
AGENT-BASED BUSINESS PROCESS MANAGEMENT

N. R. JENNINGS1, P. FARATIN1, M. J. JOHNSON1, T. J. NORMAN1, P. O’BRIEN2 and M. E. WIEGAND2

1 Dept. Electronic Engineering, Queen Mary & Westfield College, Mile End Road, London E1 4NS, UK.

2 BT Research Labs, Martlesham Heath, Ipswich, Suffolk IP5 7RE, UK.

Received

Revised

This paper describes work undertaken in the ADEPT (Advanced Decision Environment for Proc-
ess Tasks) project towards developing an agent-based infrastructure for managing business proc-
esses. We describe how the key technology of negotiating, service providing, autonomous agents
was realised and demonstrate how this was applied to the BT (British Telecom) business process
of providing a customer quote for network services.

Keywords: Intelligent agents; Business process management; Negotiation; Information sharing.

1. Introduction

Company managers make informed decisions based on a combination of judgement and
information from marketing, sales, research, development, manufacturing and finance
departments. Ideally, all relevant information should be brought together before judge-
ment is exercised. However obtaining pertinent, consistent and up-to-date information
across a large company is a complex and time consuming process. For this reason, organi-
sations have sought to develop a number of Information Technology (IT) systems to assist
with various aspects of the management of their business processes. Such systems aim to
improve the way that information is gathered, managed, distributed, and presented to peo-
ple in key business functions and operations. In particular, the IT system should:

• allow the decision maker to access relevant information wherever it is situated in the
organisation (this should be possible despite the fact that information may be stored in
many different types of system and in many different information models);

• allow the decision maker to request and obtain information management services from
other departments within the organisation (and in some cases even from outside the
organisation);

• proactively identify and deliver timely, relevant information which may not have been
explicitly asked for (e.g. because the decision maker is unaware of its existence);

• inform the decision maker of changes which have been made elsewhere in the business
process which impinge upon the current decision context;

• identify the parties who may be interested in the outcome and results of the decision
making activity.

Analysis of a number of business processes, from various industrial and commercial
domains, resulted in several common characteristics being identified:

• Multiple organisations are often involved in the business process. Each organisation
attempts to maximise its own profit within the overall activity.

• Organisations are physically distributed. This distribution may be across one site,
across a country, or even across continents. This situation is even more apparent for vir-
tual organisations1 which form allegiances for short periods of time and then disband
when it is no longer profitable to stay together.

• Within organisations, there is a decentralised ownership of the tasks, information and
resources involved in the business process.

• Different groups within organisations are relatively autonomous—they control how
their resources are consumed, by whom, at what cost, and in what time frame. They
also have their own information systems, with their own idiosyncratic representations,
for managing their resources.

• There is a high degree of natural concurrency—many interrelated tasks are running at
any given point of the business process.

• There is a requirement to monitor and manage the overall business process. Although
the control and resources of the constituent sub-parts are decentralised, there is often a
need to place constraints on the entire process (e.g. total time, total budget, etc.).

• Business processes are highly dynamic and unpredictable—it is difficult to give a com-
plete a priori specification of all the activities that need to be performed and how they
should be ordered. Any detailed time plans which are produced are often disrupted by
unavoidable delays or unanticipated events (e.g. people are ill or tasks take longer than
expected).

Given these characteristics, it was decided that the most natural way to view the busi-
ness process is as a collection of autonomous, problem solving agents which interact
when they have interdependencies. In this context, an agent can be viewed as an encapsu-
lated problem solving entity which exhibits the following properties2:

• Autonomy: agents perform the majority of their problem solving tasks without the
direct intervention of humans or other agents, and they have control over their own
actions and their own internal state.

• Social ability: agents interact, when they deem appropriate, with other artificial agents
and humans in order to complete their problem solving and to help others with their
activities. This requires that agents have, as a minimum, a means by which they can
communicate their requirements to others and an internal mechanism for deciding what
and when social interactions are appropriate (both in terms of generating requests and
judging incoming requests).

• Proactiveness: agents take the initiative where appropriate.

• Responsiveness: agents perceive their environment and respond in a timely fashion to
changes which occur in it.

The choice of agents as a solution technology was motivated by the following observa-
tions: (i) the domain involves an inherent distribution of data, problem solving capabili-
ties, and responsibilities (conforms to the basic model of distributed, encapsulated,
problem solving components); (ii) the integrity of the existing organisational structure and
the autonomy of its sub-parts needs to be maintained (appeals to the autonomous nature of
the agents); (iii) interactions are fairly sophisticated, including negotiation, information
sharing, and coordination (requires the complex social skills with which agents are
endowed); and (iv) the problem solution cannot be entirely prescribed from start to finish
(the problem solvers need to be responsive to changes in the environment and to unpre-
dictability in the business process and proactively take opportunities when they arise).
When taken together, this set of requirements leaves agents as the strongest solution can-
didate—(distributed) object systems have the encapsulation but not the sophisticated rea-
soning required for social interaction or proactiveness, and distributed processing systems
deal with the distributed aspect of the domain but not with the autonomous nature of the
components.

The remainder of this paper describes the work undertaken to conceptualise business
process management as a collection of intelligent agents. Section 2 describes the key con-
cepts of agents which offer services to one another. Section 3 details the application of
ADEPT agents in British Telecom’s (BT’s) customer quote business process. Section 4
contrasts the ADEPT view with that of other common techniques for business process
management. Finally, section 5 describes the ongoing work and the open issues which still
need to be addressed.

2. The Business Process as a Community of Negotiating Agents

Each agent is able to perform one or more services (figure 1). A service corresponds to
some unit of problem solving activity (section 2.2). The simplest service (called a task)
represents an atomic unit of problem solving endeavour in the ADEPT system. These
atomic units can be combined to form complex services by adding ordering constraints
(e.g. two tasks can run in parallel, must run in parallel, or must run in sequence) and con-
ditional control. The nesting of services can be arbitrarily complex and at the topmost

level the entire business process can be viewed as a service.
Services are associated with one or more agents which are responsible for managing

and executing them. Each service is managed by one agent, although it may involve exe-
cution of sub-services by a number of other agents. Since agents are autonomous there are
no control dependencies between them; therefore, if an agent requires a service which is
managed by another agent it cannot simply instruct it to start the servicea. Rather, the
agents must come to a mutually acceptable agreement about the terms and conditions
under which the desired service will be performed (such contracts are called service level
agreements (SLAs)—see section 2.3). The mechanism for making SLAs is negotiation—a

joint decision making process in which the parties verbalise their (possibly contradictory)
demands and then move towards agreement by a process of concession or search for new
alternatives3.

To negotiate with one another, agents need a protocol which specifies the role of the
current message interchange—e.g. whether the agent is making a proposal or responding
with a counterproposal, or whether it is accepting or rejecting a proposal. Additionally,
agents need a means of describing and referring to the domain terms involved in the nego-
tiation—for example, both agents need to be sure they are describing the same service
even though they may both have a different (local) name for it and represent it in a differ-
ent manner. This heterogeneity is inherent in most organisations because each department
typically models its own information and resources in its own way. Thus when agents
interact, a number of semantic mappings and transformations may need to be performed
to create a mutually comprehensible information sharing language (see section 2.4).

2.1. The ADEPT Agent Architecture

All ADEPT agents have the same basic architecture (figure 2). This involves a responsible
agent which interacts with peers and the subsidiary agencies and tasks within its agency.
An agent’s agency represents its domain problem solving resources. The responsible agent

a. This is one of the major features which distinguishes multi-agent systems from more traditional forms of dis-
tributed processing4.

Fig. 1. An ADEPT environment.

Intelligent

Information
Sharing

DesignMarketing

Legal Sales

Team

Department

Negotiation

Agent

Team

Team

Services

ProtocolService
Level
Agreements

has a number of functional components concerned with each of its main activities—com-
munication, service execution, situation assessment, and interaction management (see
description below for more details). This internal architecture is broadly based on the

GRATE5, 6 and ARCHON7 agent models. The domain resources can either be atomic
tasks or agents representing subsidiary agencies (sub-agents). The latter case allows a
nested (hierarchical) agent system to be constructed in which higher-level agents realise
their functionality through lower level agents (the lower level agents have the same struc-
ture as the higher level ones and can, therefore, have sub-agents as well as tasks in their
agency). For example, the higher level agent may represent a legal department whose
work is carried out by a number of lawyers (the lower level agents!). This structure ena-
bles flat, hierarchical, and hybrid organisations to be modelled in a single frameworkb.
The differences between an agent in an agency (i.e. an agent that is responsible for a sub-
sidiary agency) and a peer agent (i.e. an agent that is responsible for a peer agency) relate
to the levels of autonomy and helpfulness. In both cases the agents negotiate to reach
agreements. However in the former case: (i) the agent cannot reject the proposal outright
(although it can counter propose until an acceptable agreement is reached); and (ii) the
agent must negotiate in a cooperative (rather than a competitive) manner since there is a
degree of commonality of purpose. In summary, there is a tight coupling between an agent

and it’s agency and a loose coupling between an agent and it’s peers8.

2.1.1. Communication Module

The communication module routes messages between an agent and its agency and
between peer agents. During task execution and management (e.g. the activation, suspen-
sion, or resumption of a task), messages are routed between the agent’s Service Execution
Module (SEM) (figure 2) and the tasks managed by that agent. During service execution
management (e.g. the initiation of a service to be provided by another agent under some
agreement, or a report of the results of a completed service), messages are routed between
the agent’s SEM and the SEM of another agent. During negotiation, messages are routed
between the agent’s Interaction Management Module (IMM) (figure 2) and the IMM of
the agent or agents being negotiated with.

2.1.2. Interaction Management Module

The interaction management module provisions services through negotiation. The Situa-
tion Assessment Module (SAM) invokes the IMM to begin negotiation for services the
agent needs. The IMM’s decision making capabilities are supported by three types of
information: scheduler constraints emanating from the SAM; knowledge an agent has
about itself and it’s own domain (represented in the Self Model (SM)); and knowledge the
agent holds about peer agents (represented in the Acquaintance Model (AM)). Based on
these sources of knowledge and the negotiation model (section 2.3), the IMM generates

b. This modelling ability is important because commercial environments are founded on organisational models
where an enterprise is logically divided into a collection of services. The agent-agency concept draws upon this
principle to group services and tasks where it makes pragmatic sense.

initial proposals, evaluates incoming proposals, produces counterproposals, and, finally,
accepts or rejects proposals. If a proposal is accepted then the IMM creates a new SLA to
represent the agreement.

2.1.3. Situation Assessment Module

The situation assessment module is responsible for assessing and monitoring the agent’s
ability to meet the SLAs it has already agreed and the potential SLAs which it may agree
in the future. This involves two main roles: scheduling and exception handling. The
former involves maintaining a record of the availability of the agent’s resources which can
then be used to determine whether SLAs can be met or whether new SLAs can be

Fig. 2. The ADEPT agent architecture.

Communication

Service
Execution
Module

Situation
Assessment

Module

Interaction
Management

Module

Se
lf

 a
nd

 a
cq

ua
in

ta
nc

e
m

od
el

s
(A

M
 a

nd
 S

M
)

(SAM)

(SEM)

(IMM)

(CM)

Module

RESPONSIBLE AGENT

AGENCY

TASK

SUBSIDIARY

PEER
AGENCY

PEER
AGENCY

AGENCY

Communication
and negotiation
with peers and
subsidiaries.

Communication
with tasks

accepted. The exception handler receives exception reports from the SEM during service
execution (e.g. “service may fail”, “service has failed”, or “no SLA in place”) and decides
upon the appropriate response. For example, if a service is delayed then the SAM may
decide to locally reschedule it, to renegotiate it’s SLA, or to terminate it altogether.

2.1.4. Service Execution Module

The service execution module is responsible for managing services throughout their exe-
cution. This involves three main roles: service execution management (start executing
services as specified by the agent’s SLAs), information management (routing information
between tasks, services and other agents during execution), and exception handling (mon-
itoring the execution of tasks and services for unexpected events and then reacting appro-
priately).

2.1.5. Acquaintance Models

Within the acquaintance model, the agent maintains and provides access to the SLAs
agreed with other agents, and a list of peers which can provide services of interest.

2.1.6. Self Model

The self model is the primary storage site for SLAs to which the agent is committed,
descriptions of the services the agent can provide, run time application/service specific
information (e.g. the services which are currently active and the current number of invoca-
tions of each active service), and generic domain information (e.g. the upper limit the
agent will pay for a service and the maximum permissible number of concurrent invoca-
tions of each service).

2.2. The Service Lifecycle

There are three distinct phases to the service lifecycle (figure 3). Firstly, the agent pro-
grammer has to describe the service and how it is realised. This is carried out using
ADEPT’s service description language (SDL). As an illustration, figure 4 shows a service
description from the customer quote business process (section 3). A service is described
by a name, its inputs, its outputs, and its body. The name uniquely identifies the service
within the particular agent in which it is situated. The input field specifies what informa-
tion is needed by the service, who is to provide it, and whether it is mandatory (must be
provided before the service can start) or optional (if available it will be used, but if it is
unavailable the service can still proceed). In the example shown, the service must have
both of its inputs available: cr_profile of type Bt_CrProfilec from the client
agent and cust_details of type Bt_CustomerDetails from the server agent.
The output field specifies the information produced by the service (in this case it is
network_design which is of type Bt_NetworkDesign and detailed_reqs

c. The various types of information are defined in the agent’s information model. Creating an agent involves
determining the information model to be used as well as specifying the service details (see section 2.4).

which is of type Bt_CustomerReqs). The body specifies the way the service is real-
ised (i.e. which services and tasks need to be performed, their partial order, and the infor-
mation shared between them) and the conditions which prevail if it is successful (the
construct specifying this is the completion expression)d. In the example shown, the
mainblock of the service consists of three sub-services (task_analyse_reqs,
subblock and task_design_network) which need to be executed in sequence.
Associated with mainblock is a completion expression, (and
task_analyse_reqs subblock task_design_network), which specifies that

each of the sub-services must successfully complete if the whole service is to succeed.

The first sub-service to be executed is task_analyse_reqs which takes
cr_profile as its input and produces as its output detailed_reqs and Sur-
veyReqd. When this sub-service finishes, the completion expression within which it was
invoked is evaluated. If task_analyse_reqs fails (i.e. the requirements cannot be
analysed) then the whole network design service is terminated since the completion
expression (a conjunction) will necessarily fail. In this case, the remaining sub-services
are not executed. If task_analyse_reqs succeeds, then the overall completion

d. A procedural language is not used because such languages typically require a rigorously specified flow of con-
trol. Since the body is executed by an autonomous agent in an unpredictable environment, it is felt that such con-
trol decisions are best left to the agent to determine at runtime (rather than being dictated by the designer at
compile time). Thus, in the ADEPT SDL, the body specifies a partial flow of control with some restrictions on
the order and the degree of concurrency of the execution and the completion expression supplies the agent with
the completion logic of the block (in terms of success, fail, and unknown). It is then up to the agent to
complete the service by the most appropriate means given its current circumstances.

Fig. 3. The service lifecycle.

ADEPT - Manual ADEPT - Automatic

“negotiate” “deliver”

CREATION PROVISIONING MANAGEMENT

Service Definition Service Instance

SLA Template SLA Instance

Ensure SLAs in place
Check inputs available
Services scheduled
Services executed
Services monitored

Renegotiate

expression is still evaluated. However, in this case it’s value is unknown since although
task_analyse_reqs is true the values of the other two services in the conjunction are
unknown at this point (the conjunction of the truth values true and unknown is unknown).

Assuming the requirements are successfully analysed, the next sub-service is executed.
Subblock is a composite construct involving two sequential actions. The first compo-
nent is a conditional statement which must evaluate to true before the second component
(task_survey_CPE) is performed. The conditional tests whether a survey is required.
If a survey is not needed (i.e. the conditional is false) then the completion expression in
the subblock is satisfied since (not cond1) is true (the completion expression is a
disjunction). Control then switches to task_design_network. Alternatively, if a sur-
vey is needed then cond1 is true and hence the completion expression’s first disjunct is
false. Since the second disjunct remains unknown, subblock does not fail at this point.
Subblock’s second sub-service, task_survey_CPE, is then executed. This service
takes two inputs—cr_profile and cust_details—and produces cpe_spec. If
task_survey_CPE is successful, the second disjunct in subblock’s completion
expression is satisfied which means that subblock succeeds.

If subblock succeeds, task_design_network is executed. This takes as its input
cr_profile, cust_details, detailed_reqs and cpe_spec (optional input)
and produces as it’s output network_design. If this sub-service completes then
mainblock completes since the conjunction of the three sub-services is now true.

(service
name: Bt_DesignNetwork
inputs: (Bt_CrProfile cr_profile client mandatory

Bt_CustomerDetails cust_details server mandatory)
outputs:(Bt_NetworkDesign network_design

Bt_CustomerReqs detailed_reqs)
body: (

sequence: mainblock{
task_analyse_reqs(cr_profile ?detailed_reqs ?SurveyReqd),
sequence: subblock{

cond:cond1(SurveyReqd = True),
task_survey_CPE (cr_profile cust_details ?cpe_spec)

} -> (or (not cond1) (and cond1 task_survey_CPE)),
task_design_network

(cr_profile cust_details detailed_reqs !cpe_spec ?network_design)
} -> (and task_analyse_reqs subblock task_design_network)
)

)

Fig. 4. A sample SDL description.

Once a service has been created and placed within an agent it becomes accessible to the
other agents in the system. To activate a service, the client and the server agents negotiate
until they come to a mutually acceptable SLA—no service can be executed without a con-
comitant SLA being in place. An important facet of this negotiation is the manner in which
the service is provisioned. ADEPT supports three different provisioning modes depending
on the client agent’s intended pattern of usage and the server agent’s scheduling capabili-
ties: (i) One-Off: the service is provisioned each and every time it is needed and the agree-
ment covers precisely one invocation; (ii) Regular: the service is required a number of
times, but it is known in advance when it is needed; and (iii) On-Demand: the service can
be invoked by the client on an as needed basis within a given time frame (subject to some
maximum volume measurement specified in the SLA).

If the provisioning phase is successful, a specific instance of the service is created for
execution within the context of an associated SLA instance. At some point the agent needs
to execute the service, this requires it to ensure: that appropriate SLAs are in place for
constituent sub-services, that the required input information is available, that the service is
scheduled so that any constraints specified in the SLA are met, and, ultimately, that the
appropriate services and tasks are executed (either within the local agency or by the cho-
sen peer agent). Since the agent is situated in a dynamic and unpredictable environment, it
must keep track of it’s context—thus new services may be agreed which require the agent
to reschedule its resources or currently scheduled services may fail and require the agent
to replan its execution strategy. In the extreme case, the agent may even need to return to
the provisioning phase to renegotiate a SLA which cannot be satisfied in the current situa-
tion (see figure 3).

2.3. The Negotiation Model

There are three components of the ADEPT negotiation model—the protocol, the service
level agreements, and the reasoning model. The protocol covers the process of finding out
the services an agent can perform (agent sends out a CAN-DO primitive and respondents
return a I-CAN primitive), the provisioning phase of coming to an agreement (PROPOSE,
COUNTER-PROPOSE, ACCEPT, and REJECT), and the management phase of actually
invoking the agreement (i.e. instructing agents to activate, suspend or resume a service,
and informing agents of completions or failures of a service); see Alty et al.9 for more
details of this work. The novel aspects of negotiation in the ADEPT system relate to the
types of agreements which agents can make and the models they use to guide their negoti-
ation behaviour. The requirements of the business process domain mean that agreements
need to be more encompassing and the reasoning more elaborate than those found in most
extant multi-agent systems.

The nature and scope of the SLAs are derived almost exactly from the types of legal
contract which are often used to regulate current business transactions (figure 5 is a typical
example taken from the BT customer quote business process management system illus-
trated in figure 10). Service_name is the service to which the agreement refers and
sla_id is the SLA’s unique identifier (covering the case where there are multiple agree-
ments for the same service). Server_agent and client_agent represent the agents

who are party to the agreement. Delivery_type identifies the way in which the serv-
ice is to be provisioned (section 2.2). The SLA’s scheduling information is used by the
SAM and the SEM for service execution and management—duration represents the
maximum time the server can take to finish the service, and start_time and
end_time represent the time during which the agreement is valid. In this case, the agree-
ment specifies that agent CSD (i.e. the agent representing the customer services depart-
ment) can invoke agent DD (i.e. the agent representing the design department) to cost and
design a customer network whenever it is required between 09:00 and 18:00 and each
service execution should take no more than 320 minutes. The agreement also contains
meta-service information such as the volume of invocations permissible between the start
and end times, the price paid per invocation, and the penalty the server incurs for every
violation. Client_info specifies the information the client must provide to the server
at service invocation (in this case CSD must provide the customer profile) and
reporting_policy specifies the information the server returns upon completion.

Fig. 5. Exemplar service level agreement

The reasoning model also represents a novel contribution of this work. Existing work on
negotiation can be divided into two distinct camps. Theoretical work10, 11, 12 provides
important insights into how agents should negotiate to produce optimal solutions. How-
ever, a number of unrealistic assumptions are common in these negotiation models; typi-
cal assumptions include the availability of complete action descriptions, a utility function
that can order all alternatives in all contexts, and that agents exhibit perfect rationality

Slot Name Instantiated Values

SERVICE_NAME: cost_&_design_customer_network

SLA_ID: a1001

SERVER_AGENT: DD

CLIENT_AGENT: CSD

SLA_DELIVERY_TYPE: on-demand

DURATION: (minutes) 320

START_TIME: 9:00

END_TIME: 18:00

VOLUME: 35

PRICE: (per costing) 35

PENALTY: 30

CLIENT_INFO: cr_profile

REPORTING_POLICY: customer_quote

when selecting actions. In contrast, the practical work typically adopts a very superficial
approach to negotiation. In the much vaunted contract net protocol4, for instance, a man-
ager sends out a request to a number of potential contractors to provide a given service to
a given degree of quality. The potential contractors return a bid if they are capable of ful-
filling all the requirements. The manager then selects the best bid. This model fails to cap-
ture many intuitive and important aspects of the negotiation process. For example, bidders
cannot counter-propose better options, they cannot modify any of the service agreement
parameters, and the emphasis in devising a complete specification is placed solely with the
task manager.

The approach within ADEPT is to develop a deep and explicit model of the process of
negotiation (this terminology is analogous to its use in the context of reasoning models for
second generation expert systems13, 14, 15). Such a model is needed to capture the richness
of the interactions which take place when setting up agreements in this domain. The
model covers the whole process of generating initial offers, evaluating offers, and counter
proposing if offers are unacceptable.

The model has two component knowledge bases: a declarative one and a procedural
one. The former, represented as a causal network, explicitly models what is being negoti-
ated for and why the negotiation is taking place (i.e. it sets the negotiation context). For
example, negotiation over the price of a service is a meta-service conflict that can be
caused by an agent believing it is being over charged. Similarly, an agent may need to
negotiate over a service’s start time if the client’s proposal conflicts with it’s existing com-
mitments. The procedural knowledge base, represented as a set of strategies and mecha-
nisms for selecting between them, specifies which actions should be taken given the
declarative knowledge. For example, given that the agent needs to negotiate over price, the
knowledge base may indicate that Boulwaree is a good strategy to adopt if the agent has a
long time to reach an agreement or if there are many potential suppliers of the service. In
such cases, the agent generates a price offer and continues to counter-propose that initial
offer throughout the negotiation. Alternatively, if the agent wants to reach an agreement
for a scarce service or if it is negotiating with an agent in its agency, then it may adopt the
more cooperative tit-for-tat strategy—making concessions when the agent concedes and
standing firm when the other agent is uncompromising.

2.4. Information Sharing

Agent negotiation requires a reliable means of communication. Such communication can
be viewed on two levels: (i) actually transporting the messages; and (ii) conveying the
desired meaning of the message. The former is handled transparently by the agent’s
underlying infrastructure (see section 2.5). The latter is more problematic and requires
conceptual design. Because of the characteristics of the business process domain
(section 1), it is impractical to insist that all agents conform to a common model of infor-
mation. For example, a surveyor may find it necessary to represent location information in

e. Boulwarism is the strategy in which the negotiator makes a reasonable initial offer and then sticks firm
throughout the negotiation11.

terms of grid references on a particular map, but within the customer liaison department a
location may be described in terms of an address. If autonomous agents representing these
two departments are to communicate such information, they must be aware of the differ-
ences in their models of information.

In common with a number of existing approaches to software agent interoperation (e.g.
the SHADE and PACT projects16 and the Knowledgeable Community project17), for an
agent to participate in an ADEPT environment it is necessary for it to communicate using
a common expressive language. This common language consists of a protocol and a syn-
tax for expressing information. Furthermore, for one agent to understand the meaning of
another’s communicative actions they must either share a common information model or
have the ability to transform information between their respective models. This enables
agents within the community to: (i) know the intention of a communicating agent via a set
of illocutionary acts18, 19 (e.g. is the message intended to inform, deny, or request some
proposition); (ii) interpret the contents of the message through the use of a common syn-
tax (e.g. the Knowledge Interchange Format, KIF, which is a prefix version of first order
predicate calculus with certain extensions designed for this purpose20); and (iii) under-
stand what the contents of the message mean via the use of a well defined vocabulary (e.g.
what is it that the agent is being informed of, that is being denied, or requested). These
three aspects of agent communication (expanded on below) enable agents to communicate
their beliefs, goals and other mental states, and thereby negotiate and perform other com-
plex communicative functions.

An agent operating in an ADEPT environment must use one of a set of illocutionary
acts (henceforth communicative acts) to specify what the agent intends by the message19.
Consider the action of proposing an SLA to another agent during negotiation through the
use of the PROPOSE message type (see section 2.3). This indicates that the agent sending
the message intends the contents of the message to be interpreted as a proposal for the pro-
vision of a particular service that the recipient has registered as being able to provide. Sup-
pose that the agent DD (i.e. the Design Department agent illustrated in figure 10) has
agreed to provide the cost_&_design_customer_network service. To fulfil this
agreement, DD needs to survey the proposed network site, but is unable to perform this
task. Therefore, the DD agent must negotiate with the SD agent (i.e. the agent represent-
ing the Surveyor Department, figure 10) to provide this service. To initiate the negotiation,
DD may PROPOSE that SD provides this service at the most convenient time and cost for
DD. This may, if SD is willing to negotiate, produce a response from SD; for example, SD
may COUNTER-PROPOSE a later time and a higher price, or ACCEPT DD’s proposal. At
the head of each message an ADEPT agent must specify the intention of the message.

As well as understanding the intention behind the message, a recipient must be able to
interpret the contents of a message for it to be understood. For example, if agent x wishes
to inform agent y that it believes p, the expression contained in the message may be
believes-that(x, p) or x believes-that p. The former using a prefix notation and the latter an
infix notation for the operator believes-that. For agent y to be able to interpret the contents
of a message from x they must agree on a common syntax for the representation of com-
municated knowledge. Therefore, either each agent must use the same syntax to commu-

nicate information, or the syntax used must be explicitly stated in the message. The
Knowledge Query and Manipulation Language (KQML)22 provides a “language” slot
within a message in which the content language can be specified, e.g. KIF or Prolog. In
ADEPT all agents use a KIF-like content language, and so no such language slot is
included in ADEPT messages (see figure 7).

The final requirement for effective inter-agent communication is that the agent receiving
a message must be able to understand the intended meaning of the symbols and relations
used in the content of the message. Suppose that agent DD has a SLA with agent SD, in
which SD provides DD with a survey_customer_site service under certain condi-
tions (figure 10). Then if agent DD instructs agent SD to, on the basis of their agreement,
survey a particular location, agent SD must know what is meant by a “location” for it to
understand the message. For an agent to be certain that the content of a message will be
understood correctly by its recipient, the sender must use a vocabulary (or information
model)f that can be understood by the recipient. Suppose that in DD’s local information
model, the symbol “location” refers to the postal address of the client requiring a network
and the symbol “site” refers to the location of the proposed network, and that in SD’s local
information model, the symbol “location” refers to the grid reference of the network site
to be surveyed. These agents do not share the same model of information; they are similar,
but use different symbols for the same concept, and the same symbol for different con-
cepts for example. For agent DD to arrange a survey of the proposed site, these heteroge-
neous agents must communicate, and hence information that should be interpreted in
terms of DD’s information model must be translated into equivalent information that may
be interpreted in terms of SD’s model. An ADEPT agent is required to declare the infor-
mation models in which it may represent knowledge. In this way an agent that wishes to
communicate with that agent must use an acceptable information model for expressing the
message content.

The ADEPT system supports the development of information models through an infor-
mation modelling language. This language is object-oriented and provides the normal
string, integer, float and boolean types as well as constructs such as enumerated types,
object classes (similar to structures in C) and lists, which enable more complex types to be
defined. For example, the structure of an SLA is defined in the ADEPT information model
using this language. This information model inherits the four basic types (i.e.
Types_String, Types_Integer, Types_Float and Types_Boolean) from the Types informa-
tion model. These basic types are used, for example, to construct a model of time so that
durations, start times and end times of services may be defined (see figure 6). A construct
of type Adept_Time consists of four slots each of type Types_Integer that denote the day,
month, hour and minute of that point in time or interval of time. A construct of type
Adept_Sla is then defined using this type and others.

f. An information model is a specification of the symbols that an agent uses in the content of the message. For
example, it may specify that the symbol believes-that is a belief operator that states that the agent specified
believes the proposition specified. This proposition may itself be constructed from other symbols from the infor-
mation model.

The information sharing language is still under development, but will consist of a set of
communicative acts PROPOSE, COUNTER-PROPOSE, ACCEPT, etc., the semantics of
which are in the process of being specified, and a KIF-like20 syntax. An agent must trans-
form the information that is being communicated from its local representation into the
common form before it is transmitted to the intended recipient in the content field of an
inter-agent message. A single message (figure 7) consists of a performative specifying the
agent’s intention, four fields specifying the identity of the sender, recipient, the strand of
conversation that the message is a part of (enabling multiple conversations to be under-
taken concurrently) and the service that it concerns (a single agent may be able to provide
or may require many different services). Furthermore, the recipient must be able to under-
stand the meaning of the symbols contained in the message, and so the content of the mes-
sage must be understood with reference to a specific information model, identified in the
info-model field; each information model has a unique identifier.

2.5. The ADEPT Implementation

ADEPT agents are implemented on top of a CORBA (Common Object Request Broker

Architecture) compliant distribution platform23 (figure 8). The platform allows transpar-
ent access to distributed objects over a heterogeneous network of machines and operating

systems. The particular platform used in this work is DAIS24. So that the agent system is
not tied to a specific distribution platform, a layer of abstraction is placed between the
agent level and the distribution platform. This convergence layer presents a standard inter-
face to the agent system whatever the underlying platform. Thus DAIS could be replaced

(class Adept_Time
(Types_Integer day)
(Types_Integer month)
(Types_Integer hour)
(Types_Integer minute)

)
Fig. 6. The ADEPT information model for time.

(message
(comm: <peformative>)
(sender: <agent-id>)
(recipient: <agent-id>)
(conversation: <conversation-id>)
(service: <service-name>)
(info-model: <model-id>)
(content: <expression>)
)

Fig. 7. The general structure of an inter-agent message.

by a comparable platform simply by devising a set of mappings from the convergence
layer to that platform.

The agents are integrated with the DAIS platform by registering their CM as a DAIS
object. The IMM and CM are written as rule-based systems using CLIPS25 (C Language
Integrated Production System). The SEM, SAM, AM and SM are written using the CLIPS
object-oriented system.

The programmer of an ADEPT system does not need to be aware of these details. He
specifies the agents in more abstract terms—SDL, SLAs, and information models. The
agents themselves then take charge of managing the application and performing the neces-
sary service provisioning and service management activities.

3. BT’s Customer Quote Business Process

This scenario is based on BT’s business process of providing a quotation for designing a
network to provide particular services to a customer (figure 9).g The process receives a

g. The scenario has been simplified for the purposes of explanation and demonstration. The real business process
for this service contains 38 tasks and 9 choice points. Despite this simplification, the key aspects of the process
are still present. Each activity requires resourcing and has a start/end point whereby progress can be measured.
Choice points indicate which sequences of activities require provisioning. There are a number of concurrent
activities which require coordination.

Fig. 8. ADEPT implementation system.

Management

Applications

DAIS Ansaware OLE

Convergence Layer

Operating Systems

Machines

Agents

Service Provisioning

Distributed Computing Platforms

Service Descriptions

Service Level Agreements
Information Model

Service Management

Current

Standard Interface

Implement-
-ation

customer service request as its input and generates as its output a quote specifying how
much it would cost to build a network to realise that service. It involves up to six parties:
the sales department, the customer service division, the legal department, the design divi-
sion, the surveyor department, and the provider of an out-sourced service for vetting cus-
tomers.

The process is initiated by a customer contacting the customer service division. The
customer’s details are captured and whilst the customer is being vetted (in terms of its
credit worthiness, false ID, etc.) their requirements are ellicted. If the customer fails the
vetting procedure, then the quote process terminates. Assuming the customer is satisfac-
tory, it’s requirements are recorded and mapped against the service portfolio. If the
requirements can be met by a standard off-the-shelf portfolio item then an immediate
quote can be offered based on previous examples. In the case of bespoke services, how-

Fig. 9. The provide customer quote service.

Capture

Customer

Details

Capture

Customer

Requirements

Identify

Service Reqt.

Profile

Vet

Customer

Identify

Analyse

Requirements

Legal

Review

Design

Network

Survey

CPE

Provide

Quote

Customer

TERMINATE

Portfolio
Item

Customer
Okay

Survey
Reqd

Yes

No

Yes

No

Legal? Require more info

Yes

No
PROCESS

TERMINATE
PROCESS

Yes

No

GOTO

A

A

Request
Further

Information

Service

ever, the process is more complex and involves a bid manager. The bid manager further
analyses the customer’s requirements and whilst this is occurring the legal department
checks the legality of the proposed service (e.g. it is illegal to send unauthorised encrypted
messages across France). If the desired service is illegal, then the entire quote process ter-
minates and the customer is informed. If there is any uncertainty about the service’s legal-
ity, then the business process is suspended while further information is obtained from the
customer. If the requested service is definitely legal then the design phase can start. To
prepare a network design it is usually necessary to have a detailed plan of the existing
equipment at the customer’s premises (CPE)—the exception to this is when the desired
service is sufficiently simple that a survey is not warranted. Sometimes such plans might
not exist and sometimes they may be out of date. In either case, the bid manager deter-
mines whether the customer site(s) should be surveyed. On completion of the network
design and costing, the customer is informed of the service quote and the business process
terminates.

Fig. 10. Agent system for the provide customer quote business process.

capture_customer_details

capture_customer_req id_service_req_profile

Provide_Customer_Quote
Sales

Cost_&_Design_Customer_Network

Legal_Advice

provide_legal_advice

analyse_reqs

design_network

Survey_Customer_Site

survey_customer_site
provide_quote

Task
Agent

On-Demand Service

Agency
One-Off Service
Regular Service

Vet_Customer

vet_customer

provide_quote

identify_service

Customer
Service
Division

Vet customer

organisations

Design
Division

Surveyor

Legal Department

SD

LDDD

VCi

CSD

Department

From the business process description, the following agent system was designed (figure
10). The agents (denoted by the circles) were chosen to represent distinct departments or
enterprises involved in the customer quote business process. The VC agents (i.e. agents
representing Vet Customer agencies) represent the concerns of external enterprises as this
activity is outsourced. Agent SD is within DD’s agency because the design division has
overall management responsibility for the surveyor department (i.e. all requests for site
surveys must be channelled through the design department).

The process is triggered when the sales agent sends a request to the CSD agent (i.e. the
agent representing the Customer Services Department) to provide a customer quote.h The
CSD agent identifies the SLA associated with the request: in this case it relates to the
Provide_Customer_Quote service. The SDL body of this service is parsed to create
a tree of possible routes that the SEM can take. A depth first path is selected and the tasks
and services in that path are scheduled and resourced (by the SAM). The SEM begins exe-
cuting the constituent sub-services and tasks. One of the first sub-services it encounters is
to vet the customer (this occurs in parallel with the capture_customer_req task and
after capture_customer_details). When the SEM comes to execute this service it
realises (by checking it’s SM) there is no associated SLA and so it reports an exception to
the SAM.i The SAM determines that the service cannot be realised locally (by referring to
its SM) and so it must be bought in from an external agent. It also decides that the service
should be provisioned in an on-demand manner because it is an activity which is needed
on each invocation of the business process. As such, it is preferable to negotiate for a
longer term SLA covering multiple invocations rather than negotiating for one each time
the business process is invoked. In addition to identifying the service name and the desired
provisioning mode, the SAM indicates any scheduler information which influences the
service’s provisioning (e.g. the service’s earliest start and latest end times).

Vet customer service provisioning begins with the CSD’s IMM sending CAN-DOs to all
the agents it can identify (using its AM) as being potentially able to provide this service
(in this scenario there are three such agents—VC1, VC2 and VC3). Negotiation proper
begins when the CSD agent concurrently sends out initial proposals (in the form of instan-
tiated SLAs) to all the vet customer agents which responded with I-CAN. This initial pro-
posal may be acceptable to one of the VC agents in which case an agreement is made and
the negotiation is terminated. However, in most cases the VC agents find some part of the
proposal unsatisfactory and so return a revised counterproposal to CSD. The CSD and VC
agents then engage in several concurrent rounds of exchanging SLA messages until either
the CSD comes to an agreement with one of the VC agents or all the VC agents reject all
the offers and break off negotiation. If the CSD agent receives more than one acceptable
offer, it selects the one closest to it’s specified optimumj. The chosen agent is informed of

h. The scenario assumes an on-demand SLA between the CSD and the sales department has already been negoti-
ated.
i. In future versions of the system, agents will pre-parse the SDL body to see which SLAs need to be set up
before it comes to their actual execution. This will allow the agents to proactively negotiate SLAs. In this case,
agents need to strike a balance between expending resources provisioning services which may not be used and
only provisioning services when they are actually needed (which may delay their execution).

it’s success and an SLA for the Vet_Customer service comes into force. The CSD
agent’s IMM then informs its SAM which, in turn, reinvokes the SEM’s execution of
Provide_Customer_Quote with the freshly agreed Vet_Customer SLA stored in
its SM. Since the agreement is for on-demand provisioning—the CSD agent can ask the
chosen VC agent to vet customers as and when new customers are presented to it from the
sales department. The CSD agent’s SEM sends a SERVICE-ACTIVATE request to the
SEM of the selected VC agent within the time frame specified in the SLA. When the cus-
tomer has been vetted, the client VC agent informs the CSD agent’s SEM of the result (as
specified by the SLA’s reporting policy). If the customer fails the vetting procedure then
Provide_Customer_Quote fails and the sales department is informed. If the cus-
tomer is successfully vetted, the CSD agent’s SEM starts executing the next sub-service.

The next sub-service checks whether the customer’s request is for a portfolio item—
achieved by executing the id_service_req_profile task. If it is a portfolio item
then the service is identified (identify_service) and a quote is looked up
(provide_quote) and returned to the sales department (as specified in the SLA
between the CSD and the sales department). Execution of
Provide_Customer_Quote then terminates.

If the desired service is bespoke—id_service_req_profile fails—then the next
sub-service to be executed is Cost_&_Design_Customer_Network. Again the
SEM informs the SAM that there is no associated SLA in place. The SAM decides the
service must be bought in (after examining its SM) and that it should be provisioned in an
on-demand manner (because it is required every time a customer requests a bespoke serv-
ice. A one-off SLA would be justified if a significant proportion of the customer service
requests were for portfolio items). It then asks the IMM to obtain an appropriate agree-
ment. The IMM notes from its AM that the only agent offering this service is DD and so it
starts negotiating with it. Assuming the two agents reach an agreement, the CSD agent’s
IMM informs it’s SAM which informs it’s SEM that an appropriate SLA is now in place
(see figure 5). When the CSD agent’s SEM indicates that the
Cost_&_Design_Customer_Network service should be invoked, the DD agent
starts executing it under the newly agreed SLA. This service involves executing the
Bt_DesignNetwork sub-service (figure 4) to produce the network design, ensuring the
necessary legal checks are performed, and executing the provide_quote task to cost
the design. When the customer’s requirements have been analysed in more detail (i.e.
detailed_reqs are available from Bt_DesignNetwork), the legality of the cus-
tomer’s request is checked.k The DD agent (i.e. the agent representing the Design Depart-
ment) realises (by checking its AM) this service can only be provided by the LD agent

j. If the negotiation fails to find any agents willing to vet customers, the CSD agent’s SAM is informed and that
particular invocation of Provide_Customer_Quote fails. In this case, service failure is reported back to the
sales department. For the future, we are investigating techniques for dynamically revising the business process in
such situations.
k. Checking is managed in Cost_&_Design_Customer_Network by having a completion expression
which either stops or suspends the design activity if the customer’s request is not legal or allows it to continue if
the request is legal.

(i.e. the agent representing the Legal Department) and so it starts to negotiate with it. The
service is provisioned in a one-off manner because it too expensive to have waiting idle
when there are no designs to check. When the agreed legal service is invoked, the require-
ments are checked and the appropriate course of action is taken depending on the outcome
of this review.

As part of Bt_DesignNetwork, a survey of the customer’s premises may be needed.
If this is the case, the DD agent’s SEM informs it’s SAM that no SLA is in place for
task_survey_CPE. The SAM notes (by examining its AM) that an agent (SD) within
it’s agency can provide the service. It decides the service should be provisioned in a one-
off manner (because the service is only occasionally required) and so the DD’s IMM
negotiates with SD. Assuming they reach an agreement, the DD agent invokes the agree-
ment and requests SD to obtain a survey for the customer’s premises. When the survey is
complete or after the service is declared legal if no survey is required, the network design
is carried out and then costed. The service’s cost is returned to the CSD agent as specified
in the Cost_&_Design_Customer_Network SLA (figure 5). The
Provide_Customer_Quote service then completes and the quote is returned to the
sales department as specified in the SLA with the sales department.

For subsequent service quote requests, several of the basic agreements for managing the
business process are already in situ. The CSD agent has an on-demand SLA for vetting
customers and it may also have an agreement for costing and designing the customer’s
network. This means there is less of a negotiation overhead on subsequent process invoca-
tions. The services which may generate further negotiations in subsequent quote processes
are those which are only occasionally invoked—legal services and survey customer site.

4. Related Work

Few (if any) commercial systems exist which support business process management using
agent technology. Existing business process or workflow management systems offer lim-
ited support and minimal flexibility during process enactment. In situations where a busi-
ness process is fully resourced (dimensioned) and every conceivable outcome can be
considered and controlled, then conventional distributed computing techniques and tradi-
tional workflow systems should be adequate. If, however, the system has to cope with
undefined errors or failures, and there is a need for dynamic re-configuration of resources,
then the ADEPT approach is far more flexible and robust.

The core functionality of a traditional workflow system is to automate the execution of a
sequence of tasks in support of a business process. Typically, workflow systems consist of
a workflow engine which executes business tasks in a predefined order specified in a
workflow script26. In recent years, they have proven their worth primarily by automating
transaction intensive processes which are often found in fields such as banking27.

The ADEPT system exhibits most of the characteristics of existing workflow manage-
ment systems. In ADEPT, this workflow enactment function is performed by the Service
Execution Module. However, unlike workflow management systems, ADEPT also per-
forms both resource management and sophisticated exception handling:

• Resource management: In ADEPT, the agents have the ability to perform direct man-
agement of resources: the systems, databases, equipment and people that make up an
organisation. Traditional workflow and business process management systems do not
provide an inbuilt capability for direct resource management, instead processes have to
be resourced and dimensioned prior to enactment. This means the ADEPT system is far
more responsive to unexpected or unusual patterns of resource availability.

• Exception handling: Presently in workflow systems, exception handling is managed by
explicitly representing an alternative path through the business process. In ADEPT, the
agents dynamically attempt to renegotiate and re-resource the process task in order to
resolve exceptions. This approach allows agents to react to circumstances where the
type of corrective action might change depending upon the availability of resources, or
how critical the task is within the process as a whole, for example.

The final main differentiator is that workflow management systems tend to operate with
a central workflow engine which monitors all the events in the system. This type of archi-
tecture is limiting when a business process spans a large enterprise. ADEPT takes a dis-
tributed, and hence more robust and scalable approach, where the disparate components of
a business process are each represented by an agent. Agents can be distributed either logi-
cally or physically throughout an organisation. Similarly, in ADEPT the CORBA platform
enables the distribution of agents and business tasks across an enterprise, independent of
their location, the underlying operating system, or the hardware being used.

Given the limitations of current generation workflow systems, a number of researchers
have considered using multi-agent systems for various aspects of business process
management28, 29. Hall and Shahmehri30 use agent technology to enable both experts (e.g.
a manager or business process engineer) and non-expert users involved in a business proc-
ess to influence the design and modification of that process. A language is presented for
the description of processes and tasks to enable automatic reasoning about the operation
of the business process, and hence facilitate the reuse of existing processes. A task is rep-
resented by a role that indicates who should execute the task, a set of preconditions, a task
description, and a set of stop conditions. This is similar to the structure of a service
description in the ADEPT model: the mandatory inputs to the service are preconditions
for the execution of the service, a description of the processes involved in executing that
service are provided in the body, and the completion conditions have a similar role to stop
conditions (see figure 4). Such a rigorous description of processes and tasks provides an
agent-based business process management system with the potential to modify the busi-
ness process (possibly with reference to an expert) in response to changing circumstances.
Therefore the use of agent technology to enable modification of a business process is com-
plimentary to agent-based business process management systems such as ADEPT.

A federation-type architecture16, 17, 31 provides an alternative method for organising
multi-agent systems for the management of business processes. Agents are organised into
groups, each group being associated with a single “facilitator”l to which an agent surren-
ders a degree of autonomy. A facilitator serves to identify agents that join or leave the sys-
tem and manages direct communication between participating agents; functions that are

similar to those provided by the DAIS ORB24. In addition, the facilitator provides anony-
mous communication (i.e. agents are informed of events in which they have registered an
interest without reference to the original sender), translation of message content between
different information models, problem decomposition and distribution of sub-problems to
agents unspecified by the original sender, and delayed communications in the event of an
agent being temporarily off-line. This architecture enables agents to communicate without
concern for the particular syntactic and semantic requirements of the recipient. An agent
may also send a message without specifying the recipient; the content-based routing of
these messages being performed by its facilitator. During negotiation, participating agents
require secure communication, but this direct communication is enabled and managed by
one or more facilitators. These facilitators represent the interests of many different agents.
Therefore, a facilitator that is managing direct communication between negotiating agents
must be trusted to act in the interests of these agents even if this conflicts with other inter-
ests it is representing. At present the federation architecture has only been used for the
interoperation of purely cooperative agents at the team level of an organisation (e.g.
SHADE and PACT16). Such security issues must be addressed if this architecture is to be
employed in business process management where more than one organisation is involved.
An additional difficulty with the federation architecture is that it does not support the
encapsulation of services. The ability to model both peer and hierarchical structures in
ADEPT is founded on organisational models where an enterprise is logically divided into
a collection of services. The agent-agency concept in ADEPT draws on this principle to
group services within the system where it makes pragmatic sense; a flexibility that is not
available in the federation architecture.

Mobile agents have also been proposed as an approach to the management of work
flow32 in business processes. Merz et al.32 argue that the use of this technology means that
only those organisations that require services from others are required to implement
mobile agents. Other organisations need only accept the arrival of mobile agents and han-
dle their requests; i.e. an organisation may participate in either a passive or an active man-
ner. Each mobile agent is an encapsulated autonomous unit, and therefore can participate
in functions such as negotiation without relying on a facilitator-type agent; an advantage
over the federation architecture. A further advantage of mobile agents that is often
claimed is that they reduce communication overhead, but this is yet to be shown in prac-
tice; a reasonably sophisticated mobile agent may take a while to transmit over a network.
One potentially serious problem with mobile agent technology in the management of busi-
ness processes is the lack of security. To participate in a mobile agent based business proc-
ess management system, an organisation must allow intelligent programs from another,
possibly competing, organisation to execute on their local machines. Therefore, for
mobile agents to be a good implementation choice for agent-based business process man-
agement, these security issues must be addressed.

l. Takeda et al.17 refer to a “facilitator”, “mediator” and “ontology server” in their architecture. Together, these
three units perform the same function as a facilitator in the federation architecture described by Genesereth and
Ketchpel31.

5. Conclusions & Future Work

This paper has described the key components of the ADEPT system and how they were
applied to BT’s business process of providing a customer quote for network services. This
work can be viewed on three different levels, each of which represents increasing support
for the realisation of business process management software systems:

(i) ADEPT as a design technology: ADEPT proposes a method of approach for struc-
turing the design and development of business process management systems. It iden-
tifies the key concepts in this view as autonomous agents, negotiation, service
provision, service level agreements, resource management, and information sharing.
This view can be readily applied to other business process applications without being
tied to the details of how they were realised in ADEPT.

(ii) ADEPT as an implementation technology: As well as identifying a methodology,
the ADEPT system provides algorithms, interfaces, language definitions, and struc-
tures for realising the key concepts. These definitions can be re-implemented in other
programming environments to develop ADEPT-like agent systems for business proc-
ess management.

(iii) ADEPT as a solution technology: The ADEPT programming environment can be
re-used in other business management applications. In this case, the ADEPT design
methodology is used to structure the application and the ADEPT software is used to
implement it.

Implementing the scenario has also identified a number of system and agent issues
which require further investigation—these include: the need for richer and more flexible
negotiation models, more scalable techniques for sharing information between heteroge-
neous agents, more elaborate resource management within agents, and more flexible serv-
ice scheduling algorithms.

Acknowledgements

ADEPT is a collaborative project under the DTI/EPSRC Intelligent Systems Integration
Programme (ISIP). The project partners are BT Laboratories, ICI Engineering, Loughbor-
ough University of Technology, and Queen Mary and Westfield College. The work
described in this paper represents a partial view of the activities of the whole project to
which all consortium members have contributed.

References

1. A. Mowshowitz, Social Dimensions of Office Automation, Advances in Computers 25
(1996) 335-404.

2. M. J. Wooldridge and N. R. Jennings, Intelligent Agents: Theory and Practice, The
Knowledge Engineering Review 10 (2) (1995) 115-152.

3. H. J. Müller, Negotiation Principles, in Foundations of Distributed Artificial Intelli-
gence, eds. G. M. P. O’Hare and N. R. Jennings (Wiley Interscience, 1996) 211-229.

4. R. G. Smith and R. Davis, Frameworks for cooperation in distributed problem solving
IEEE Trans. on Systems, Man and Cybernetics 11 (1) (1981) 61-70.

5. N. R. Jennings, Controlling Cooperative Problem Solving in Industrial Multi-Agent
Systems using Joint Intentions, Artificial Intelligence 75 (2) (1995) 195-240.

6. N. R. Jennings, E. H. Mamdani, I. Laresgoiti, J. Perez and J. Corera, GRATE: A Gen-
eral Framework for Cooperative Problem Solving, IEE-BCS J. of Intelligent Systems
Engineering, 1 (2) (1992) 102-114.

7. N. R. Jennings, J. Corera, I. Laresgoiti, E. H. Mamdani, F. Perriolat, P. Skarek and L.
Z. Varga, Using ARCHON to develop real-word DAI applications for electricity trans-
portation management and particle accelerator control, IEEE Expert (1996).

8. N. S. Sridharan, 1986 Workshop on Distributed AI, AI Magazine, Fall, (1987) 75-85.

9. J. L. Alty, D. Griffiths, N. R. Jennings, E. H. Mamdani, A. Struthers, and M. E. Wie-
gand, ADEPT - Advanced Decision Environment for Process Tasks: Overview and
Architecture, Proc. BCS Expert Systems 94 Conference (Applications Track), Cam-
bridge, UK, 1994, 359-371.

10. J. F. Nash, The Bargaining Problem, Econometrica 28 (1950) 155-162.

11. H. Raiffa, The Art and Science of Negotiation (Harvard University Press, 1982).

12. J. S. Rosenschein and G. Zlotkin, Rules of Encounter - Designing Conventions for
Automated Negotiation Among Computers, (MIT Press, 1994).

13. B. Chandrasekaran, Generic Tasks in Knowledge Based Reasoning: High Level Build-
ing Blocks for Expert System Design, IEEE Expert 1 (3) (1983) 23-30.

14. W. J. Clancy, Heuristic Classification, Artificial Intelligence 27 (3) (1985) 289-250.

15. J. McDermott, A Taxonomy of Problem Solving Methods in Automating Knowledge
Acquisition for Expert Systems, ed. S. Marcus (Kluwer, 1988) 225-256.

16. J. M. Tenenbaum, J. C. Weber and T. R. Gruber, Enterprise integration: Lessons from
SHADE and PACT in Enterprise Integration Modelling, ed. C. J. Petrie, (MIT Press,
1992) 356-369.

17. H. Takeda, K. Iino, and T. Nishida, Agent organisation with multiple ontologies, Inter-
national Journal of Cooperative Information Systems, 4 (4) (1995) 321-337.

18. J. L. Austin, How to do Things with Words (Harvard University Press, 1962).

19. J. R. Searle, Speech Acts: An Essay in the Philosophy of Language (Cambridge Uni-
versity Press, 1969).

20. M. R. Genesereth and R. E. Fikes (eds.) Knowledge interchange format, version 3 ref-
erence manual, Computer Science Department, Stanford University, 1992, Technical
Report Logic-91-1. (http://www-ksl.stanford.edu/knowledge-sharing/papers/).

21. P. R. Cohen and H. J. Levesque, Communicative actions for artificial agents, Proc. of
the First Int. Conf. on Multi-Agent Systems, (AAAI Press and MIT Press, 1995) 17-24.

22. T. Finin, D. McKay, R. Fritzson, and R. McEntire, KQML: An Information and
Knowledge Exchange Protocol, in Knowledge Building and Knowledge Sharing, eds.
K. Fuchi and T. Yokoi, (Ohmsha and IOS Press, 1994).

23. T. J. Mowbray and R. Zahavi, The Essential CORBA Systems Integration Using Dis-
tributed Objects (John Wiley and Object Management Group, 1995).

24. DAIS: A Platform To Build On, ICL Corporate Systems Publications, 1994, Version
2.1.

25. J. C Giarratano and G. Riley, Expert Systems: Principles and Programming, 2nd Edi-
tion (PWS Publishers, 1994). (The CLIPS URL is http://www.jsc.nasa.gov/~clips/
CLIPS.html)

26. Glossary - A Workflow Management Coalition Specification, Workflow Management
Coalition, November 1994.

27. Barclays Invests in technology to boost customer service, Technology Strategies,
March 1995.

28. K. Fischer, J. P. Müller, I. Heimig and A-W. Scheer, Intelligent agents in virtual enter-
prises, Proc. of the First Int. Conf. on the Practical Application of Intelligent Agents
and Multi-Agent Technology (PAAM-96), (1996) 205-223.

29. N. R. Jennings, P. Faratin, M. J. Johnson, P. O’Brien and M. E. Wiegand, Using intelli-
gent agent to manage business processes, Proc. of the First Int. Conf. on the Practical
Application of Intelligent Agents and Multi-Agent Technology (PAAM-96), (1996) 345-
360.

30. T. Hall and N. Shahmehri, An intelligent multi-agent architecture for support of proc-
ess reuse in a workflow management system, Proc. of the First Int. Conf. on the Prac-
tical Application of Intelligent Agents and Multi-Agent Technology (PAAM-96), (1996)
331-343.

31. M. R. Genesereth and S. P. Ketchpel, Software agents, Communications of the ACM,
37(7) 48-53.

32. M. Merz, B. Liberman, K. Müller-Jones and W. Lamersdorf, Interorganisational work-
flow management with mobile agents in COSM. Proc. of the First Int. Conf. on the
Practical Application of Intelligent Agents and Multi-Agent Technology (PAAM-96),
(1996) 405-420.

