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SET MAPPING REFLECTION

JUSTIN TATCH MOORE

Abstract. In this note we will discuss a new reflection principle
which follows from the Proper Forcing Axiom. The immediate
purpose will be to prove that the bounded form of the Proper
Forcing Axiom implies both that 2ω = ω2 and that L(P(ω1))
satisfies the Axiom of Choice. It will also be demonstrated that this
reflection principle implies that �(κ) fails for all regular κ > ω1.

1. Introduction

The notion of properness was introduced by Shelah and is a weak-
ening of both the countable chain condition and the property of being
countably closed. Its purpose was to provide a property of forcing no-
tions which implies that they preserve ω1 and which is preserved under
countable support iterations. With the help of a supercompact car-
dinal, one can prove the consistency of the following statement (see
[6]).

PFA: If P is a proper forcing notion and D is a family of dense
subsets of P of size ω1 then there is a filter G ⊆ P which
meets every element of D .

The Proper Forcing Axiom (PFA for short) is therefore a strengthening
of the better known and less technical MAω1

[14]. It has been extremely
useful, together with the stronger Martin’s Maximum (MM) [7], in
resolving questions left unresolved by Martin’s Axiom.
Early on it was known that it was not possible to replace ω1 by ω2

and get a consistent statement (see [3]). The stronger forcing axiom
MM was known to already imply that the continuum is ω2 [7]. Later
Todorčević and Veličković showed that PFA also implies that the con-
tinuum is ω2 (see [16] and [20]). This proof used a deep analysis of
the gap structure of ωω/fin and of the behavior of the oscillation map.
Their proof, however, was less generous than some of the proofs that
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2 JUSTIN TATCH MOORE

the continuum was ω2 from Martin’s Maximum. In particular, while
MM implies that L(P(ω1)) satisfies AC [21], the same was not known
for PFA (compare to the final remark section 3 of [20]).
Martin’s Maximum was also shown to have a variety of large cardinal

consequences. Many of these are laid out in [7]. Much of this was
proved via stationary reflection principles which seemed to typify the
consequences of MM which do not follow from PFA. Todorčević showed
that PFA implies that the combinatorial principle �(κ) fails for all
κ > ω1 (see [5]). This, combined with modern techniques in inner
model theory [11], gives a considerable lower bound on the consistency
strength of PFA.1 Both the impact on the continuum and the large
cardinal strength of these forcing axioms have figured prominently in
their development.
The purpose of this note is to introduce a new reflection principle,

MRP, which follows from the Proper Forcing Axiom. The reasons are
threefold. First, this axiom arose as a somewhat natural abstraction of
one its consequences which in turn implies that there is a well ordering
of R which is Σ1-definable over (H(ω2),∈). A corollary of the proof
will be that the Bounded Proper Forcing Axiom implies that there is
such a well ordering of R, thus answering a question from the folklore
(see Question 35 of [18]).
Second, this principle seems quite relevant in studying consequences

of the Proper Forcing Axiom which do not follow from the ω-Proper
Forcing Axiom. The notion of ω-properness was introduced by Shelah
in the course of studying preservation theorems for not adding reals in
countable support iterations (see [13]). For our purpose it is sufficient
to know that both c.c.c. and countably closed forcings are ω-proper
and that ω-proper forcings are preserved under countable support it-
erations. While I am not aware of the ω-PFA having been studied in
the literature, nearly all of the studied consequences of PFA are actu-
ally consequences of the weaker ω-PFA.2 It is my hope and optimism
that the Mapping Reflection Principle will be useful tool in studying
the consequences of PFA which do not follow from the ω-PFA in much
the same way that the Strong Reflection Principle has succeeded in
implying the typical consequences of Martin’s Maximum which do not
follow from the Proper Forcing Axiom.

1It is not known if “�(κ) fails for all regular κ > ω1” is equiconsistent with the
existence of a supercompact cardinal.

2For example: MAω1
, the non-existence of S-spaces [15], all ω1-dense sets of reals

are isomorphic [4], the Open Coloring Axiom [17], the failure of �κ for all regular
κ > ω1 [5], the non-existence of Kurepa trees [3].
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Finally, like the Open Coloring Axiom, the Ramsey theoretic for-
mulation of Martin’s Axiom, and the Strong Reflection Principle, this
principle can be taken as a black box and used without knowledge of
forcing. The arguments using it tend to be rather elementary in nature
and require only some knowledge of the combinatorics of the club filter
on [X ]ω and Löwenheim-Skolem arguments.
The main results of this note are summarized as follows.

Theorem 1.1. The Proper Forcing Axiom implies the Mapping Re-

flection Principle.

Theorem 1.2. The Mapping Reflection Principle implies that 2ω =
2ω1 = ω2 and that L(P(ω1)) satisfies the Axiom of Choice.

Theorem 1.3. The Bounded Proper Forcing Axiom implies that 2ω =
ω2 and that L(P(ω1)) satisfies the Axiom of Choice.

Theorem 1.4. The Mapping Reflection Principle implies that �(κ)
fails for every regular κ > ω1.

The notation used in this paper is more or less standard. If θ is a
regular cardinal then H(θ) is the collection of all sets of hereditary car-
dinality less than θ. As is common, when I refer to H(θ) as a structure
I will actually mean (H(θ),∈, ⊳) where ⊳ is some well order of H(θ)
which can be used to compute Skolem functions and hence generate
the club E ⊆ [H(θ)]ω of countable elementary submodels of H(θ). If
X is a set of ordinals then otp(X) represents the ordertype of (X,∈)
and πX is the unique collapsing isomorphism from X to otp(X). While
an attempt has been made to keep parts of this paper self contained,
a knowledge of proper forcing is assumed in Section 3. The reader is
referred to [3], [13], and [17] for more reading on proper forcing and
PFA. Throughout the paper the reader is assumed to have a familiarity
with set theory ([9] and [10] are standard references).

2. The Mapping Reflection Principle

The following definition will be central to our discussion. Recall that
for an uncountable set X , [X ]ω is the collection of all countable subsets
of X .

Definition 2.1. Let X be an uncountable set, M be a countable ele-
mentary submodel of H(θ) for some regular θ such that [X ]ω ∈ M . A
subset Σ of [X ]ω is M-stationary if whenever E ⊆ [X ]ω is a club in M
there is an N in E ∩ Σ ∩M .
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Example 2.2. If M is a countable elementary submodel of H(ω2)
and A ⊆ M ∩ ω1 has order type less than δ = M ∩ ω1 then δ \ A is
M-stationary.

The set [X ]ω is equipped with the Ellentuck topology obtained by
declaring the sets

[x,N ] = {Y ∈ [X ]ω : x ⊆ Y ⊆ N}

to be open for all N in [X ]ω and finite x ⊆ N . In this paper “open” will
always refer to this topology. It should be noted that the sets which
are closed in the Ellentuck topology and cofinal in the order structure
generate the closed unbounded filter on [X ]ω.
For ease of reading I will make the following definition.

Definition 2.3. A set mapping Σ is said to be open stationary if, for
some uncountable set X and regular cardinal θ with X in H(θ), it is
the case that elements of the domain of Σ are elementary submodels
of H(θ) which contain M and Σ(M) ⊆ [X ]ω is open and M-stationary
for all M in the domain of Σ. If necessary the underlying objects X
and θ will be referred to as XΣ and θΣ.

The following is among the simplest example of an open stationary
set mapping.

Example 2.4. Let r : ω1 → ω1 be regressive on the limit ordinals. If
Σ is defined by putting Σ(P ) = (r(δ), δ) for P a countable elementary
submodel of H(ω2) then Σ is open and stationary.

This motivates the following reflection principle which asserts that
this example is present inside any open stationary set mapping.

MRP: If Σ is an open stationary set mapping whose domain is a
club then there is a continuous ∈-chain 〈Nν : ν < ω1〉 in the
domain of Σ such that for all limit 0 < ν < ω1 there is a ν0 < ν
such that Nξ∩XΣ ∈ Σ(Nν) whenever ξ is in the interval (ν0, ν).

We now continue with the first example.

Example 2.5. An immediate consequence of MRP is that if Cδ is a
cofinal ω-sequence in δ for each countable limit ordinal δ then there is
a club E ⊆ ω1 such that E ∩ Cδ is finite for all δ.3

3It is easy to verify, however, that this consequence of MRP can not be forced
with an ω-proper forcing. That this statement follows from PFA appears in [13].
It is the only example in the literature that I am aware of which is a combinatorial
consequence of PFA but not of ω-PFA.
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We will see in the discussion below that, unlike in [X ]ω, there are
non-trivial partitions of [X ]ω into open M-stationary sets if X has size
at least ω2.

3. PFA implies MRP

The purpose of this section is to prove the following theorem. Re-
call that a forcing notion P is proper if whenever M is a countable
elementary submodel of H(|2P|+) containing P and p is in P ∩M ,
there is a p̄ ≤ p which is (M,P )-generic.4

Theorem 3.1. PFA implies MRP.

Proof. Let Σ be a given open stationary set mapping defined on a club
of models and abbreviate X = XΣ and θ = θΣ. Let PΣ denote the
collection of all continuous ∈-increasing maps p : α + 1 → dom(Σ)
where α is a countable ordinal such that for all 0 < ν ≤ α there is a
ν0 < ν with p(ξ)∩X ∈ Σ(p(ν)) whenever ν0 < ξ < ν. PΣ is ordered by
extension. I will now prove that PΣ is proper. Notice that if this is the
case then the sets Dα = {p ∈ PΣ : α ∈ dom(p)} must be dense. This
is because D∗

x = {p ∈ PΣ : ∃ν ∈ dom(p)(x ∈ p(ν))} is clearly dense
for all x in X and therefore, after forcing with PΣ, there is always a
surjection from {α : ∃p ∈ G(α ∈ dom(p))} onto the uncountable set
X .
To see that PΣ is proper, let p be in PΣ and M be an elementary

submodel of H(λ) for λ sufficiently large such that Σ, PΣ, p, and
H(|PΣ|

+) are all in M . Let {Di : i < ω} enumerate the dense subsets
of PΣ which are in M . We will now build a sequence of conditions
p0 ≥ p1 ≥ . . . by recursion. Set p0 = p and let pi be given. Let Ei be
the collection of all intersections of the form N = N∗ ∩ X where N∗

is a countable elementary submodel of H(|PΣ|
+) containing H(θ), Di,

PΣ, and pi. Then Ei ⊆ [X ]ω is a club in M . Since Σ(M ∩ H(θ)) is
open and M ∩H(θ)-stationary, there is a Ni in Ei ∩Σ(M ∩H(θ))∩M
and an xi in [Ni]

<ω such that [xi, Ni] ⊆ Σ(M ∩H(θ)). Extend pi to

qi = pi ∪ {(ζi + 1, hull(pi(ζi) ∪ xi))}

where ζi is the last element of the domain of pi and hull(pi(ζi) ∪ xi)
is the Skolem hull taken in H(θ). Notice that qi is in N∗

i since N∗
i

contains pi and H(θ). Now, working in N∗
i , find an extension pi+1 of

qi which is in N∗
i ∩ Di. The key observation here is that everything

in the range of pi+1 which is not in the range of pi has an intersection

4Here condition p̄ is (M,P)-generic if whenever r is an extension of p̄ andD ⊆ P

is a predense set in M , there is a s in D ∩M such that s is compatible with r.
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with X which is in the interval [xi, Ni] and therefore in Σ(M ∩H(θ))
by the virtue xi, Ni witnessing that Σ(M ∩H(θ)) is a neighborhood of
Ni. Define p∞(ξ) = pi(ξ) if ξ ≤ ζi and p∞(supi ζi) = M ∩ H(θ). It is
easily checked that p∞ is well defined and that p∞ is a condition which
is moreover (M,PΣ)-generic. �

4. MRP and the continuum.

In this section we will see that MRP can be used to code reals in a
way which is somewhat reminiscent of the SRP style coding methods
(e.g. φAC, ψAC of [21]). Before we begin, we first need to introduce
some notation.
Fix a sequence 〈Cξ : ξ ∈ lim(ω1)〉 such that Cξ is a cofinal subset of

ξ of ordertype ω for each limit ξ < ω1. Let N,M be countable sets of
ordinals such that N ⊆ M , otp(M) is a limit, and sup(N) < sup(M).
Define

w(N,M) = | sup(N) ∩ π−1
M [Cα]|

where α is the ordertype of M . A trivial but important observation
is that w is left monotonic in the sense that w(N1,M) ≤ w(N2,M)
whenever N1 ⊆ N2 ⊆ M and sup(N2) < sup(M). Also, if N ⊆ M are
countable sets of ordinals with sup(N) < sup(M) and ι is an order pre-
serving map from M into the ordinals then w(N,M) = w(ι′′N, ι′′M).
We will now consider the following statement about a given subset

A of ω1:

υAC(A): There is an uncountable δ < ω2 and an increasing se-
quence 〈Nξ : ξ < ω1〉 which is club in [δ]ω such that for all
limit ν < ω1 there is a ν0 < ν such that if ξ is in (ν0, ν) then
Nν ∩ ω1 ∈ A is equivalent to w(Nξ ∩ ω1, Nν ∩ ω1) < w(Nξ, Nν).

The formula υAC is the assertion that υAC(A) holds for all A ⊆ ω1.

Proposition 4.1. υAC implies that in L(P(ω1)) there is a well order-

ing of P(ω1)/NS in length ω2. In particular υAC implies both 2ω1 = ω2

and that L(P(ω1)) satisfies the Axiom of Choice.

Proof. For each [A] in P(ω1)/NS let δ[A] be the least uncountable δ <
ω2 such that there is a club Nξ (ξ < ω1) in [δ]ω such that for all limit
ν < ω1 there is a ν0 < ν such that for all ν0 < ξ < ν we have that

Nν ∩ ω1 ∈ A iff w(Nξ ∩ ω1, Nν ∩ ω1) < w(Nξ, Nν).

It is easily checked that this definition is independent of the choice of
representative of [A]. It is now sufficient to show that if A and B are
subsets of ω1 and δ[A] = δ[B] then [A] = [B]. To this end suppose that
δ < ω2 is an uncountable ordinal such that for clubs NA

ξ (ξ < ω1) and
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NB
ξ (ξ < ω1) in [δ]ω we have for every limit ν < ω1 there is a ν0 < ν

such that for all ν0 < ξ < ν we have both

w(NA
ξ ∩ ω1, N

A
ν ∩ ω1) < w(NA

ξ , N
A
ν ) iff ξ ∈ A

w(NB
ξ ∩ ω1, N

B
ν ∩ ω1) < w(NB

ξ , N
B
ν ) iff ξ ∈ B.

Now there is a closed unbounded set C ⊆ ω1 such that if ξ is in C then
NA

ξ = NB
ξ . It is easily seen that if ν is a limit point of C then ν is in

A iff ν is in B. �

Proposition 4.2. υAC implies that 2ω = 2ω1.

Proof. This is virtually identical to the proof that the statement θAC

of Todorčević implies 2ω = 2ω1 as proved in [19]. �

The reason for formulating υAC is that it is a consequence of MRP.

Theorem 4.3. MRP implies υAC.

This is a consequence of the following fact.

Lemma 4.4. If M is a countable elementary submodel of H((2ω1)+)
then the following sets are open and M-stationary:

Σ<(M) = {N ∈M ∩ [ω2]
ω : w(N ∩ ω1,M ∩ ω1) < w(N,M ∩ ω2)}

Σ≥(M) = {N ∈M ∩ [ω2]
ω : w(N ∩ ω1,M ∩ ω1) ≥ w(N,M ∩ ω2)}.

To see how to prove Theorem 4.3 from the lemma, define

ΣA(M) =

{

Σ<(M) if M ∩ ω1 ∈ A
Σ≥(M) if M ∩ ω1 6∈ A.

Now let N∗
ξ (ξ < ω1) be a reflecting sequence for ΣA. Let

δ =
⋃

ξ<ω1

Nξ ∩ ω2

Nξ = N∗
ξ ∩ ω2.

It is easily verified that δ is an ordinal, taken together with 〈Nξ :
ξ < ω1〉, satisfies the conclusion of υAC(A). We will now return our
attention to the proof of the lemma.

Proof. To see that Σ<(M) is M-stationary, let E ⊆ [ω2]
ω be a club in

M . By the pigeonhole principle, there is a γ < ω1 such that

{sup(N) : N ∈ E and N ∩ ω1 ⊆ γ}

is unbounded in ω2. By elementarity of M there is a γ < M ∩ ω1 such
that

{sup(N) : N ∈ E ∩M and N ∩ ω1 ⊆ γ}
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is unbounded in M ∩ ω2. Pick an N in E ∩M such that

w(N ∩ ω2,M ∩ ω2) = | sup(N) ∩ π−1
M∩ω2

[Cotp(M∩ω2)]| > |CM∩ω1
∩ γ|.

Since N is inM and N is countable, N ⊆M and sup(N) < sup(M). It
now follows from the definition of Σ<(M) that N is in E∩Σ<(M)∩M .
To see that Σ<(M) is open, let N be in Σ<(M). If N does not have

a last element, let ξ be the least element of N greater than

max(sup(N) ∩ π−1
M∩ω2

[Cotp(M∩ω2)]).

If N has a greatest element, set ξ = max(N). Define x to be the finite
set (N ∩ CM∩ω1

) ∪ {ξ}. It is easy to see that

w(x ∩ ω1,M ∩ ω1) = w(N ∩ ω1,M ∩ ω1)

w(x ∩ ω2,M ∩ ω2) = w(N ∩ ω2,M ∩ ω2)

and hence by left monotonicity of w we have that [x,N ] ⊆ Σ<(M).
In order to see that Σ≥(M) is M-stationary, let E ⊆ [ω2]

ω be a club
in M and let γ < ω2 be uncountable such that E ∩ [γ]ω is a club in
[γ]ω. By elementarity of M , such a γ can be found in M . Working in
M it is possible to find an N in E ∩ [γ]ω such that

|N ∩ ω1 ∩ CM∩ω1
| ≥ |γ ∩ π−1

M∩ω2
[Cotp(M∩ω2)]|

and γ ∩ π−1
M∩ω2

[Cotp(M∩ω2)] ⊆ N . Then N is in E ∩ Σ≥(M) ∩M . The
proof that Σ≥(M) is open is similar to the corresponding proof for
Σ<(M). �

5. The Bounded Proper Forcing Axiom and the continuum

In this section we will see that the Bounded Proper Forcing Axiom
implies υAC. Before arguing this, I will first give a little context to
the result. The Bounded Proper Forcing Axiom is equivalent to the
assertion that

(H(ω2),∈) ≺Σ1
V P

for every proper forcing P. That is if φ is a Σ1-formula with a pa-
rameter in H(ω2) then φ is true iff it can be forced to be true by some
proper forcing. The original statement of BPFA is due to Goldstern
and Shelah [8] and is somewhat different, though equivalent. The above
formulation and its equivalence to the original is due to Bagaria [2].
The consistency strength of BPFA is much weaker than that of PFA
— it is exactly a κ reflecting cardinal (such cardinals can exist in L) [8]
[18]. It should be noted though that many of the consequences of PFA
— MAω1

, the non-existence of S-space and Kurepa trees, the asser-
tion that all ω1-dense sets of reals are order isomorphic — are actually
consequences of BPFA.
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Recently there has been a considerable amount of work on bounded
forcing axioms and well orderings of the continuum. Woodin was the
first to give such a proof from the assumption of Bounded Martin’s
Maximum and “there is a measurable cardinal” [21]. The question
of whether Bounded Martin’s Maximum alone sufficed remained an
intriguing question. In light of Woodin’s result, a reasonable approach
was to show that BMM has considerable large cardinal strength and
use this to synthesize the role of the measurable cardinal. Asperó
showed that under BMM that the dominating number d is ω2 [1]. Soon
after, Todorčević showed that BMM implied that c = ω2 and that,
moreover, there is a well ordering of R which is Σ1-definable from an
ω1-sequence of reals [19]. Very recently Schindler showed that BMM
does have considerable consistency strength[12]. It should be noted,
however, that it is still unclear whether the measurable cardinal can
be removed from Woodin’s argument.
Now we will see that the Bounded Proper Forcing Axiom is already

sufficient to give a definable well ordering of R from parameters in
H(ω2). Notice that for a fixed A, υAC(A) is a Σ1-sentence which takes
the additional parameter 〈Cξ : ξ ∈ lim(ω1)〉 (in order to define w).
Further examination of the above proof reveals that for each A, there
is a proper forcing which forces υAC(A). Hence the Bounded Proper
Forcing Axiom implies υAC. Aspero has noted that, unlike statements
such as ψAC and φAC, the statement υAC can be forced over any model
with an inaccessible cardinal.

6. MRP and �(κ)

Recall the following combinatorial principle, defined for κ a regular
cardinal greater than ω1:

�(κ): There is a sequence 〈Cα : α < κ〉 such that:
(1) Cα+1 = {α} and Cα ⊆ α is closed and cofinal if α is a limit

ordinal.
(2) If α is a limit point of Cβ then Cα = Cβ ∩ α.
(3) There is no club C ⊆ κ such that for all limit points α in

C the equality Cα = C ∩ α holds.

In this section we will see that MRP implies that �(κ) fails for all
regular κ > ω1. To this end, let 〈Cα : α < κ〉 be a �(κ)-sequence. The
essence of the theorem is contained in the following lemma.

Lemma 6.1. If M is a countable elementary submodel of H(κ+) con-
taining 〈Cα : α < κ〉 then the set Σ(M) of all N ⊆ M ∩ κ such that

sup(N) is not in Csup(M∩κ) is open and M-stationary.
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Given the lemma, let Nν (ν < ω1) be a reflecting sequence for Σ and
set E = {sup(Nν ∩ κ) : ν < ω1}. Then E is closed and of order type
ω1. Let β be the supremum of E. Now there must be a limit point α in
E∩Cβ. Let ν be such that α = sup(Nν ∩κ). But now there is a ν0 < ν
such that sup(Nξ∩κ) is not in Cα = Cβ∩α whenever ν0 < ξ < ν. This
means that α is not a limit point of E, a contradiction.
Now let us return to the proof of the lemma.

Proof. First we will check that Σ(M) is open. To see this, let N be
in Σ(M). If N has a last element γ, then [{γ}, N ] ⊆ Σ(M). If N
does not have a last element, then, since Csup(M∩κ) is closed, there is
a γ in N such that if ξ < sup(N) is in Csup(M∩κ) then ξ < γ. Again
[{γ}, N ] ⊆ Σ(M).
Now we will verify that Σ(M) is M-stationary. To this end, let

E ⊆ [κ]ω be a club in M . Let S be the collection of all sup(N) such
that N is in E. Clearly S has cofinally many limit points in κ. If S∩M
is contained in Csup(M∩κ) then we have that whenever α < β are limit
points in S ∩M ,

Cα = Csup(M∩κ) ∩ α

Cβ = Csup(M∩κ) ∩ β

and hence Cα = Cβ ∩ α. But, by elementarity of M , this means that
for all limit points α < β in S, Cα = Cβ ∩α. This would in turn imply
that the union C of Cα for α a limit point of S is a closed unbounded
set such that Cα = C ∩ α for all limit points α of C, contradicting the
definition of 〈Cα : α < κ〉. Hence there is an N in E such that sup(N)
is not in Csup(M∩κ). �
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