking [1, 23], model repair [10]
and so on. Conformance checking methods can be used in this setting to check if the generated
model conforms to the logs and, if that is not the case, model repair methods can be applied to
repair the misconformances.

The above overview proves the benefits of choosing an approach that allows to reuse existing
work and allow flexibility and compositionality of the tool chain. Since the majority of process
discovery and analysis approaches generate Petri nets or models that can trivially be converted
to Petri nets, we choose Petri nets as intermediate representation of the single artifact models
generated from artifact-centric logs. The generated Petri nets are then translated into Guard-
Stage-Milestone models which represent the same behavior. Next Section presents the proposed
translation algorithm in detail.

17

6 Petri Nets to GSM models

We now concentrate on the last step in our artifact lifecycle discovery tool chain which deals with
translating Petri net models to GSM.

As discussed in Section 3, in the GSM model each (atomic) stage has a guard and a milestone.
The stage becomes active if and when the guard sentry evaluates to true. The guard sentry
depends on a condition and/or an event. Events can be internal or external and can reflect the
changes in the state of the instance or other instances, for example opening or closing of stages,
achieving of milestones, etc. When an atomic stage opens, the activity associated with it will be
executed. This can happen automatically (for example when the activity is the assignment of a
new value(s) to variable(s) in the instance’s information model) or can require actions by human
agents. In the latter case the actual task execution is external. The finishing of the execution
of the task also generates an event which is denoted here af follows: for an atomic stage A, the
event ATaskExecuted() is generated when the task execution finishes. The milestone of the stage
is achieved or invalidated also based on a sentry that depends on an event and/or condition.
Achieveing a milestone M of some stage generates an event MAchieved() that can be used in the
guard of another stage. This way, the execution of stages can be ordered.

A straightforward approach to translating Petri nets to GSM models would proceed as follows.
The visible transitions of the Petri net represent activities which are part of the business process.
Therefore it is logical to represent them as atomic stages where the activity corresponds to the
task associated with the stage. The control flow of the Petri net can then be encoded using the
guards and milestones of these stages.

More specifically, in the Petri net N , the order of execution of transitions is expressed by the
places and arcs of N . To impose the same execution order on the stages of M , we encode the
execution order of N in the guards and milestones of the stages of M . In particular, if transition
t2 is a successor of transition t1, then the guard gt2 has to express the opening of stage st2 in
terms of the milestone mt1 of stage st1 .

It is possible to encode the places of the Petri net (and their marking) in variables which will
be part of the information model of the artifact. These variables will be assigned true or false
simulating the presence or absence of tokens in the places. This will be a relatively intuitive
approach for designers skilled in the Petri net notation. However we argue that this would make
the model less intuitive to the user and the relations between the tasks and stages become implicit
and not easy to trace. Here we take a different approach which will be discussed first at a more
general level and in the next subsections in more detail.

The intuition behind this approach is that the immediate ordering relations between transitions
in the Petri net are extracted, translated into conditions and combined using appropriate logical
operators (for AND- and XOR-splits and joins) into sentries which are then assigned to the guards.
The milestones are assigned sentries that depend on the execution of the task associated with the
stage - a milestone is achieved as soon as the task is executed and is invalidated when the stage
is re-opened.

As an example, consider the transition ReceiveMO from the build-to-order model in Fig. 3. It
can only be executed after the transition CreateMO has been executed and there is a token in the
connecting place. This can be represented as a part of a GSM model in the following way. Both
transitions are represented by atomic stages. The guard of the stage ReceiveMO has a sentry with
expression “on CreateMOMilestoneAchieved()” where CreateMOMilestoneAchieved is the name of
the event generated by the system when the milestone of stage CreateMO is achieved. Therefore
the sentry will become true when the event of achieving the milestone of stage CreateMO occurs
and the stage will be open.

The milestone of stage ReceiveMO has a sentry “on ReceiveMOTaskExecuted()” where
ReceiveMOTaskExecuted is the name of the event generated by the system when the task asso-
ciated with atomic stage ReceiveMO completes. Therefore the sentry will become true when the
associated task is executed, the milestone will be achieved and the stage - closed. Similarly the
milestone of CreateMO has a sentry “on CreateMOTaskExecuted()”.

While this example is very straightforward, a number of factors can complicate the sentries.

18

For example, we need to consider the possibility of revisiting a stage multiple times - this can be
the case when the corresponding transition in the Petri net is part of a loop. At the same time, the
transition might depend on the execution of multiple pre-transitions together and this cannot be
represented using events - conditions need to be used instead. The conditions should express the
fact that new executions of the pre-transitions have occurred. This means that the last execution
of each relevant pre-transition occurred after the last execution of the transition in focus but also
after every “alternative” transition, i.e., transition that is an alternative choice.

For example consider the transition CompleteMO in Fig. 3 which can fire for example if both
AssembleMO and InvoiceMO have fired (which will result in tokens in both pre-places). While this
is not part of the model, imagine the hypothetical situation that CompleteMO, AssembleMO and
InvoiceMO were part of a loop and could be executed multiple times. Since a sentry cannot contain
multiple events, the guard of CompleteMO has to be expressed by conditions instead. The näıve
solution “if AssembleMOTask.hasBeenExecuted and InvoiceMOTask.hasBeenExecuted” which checks
if the two tasks have been executed in the past is not correct, since it becomes true the first time
the activities AssembleMO and InvoiceMO were executed and cannot reflect any new executions
after that. We need a different expression to represent that new executions have occurred that
have not yet triggered an execution of CompleteMO. This will be discussed in detail in the next
section.

Another factor that needs to be considered is the presence of invisible transitions, i.e., tran-
sitions without associated activity in the real world. For such invisible transitions no stage will
be generated as they have no meaning at the business level that is meant to be reflected in the
GSM model. Therefore, in order to compose the guard sentries, only visible pre-transitions should
be considered. Thus we need to backtrack in the Petri net until we reach a visible transition
and “collect” the relevant conditions of the branches we traverse. As an example, consider the
transition ReceiveItems in Fig. 3. It can only fire when the invisible pre-transition represented by
a black rectangle fires. We backtrack to find the pre-places of the invisible transition and their
pre-transitions. Here we determine that the only such pre-transition is ReceiveSupplResponse and
this branch has an associated condition - we can only take this branch if the supplier rejects an
order and a new supplier has to be determined.

With all these considerations in mind, the resulting guard sentry can become more complex
and partly lose its advantage of being able to give intuition about how the execution of one task
influences the execution of others. In order to simplify the sentry expressions, we apply methods
for decomposing the expression into multiple shorter and more intuitive sentries which are then
assigned to separate guards of the same stage. Each guard of a stage forms an alternative way of
opening a stage, i.e., only one guard has to evaluate to true. The composition and decomposition
of guard sentries will be described more precisely in the next section.

Let to be the “origin”, i.e., the (visible) transition for which we compose a guard. At a more
abstract level the proposed method for generating guard sentries for the stage of to proceeds as
follows (as also shown in Fig. 12):

Step 1: Find the relevant branch conditions and the pre-transitions whose execution will (help)
trigger the execution of to.

Step 2: Decompose into groups that can be represented by separate guards.
Step 3: For each group, determine the appropriate format of the sentry and generate its

expression.
We describe in detail each of these steps in the next subsections.

6.1 Guard Sentries Generation

Our approach for achieving step 1 is inspired by the research presented in [20] for translating
BPMN models and UML activity Diagrams into BPEL. It generates so-called precondition sets
for all activities which encode possible ways of enabling an activity. Next, all the precondition
sets with their associated activities, are transformed into a set of Event-Condition-Action (ECA)
rules.

19

Figure 12: Translation of Petri Nets to GSM models.

Before giving the precise definitions of the approach proposed here, we first illustrate the
intuition behind it by a couple of examples. Consider the transition CompleteMO in Fig. 3. In
order for it to be enabled and subsequently fire, there need to be tokens in both of its pre-places.
Therefore the precondition for enabling CompleteMO is a conjunction of two expressions, each of
which related to one pre-place and representing the fact that there is a token in this pre-place.
This token could come from exactly one of the pre-transitions of this place.

As a second example, consider the transition CloseMO. It has one pre-place which has two
pre-transitions. The token needed to enable CloseMO could come from either CompleteMO or
ReassignSupplier. Therefore the precondition here is a disjunction of two expressions each related
to the firing of one pre-transition.

Thus the general form of the composed guard sentry expression is a conjunction of disjunctions
of expressions. These expressions, however, can themselves be conjunctions of disjunctions. This
happens when a pre-transition is invisible (not observable in reality) and we need to consider
recursively its pre-places and pre-transitions.

The building blocks of the composed expression are expressions each of which corresponds to
the firing of one visible transition t that can (help) trigger the firing of the transition in focus to
(the “origin”). We denote each of these building blocks by tokenAvailable(t, to) for a transition
t with respect to to and they will be discussed in the next section. They represent the intuition
that t has produced a token that can enable to if all other necessary tokens (produced by other
pre-transitions) are available. More precisely, tokenAvailable(t, to) is true if t has produced a token
that has not yet been consumed by to or by any other transition that could be enabled by it and
is false otherwise.

The presence of a token in a pre-place is not a guarantee that a transition will fire. In the
case of AssembleMO, a token in its pre-place enables two transitions, AssembleMO and an invisible
transition, but only one will fire. In order to resolve the non-determinism w.r.t. which transition
fires and consumes the token, conditions are associated with each outgoing arc of the place. Here
AssembleMO will fire if the received items are of sufficient quality. These conditions are domain-
specific and, in the following, we assume that these conditions are given - they can be provided
by the user or mined from the logs using existing tools such as the decision miner from [22].
Therefore, the general form of the composed expression should have these conditions added to the
conjunction.

Using this approach for the transition CompleteMO we can find a sentry expression of the
following type (only given informally here): “CompleteMO will open if InvoiceMO is executed
AND (AssembleMO was executed OR (ReceiveItems was executed AND quality is insufficient))”.
In the rest of this Section the format will be defined precisely in a way that allows automatic
generation given a Petri net model.

20

For the translation, we assume that the artifact lifecycle is modeled as a sound, free-choice
workflow net N . For example the genetic algorithm presented in Section 5 always returns a lifecycle
model that is a sound, free-choice workflow net.

By enabled(to) we denote the composed expression (of “pre-conditions”) of the guard sentry
for a stage/transition to. It is true if all necessary tokens for firing to are available and the needed
branch conditions are true. As a guard sentry it will ensure that, as soon as this is the case, the
stage will open.

By N being a free-choice net, the enabling condition of transition t is essentially a positive
boolean formula of conjunctions and disjunctions over the visible predecessors of t: for t to be
enabled, there has to be a token in each pre-place p ∈ pre(t) of t, and a token in p is produced by
one pre-transition s ∈ pre(p) of p. In addition, the occurrence of transition t itself can be subject
to a condition represented by a variable cond t in the information model of the artifact. We assume
that in general cond t can change its value during the lifecycle of the instance.

Also, init denotes the specific expression used to represent the event of the creation of an
artifact instance, e.g. “onCreate()”.

We can then define the predicate enabled(t), assuming an “origin” to, by a recursive definition
as follows:

enabled(t) = (
∧

p∈pre(t)

markable(p, t)) ∧ cond t

stating that transition t is enabled iff its guarding condition is satisfied and each pre-place p can
be marked. The predicate markable(p, t) is defined as:

markable(p, t) =

{
init , p initially marked∨
r∈pre(p) occurred(r, t), otherwise

stating that place p is either initially marked or can become marked by an occurrence of any of its
directly preceding transitions. A directly preceding transition r is either visible or invisible. The
predicate occurred(r, t) is then defined as follows:

occurred(r, t) =

{
tokenAvailable(r, to), r visible
enabled(r), otherwise

Here, as mentioned earlier, tokenAvailable(tp, to) is the specific expression that will be added to
the sentry condition for each relevant visible transition tp with respect to the “origin” to. The
condition has to be precise enough to resolve any non-determinism between the guards of the
subsequent stages connected to this sentry. The format of these conditions will be discussed in
the next section.

The recursion in the above definition stops either when reaching an initially marked place
or when reaching all visible predecessors. Thus, the predicate is only well-defined if the net N
contains no cycle of invisible transitions.

The expression for enabled(to) can be represented in a tree structure in a straightforward
way. The internal nodes of the tree represent logical operators (“and” or “or”) which are applied
on their child branches. The leaves represent either transitions that need to fire (which will be
represented in the guard sentry by an expression tokenAvailable(tp, to) for the specific transition
tp in the leaf) or decision point conditions that need to be true in order for the “origin” transition
to to be able to fire. In the following we use the words tree and expression interchangeably since,
in this context, they represent the same information.

An example of such a tree is given in Fig. 13 constructed for the transition CompleteMO.
Looking at the model in Fig. 3 we can see that CompleteMO can only fire if there is a token
in each of its pre-places. One of these tokens is generated by firing the transition InvoiceMO.
The other token can arrive from two possible transitions - AssembleMO or the invisible transition
represented as a black rectangle. We traverse back from the invisible transition and find out
that it can only fire if the transition ReceiveItems fires and the condition associated with the
connecting arc is true (the received items have sufficient quality). This analysis results in the tree

21

Figure 13: An example of an expression tree which will be used to generate the guard(s) for stage
CompleteMO.

Figure 14: The expression tree for stage CompleteMO in DNF.

in Fig. 13. The leaves of the tree are named by the corresponding transition or condition and, in
fact, represent the specific expression for that transition/condition. However we delay the exact
formulation of the expressions until the tree is built and analyzed, as will be described in the next
section.

As mentioned earlier, an intermediate step of the algorithms decomposes enabled(to) into
several expressions which are then used to generate separate guards of the stage. Since enabled(to)
is a logical formula, we can convert it into Disjunctive Normal Form (DNF) and assign each
conjunction to a separate guard sentry.

After converting the example tree from Fig. 13 into DNF, we now have the tree in Figure 14.
Each child of the root node will generate one separate guard - here we have two guards. Intuitively
the first guard tells us that the stage will open if the items were assembled and invoice received.
Similarly, the second guard tells us that the stage will open if the items and invoice were received
but the quality was insufficient to perform the assembling step.

As a final step, the tokenAvailable(tp, to) for the leaves of the tree are assigned as discussed in
the next section.

6.2 Formats for Pre-condition Expressions

In this section we look into the expressions tokenAvailable(tp, to) in more details and de-
fine their format. The assignment of a specific format to the expressions is delayed un-
til the end, after enabled(to) is composed and, if needed, decomposed into separate sentries
{enabled1(to), ..., enabledn(to)} representing all alternative ways the stage can be open. Only then

22

it can be decided which format each expression should take. We consider two possible formats for
the expression of tokenAvailable(tp, to) depending on the context as discussed below.

6.2.1 A simple format for pre-condition expressions

The most simple case is when enabled i(to) contains only one transition tp with its expression
tokenAvailable(tp, to) and init is not present in enabled i(to). Then tokenAvailable(tp, to) can be
replaced by the event corresponding to the finished execution of the activity of tp. It can be
expressed using the event of achieving the milestone of the stage of tp or, alternatively, the closing
of that stage among other options.

For example, for to = ReceiveSupplResponse the expression tree contains only one leaf corre-
sponding to the transition tp = ReceiveMO, i.e., the only way to enable to is by a token produced
by tp and this token cannot be consumed by another transition. Then the expression for tp
and to will be enabled(to) = tokenAvailable(tp, to) = “on ReceiveMOMilestoneAchieved()” where
ReceiveMOMilestoneAchieved() is the event generated by the system when the milestone of stage
ReceiveMO is achieved, therefore the task associated with the stage was completed and the stage
is closed.

If this is not the case, i.e., multiple transitions are present, then a more complex version of the
tokenAvailable(tp, to) expression needs to be included since we cannot use more than one event in
the sentry. This form of the expression is discussed in the following sub-section.

6.2.2 A complex format for pre-condition expressions

A token produced by the visible transition t1 is available for t2 as long as neither t2, nor any
transition that is alternative to t2 consumed that token. In a free-choice Petri net, a transition
t is alternative to t2 if they both have a common preceding place p that is itself preceded by t1.
We say a node x precedes a node y in net N , written x → y iff there is path from x to y along
the arcs of N . If this path only involves τ -labeled transitions (and arbitrarily labeled places), we

write x
τ→ y.

With this in mind, we now define the following set of transitions that succeed tp and are
alternative to to, i.e., visible transitions that are connected to a place on the path from tp to to:

Alt(tp, to) = {t | ∃ place p : tp
τ−→ p

τ−→ to ∧ p
τ−→ t}.

Alt(tp, to) are the set of transitions that “compete” with to for the token produced by tp.
Therefore, in order to represent the situation when a token is present in the pre-place of to and
the stage to should be opened, we need to consider whether any of the “alternative” transitions
have occurred (and “stolen” the token). Note that, according to this definition, to will also belong
to the set.

Let us consider again to = CompleteMO and the expression tree in Fig. 14. Here we cannot
use the simple format of the expressions for each leaf since in each AND-subtree there is more
than one transition. For the right-most AND-subtree, let us consider the leaf tp = ReceiveItems,
Alt(tp, to) = {CompleteMO, AssembleMO}. Looking at Fig. 3, we can see that the transition
AssembleMO is indeed an “alternative” to the invisible transition in the path from tp to to in the
sense that it can “steal” the token produced by the transition ReceiveItems in the connecting place.

As a second building block we define the expression executedAfter(tp, ts) which is true when
there is a new execution of tp which occurs after the last execution of ts (meaning that it is relevant
for triggering the opening of the stage of to) and false otherwise. In terms of the Petri net it will
be true when ts has produced a token that can potentially enable to, if it does not get “stolen” by
another transition in the Alt(tp, to) set.

How executedAfter(tp, ts) will be expressed in the specific implementation can vary. Here we
show how this can be done using the state of a milestone (achieved or not) and the time a milestone
was last toggled. By mp.hasBeenAchieved we denote a Boolean variable in the information model
of the artifact which is true if the milestone mp of stage tp is in state “achieved” and false otherwise.
For every milestone mp present in a stage of the artifact there is also a variable in the information

23

Stage Guard
CreateMO onCreate()
ReceiveMO on CreateMOMilestoneAchieved()
ReceiveSupplResponse on ReceiveMOMilestoneAchieved()
ReassignSupplier on ReceiveSupplResponseMilestoneAchieved() if answer = reject
InvoiceMO on ReceiveSupplResponseMilestoneAchieved() if answer = accept
ReceiveItems on ReceiveSupplResponseMilestoneAchieved() if answer = accept
AssembleMO on ReceiveItemsMilestoneAchieved() if quality = acceptable
CompleteMO if InvoiceMOMilestone.hasBeenAchieved = true

and AssembleMOMilestone.hasBeenAchieved = true
and InvoiceMOMilestone.lastToggled > CompleteMOMilestone.lastToggled
and AssembleMOMilestone.lastToggled > CompleteMOMilestone.lastToggled

CompleteMO if InvoiceMOMilestone.hasBeenAchieved = true
and ReceiveItemsMilestone.hasBeenAchieved = true
and InvoiceMOMilestone.lastToggled > CompleteMOMilestone.lastToggled
and ReceiveItemsMilestone.lastToggled > CompleteMOMilestone.lastToggled
and ReceiveItemsMilestone.lastToggled > AssembleMOMilestone.lastToggled
and quality = notacceptable

CloseMO on CompleteMOMilestoneAchieved()
CloseMO on ReassignSupplierMilestoneAchieved()

Figure 15: The guards generated for the GSM model in Fig. 5

model mp.lastToggled which gives the latest time stamp when mp was achieved or invalidated
(i.e. toggled its state).

Therefore the expression looks as follows:

executedAfter(tp, ts) = mp.hasBeenAchieved ∧ (mp.lastToggled > ms.lastToggled).

In other words, the milestone mp of tp is achieved and it was last toggled after the milestone ms

of ts. Here we rely on the fact that the milestone of a stage will be invalidated as soon as the
stage is reopened. This is ensured by including an invalidating sentry for each milestone.

If for all members of Alt(tp, to) executedAfter(tp, ts) is true then the token is still available to
enable to. We express that as follows:

tokenAvailable(tp, to) =
∧

ts∈Alt(tp ,to)

executedAfter(tp, ts).

Of course, as discussed in the previous section, other tokens produced in different branches of
the Petri net might also be needed for enabling to as well as the relevant branch conditions need
to be true in order for to to fire.

As an example, consider transitions to = CompleteMO, tp = ReceiveItems and ts =
AssembleMO,

tokenAvailable(tp, to) = executedAfter(tp, ts) ∧ executedAfter(tp, to) =

= mp.hasBeenAchieved ∧ (mp.lastToggled > ms.lastToggled) ∧
∧ (mp.lastToggled > mo.lastToggled),

in other words, ReceiveItems was executed after the last execution of AssembleMO and after the
last execution of CompleteMO, i.e., the token in the connecting place has not been consumed yet.

This format is more general than the simple format and can be used in all cases. However it
is less intuitive and therefore should be replaced by the simple format wherever possible. A third
format of intermediate complexity can also be used which requires additional analysis of the Petri
net for example for discovering the presence and location of cycles. This format is not presented
here in order to simplify the discussion.

Using the proposed approach for translating the Petri net in Fig. 3 to GSM, we generate the
model in Fig. 5 with guards as listed in Fig. 15

7 Conclusions

This paper presented a chain of methods for discovering artifact lifecycles which decomposes the
problem in such a way that a wide range of existing process discovery methods and tools can be

24

reused. The proposed tool chain allows for great flexibility in choosing the process mining methods
best suited for the specific business process.

The presentation concentrates mostly on the artifact lifecycles. Additionally, the artifact in-
formation model can be built from the logs by extracting the data attributes for each event type
of the artifact. Existing tools such as [22] can be used to mine data-dependent conditions for the
guards based on the discovered information model.

The methods in this paper generate a flat model where no hierarchy of stages is used. Future
work will also consider methods for stage aggregation. One possible solution is to use existing
algorithms for process abstraction (e.g. [3, 13]) for business process models and translate the
discovered process hierarchy to GSM stage hierarchy. For example the Refined Process Structure
Tree [16] can be a first step to discovering such a hierarchy.

Future work will also develop methods that allow to discover the interactions between artifacts
and thus multi-artifact GSM models can be generated such that instances of different artifacts
can synchronize their lifecycles in various ways.

Acknowledgment

The research leading to these results has received funding from the European Community’s Seventh
Framework Programme FP7/2007-2013 under grant agreement no 257593 (ACSI).

References

[1] Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards Robust Conformance
Checking. In: Muehlen, M.z., Su, J. (eds.) Business Process Management Workshops. LNBIP,
vol. 66, 122-133. Springer, Heidelberg (2011).

[2] Bose, R.J.C., van der Aalst, W.: Trace Alignment in Process Mining: Opportunities for Process
Diagnostics. In Business Process Management, vol. 6336, Springer Berlin / Heidelberg, 227-242
(2010).

[3] Bose, R.P.J.C., Verbeek H.M.W., van der Aalst, W.M.P.: Discovering Hierarchical Process
Models using ProM. In: Proc. of the CAiSE Forum 2011, London, UK (CEUR Workshop
Proceedings, Vol. 734, 33-40)

[4] Buijs, J., van Dongen, B., van der Aalst, W.: A genetic algorithm for discovering process trees.
In: Proceedings of the 2012 IEEE World Congress on Computational Intelligence (2012).

[5] Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business opera-
tions and processes. IEEE Data Eng. Bull., 32, 3-9 (2009).

[6] Cook, J. E., Wolf, A. L.: Automating Process Discovery through Event-Data Analysis. In:
Proceedings of the 17th international conference on Software engineering, New York, NY,
USA, 73-82 (1995).

[7] De Medeiros, A., Weijters, A., van der Aalst, W.: Genetic Process Mining: an Experimental
Evaluation. Data Mining and Knowledge Discovery, vol. 14, no. 2, 245-304 (2007).

[8] Fahland, D., De Leoni, M., Van Dongen, B. F., van der Aalst, W. M. P.: Many-to-many: Some
observations on interactions in artifact choreographies. In: Proc. of 3rd Central-European
Workshop on Services and their Composition(ZEUS), 9–15. CEUR-WS.org (2011).

[9] Fahland, D., van det Aalst, W.M.P.: Simplifying Mined Process Models: An Approach Based
on Unfoldings. In: Proc. of BPM, 362–378 (2011).

25

[10] Fahland, D., van der Aalst, W.M.P.: Repairing process models to reflect reality. In: Busi-
ness Process Management 2012, volume 7481 of Lecture Notes in Computer Science, 229-245.
Springer (2012).

[11] Feldman, P., Miller, D.: Entity model clustering: Structuring a data model by abstraction.
The Computer Journal, 29(4), 348–360 (1986).

[12] Günther, C., van der Aalst, W.: Fuzzy Mining Adaptive Process Simplification Based on
Multi-perspective Metrics. In: Business Process Management, vol. 4714, Springer Berlin /
Heidelberg, 328-343, (2007).

[13] Günther, C., van der Aalst, W.: Mining Activity Clusters from Low-Level Event Logs, BETA
Working Paper Series, WP 165, Eindhoven University of Technology, Eindhoven (2006).

[14] Hull, R. et al. Introducing the guard-stage-milestone approach for specifying business entity
lifecycles. In: Proc. of 7th Intl. Workshop on Web Services and Formal Methods (WS-FM
2010), LNCS 6551. Springer-Verlag (2010).

[15] Hull, R. et al: Business Artifacts with Guard-Stage-Milestone Lifecycles: Managing Artifact
Interactions with Conditions and Events. In: DEBS 2011, 51–62 (2011).

[16] Johnson, R., Pearson, D., Pingali, K.: The Program Structure Tree: Computing Control
Regions in Linear Time. In: Proc. of the ACM SIGPLAN 1994 conference on Programming
language design and implementation, 171–185, ACM (1994).

[17] Maggi, F., Mooij, A., van der Aalst, W.: User-guided discovery of declarative process models.
In: IEEE Symposium on Computational Intelligence and Data Mining, 192–199 (2011).

[18] Murata, T.: Petri nets: Properties, Analysis and Applications. In: Proc. of the IEEE, 541–580
(1989).

[19] Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Systems Journal, 42(3), 428-445 (2003).

[20] Ouyang, C., Dumas, M., Breutel, S. ter Hofstede, A.H.M.: Translating Standard Process
Models to BPEL. In: CAiSE’06, 417–432 (2006).

[21] Pesic, M., van der Aalst, W.: A Declarative Approach for Flexible Business Processes Man-
agement. In: Business Process Management Workshops. Springer Berlin / Heidelberg, 169–180
(2006).

[22] Rozinat, A., van der Aalst, W.M.P.: Decision Mining in ProM. In: S. Dustdar, J.L. Fiadeiro,
and A. Sheth, editors, BPM 2006, LNCS 4102 , 420-425. Springer-Verlag (2006).

[23] Rozinat, A., Van der Aalst, W.M.P.: Conformance Checking of Processes Based on Monitor-
ing Real Behavior. Information Systems 33, 64-95 (2008).

[24] Silberschatz, A., Korth, H. F., Sudarshan, S.: Database System Concepts, 4th Edition.
McGraw-Hill Book Company (2001).

[25] Tiwari, A., Turner, C.J., Majeed, B.: A Review of Business Process Mining: State-of-the-Art
and Future Trends. Business Process Management Journal, vol. 14, no. 1, 5-22 (2008).

[26] van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer-Verlag, Berlin (2011).

[27] van der Aalst, W., Barthelmess, P., Ellis, C., Wainer, J.: Proclets: A Framework for
Lightweight Interacting Workflow Processes. Int. J. Cooperative Inf. Syst., 10(4), 443–481
(2001)

26

[28] van der Aalst, W., De Medeiros, A., Weijters, A.: Genetic Process Mining. In Applications
and Theory of Petri Nets 2005, vol. 3536, Springer Berlin / Heidelberg, p. 985 (2005).

[29] van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering
Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering,
16(9), 1128–1142 (2004).

[30] van Dongen, B. F.: Process Mining: Fuzzy Clustering and Performance Visualization, In:
BPM Workshops, 158-169, (2009).

[31] Verbeek, H., Buijs, J. C., van Dongen, B. F., van der Aalst, W. M. P.: Prom: The process
mining toolkit. In: Proc. of BPM 2010 Demonstration Track, CEUR Workshop Proceedings,
vol. 615, 2010.

[32] Weijters, A.J.M.M., Van der Aalst, W.M.P.: Rediscovering Workflow Models from Event-
Based Data using Little Thumb. Integrated Computer-Aided Engineering, 10(2), 151–162
(2003).

[33] Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible Heuristics Miner (FHM). In: Proceedings of
the IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2011, IEEE
Symposium Series on Computational Intelligence 2011, 310–317 (2011).

[34] Van der Werf, J.M.E.M., Van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: In: K.M. van
Hee, R. Valk (Eds.), Applications and Theory of Petri Nets, LNCS vol. 5062, 368–387, Springer
(2008).

27

	1 Introduction
	2 The Build-to-Order Scenario
	3 Background
	3.1 Petri nets
	3.2 Guard-Stage-Milestone meta-model

	4 Artifact Structure Discovery
	4.1 Entity Discovery
	4.2 From Entities to Artifacts
	4.3 Artifact-Centric Logs

	5 Artifact Lifecycle Discovery
	6 Petri Nets to GSM models
	6.1 Guard Sentries Generation
	6.2 Formats for Pre-condition Expressions
	6.2.1 A simple format for pre-condition expressions
	6.2.2 A complex format for pre-condition expressions

	7 Conclusions

