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Abstract. Assuming AD +DC(R), we characterize the self-dual boldface point-
classes which are strictly larger (in terms of cardinality) than the pointclasses
contained in them: these are exactly the clopen sets, the collections of all sets of
Wadge rank ≤ ωξ

1, and those of Wadge rank < ωξ
1 when ξ is limit.

1. Introduction

A boldface pointclass (for short: a pointclass) is a non-empty collection Γ of
subsets of R such that Γ is closed under continuous pre-images and Γ 6= P(R).
Examples of pointclasses are the levels Σ0

α, Π0
α, ∆0

α of the Borel hierarchy and the
levels Σ1

n, Π1
n, ∆1

n of the projective hierarchy. In this paper we address the following

Question 1. What is the cardinality of a pointclass?

Assuming AC, the Axiom of Choice, Question 1 becomes trivial for all pointclasses
Γ which admit a complete set. These pointclasses all have size 2ℵ0 under AC. On
the other hand there is no obvious, natural way to associate, in a one-to-one way,
an open set (or for that matter: a closed set, or a real number) to any Σ0

2 set. This
suggests that in the realm of definable sets and functions already Σ0

1 and Σ0
2 may

have different sizes. Indeed the second author in [Hjo98] and [Hjo02] showed that
AD + V = L(R) actually implies

(a) 1 ≤ α < β < ω1 =⇒ |Σ0
α| < |Σ0

β|, and

(b) |∆1
1| < |Σ1

1| < |Σ1
2| < . . .

(Since we do not assume Choice, cardinal inequalities are to be understood as follows:
for any sets X and Y , |X| ≤ |Y | means that there is an injection of X into Y ,
|X| < |Y | means that |X| ≤ |Y | & |Y | � |X|, and |X| = |Y | means that |X| ≤
|Y | ≤ |X| or, equivalently (by the Shroeder-Bernstein Theorem), that there is a
bijection between X and Y .) The third author strengthened the result in (a) by
showing that |∆0

α+1| < |Σ0
α+1|, all 1 ≤ α < ω1. Therefore, in the AD-world, the

answer to Question 1 is far from being trivial.
The results mentioned above did not characterize completely the cardinality point-

classes, that is those Γ such that |Γ′| < |Γ|, for any Γ′ ⊂ Γ. For example they said
nothing about the existence of cardinality pointclasses strictly between Σ0

2∪Π0
2 and

∆0
3. The main result of this paper is a complete characterization, under AD, of all

cardinality pointclasses in terms of their Wadge rank. (The notion of Wadge rank
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and other relevant facts from Descriptive Set Theory are recalled in sections 2 and
3.) In order to state our characterization of cardinality pointclasses, we need an

auxiliary definition. Since |Γ| = |Γ ∪ Γ̆| for any pointclass Γ containing ∆0
1 (see

Corollary 19 below), it is enough to restrict our attention to self-dual pointclasses.
By AD the self-dual pointclasses are exactly the levels of the Wadge hierarchy—that
is, they are of the form

P(α)(R) = the collection of all sets of Wadge rank < α.

Say that a self-dual ∆ is a cardinality level just in case |∆′| < |∆| for any self-dual
∆′ ⊂ ∆. Since cardinality pointclasses correspond to cardinality levels, determining
all cardinality pointclasses amounts to pinning-down those ordinals α for which
P(α)(R) is a cardinality level. In this paper a description of such ordinals is given,
providing thus a complete answer to Question 1.

Theorem 1. Assume AD + DC(R). Then P(α)(R) is a cardinality level iff α = 3
or

∃ξ < Θ
(
α = ωξ

1 + 1 ∨ (α = ωξ
1 & ξ is limit)

)
.

DC(R) is the Axiom of Dependent Choices over the reals, and Θ is the supremum
of the ordinals which are the surjective image of R,

(1) Θ = sup{α | ∃f : R � α} ,

and it is also the length of the Wadge hierarchy.
Theorem 1 subsumes all previous results—see Corollary 27. For example, by

[Wad83] the Wadge rank of a complete Σ0
α set is ωξ

1, with ξ limit of uncountable
cofinality if α ≥ 3, and ξ = 1 when α = 2. Notice that

P(ωξ
1+1)(R) = Σ0

α ∪Π0
α and P(ωξ

1)(R) = ∆0
α

for this ξ. Using Theorem 1 it follows that for 2 ≤ β < α < ω1,

|Σ0
β| < |∆0

α| < |Σ0
α| = |Σ0

α ∪Π0
α| .

(The case when β = 1 and α = 2 is a bit different as |Σ0
1| = |∆0

2| = |R|.)
Assuming AD, each pointclass Γ is the surjective image of R, so it is in bijection

with R/E for some equivalence relation E on R. Conversely, suppose E is an
equivalence relation on R, and let α be the Wadge rank of E (after identifying
R × R with R). Then every equivalence class [x]E is the continuous pre-image of
E∩ ({x}×R), which is in P(α+1)(R) (if α ≥ ω—see Lemma 6 below), since it is the
intersection of a set of Wadge rank α and a closed set, and hence R/E ⊆ P(α+1)(R).
Therefore the cardinalities of the pointclasses P(α)(R) as in Theorem 1 are cofinal
in the cardinalities of quotients of R.

Theorem 1 is stated and proved under AD, but since determinacy is used in a
“local” way, weaker versions of the theorem—compatible with AC—can be extracted
from its proof. For example, suppose we restrict ourselves to Borel pointclasses,
that is pointclasses contained in ∆1

1. Thus a self-dual Borel pointclass is of the
form P(α)(R) with α ≤ η, where η is the Wadge rank of a complete Σ1

1 set or,
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equivalently, of a complete Π1
1 set. Each Borel pointclass is the surjective image

of R, i.e., there is a πΓ : R � Γ and moreover such πΓ can be taken so that the
equivalence relation

x ∼Γ y ⇐⇒ πΓ(x) = πΓ(y)

is Π1
1. A function F : Γ → Λ between Borel pointclasses is said to be Borel-in-the-

codes if there is a Borel F̂ : R → R such that

x ∼Γ y =⇒ F̂ (x) ∼Λ F̂ (y)

and F (A) = πΛ(F̂ (x)), for some/any x ∈ R such that πΓ(x) = A. Let us say that
a self-dual Borel pointclass P(α)(R) is a ∆1

1-cardinality level if it does not admit
a Borel-in-the-codes injection into some P(β)(R), with β < α. Then the proof of
Theorem 1 yields:

Theorem 1′ (ZFC). If P(α)(R) ⊆ ∆1
1, then P(α)(R) is a ∆1

1-cardinality level iff
α = 3 or

∃ξ
(
α = ωξ

1 + 1 ∨ (α = ωξ
1 & ξ is limit)

)
.

Similarly, if we assume Projective Determinacy and restrict the injections between
projective pointclasses to be projective-in-the-codes, we have a characterization of
all projective pointclasses which are projective-cardinality level.

The paper is organized as follows: after presenting the notations and conventions
in §2, we summarize the relevant results on the Wadge hierarchy in §3. The basic
facts about cardinalities of pointclasses are proved in §4, while the proof of the key
result (Theorem 29) for showing Theorem 1 is in §5. In the Appendix a proof of a
special case of Theorem 1 is sketched, stating that there are more 2-Σ0

2 sets (i.e.,
sets of the form F \G with F, G ∈ Σ0

2) than Σ0
2 sets. This was our first result and

its proof—properly generalized—yielded the main result of this paper. We hope
that this proof (which can be read independently from the rest of the paper) will be
helpful to get a better understanding of the arguments in Sections 4 and 5.

2. Preliminaries

As customary in set theory, R denotes the Baire space ωω, with the topology
generated by the metric

d(x, y) =

{
0 if x = y,

2−n if n is least such that x(n) 6= y(n).

Thus the basic open sets are of the form Ns = {x ∈ R | x ⊃ s}, with s ∈ <ωω.
For A ⊆ R, the interior of A is denoted by Int(A), and the complement R \ A of

A is denoted by ¬A.
A tree on ω is a T ⊆ <ωω which is closed under initial segments; it is pruned iff

∀t ∈ T ∃s ∈ T (t ⊂ s). The body of T is the set [T ] = {x ∈ R | ∀n(x � n ∈ T )} of
all infinite branches of T ; [T ] is a closed subset of R, and all closed subsets of R are
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of this form with T pruned. The boundary of T is the set of all sequences that just
left T , that is

∂T = {s ∈ <ωω | s /∈ T & s � lh(s)− 1 ∈ T} .

If s, t ∈ <ωω, then sat is the concatenation of s and t; when t = 〈n〉 we will often
write san instead of sa〈n〉. The definition of sat is extended in the obvious way
to the case when t is an infinite sequence, i.e., when t ∈ R. For x ∈ <ωω ∪ R let
x + 1 = 〈x(n) + 1 | n < lh(x)〉 and x −̇ 1 = 〈x(n) −̇ 1 | n < lh(x)〉, where, for k ∈ ω,

k −̇ 1 =

{
k − 1 if k ≥ 1,

0 otherwise.

For k, n ∈ ω let k(n) be the sequence of n-many consecutive k’s, that is, k(0) = ∅ and
k(n+1) = k(n) a〈k〉.

For s ∈ <ωω, T a tree on ω, and A ⊆ R, let

saA = {sax | x ∈ A} ,

Absc = {x | sax ∈ A} ,

Tbsc = {t | sat ∈ T} ,

so that saR = Ns, (saA)bsc = A, and [T ]bsc = [Tbsc].
Let S, T be pruned trees on ω. A map Φ : S → T is

monotone: if Φ(∅) = ∅ and s ⊆ s′ =⇒ Φ(s) ⊆ Φ(s′),
Lipschitz: if it is monotone and lh(Φ(s)) = lh(s),
continuous: if it is monotone and limn→∞ lh(Φ(x � n)) = ∞ for each x ∈ [S].

Clearly, if Φ is Lipschitz, then Φ is continuous, but while the definition of “Lipschitz”
makes sense even for finite trees, the definition of “continuous” is of interest only
when [S] 6= ∅. If S is pruned and non-empty and Φ : S → T is continuous, then we
can define a continuous function

fΦ : [S] → [T ], x 7→
⋃
n

Φ(x � n) ,

and if Φ is Lipschitz, then fΦ is Lipschitz with constant ≤1 with respect to the
metric that [S] and [T ] inherit from R, that is

∀x, y ∈ [S]∀n (x � n = y � n =⇒ fΦ(x) � n = fΦ(y) � n) .

Every function f : [S] → [T ] which is continuous (Lipschitz with constant ≤1) is of
the form fΦ, where Φ : S → T is continuous (resp. Lipschitz). Since a continuous f :
R → R is completely determined by a continuous Φ : <ωω → <ωω, and since each Φ
is—essentially—a subset of ω, every continuous function can be coded by a real, i.e.,
a map x 7→ fx can be defined so that {fx | x ∈ R} = {f ∈ RR | f is continuous}. We
call such a map a parametrization or coding of the continuous functions. A diagonal
argument shows that no such a parametrization yields a continuous evaluation map
R2 → R, (x, y) 7→ fx(y). In order to achieve continuity we must restrict ourselves
to Lipschitz functions: let

(2) 〈sn | n ∈ ω〉
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be a standard enumeration without repetitions of <ωω \ {∅} such that sn ⊂ sm =⇒
n < m. For any x ∈ R let Φx : <ωω → <ωω be defined by

Φx(s) = t ⇐⇒ lh(s) = lh(t) & ∀n ∀i < lh(s) (sn = s � i + 1 =⇒ t(i) = x(n)) .

This is well-defined since s � i + 1 = sn for a unique n, and clearly Φx is Lipschitz.
Moreover, for every Lipschitz Φ : <ωω → <ωω there is a unique x such that Φ = Φx.
Letting `x : R → R be the Lipschitz functions induced by Φx, it is not hard to see
that the evaluation map (x, y) 7→ `x(y), is continuous. Therefore we have shown
that:

(3) The correspondence x 7→ `x is a bijection between R and {f ∈ RR | f is
Lipschitz}, and the map R2 → R, (x, y) 7→ `x(y), is continuous.

If T is a pruned tree, then we can define a canonical Lipschitz map %T : <ωω � T
as follows. For any t ∈ T and n > lh(t), the left-most extension of t in T of length
n is the unique s ∈ T such that s ⊃ t, lh(s) = n and it is lexicographically least
among such s. Also, for t ∈ <ωω let t̂ be the longest initial segment of t inside T ,
i.e., t̂ = t if t ∈ T or t̂ = t � n if n + 1 ∈ dom(t) and t � n + 1 ∈ ∂T . Let

(4) %T (t) = the left-most extension of t̂ in T of length lh(t).

Then %T is the identity on T , and the induced function rT : R → [T ] is a surjec-
tive Lipschitz function which is the identity on [T ], and it is called the canonical
retraction of R onto [T ].

If a tree on ω is identified with its characteristic function, then the sets of all
non-empty trees on ω can be identified with a closed subset of the Cantor space: if
the sn’s are as in (2), then every non-empty tree T is coded by x ∈ ω2 where

x(n) = 1 ⇐⇒ sn ∈ T .

In particular

(5) lim
n→∞

Tn = T ⇐⇒ ∀s ∀∞n (s ∈ Tn ⇐⇒ s ∈ T ) ,

where ∀∞ means “for all, but finitely many.” Thus

(6) PTr = {T | T is a pruned non-empty tree on ω}
is (identified with) a Gδ subset of ω2. Similarly, the set

{Φ | dom(Φ) = T is a pruned tree on ω and Φ : T → <ωω is Lipschitz}
is a Gδ subset of ω2, and therefore, if Φ : T → <ωω and Φn : Tn → <ωω (n ∈ ω) are
in this set, then

(7) lim
n→∞

Φn = Φ ⇐⇒ lim
n→∞

Tn = T & ∀s, t∀∞n (Φn(t) = s ⇐⇒ Φ(t) = s) .

In particular the set

(8) H = {〈(Tn, Φn) | n ∈ ω〉 | Tn ∈ PTr & Φn : Tn → <ωω is Lipschitz}
is an uncountable Polish space.
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3. The Wadge hierarchy

The results in this section, unless otherwise indicated, are either folklore or are
taken from [Wad83]. We assume AD + DC(R) throughout.

A. Basic facts. For A, B ⊆ R we say that A is Wadge reducible to B, in symbols
A ≤W B, just in case A = f−1“B for some continuous f : R → R; if the function f
is actually Lipschitz, then we will write A ≤L B. The relation ≤W is a pre-order on
P(R) and ≡W is the induced equivalence relation, A ≡W B iff A ≤W B & B ≤W A.
The equivalence classes modulo ≡W are called Wadge degrees, and

[A]W = {B ⊆ R | B ≡W A}
is the Wadge degree of A. The relation A <W B means that A ≤W B & B �W A.
The partial orders that ≤W and <W induce on the Wadge degrees are denoted by
≤ and <, that is [A]W ≤ [B]W iff A ≤W B (and similarly for < and <W). It is easy
to see that ∅ �W R and R �W ∅, and that if A 6= ∅, R then ∅ <W A and R <W A.
In particular [∅]W = {∅} and [R]W = {R} are the <-least degrees. A set A—or a
degree [A]W—is a successor if there is a set B <W A such that for no set C we have
B <W C <W A. Otherwise it is said to be limit, unless A = R or A = ∅.

The Lipschitz game on A, B ⊆ R, in symbols GL(A, B), is the game where I and
II alternately play natural numbers a0, b0, a1, b1,. . . and, letting a = 〈an | n ∈ ω〉
and b = 〈bn | n ∈ ω〉, then

II wins GL(A, B) ⇐⇒ (a ∈ A ⇐⇒ b ∈ B) .

The Wadge game GW(A, B) is similar, but II has the further option to pass at any
given round. If II plays only finitely many times and passes from some point on,
then he loses. Otherwise the winning condition is as before. It is not hard to see
that

II wins GW(A, B) ⇐⇒ A ≤W B

II wins GL(A, B) ⇐⇒ A ≤L B

where A ≤L B means that A is Wadge reducible to B via a Lipschitz map. Moreover,
if I wins GL(A, B) or GW(A, B), then ¬B ≤L A. Wadge’s Lemma says that assuming
AD (or even just the determinacy of all Lipschitz games) then

A ≤W B ∨ ¬B ≤W A .

By a theorem of Martin’s, <W is well-founded on P(R)—see [Kec95, Thm 21.15]
or [And03, Thm 5] for a proof. Therefore the sets of reals are stratified according to
the ordinal ‖A‖W, the Wadge rank of A, that is the rank of A in the relation <W.
For technical reasons, it is convenient to assume that the Wadge rank takes values
in the non-zero ordinals, so that the <W-least sets, R and ∅, have rank 1. A set A
is Wadge self-dual (or simply: self-dual) iff A ≡W ¬A, or, equivalently, A ≤W ¬A;
otherwise A is non-self-dual. A Wadge degree [A]W is self-dual (non-self-dual) iff A
is self-dual (res. non-self-dual). A very useful result is the following

Theorem 2 (Steel, Van Wesep). If A is non-self-dual and B ≤W A, then B ≤L A.
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For a proof see [VW78, Theorem 3.1].
This is how the structure of the Wadge degrees looks like:

• • • • •
• • • · · · · · · • • · · · · · · • · · ·

• • • • •
↑

cof = ω
↑

cof > ω

At limit levels of countable cofinality there is a single self-dual degree, at levels
of uncountable cofinality there is a non-self-dual pair of degrees. The length of
this hierarchy is the ordinal Θ defined in (1). Assuming AD, Θ is a cardinal, and
moreover a fairly large one—larger than ℵ1,ℵ2, . . . ,ℵω, larger than the least ℵ-fixed
point and so on. If we assume only a fragment of AD, say Borel determinacy, then
the arguments and the picture above apply only to the Wadge degrees of Borel sets,
and the length of the hierarchy is ‖A‖W where A ∈ Σ1

14Π1
1, which is an ordinal

strictly between ω1 and ω2.
As mentioned in the introduction, a pointclass is a non-empty Γ ⊂ P(R) closed

under continuous pre-images. A pointclass Γ is non-trivial if Γ * {∅, R}; equivalent
formulations are: Γ is infinite, or: Γ ⊇ ∆0

1. Since <W is well-founded, then every
pointclass Γ is of the form {A ⊆ R | A <W B} or of the form {A ⊆ R | A ≤W B}:
in the latter case we say that Γ is principal and generated by A, and the set A (and
hence any other A′ ∈ [A]W) is said to be Γ-complete, or complete for Γ. Not every
pointclass is principal: for example ∆1

1, the collection of Borel sets, is not. The
dual of a pointclass Γ is the pointclass {¬A | A ∈ Γ}, and it is usually denoted

by Γ̆ or by Γ`. A pointclass Γ is self-dual if Γ̆ = Γ, that is, if it is closed under
complements. Otherwise it is called non-self-dual. If Γ is generated by A, then Γ is
self-dual iff A is self-dual. Theorem 2 implies that

(9) Γ non-self-dual and A ∈ Γ \ Γ̆ =⇒ Γ = {X | X ≤L A} .

The non-principal pointclasses are of the form Γ = {B ⊆ R | B <W A}, but not
conversely: if C is self-dual and ‖C‖W + 1 = ‖A‖W, then {B ⊆ R | B <W A} is
generated by C. A non-self-dual pointclass must be principal, but, obviously, the
converse is not true. The Wadge rank of a pointclass Γ is

‖Γ‖W = sup{‖A‖W + 1 | A ∈ Γ} .

The +1 in the definition is needed to distinguish the Wadge rank of {X | X ≤W A}
from the one of {X | X <W A}, when ‖A‖W is limit. For example, if η is the rank of a
Σ1

1-complete or a Π1
1-complete set, then ‖∆1

1‖W = η, while ‖Σ1
1‖W = ‖Π1

1‖W = η+1.
A level of the Wadge hierarchy is a set of the form

P(α)(R) = {A ⊆ R | ‖A‖W < α}
for some α. It is a self-dual pointclass for all α > 1, and it is non-trivial if α > 2.
Conversely, if ‖Γ‖W = α then Γ ∪ Γ̆ = P(α)(R).

B. Operations on degrees.
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B.1. The join operation and the tree T . Given a sequence An ⊆ R, the join of the
An’s is the set

⊕
nAn =

⋃
n naAn. The join of A and B is A⊕B = (0aA)∪(1aB). It

is easy to check that [
⊕

nAn]W = supn [An]W, that is: ∀i ([Ai]W ≤ [
⊕

nAn]W), and if
∀i ([Ai]W ≤ [B]W) then [

⊕
nAn]W ≤ [B]W. Similarly [A⊕B]W = sup{[A]W, [B]W}.

For A ⊆ R and α ∈ Ord let

T (A; α) = {s ∈ <ωω | α ≤ ‖Absc‖W}

and let

T (A) = T (A; ‖A‖W)

= {s ∈ <ωω | Absc ≡W A} .

T (A; α) is a (possibly empty) tree on ω. Since (¬A)bsc = ¬
(
Absc

)
and since the

Wadge rank of a set coincides with the rank of its complement, then T (A; α) =
T (¬A; α).

Lemma 3. If B is self-dual and β = ‖B‖W, then T (A; β + 1) is pruned.

Proof. If β ≥ ‖A‖W, then T (A; β + 1) = ∅ hence the result is trivially true. So
we may assume that β < ‖A‖W and hence that T (A; β + 1) is non-empty. Let
s ∈ T (A; β + 1) and suppose that ∀t ⊃ s

(
‖Abtc‖W ≤ β

)
. Then ∀n

(
Absanc ≤W B

)
and hence Absc =

⊕
nAbsanc ≤W B, a contradiction. �

This implies that if A is non-self-dual and ‖A‖W is a successor ordinal, then T (A)
is pruned, since the immediate predecessor of a (successor) non-self-dual degree is
self-dual. In fact Wadge showed that for each A ⊆ R

A is non-self-dual ⇐⇒ T (A) is pruned,

A is self-dual ⇐⇒ T (A) is well-founded.
(10)

B.2. The addition operation. The addition of A, B ⊆ R is the set

A + B = {(s + 1)a0ax | s ∈ <ωω & x ∈ A} ∪ {x + 1 | x ∈ B} .

The following are easily proven:

(11) ¬(A + B) = ¬A + ¬B,

(12) A ≤W A′ & B ≤W B′ =⇒ A + B ≤W A′ + B′.

(13) A + Bbsc = (A + B)bs+1c.

Lemma 4. Let A be self-dual.

(a) ([A+∅]W, [A+R]W) is the least non-self-dual pair above [A]W. In particular
A <W A + B for any B.

(b) B ≤W C ⇐⇒ A + B ≤W A + C.
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Proof. (a) Since ¬(A + R) ≡W A + ∅ by (11) and (12), and T (A + ∅) = T (A +
R) = {s + 1 | s ∈ <ωω} is ill-founded, then ([A + ∅]W, [A + R]W) is a non-self-
dual pair by (10). Suppose A <W B and B is non-self-dual, so that T (B) is
ill-founded by (10): we will show that [T (B)] ∩ B 6= ∅ =⇒ A + R ≤W B and
[T (B)] ∩ ¬B 6= ∅ =⇒ A + ∅ ≤W B. Since A ≤W A + ∅ and A ≤W A + R via the
function x 7→ 0ax, this will finish the proof. Suppose b ∈ [T (B)] ∩ B: then II wins
GW(A + R, B) by enumerating b as long as I does not play 0. If at some round n I
plays 0 then II can win the game from this point on since A ≤W Bbb�nc. This proves
that [T (B)] ∩ B 6= ∅ =⇒ A + R ≤W B. The other implication, being similar, is
left to the reader.

(b) The (=⇒) direction follows from (12), so it is enough to prove (⇐=). Suppose
τ is a winning strategy for II in GW(A + B, A + C). It is enough to show that II
is not the first player to play 0, since then II wins GW(B, C) using τ ′ defined by

τ ′(s) = n ⇐⇒ τ(s + 1) = n + 1 .

Towards a contradiction suppose τ(s + 1) = 0, for some s ∈ <ωω of minimal length.
Let also t + 1 be the sequence constructed by τ before this stage, so that after this
round the two positions will be s + 1 and (t + 1)a0. Then

A <W A + Bbsc (by part (a))

= (A + B)bs+1c (by (13))

≤W (A + C)b(t+1)a0c (since τ is winning)

= A ,

a contradiction. �

The hypothesis in (a) that A be self-dual is necessary since, for example, R+R =
R. Thus if A is self-dual, then

A + B <W A + C ⇐⇒ B <W C .

In other words, the map B 7→ A+B is strictly <W-increasing, hence ‖A‖W+‖B‖W ≤
‖A + B‖W. In fact equality holds, that is:

(14) if A is self-dual and B is arbitrary then ‖A + B‖W = ‖A‖W + ‖B‖W.

To prove this it is enough to show that if A <W B with A self-dual, then B ≡W A+C,
for some set C, and this is the content of part (a) of the next result.

Lemma 5. Suppose A <W B, with A self-dual and let α = ‖A‖W. Let T =
T (B; α + 1) and let rT : R � [T ] be the canonical retraction of R onto [T ]. Then:

(a) A + r−1
T “(B ∩ [T ]) ≡W B.

(b) ‖B \ [T ]‖W ≤ α + 1.
(c) Suppose there is a self-dual set of Wadge rank α+γ, and α+γ +1 ≤ ‖B‖W.

Let U = T (B; α + γ + 1). Then U ⊆ T and

‖r−1
T “

(
B ∩ ([T ] \ [U ])

)
‖W ≤ γ + 1 .
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Proof. (a) First of all, notice that the tree T is pruned by Lemma 3, so that the maps
%T : <ωω � T as in (4) and rT : R � [T ] are defined. For notational simplicity, let
C = r−1

T “(B ∩ [T ]). Then II wins GW(A + C, B) as follows:

As long as I does not play 0, then II subtracts 1 and applies %T to
maintain his position inside T , so that if at round n I is at position
s + 1, then II is at position %T (s). Thus if I never plays 0, then

x + 1 ∈ A + C ⇐⇒ x ∈ C ⇐⇒ rT (x) ∈ B .

If I plays 0 at round n, then II passes and then applies a reduction of
A to Bb%T (s)c, where s is I’s position before round n. Such a reduction
exists since %T (s) ∈ T , and therefore ‖A‖W < ‖Bb%T (s)c‖W.

Conversely II wins GW(B, A + C) as follows:

As long as I plays inside T then II simply copies I’s moves and adds
1, so that the respective positions will be s ∈ T and s + 1. Thus if I
never leaves T , letting x and x + 1 be the reals played by I and II,
then rT (x) = x ∈ [T ] and

x ∈ B ⇐⇒ x ∈ C ⇐⇒ x + 1 ∈ A + C .

If at some round I reaches a position s ∈ ∂T , then II plays 0 and
then, since Bbsc ≤W A, II can apply a reduction of Bbsc to A and win
the game.

Therefore A + C ≡W B as required.

We now prove part (b). By part (a) of Lemma 4, ‖A + ∅‖W = ‖A‖W + 1, so it is
enough to prove that II wins GW(B \ [T ], A + ∅). Consider the following strategy
for II:

As long as I plays inside T then II plays 1. If at some round I reaches
a position s ∈ ∂T , then II answers 0 and then applies a reduction of
Bbsc to A.

It is clear that this is a winning strategy for II, hence (b) holds.

Finally we deal with part (c). The reduction in part (a) witnessing A+r−1
T “(B ∩

[T ]) ≤W B proves that

A + r−1
T “

(
B ∩ ([T ] \ [U ])

)
≤W B \ [U ] .

By part (b) with U replacing T we have that ‖B \ [U ]‖W ≤ α + γ + 1. Therefore by
(14)—which follows from part (a)—we have

‖A‖W + ‖r−1
T “

(
B ∩ ([T ] \ [U ])

)
‖W ≤ α + γ + 1 ,

hence ‖r−1
T “

(
B ∩ ([T ] \ [U ])

)
‖W ≤ γ + 1. �

Part (c) of Lemma 5 will be useful in section 4.

Lemma 6. (a) If C is closed and U is open, then A∩C ≤W ∅+A and A∪U ≤W

R + A. In particular, if ‖A‖W ≥ ω, then A ∩ C ≤W A and A ∪ U ≤W A.
(b) If ‖A‖W ≥ ω, then A \ Int(A) ≡W A.
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(c) If ‖Γ‖W ≥ ω, then Γ is closed under intersections with closed sets and under
unions with open sets.

Proof. (a) If T is a pruned tree on ω, then II wins GW(A ∩ [T ], ∅+ A):

As long as I plays in T , then II copies (and adds 1); if I leaves T
then II plays 0 and copies.

We leave it to the reader to check that this is a winning strategy.
If ‖A‖W ≥ ω and D ∈ ∆0

1 \ {R, ∅}, then

‖∅+ A‖W ≤ ‖D + A‖W = 2 + ‖A‖W = ‖A‖W ,

and since A ≤W ∅+ A, then A ≡W ∅+ A, which implies the desired conclusion.
The case of A ∪ U with U open, can be obtained by taking complements.

(b) Let B = A \ Int(A). By part (a) B ≤W A and A = B ∪ Int(A) ≤W R + B.
Since ‖A‖W ≤ ‖R + B‖W ≤ ‖R + A‖W = ‖A‖W, then B ≡W A follows.

(c) Follows at once from part (a). �

If A = f−1“B, where f : ω2 → R is continuous, then it does not necessarily follow1

that A ≤W B (take, e.g., ω2, R, and the inclusion function).

Lemma 7. Suppose A ⊆ ω2, B ⊆ R and ‖B‖W ≥ ω. Suppose also A = f−1“B,
where f : ω2 → R is continuous. Then A ≤W B.

Proof. By part (b) of Lemma 6, we may assume that B has empty interior. Let
Φ : <ω2 → <ωω be a continuous map inducing f . Since, by assumption, Bbsc 6= R
for all s, choose a real bs ∈ R \ Bbsc. Let Ψ : <ωω → <ωω be defined as follows: for

every t ∈ <ωω let t̂ ⊆ t be largest such that t̂ ∈ <ω2 and let n = lh(t)− lh(t̂) and let

Ψ(t) = Φ(t̂)a(bΦ(t̂) � n) .

It is easy to check that Ψ is continuous and that its induced function witnesses
A ≤W B. �

B.3. The \ and [ operations. For A ⊆ R let

A\ = {(s0 + 1)a0a · · · a0a(sn + 1)a0a(x + 1) | s0, . . . , sn ∈ <ωω & x ∈ A}
and let A[ = A\ ∪ {x ∈ R | ∃∞n x(n) = 0}, where in the definition of A\ it is
understood that its elements might be of the form x + 1 with x ∈ A. The \ and [
operations enjoy the following properties:

(15) A ≤W B =⇒ A ≤W A\ ≤W B\ & A ≤W A[ ≤W B[ (monotonicity).

(16) A\\ ≡W A\ and A[[ ≡W A[ (idempotence).

(17) If A is self-dual, then [A\]W, [A[]W are a non-self-dual pair, and

‖A\‖W = ‖A‖W · ω1 .

1Recall that, by definition, a function witnessing A ≤W B must have domain R.
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(18) ∅\ = ∅ and R\ = {x ∈ R | ∀∞n x(n) 6= 0} ∈ Σ0
2 \Π0

2, hence by monotonicity
and idempotence

∀A ∈ Σ0
2 \ {∅}

(
A\ ≡W R\

)
.

In particular, if A is clopen, ‖R\‖W = ‖A\‖W = 2 · ω1 = ω1.
Similarly, R[ = R, ∅[ = {x ∈ R | ∃∞n x(n) = 0} ∈ Π0

2 \ Σ0
2, ∀A ∈

Π0
2 \ {R}

(
A[ ≡W ∅[

)
and ‖∅[‖W = ω1.

If ‖A‖W is a successor ordinal or limit of cofinality ω, then A\ is non-self-dual and
‖A\‖W = ‖A‖W · ω1: this is immediate by (17) if ‖A‖W is limit of cofinality ω or if
‖A‖W is a successor and A is self-dual; if A is non-self-dual and ‖B‖W + 1 = ‖A‖W,
then by monotonicity B\ ≤W A\ ≤W (A⊕ ¬A)\, hence

‖B\‖W = (‖A‖W − 1) · ω1 = ‖A‖W · ω1 = (‖A‖W + 1) · ω1 = ‖(A⊕ ¬A)\‖W ,

so that B\ ≡W A\ ≡W (A ⊕ ¬A)\, which implies the desired result. On the other
hand, if ‖A‖W is limit of uncountable cofinality, then ‖A\‖W is either ‖A‖W or
‖A‖W · ω1: if ‖A\‖W 6= ‖A‖W, then ‖A‖W < ‖A\‖W since A ≤W A\ by (15), and as
A <W A ⊕ ¬A ≤W A\, then by monotonicity and idempotence (A ⊕ ¬A)\ ≡W A\;
since A⊕ ¬A is self-dual, then ‖A\‖W = ‖A⊕ ¬A‖W · ω1 = ‖A‖W · ω1. To see that
both possibilities (‖A\‖W = ‖A‖W and ‖A\‖W = ‖A‖W · ω1) can occur, consider for
the first case A = R\, and A = ∅[ for the second. The first case is immediate from
(16) and for the second notice that R ≤W ∅[ ≤W (∅[)\ hence R\ ≤W (∅[)\: if (∅[)\

and ∅[ were Wadge equivalent, then R\ ≤W ∅[, contrary to the fact that [∅[]W, [R\]W
form a non-self-dual pair by (17) and (18), and therefore

‖A‖W = ‖∅[‖W = ‖R\‖W < ‖(∅[)\‖W = ‖A\‖W .

The \ and [ operations can be used to construct canonical sets of rank ωn
1 . Let

(19) C0 = ∅, Cn+1 = (¬Cn)\, Cω =
⊕

nCn .

Then ¬Cn+1 ≡W C[
n, ‖Cn‖W = ωn

1 , and ‖Cω‖W = ωω
1 . Say that a pointclass Γ is

\-closed iff A ∈ Γ =⇒ A\ ∈ Γ. The \-closed pointclasses are most important, since
these pointclasses (and their duals) are exactly those Γ’s such that |Γ| > |Γ′|, for
all Γ′ ⊂ Γ, as we shall see in the next section.

By (15) and (16) the first ω + 1 \-closed pointclasses are

Λn = {A | A ≤W Cn} (n ∈ ω)

Λω = {A | A <W Cω} .
(20)

Then Λ0 ⊂ Λ1 ⊂ . . . are non-self-dual, Λn non-trivial if n > 0, and ‖Λn‖W = ωn
1 +1,

while Λω is self-dual and ‖Λω‖W = ωω
1 . Since {B | B ≤W A\} is always a \-closed

pointclass by (15) and (16), then there is a non-self-dual—and hence principal—

pointclass of Wadge rank ωξ+1
1 +1, for every ξ < Θ. On the other hand P(ωξ+1

1 )(R),

the self-dual pointclass of rank ωξ+1
1 , is not \-closed, since if A is a self-dual set of

minimal rank ≥ ωξ
1, then A ∈ P(ωξ+1

1 )(R) but ‖A\‖W = ωξ+1
1 hence A\ /∈ P(ωξ+1

1 )(R).
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As the increasing union of \-closed pointclasses is \-closed, there are self-dual non-
principal \-closed pointclasses of rank ωξ

1 with ξ limit. The calculations above leave

open the case of a non-self-dual pair of pointclasses Γ, Γ̆ of rank ωξ
1 + 1, with ξ

limit of uncountable cofinality. This case was settled by Van Wesep in [VW77], by

showing that at least one among Γ and Γ̆ is \-closed.
To summarize:

(21) Let Γ be \-closed: if Γ is non-self-dual, then ‖Γ‖W = ωξ
1 +1; if Γ is self-dual,

then ‖Γ‖W = ωξ
1 with ξ limit.

Conversely: if Γ is self-dual and ‖Γ‖W = ωξ
1 with ξ limit, then Γ is \-closed;

if Γ is non-self-dual and ‖Γ‖W = ωξ
1 + 1, then

• if ξ is a successor ordinal, then exactly one among Γ and Γ̆ is \-closed,
• if ξ is a limit ordinal and cof(ξ) > ω, then at least one among Γ and Γ̆

is \-closed.

The next two results characterize the \-closed pointclasses.

Lemma 8. Let Γ be a pointclass such that whenever An ∈ Γ and Fn ∈ Π0
1, with

Fn ∩ Fm = ∅ for n 6= m, then
⋃

n(Fn ∩ An) ∈ Γ. Then Γ is \-closed.

Proof. Let A ∈ Γ. Since ∅\ = ∅ ∈ Γ, we may assume that A 6= ∅. Let 〈sn | n ∈ ω〉
be an enumeration without repetitions of

{∅} ∪ {sa0 | s ∈ <ωω} .

Let

Fn = {sn
a(x + 1) | x ∈ R} ,

An = {sn
ay | y −̇ 1 ∈ A} .

Then An ∩ Fn = A\ ∩ Fn, and since A\ ⊆
⋃

n Fn, then A\ =
⋃

n(An ∩ Fn). The Fn’s
are Π0

1 and they are pairwise disjoint (since the sn’s are distinct), so we only need
to check that An ∈ Γ. In fact each An is Wadge reducible to A via the function

x 7→

{
y −̇ 1 if x = sa

n y,

a if sn 6⊂ x,

where a /∈ A. �

Conversely,

Lemma 9. Suppose Γ is generated by A, and that it is \-closed. If An ∈ Γ, and
Fn ∈ Π0

1, with Fn ∩ Fm = ∅ if n 6= m, then
⋃

n(Fn ∩ An) ∈ Γ.

Proof. Say C =
⋃

n(Fn∩An) with An ∈ Γ and with Fn ∈ Π0
1 and disjoint. We must

show that C ≤W A\. Let Tn be the pruned tree such that Fn = [Tn], and for each n
fix a winning strategy τn for II in GW(An, A). Then II wins GW(C, A\) as follows:
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II follows τ0 + 1 as long as I’s position is in T0;
if I leaves T0, then II plays 0 and switches to τ1 + 1 and follows it as
long as I’s position is in T1;
if I leaves T1, then II plays 0 and switches to τ2 + 1 and follows it as
long as I’s position is in T3;
. . . And so on.

Let x and y be the reals played by I and II according to the strategy above. If
x /∈

⋃
n[Tn] then y will contain infinitely many 0’s so x /∈ C and y /∈ A\, hence II

wins. If instead x ∈ [Tn] for some n, then after n-many false starts II will settle
on the strategy τn so that y = sa(z + 1) where s is a finite sequence containing
n-many 0’s including one in its last entry, and z is τn’s response to x. Therefore
x ∈ C ⇐⇒ x ∈ An ⇐⇒ z ∈ A ⇐⇒ y ∈ A\, and II wins. �

Corollary 10. The smallest \-closed pointclass containing a set A is

{
⋃

n(Fn ∩ An) | Fn ∈ Π0
1 are pairwise disjoint and An ≤W A} .

The hypothesis in Lemma 9 that Γ is principal is necessary, since if each Γn is
\-closed and Γ0 ⊂ Γ1 ⊂ . . . , then Γ∞ =

⋃
n Γn does not satisfy the conclusion

of Lemma 9. To see this, for each n pick Bn ∈ Γn with Bn+1 /∈ Γn, so that⊕
nBn /∈ Γ∞: then each An = naBn is in Γ∞, the Fn = naR are closed (in fact:

clopen) and pairwise disjoint, and
⊕

nBn =
⋃

n(Fn ∩ An).
Also notice that since every Σ0

2 in the Baire space is the countable union of disjoint
closed sets, then the Fn’s in the results above can be replaced with disjoint Σ0

2 sets.
By Lemmas 6, 8 and 9, if Γ is principal and ‖Γ‖W ≥ ω, then

{
⋃

n An | An ∈ Γ and the Cl(An) are pairwise disjoint}
is the least \-closed pointclass containing Γ.

B.4. The difference hierarchy. Recall Hausdorff’s definition of the difference hierar-
chy over a pointclass Γ: Given an n-tuple 〈A0, . . . , An−1〉 of subsets of R let

Diffk<n Ak =

{⋃
2k<n(A2k \

⋃
i<2k Ai) if n is odd,⋃

2k+1<n(A2k+1 \
⋃

i<2k+1 Ai) if n is even.

In other words, Diffk<n Ak = {x ∈
⋃

k<n Ak | the least k < n such that x ∈ Ak has
parity different from n}, and let

n-Γ = {Diffk<n Ak | A0, A1, . . . , An−1 ∈ Γ}
be the pointclass of all n-differences of sets in Γ. (In the literature n-Γ is often
denoted by Diff(n;Γ).) Clearly 1-Γ is simply Γ. (These definitions extend to the
case of n a non-zero countable ordinal.)

Suppose Γ is a pointclass closed under finite unions. Since Diffk<n(
⋃

i<k Ai) =
Diffk<n Ak, it follows that n-Γ is the set of all n-differences of increasing n-tuples of
sets in Γ.

For any fixed n, letting Âk = An−1−k for k < n and Ân = ∅, defines a bijection

〈A0, . . . , An−1〉 7→ 〈Â0, . . . , Ân〉
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between the family of all increasing n-tuples of sets in Γ and the family of all
decreasing n+1-tuples of sets in Γ with last set empty. Regardless wether n is even
or odd we have that if A0 ⊆ A1 ⊆ · · · ⊆ An−1 then

Diffk<n Ak =
⋃

2k<n Â2k \ Â2k+1 ,

and therefore

n-Γ = {
⋃

2k<n A2k \ A2k+1 | A0 ⊇ A1 ⊇ · · · ⊇ An = ∅ & ∀k < n (Ak ∈ Γ)} .

Suppose now that Γ and Γ̆ are both closed under finite unions or, equivalently, Γ
is closed under finite unions and intersections. If A ∈ Γ and B =

⋃
2k<n B2k\B2k+1 ∈

n-Γ, then A ∩ B =
⋃

2k<n(A ∩ B2k) \ (A ∩ B2k+1) ∈ n-Γ, i.e., the pointclass n-Γ is

closed under intersections with sets in Γ. For any fixed n, letting Ǎk = ¬A2n−1−k

for k < 2n, defines a bijection

〈A0, . . . , A2n−1〉 7→ 〈Ǎ0, . . . , Ǎ2n−1〉 ,
between the family of all decreasing 2n-tuples of sets in Γ and the family of all
decreasing 2n-tuples of sets in Γ̆. Since

⋃
k<n A2k \ A2k+1 =

⋃
k<n Ǎ2k \ Ǎ2k+1, it

follows that 2n-Γ = 2n-Γ̆. Similarly, for every fixed n, letting Ãk = ¬A2n−k for
k ≤ 2n, defines a bijection

〈A0, . . . , A2n, ∅〉 7→ 〈Ã0, . . . , Ã2n, ∅〉 ,
between the family of all decreasing (2n + 2)-tuples of sets in Γ with last set empty,

and the family of all decreasing (2n + 2)-tuples of sets in Γ̆ with last set empty. It
is not hard to check that in this situation, letting A2n+1 = ∅ = Ã2n+1, then

R \
(⋃

2k<2n+1 A2k \ A2k+1

)
=

⋃
2k<2n+1 Ã2k \ Ã2k+1 ,

and hence ((2n + 1)-Γ)` = (2n + 1)-Γ̆. If A0 ⊇ · · · ⊇ An+1 = ∅ are in Γ, then⋃
2k<n+1 A2k \ A2k+1 = A0 \

(⋃
2k<n B2k \ B2k+1

)
, where Bi = Ai+1 for i ≤ n.

Conversely, if A and B0 ⊇ · · · ⊇ Bn = ∅ are in Γ, then

A \
(⋃

2k<n B2k \B2k+1

)
= A \

(⋃
2k<n(B2k ∩ A) \ (B2k+1 ∩ A)

)
=

⋃
2k<n+1 A2k \ A2k+1

where A0 = A and Ak+1 = Bk ∩ A for k ≤ n. Therefore (n + 1)-Γ = {A \ B | A ∈
Γ, B ∈ n-Γ} and hence (n-Γ)` ⊆ (n + 1)-Γ.

Let us summarize the observations above:

Lemma 11. Let Γ be a pointclass closed under finite unions and intersections. Then

2n-Γ = 2n-Γ̆ ,

(2n + 1)-Γ̆ = ((2n + 1)-Γ)`,

(n + 1)-Γ = {A \B | A ∈ Γ & B ∈ n-Γ} .

Recall from (20) and the comments following it, that Λn is the n-th \-closed
pointclass.
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Lemma 12. For n ≥ 1

(a) Λn = n-Σ0
2, and

(b) ‖n-Σ0
2‖W = ‖n-Π0

2‖W = ωn
1 + 1.

Proof. (a) The result is true for n = 1, since C1 = R\ is a complete Σ0
2 set, and

suppose Λn = n-Σ0
2. By construction Λn+1 is the pointclass generated by Cn+1 =

(¬Cn)\, hence by Corollary 10

Λn+1 = {
⋃

m(Fm ∩ Am) | Fm ∈ Π0
1 are pairwise disjoint and Am ≤W ¬Cn}

= {
⋃

m(Fm \ Am) | Fm ∈ Π0
1 are pairwise disjoint and Am ∈ n-Σ0

2} .

Replacing each Am with Am∩Fm (which can be done by Lemma 6), we may assume
Am ⊆ Fm. Each Am is of the form

⋃
2k<n Am

2k \ Am
2k+1 with Am

i ∈ Σ0
2, and again we

may assume Fm ⊇ Am
0 ⊇ · · · ⊇ Am

n−1 for every m ∈ ω. Since the Fm’s are disjoint,
then the {Am

i | m ∈ ω} are disjoint, for any fixed i < n, and⋃
m Am =

⋃
m

(⋃
2k<n Am

2k \ Am
2k+1

)
=

⋃
2k<n B2k \B2k+1

where Bi =
⋃

m Am
i ∈ Σ0

2. Therefore⋃
m(Fm \ Am) = (

⋃
m Fm) \ (

⋃
m Am) = (

⋃
m Fm) \ (

⋃
2k<n B2k \B2k+1)

is the difference between a set in Σ0
2 and a set in n-Σ0

2, and therefore it is a set in
(n + 1)-Σ0

2 by Lemma 11.
Conversely, we must show that an arbitrary element of (n + 1)-Σ0

2 is in Λn+1.
By Lemma 11 every element in (n + 1)-Σ0

2 is of the form F \ A, with F ∈ Σ0
2 and

A ∈ n-Σ0
2. Pick Fm closed and disjoint such that F =

⋃
m Fm, and let A0 ⊇ · · · ⊇

An = ∅ be in Σ0
2 and such that A =

⋃
2k<n A2k \A2k+1. Let Bm

k = Ak ∩ Fm ∈ n-Σ0
2,

let Bm =
⋃

2k<n Bm
2k \Bm

2k+1 ∈ n-Σ0
2. Then F \ A =

⋃
m(Fm \Bm) ∈ Λn+1.

(b) follows from (a) and the observations after (20). �

B.5. The stretch operation. Let σ : <ωω → <ωω be defined by σ(∅) = ∅, σ(sa0) =
σ(s), and σ(sa(n + 1)) = σ(s)an. Then σ induces a continuous map S : P → R,
where

(22) P = {x ∈ R | ∃∞n x(n) 6= 0} .

The real S(x) is obtained from x by first eliminating all 0’s and then subtracting 1
from all the surviving entries. The stretch of A ⊆ R is

Astr = S−1“A .

The basic properties of the stretch operation are:

(23) ~0 ∈ [T (Astr)], hence Astr is non-self-dual.

(24) A ≤W B =⇒ A ≤W Astr ≤W Bstr (monotonicity).

(25) (Astr)str ≡W Astr (idempotence).

(26) (A + B)str = Astr + Bstr.
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(27) ∅str = ∅ and Rstr = P ∈ Π0
2\Σ0

2, where P is as in (22). Hence by monotonicity
and idempotence

∀A ∈ ∆0
2 \ {∅}

(
Astr ∈ Π0

2 \Σ0
2

)
.

Moreover, in [VW77] it is shown that

(28) (Van Wesep) If A is self-dual and ∀B <W A (Bstr <W A), then Astr ≡W A+∅.

(29) If ‖A‖W = ω1 · ‖A‖W is of uncountable cofinality, then Astr ≡W A.

Lemma 13. If B ≤W A and G ∈ Π0
2 then B ∩G ≤W Astr.

Proof. Let G =
⋂

n Un with Un open and fix a winning strategy τ for II in GW(B, A).
Keeping in mind that Ns is the basic open neighborhood determined by s, and that
τ has the option of passing, let II play in GL(B ∩G, Astr) as follows:

II plays 0 as long as I does not reach a position p0 such that Np0 ⊆ U0

and such that τ has actually produced an output (and did not simply
pass all the time). If such a position p0 is reached, let q0 ⊆ p0 be
least such that τ applied to q0 yields a sequence of length 1, and let
II play τ(q0) + 1.

Then II plays 0 as long as I does not reach a position p1 ⊇ p0 such
that Np1 ⊆ U1 and such that there is a least q1 ⊆ p1 such that τ
applied to q1 yields a sequence of length 2. If such a position p1 is
reached, then II plays τ(q1) + 1.

And so on.

It is easy to check that this is a winning strategy. �

Say that a pointclass Γ is closed under stretches if A ∈ Γ =⇒ Astr ∈ Γ. Thus the
non-self-dual pointclasses closed under stretches are of the form {B | B ≤W Astr}
for some A.

Lemma 14. The first ω pointclasses closed under stretches are {∅} and the n-Π0
2,

with n ≥ 1.

Proof. That {∅} and Π0
2 are the 0-th and 1-st pointclass closed under stretches

follows from (25) and (27). Assume inductively that n-Π0
2 is the n-th such pointclass.

The next pointclass closed under stretches is {X | X ≤W Astr} where A is complete
for (n-Π0

2)
`. By Lemmas 11 and 13,

(n + 1)-Π0
2 = {B ∩G | B ≤W A & G ∈ Π0

2} ⊆ {X | X ≤W Astr} .

To show the other inclusion, it is enough to show that Astr ∈ (n + 1)-Π0
2. Notice

that the definition of n-Π0
2 makes sense in every topological space; in particular,

since the set P of (22) is Π0
2, if X ⊆ P is (n-Π0

2)
` in the space P then there is a

X̃ ∈ (n-Π0
2)

` such that X = X̃ ∩P , and therefore X ∈ (n + 1)-Π0
2. As the function

S : P → R used to define the stretch operation is continuous, then Astr = S−1“A is
(n-Π0

2)
` in the space P , hence Astr ∈ (n + 1)-Π0

2. �
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In analogy with (19), let

D0 = ∅, Dn+1 = (¬Dn)str, Dω =
⊕

nDn .

Then by Lemma 14,

(30) For 0 < n < ω, the set Dn is complete for n-Π0
2, and therefore ‖Dn‖W = ωn

1 .

The first ω non-trivial pointclasses closed under stretches are the n-Π0
2, and they

are all non-self-dual. Since the increasing union of pointclasses closed under stretches
is closed under stretches, then

<ω-Π0
2 =

⋃
n n-Π0

2 = {B | B <W Dω}

is the ω + 1-st pointclass closed under stretches.
By properties (24)–(30) above, a complete analysis of the stretch operation on

degrees can be given.

(31) Let Γ be closed under stretches.
If Γ is self-dual, then ‖Γ‖W = ωω

1 · γ, with γ > 0.
If Γ is non-self-dual, then either

‖Γ‖W = ωω
1 · γ + 1 with γ limit and cof(γ) > ω, or else

‖Γ‖W = ωω
1 · γ + 2 with γ successor or limit and cof(γ) = ω, or else

‖Γ‖W = ωω
1 · γ + ωn

1 + 1 with γ ≥ 0 and n > 0.

Conversely:
Suppose Γ is self-dual. If ‖Γ‖W = ωω

1 · γ with γ > 0, then Γ is closed under
stretches.
Suppose Γ is non-self-dual. If either

‖Γ‖W = ωω
1 · γ + ωn

1 + 1 with γ ≥ 0 and n > 0, or else
‖Γ‖W = ωω

1 · γ + 2 with γ > 0 successor or limit of countable cofinality,

then exactly one among Γ and Γ̆ is closed under stretches,
If ‖Γ‖W = ωω

1 · γ + 1 with cof(γ) > ω, then both Γ and Γ̆ are closed under
stretches.

Note that Dn ≡W Cn if n is even and Dn ≡W ¬Cn if n is odd. Here is how the
stretch and \ operations act on the pointclasses n-Σ0

2 and n-Π0
2:

∅ Π0
2

\ // 2-Π0
2 = 2-Σ0

2 3-Π0
2

\ // 4-Π0
2 = 4-Σ0

2 5-Π0
2 · · ·

R

str

::uuuuuuuuuuu \ // Σ0
2

str
::uuuuuuuuuu

(2-Σ0
2)

`

str
::uuuuuuuuu

\ // 3-Σ0
2

str
::uuuuuuuuu

(4-Σ0
2)

`

str
::uuuuuuuuu

\ // 5-Σ0
2 · · ·

The pointclass immediately above these is <ω-Σ0
2 =

⋃
n n-Σ0

2 =
⋃

n n-Π0
2, and it is

closed both under the stretch and \ operations. After this stage, the two operations
are not entwined any more, since the ranks of \-closed pointclasses grow as powers
of ω1, while the ranks of the stretch-closed ones exhibit a “periodicity” of period ωω

1 :
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in fact the next \-closed pointclass above <ω-Σ0
2 has rank ωω+1

1 + 1, while the next
stretch-closed pointclass has rank ωω

1 + ω1 + 1.
We now prove a technical result which will be useful in §6.
A partial function f from the reals to the reals, is a \-function iff dom(f) =⋃
n Cn ⊆ R and

(i) Cn is closed non-empty,
(ii) Cn ∩ Cm = ∅, if n 6= m,
(iii) f � Cn : Cn → R is Lipschitz.

As the \-functions will play an important role in later sections, let us fix—once and
for all—a parametrization of these functions via reals. A \-function is coded by a
sequence

〈(Tn, Φn) | n ∈ ω〉
where each Tn is a pruned tree on ω, each Φn : Tn → <ωω is Lipschitz, and [Tn] ∩
[Tm] = ∅, for n 6= m. In fact we may even assume that the stronger condition that
Tn ∩ Tm is finite, for n 6= m, since by repeated applications of the next lemma, we
can inductively construct almost disjoint T ′

n’s such that
⋃

n[Tn] =
⋃

n[T ′
n].

Lemma 15. Suppose S, U are pruned trees on ω such that [S] ∩ [T ] = ∅ but
|S ∩ U = ω. Then there are pruned trees Un ⊆ U such that [U ] =

⋃
n∈ω[Un] and

S ∩ Un and Un ∩ Um (n 6= m) are all finite.

Proof. Since the closed sets defined by S and U are disjoint, the tree S∩U is infinite
and well-founded. Let 〈tn | n ≥ 1〉 be an enumeration of the terminal nodes on S∩U .
Then D = {x ∈ R | ∃n ≥ 1 (x ⊃ tn)} is clopen, so we can set U0 to be the unique
pruned tree such that [U0] = [U ] \D and

Un = {u ∈ U | u ⊇ tn ∨ tn ⊆ u} (n > 0).

�

Recall from (8) that H is the set of all sequences of pruned trees and Lipschitz
functions defined on them. Then

(32) F =
{
〈(Tn, Φn) | n ∈ ω〉 ∈ H | ∀n, m (n 6= m =⇒ |Tn ∩ Tm| < ω)

}
is the set of codes for \-functions, since every element of F yields a \-function⋃

n fn :
⋃

n[Tn] → R, where fn : [Tn] → R is the Lipschitz map induced by Φn.
Arguing as for H , the set F can be identified with a Gδ subset F of ω2, and hence
of R: the condition that the T ’s be almost disjoint can be written as

∀n,m ∃K ∀k (n 6= m & sk ∈ Tn ∩ Tm =⇒ k ≤ K)

which is easily seen to be Π0
2. The bijection

(33) F → F , x 7→ 〈(Tx,n, Φx,n) | n ∈ ω〉 ,
is the coding of \-functions via elements of F, and we denote its inverse function
with

(34) j : F → F .
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Letting fx,n : [Tx,n] → R be the Lipschitz function induced by Φx,n, then

(35) fx =
⋃

n fx,n :
⋃

n[Tx,n] → R

is the \-function coded by x ∈ F.

Lemma 16. Suppose ‖Γ‖W = ωξ
1 + 1 with ξ a successor ordinal, or a limit ordinal

of uncountable cofinality. Then there is a set A ⊆ ω2 such that ‖A‖W = ωξ
1 and such

that either Γ or Γ̆ is of the form

(36) {f−1
x “A | x ∈ F} .

Proof. Γ and Γ̆ form a non-self-dual pair of pointclasses, and by (31) at least one
among them is closed under stretches, say Γ is such. Let F : R → ω2 be the Lipschitz
map defined by

F (z) = 0(z(0)) a1a0(z(1)) a1a0(z(2)) a1a · · ·
Trivially, F witnesses B ≤W F“B, for any set B. Moreover:

Claim 17. F“B ≤W Bstr.

Proof of Claim. Consider the following strategy for II in GL(F“B, Bstr):

If at some round I plays an integer different from 0 and 1, then
II plays 0 from this point on. So suppose that I has been playing
elements of {0, 1}: if I plays 0, then II answers 0, if I plays 1, then
II answers n+1, where n is the number of rounds since I last played
1 (or the total number of rounds since the beginning of the game, if
this is the first time I plays 1).

Let x and y be the reals played by I and II, respectively: if either x /∈ ω2 or
∀∞n x(n) = 0, then y is of the form sa~0. Otherwise x is of the form

0(z(0)) a1a0(z(1)) a1a0(z(2)) a1a · · ·

and y = z + 1. Therefore F“B ≤W Bstr. �

Thus if B is Γ-complete and A = F“B, then A ⊆ ω2 and A ≡W B, so fix such an
A. We must show that Γ is the collection of sets in (36).

Let X be a set in Γ. By Theorem 2 there is a Lipschitz f : R → R such that
f−1“A = X. Since f is a \-function (let Cn = N〈n〉 and fn = f � Cn) then X is in the
set in (36). Conversely, we must show that every set in (36) is in Γ. Let fn : Cn → R
be Lipschitz, with Cn ⊆ R closed and pairwise disjoint, and let f =

⋃
n fn. If Cn = ∅

for all n, then f−1“A = ∅ ∈ Γ, so we may assume that Y = {n ∈ ω | Cn 6= ∅} is
non-empty. For each n ∈ Y let rn : R � Cn be a retraction of R onto Cn. Then
fn ◦ rn : R → R is continuous (in fact: Lipschitz) and

f−1“A =
⋃
n∈Y

Cn ∩ (fn ◦ rn)−1“A

By (21) Γ is \-closed hence f−1“A ∈ Γ by Lemma 9. �
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4. Cardinality of pointclasses

In this section we will characterize the cardinality pointclasses, i.e., the non-trivial
pointclasses Γ such that

∀Γ′ ⊂ Γ (|Γ′| < |Γ|) .

Lemma 18. Suppose Γ is either principal or such that cof(‖Γ‖W) > ω. Then
|ωΓ| = |Γ|.

Proof. Given An ∈ Γ, we will show that
⊕

nAn ≤W A, for some A ∈ Γ. Since
the map 〈An | n ∈ ω〉 7→

⊕
nAn is injective, this will prove the result. If A is Γ-

complete, then
⊕

nAn ≤W A and we are done. Suppose instead Γ is non-principal
and cof(‖Γ‖W) > ω, and let An ∈ Γ. By case assumption there is an α such that
sup{‖An‖W | n ∈ ω} ≤ α < ‖Γ‖W, and let A be such that α = ‖A‖W. Then A ∈ Γ
and

⊕
nAn ≤W A. �

The following result uses the non-triviality of pointclasses in an essential way.

Corollary 19. If Γ is any non-trivial pointclass, then |<ωΓ| = |Γ|. In particular,

|Γ ∪ Γ̆| = |Γ|, and hence |ω(Γ ∪ Γ̆)| = |ωΓ|.

Proof. Since R � Γ and Γ is infinite, by DC(R) there is a sequence ∅ = X0, X1, . . . of
distinct elements of Γ, hence |Γ\{∅}| = |Γ|. Thus it is enough to show that |<ω(Γ\
{∅})| ≤ |Γ|. As the map <ω(Γ \ {∅}) → ωΓ, 〈A0, . . . , An〉 7→ 〈A0, . . . , An, ∅, ∅, . . . 〉
is injective, then we are done by Lemma 18 if Γ is principal or cof(‖Γ‖W) > ω.
Suppose instead that Γ = {B | B <W A} with A self-dual and limit. Given
B0, . . . , Bn ∈ Γ \ {∅}, consider

⊕
iBi, where we set Bm = ∅ for all m > n; then⊕

iBi <W A. Since the map 〈B0, . . . , Bn〉 7→
⊕

iBi is injective we are done. �

Lemma 20. Let A 6= ∅, R be non-self-dual, and let Γ be the pointclass generated by
A. Then the pointclass generated by A⊕ ¬A has cardinality |Γ|.

Proof. If X ≤W A⊕ ¬A then either X ∈ Γ, or X ∈ Γ̆, or else X ≡W A⊕ ¬A, and
thus by Corollary 19 it is enough to show that |[A⊕¬A]W| ≤ |Γ|. If X ∈ [A⊕¬A]W
then X can be recovered from the tree T (X) and the sequence S(X) = 〈Xbsc | s ∈
∂T (X)〉, since

X =
⋃
{saXbsc | s ∈ ∂T (X)} .

Therefore the map X 7→ (T (X), S(X)) is injective and witnesses that

|[A⊕ ¬A]W| ≤ |Trees× ω(Γ ∪ Γ̆)|
≤ |R| · |ωΓ| (by Corollary 19)

≤ |Γ| . (by Lemma 18)

�

Lemma 21. Let A be self-dual, and let Γ be the pointclass generated by A. Then
the pointclass generated by A + A has cardinality |Γ|.
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Proof. Let Γ′ = {X | X ≤W A + A}. Since Γ′ = Γ ∪ {X ∈ Γ′ | A <W X}, then by
Corollary 19, it is enough to prove that

|{X ∈ Γ′ | A <W X}| ≤ |Γ| .
For X ∈ Γ′ such that A <W X we can construct the tree TX = T (X; ‖A‖W + 1)
and the sequence

SX = 〈Xbsc | s ∈ ∂TX〉
of sets in Γ. By Lemma 3 the tree T is pruned so that rTX

: R � [TX ], the
canonical Lipschitz retraction onto [TX ], is defined. The set CX = r−1

TX
“([TX ] ∩X)

is Wadge reducible to A via z 7→ f(rTX
(z)) −̇ 1, where f is the function witnessing

X ≤W A+A, and therefore CX ∈ Γ. The set X can be reconstructed from TX , SX ,
and CX , as

X = (CX ∩ [TX ]) ∪
⋃
{saXbsc | s ∈ ∂TX} ,

hence the map X 7→ (TX , SX , CX) is injective. Therefore

|{X ∈ Γ′ | A <W X}| ≤ |Trees× ωΓ× Γ| ≤ |R| · |Γ| = |Γ| .
�

Corollary 19 says that, as far as cardinality is concerned, we might as well restrict
our attention to self-dual pointclasses.

Definition 22. A self-dual pointclass ∆ is a cardinality level iff

∀∆′ ⊂ ∆ (∆′ self-dual =⇒ |∆′| < |∆|) .

Since the self-dual pointclasses are exactly the P(α)(R)’s, the definition can be
rephrased as follows:

P(α)(R) is a cardinality level ⇐⇒ ∀β < α
(
|P(β)(R)| < |P(α)(R)|

)
.

If Γ is a cardinality pointclass then either it is self-dual—and hence it is a cardinal-
ity level—or else it is non-self-dual and hence Γ∪Γ̆ is a cardinality level. Conversely,
if Γ is a cardinality level, then either it is a cardinality pointclass, or else it is of
the form Γ = Λ ∪ Λ̆ with Λ a non-self-dual cardinality pointclass. Therefore our
original goal of determining all cardinality pointclasses amounts to characterizing
all α’s such that P(α)(R) is a cardinality level.

Lemma 23. If α is limit and cof(α) = ω, then

|P(α+1)(R)| = |ω(P(α)(R))| .
Moreover, if each αn > 1 and supn αn = α, then

|P(α+1)(R)| =
∣∣{〈Xn | n ∈ ω〉 | ∀n ‖Xn‖W < αn

}∣∣ .

Proof. Let A be such that ‖A‖W = α and, for the ease of notation, let Γ = P(α)(R).
Then A is self-dual and P(α+1)(R) = [A]W ∪ Γ, so it is enough to prove that
|[A]W| = |ωΓ|. If B ≡W A, then T (B) is well-founded and the map

B 7→
(
T (B), 〈Bbsc | s ∈ ∂T (B)〉

)
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witnesses that |[A]W| ≤ |Trees× ωΓ| = |ωΓ|. Conversely, the map ωΓ � [A]W

〈Xn | n ∈ ω〉 7→
⊕

n Bn

where B2n = Xn and B2n+1 = Cn, where 〈Cn | n < ω〉 is a fixed sequence of sets in
Γ such that limn ‖Cn‖W = α, witnesses that |ωΓ| ≤ |[A]W|.

The second part follows immediately from the first. �

Clearly, if Γn ⊂ Γn+1 and |Γn| < |Γn+1| for all n, then
⋃

n Γn is a cardinality level.
If α = ‖

⋃
n Γn‖W = supn ‖Γn‖W, then |

⋃
n Γn| ≤ |P(α+1)(R)| = |ω(P(α)(R))|. We

will show in section 5 that the inequality is strict, i.e., that both P(α)(R) and
P(α+1)(R) are cardinality levels.

By Lemma 18 and—if P(α+1)(R) consists of two non-self-dual pointclasses—by
Corollary 19, we have that for α ≥ 2,

(37) |ω
(
P(α+1)(R)

)
| = |P(α+1)(R)| .

Using (14) and Lemma 21 if P(α+1)(R) is of the form {X | X ≤W A} for a self-dual
A; and otherwise using Lemma 20 to work with P(α+2)(R) instead of P(α+1)(R),
we have that for α ≥ 2,

(38) |P(α+1)(R)| = |P((α+1)·2)(R)| .
It is easy to prove by induction on 1 < γ < ω1 that |P(α+1)(R)| = |P(α·γ)(R)|: if γ

is a successor ordinal, we appeal to (38); otherwise, if γ is limit let 0 < γ0 < γ1 < . . .
be a sequence of ordinals converging to γ, and by inductive hypothesis (and by the
Axiom of Countable Choice, ACω) fix bijections P(α·γn)(R) → P(α+1)(R) so that
we can define an injection from

⋃
n P(α·γn)(R) = P(α·γ)(R) to ωP(α+1)(R): then

|P(α·γ)(R)| ≤ |P(α+1)(R)| by (37), and since the reverse inequality is trivially true,
equality holds. The next result shows that this process can be pushed to its natural
limit (and that the appeal to ACω is unnecessary).

Theorem 24. If α ≥ 2 then |P(α+1)(R)| = |P(α·ω1)(R)|.

Proof. Let A be a set of rank α and suppose first that A is self-dual.
To each X ∈ P(α·ω1)(R) we will associate a pre-well-order WX of <ωω and a

sequence CX = 〈CX,s | s ∈ <ωω〉 of sets in P(α+1)(R) such that the map X 7→
(WX , CX) is injective and hence

|P(α·ω1)(R)| ≤ |Pwos× ω
(
P(α+1)(R)

)
|

= |R| · |P(α+1)(R)| (by (37))

= |P(α+1)(R)| .
Fix X of Wadge rank <α · ω1. For each 1 ≤ ξ < ω1 let

Tξ = T (X; α · ξ + 1) .

Then ξ < η =⇒ Tη ⊆ Tξ, and each Tξ is a (possibly empty) tree. By (11) and (12)
it is easy to prove by induction on 0 < ξ < ω1 that there is a self-dual set of rank
α · ξ, hence Tξ is pruned by Lemma 3. Moreover, for all X ∈ P(α·ω1)(R) there is a
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least ξX < ω1 such that ∀η ≥ ξX (Tη = ∅). The sequence 〈Tη | 1 ≤ η ≤ ξX〉 induces
a norm ϕ = ϕX : <ωω → ξX + 1,

ϕ(s) = the least η such that s /∈ Tη .

If ϕ(s) = η + 1, then s ∈ Tη \ Tη+1, and hence α · η + α + 1 > ‖Xbsc‖W ≥ α · η + 1.
If ϕ(s) = λ is a limit ordinal, then s ∈ (

⋂
η<λ Tη) \ Tλ and hence

α · λ + 1 > ‖Xbsc‖W ≥ sup{α · η + 1 | η < λ}
that is, ‖Xbsc‖W = α · λ. Since λ is countable, then Xbsc is self-dual and hence
T (Xbsc) is well-founded. Therefore

(39) ϕ(s) = λ limit =⇒ ‖Xbsc‖W = α · λ and T (Xbsc) is well-founded.

Set

Cs =


saXbsc if ϕ(s) = 1,

r−1
Tη

“
(
X ∩ ([Tη] \ [Tη+1])

)
if ϕ(s) = η + 1 > 1,

∅ otherwise,

where rTη is the canonical retraction of R onto [Tη]. Therefore the definition of the
Cs depend only on the set X and on the norm ϕ. The range of ϕ need not be
ξX + 1 \ {0}, since it may happen that Tη = Tη+1 for some η.

Claim 25. Suppose λ is limit, and Tη = Tη̄ for all η̄ ≤ η < λ. Then Tλ = Tη̄.

Proof of the Claim. Suppose Tλ 6= Tη̄ =
⋂

η<λ Tη. Let s ∈ Tη̄ ∩ ∂Tλ and x be a real

such that sax ∈ [Tη̄]. Then ∀n
(
ϕ(sa(x � n)) = λ

)
, hence x is a branch of T (Xbsc),

a contradiction by (39). �

Let D be the closure of ran(ϕ). Since ϕ(∅) = ξX , the order type of D is a successor

ordinal ξ̃X +1. Let hX : D → ξ̃X +1 be the collapsing function, let ϕ̃ = ϕ̃X = hX ◦ϕ.
If ϕ(s) is a successor ordinal, then it is a successor point of D, and by the Claim

if ϕ(s) is limit ordinal then so is ϕ̃(s), hence we can conclude that ϕ(s) is limit

iff ϕ̃(s) is limit. Letting 〈T̃η | η ≤ ξ̃〉 be the enumeration without repetitions of
〈Tη | 1 ≤ η ≤ ξ〉, we have that

Cs =


saXbsc if ϕ̃(s) = 0,

r−1

T̃η
“
(
X ∩ ([T̃η] \ [T̃η+1])

)
if ϕ̃(s) = η + 1,

∅ otherwise.

Let WX be the pre-well-order induced by ϕ or, equivalently, by ϕ̃. The main point
of switching from ϕ to ϕ̃ is that the latter, unlike the former, can be recovered
from WX . Thus Cs depend only on X and WX , which are both sets of reals. By
Lemma 5, each Cs ∈ P(α+1)(R), so is enough to show that X can be recovered from
WX and from the sequence CX = 〈Cs | s ∈ <ωω〉. Suppose WX = WY (and hence

ϕ̃X = ϕ̃Y = ϕ̃), and CX = CY = 〈Cs | s ∈ <ωω〉. This implies that ξ̃X = ξ̃Y = ξ̃

and that the sequence 〈T̃η | η ≤ ξ̃〉 is the same for X and Y . Let x be a real.
Since ϕ̃(x � n) ≥ ϕ̃(x � n + 1), there is an n0 and a γ such that ϕ̃(x � n) = γ, for
all n ≥ n0. If γ is limit, then (39) implies that ∀n ≥ n0

(
‖Xbx�nc‖W = α · h−1

X (γ)
)
,
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where hX : ran(ϕX) → ξ̃X + 1 is the collapsing function defined above. Hence x
would be a branch of (x � n0)

aT (Xbx�n0c), contradicting (39). Therefore γ = η + 1,

that is ∀n ≥ n0

(
x � n ∈ T̃η \ T̃η+1

)
, which implies x ∈ [T̃η] \ [T̃η+1] and x = rT̃η

(x),
and hence

x ∈ X ⇐⇒ x ∈ Cx�n0 ⇐⇒ x ∈ Y ,

that is, X = Y . Therefore the map X 7→ (WX , CX) is injective, as required.
Suppose now A is non-self-dual. Then B = A ⊕ ¬A is self-dual and of rank

β = α + 1. The result follows from Lemma 20, from the arguments above with B
and β replacing A and α, and by observing that β · ω1 = α · ω1. This finishes the
proof. �

Corollary 26. If either 3 < α ≤ ω1 or else ωξ
1 +1 < α ≤ ωξ+1

1 < Θ and ξ > 0, then
|P(α)(R)| is not a cardinality level.

In particular ∆0
2 = P(ω1)(R) has the same cardinality as ∆0

1 = P(3)(R), which
has cardinality |R|. Since Σ0

2 ∪Π0
2 = P(ω1+1)(R) is a cardinality level by [Hjo98],

it is tempting to conjecture that cardinality levels should occur exactly at Wadge
rank ωξ

1 + 1; or ωξ
1 when ξ is limit. The main result of this paper shows that this is

indeed the case.

Theorem 1. Assume AD + DC(R). Then P(α)(R) is a cardinality level iff

∃ξ < Θ
(
α = ωξ

1 + 1 ∨ (α = ωξ
1 & ξ is limit)

)
.

This generalizes the results in [Hjo98] and [Hjo02] as well as the second author’s
results mentioned in the introduction.

Corollary 27. The following are cardinality pointclasses:

• Σ0
α (and hence Π0

α) for 2 ≤ α < ω1,
• ∆0

1 and ∆0
α, for 3 ≤ α < ω1,

• Σ1
n (and hence Π1

n) for 1 ≤ n < ω,
• ∆1

n for 1 ≤ n < ω.

Proof. It is clear that ∆0
1 is a cardinality pointclass, and from (18) it follows that

‖Σ0
2‖W = ω1 + 1, hence Σ0

2 and Π0
2 are cardinality pointclasses. Suppose Σ is Σ0

α

with 3 ≤ α or Σ1
n: then Σ and Σ̆ satisfy the hypotheses of Lemma 8, hence by (21)

their Wadge rank is ωξ
1 + 1 with ξ limit of uncountable cofinality. (To show that if

Cn are closed and disjoint and An ∈ Π0
α, then

⋃
n(Cn∩An) ∈ Π0

α argue as follows: if
An =

⋂
i A

i
n with Ai

n ∈ Σ0
βi

with 2 ≤ βi < α, then
⋃

n(Cn∩An) =
⋂

i(
⋃

n(Cn∩Ai
n)).)

Then ∆ = Γ ∩ Γ̆ has rank ωξ
1 with ξ limit of uncountable cofinality, hence it is also

a cardinality pointclass. �

Before we start proving Theorem 1, let us make a few preliminary observations.
If Γ is a pointclass generated by some set A, then there is a surjection R � Γ,

since every continuous Φ : <ωω → <ωω (and hence every continuous f : R → R)
can be coded by a real. As the principal pointclasses are cofinal in the ordering
under inclusion, then every pointclass is the surjective image of R. We will call any
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surjection π : R � Γ a coding of Γ; more generally, if X is any non-empty set—not
necessarily a pointclass—and C is a non-empty Gδ subset of R, and π : C � X is
a surjection, then we will say that π is a coding for X and that X can be coded by
reals. There are two kinds of codings for non-self-dual pointclasses Γ that will be
used: the first is R � Γ, x 7→ `−1

x “A, where A is Γ-complete, and `x is as in (3),
and the second is F � Γ, x 7→ f−1

x “A, where Γ is \-closed, A\ is Γ-complete, and
fx is as in (35). The next result says that an injection between pointclasses lifts to
a continuous map defined on a comeager subset of the coding set.

Proposition 28. Suppose π1 : C1 � X1 and π2 : C2 � X2 are codings and suppose
F : X1 � X2 is an injection. Then there is a set G ⊆ C1 which is comeager in C1,
and a continuous function F̂ : G → C2 which induces F � {π1(x) | x ∈ G} in the
following sense:

∀x, y ∈ G
(
π1(x) = π1(y) ⇐⇒ π2(F̂ (x)) = π2(F̂ (y))

)
and

∀x ∈ G
(
F (π1(x)) = π2(F̂ (x))

)
.

In other words, the diagram

G
F̂ //

π1�G
����

C2

π2

����
{π1(x) | x ∈ G} //

F
// X2

commutes.

Proof. Let Φ = {(x, y) ∈ C1 × C2 | F (π1(x)) = π2(y)}. Then ∀x ∈ C1 ∃y ∈
C2 (x, y) ∈ Φ. By ∗∗-uniformization, there is a G ⊆ C1 comeager in C1, and a

function F̂ : G → C2 uniformizing Φ, that is ∀x ∈ G (x, F̂ (x)) ∈ Φ. Since AD implies

that every function is continuous on a comeager set, we may assume F̂ is continuous
on G. �

Proof of Theorem 1. By Corollary 26, it is enough to show that for all ξ < Θ

|P(ωξ
1)(R)| < |P(ωξ

1+1)(R)|(40)

and

|P(ωγ
1 )(R)| < |P(ωξ

1)(R)| if γ < ξ and ξ limit.(41)

We will focus on the first inequality, since the second follows at once from it. To-

wards a contradiction, suppose that for some ξ < Θ we have that |P(ωξ
1)(R)| =

|P(ωξ
1+1)(R)|. If ξ = 0 we reach a contradiction at once, as P(2)(R) = {∅, R} and

P(1)(R) = ∅, so we may assume that ξ > 0. We must consider three cases.

Case 1: ξ is a successor ordinal.



EFFECTIVE CARDINALS OF BOLDFACE POINTCLASSES 27

By Lemma 16 there is a set A1 ⊆ ω2 such that ‖A1‖W = ωξ
1 and such that

Γ1 = {X | X ≤W A1} = {f−1
x “A1 | x ∈ F} ,

where x 7→ fx is the parametrization of all \-functions described in (35). Let A2 be

non-self-dual and such that max{ω, ωξ−1
1 } ≤ ‖A2‖W < ωξ

1. By (9)

Γ2 = {X | X ≤W A2} = {`−1
x “A2 | x ∈ R} .

Since |Γ2| = |P(ωξ
1)(R)| and |Γ1| = |P(ωξ

1+1)(R)| by Theorem 24 and Corollary 19,
we may assume that there is an injective function F : Γ1 � Γ2. Let π1 : F � Γ1,
π1(x) = f−1

x “A1, and and π2 : R � Γ2, π2(x) = `−1
x “A2. By Proposition 28 there is

a comeager G ⊆ F and a continuous F̂ : G → R which induces F , that is

F � {f−1
x “A1 | x ∈ G} : {f−1

x “A1 | x ∈ G} � Γ2,

f−1
x “A1 7→ `−1

F̂ (x)
“A2 .

We need the following

Theorem 29. Suppose K ⊆ F is non-meager in F. Then there is a continuous
map g : ω2 → K, and a real z̄ ∈ R such that:

∀x ∈ ω2
(
z̄ ∈ dom(f g(x)) & f g(x)(z̄) = x

)
,(42)

∀x, y ∈ ω2
(
f g(x) � R \ {z̄} = f g(y) � R \ {z̄}

)
.(43)

Assuming Theorem 29 we can conclude the proof of Case 1: Let K = G, and let

C = {y ∈ R \ {z̄} | ∃x ∈ ω2
(
y ∈ dom(f g(x)) & f g(x)(y) ∈ A1

)
}

= {y ∈ R \ {z̄} | ∀x ∈ ω2
(
y ∈ dom(f g(x)) & f g(x)(y) ∈ A1

)
} (by (43)).

For x ∈ ω2

(44) x ∈ A1 =⇒ f−1
g(x)“A1 = C ∪ {z̄} , and x /∈ A1 =⇒ f−1

g(x)“A1 = C .

Both C and C ∪ {z̄} belong to Γ1, and since z̄ /∈ C and F is injective, then
F (C)4F (C ∪ {z̄}) 6= ∅. Without loss of generality we may assume that there
is a y0 ∈ F (C∪{z̄})\F (C). If x ∈ A1 then, by (44), y0 ∈ F (f−1

g(x)“A1) = `−1

F̂ (g(x))
“A2

and hence `F̂ (g(x))(y0) ∈ A2. Similarly, x /∈ A1 implies `F̂ (g(x))(y0) /∈ A2. Therefore

f : ω2 → R, x 7→ `F̂ (g(x))(y0), is continuous and f−1“A2 = A1, hence A1 ≤W A2

by Lemma 7, contradicting the initial assumption that ‖A2‖W < ‖A1‖W. This
concludes the proof of Case 1, assuming Theorem 29.

Notice that we have actually shown (modulo Theorem 29) that

Lemma 30. Suppose A1 and A2 are non-self-dual, with (A1)
\ ≡W A1 ⊆ ω2, and

let Γi = {X | X ≤W Ai}, for i = 1, 2. Suppose π1 : F � Γ1, x 7→ f−1
x “A1, and

π2 : R � Γ2, x 7→ `−1
x “A2. Let X = {π1(x) | x ∈ K}, where K ⊆ F is non-meager,

and suppose F̂ : K → R is a continuous function inducing an injection F : X � Γ2,
X 7→ π2(F̂ (x)), for some/any x ∈ K such that π1(x) = X. Then A1 ≤W A2.
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Case 2: ξ is limit and cof(ξ) > ω.

As in Case 1, there is a set A1 ≡W (A1)
\ such that ‖A1‖W = ωξ

1 and A1 ⊆ ω2

and let π1 : F � {X | X ≤W A1} = Γ1, x 7→ f−1
x “A1. Let π : R � P(ωξ

1)(R).

By Corollary 19, |Γ1| = |P(ωξ
1+1)(R)|, so we may assume that there is an injection

F : Γ1 � P(ωξ
1)(R) and therefore there is a comeager G ⊆ F and a continuous F̂ as

in Proposition 28. For α < ωξ
1 let

Mα = {x ∈ G | ‖π(F̂ (x))‖W ≤ α} .

Since
⋃

α<ωξ
1
Mα = G, then AD implies that Mᾱ is non-meager for some ᾱ < ωξ

1. Let

K = Mᾱ and let A2 be non-self-dual, of infinite rank and such that ᾱ < ‖A2‖W <
‖A1‖W. Let Γ2 = {X | X ≤W A2} and let π2 : R � Γ2, x 7→ `−1

x “A2. Since
{F (f−1

x “A1) | x ∈ K} ⊆ Γ2, then A1 ≤W A2 by Lemma 30: a contradiction.

Case 3: ξ is limit and cof(ξ) = ω.

Choose an increasing sequence of successor ordinals ξn → ξ and sets Bn of rank ωξn

1 .
The Bn’s are non-self-dual and by Lemma 16 they can be taken to be contained in
ω2. By Lemma 23 we may assume there is an injection F : Y � P(ωξ

1)(R), where

Y = {〈Xn | n ∈ ω〉 | ∀n Xn ≤W Bn} .

Let π : R � Y be the coding given by

x 7→ 〈`−1
xn

“Bn | n ∈ ω〉 ,
where x 7→ 〈xn | n ∈ ω〉, R → ωR, is the standard homeomorphism. By Proposition

28 there is a comeager G ⊆ R and a continuous F̂ : G → R inducing F . For each
n ∈ ω, let

Mn = {x ∈ G | ‖F (π(x))‖W ≤ ωξn

1 } .

Arguing as in Case 2, there is n̄ such that Mn̄ is non-meager, and by the Kuratowski-
Ulam Theorem there is a fixed sequence of reals 〈x∗i | i 6= n̄ + 1〉 such that

K = {x ∈ R | J(〈x∗0, . . . , x∗n̄, x, x∗n̄+2, . . . 〉) ∈ Mn̄}
is non-meager. Letting A1 = Bn̄+1, A2 = Bn̄, and X = {`−1

x “A1 | x ∈ K}, then
Lemma 30 implies that A1 ≤W A2, contradicting our assumption.

This completes the proof of Theorem 1, granted Theorem 29. �

5. Proof of Theorem 29

In this section we complete the proof of Theorem 1 by proving Theorem 29.
Let us try first a simple-minded line of attack. Fix x0 ∈ K coding a sequence

〈(Tn, Φn) | n ∈ ω〉 ∈ F as in (32), and let z̄ /∈
⋃

n[Tn]. For any x ∈ ω2 let
T ′

0 = {z̄ � k | k ∈ ω}, Φ′
0(z̄ � k) = x � k, and let T ′

n+1 = Tn and Φ′
n+1 = Φn.

Let g(x) ∈ F be the unique real coding 〈(T ′
n, Φ

′
n) | n ∈ ω〉. It is not hard to see

that g : ω2 → F is continuous and that g(x) satisfies (42) and (43). The only
problem is that g(x) need not be in K. In fact, it might be the case that the first
tree of the generic sequence in F is not a singleton. This suggests that the choice
of the initial sequence 〈(Tn, Φn) | n ∈ ω〉, of the real z̄, and of the transformation
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procedure 〈(Tn, Φn) | n ∈ ω〉 7→ 〈(T ′
n, Φ

′
n) | n ∈ ω〉 should be as generic as possible.

The construction could be achieved using a Baire-category argument, but the level
of details would be excessive. We prefer instead to use Cohen forcing: rather than
specify in advance a countable family of dense Gδ’s to be met, we work with fully
generic objects, then observe that we only need to intersect countably many dense
sets to perform the construction, so that the generic exists outright in V. A more
elegant way to see this, is to appeal to absoluteness: if in the statement of Theorem
29 the set K is replaced with a K′ ⊆ K such that K′ is Gδ and non-meager in F,
the statement

∃z̄ ∈ R ∃g : ω2 → K′ g is continuous and satisfies (42) and (43)

is Σ1
2 , hence, by Shoenfield’s absoluteness, a g and a z̄ as above can be found in V.

Let P be the forcing notion that constructs with finite conditions a sequence
〈(Tn, Φn) | n ∈ ω〉 ∈ F . Formally, P is the collection of all

(45) p =
(
〈τn | n ∈ A〉, 〈ϕn | n ∈ A〉, 〈Kn,m | n,m ∈ A & n 6= m〉

)
such that

• A ⊂ ω is finite,
• τn is a function, dom(τn) is a finite subset of <ωω, ran(τn) ⊆ {0, 1}, and

tn = τ−1
n “{1} is a non-empty finite tree on ω,

• ϕn : tn → <ωω is Lipschitz,
• Kn,m = Km,n ∈ ω, and sk ∈ tn ∩ tm =⇒ k ≤ Kn,m,

where 〈sn | n ∈ ω〉 is as in (2). For ease of notation, a condition p as above will be
denoted as

p = 〈τn, ϕn, Kn,m〉n,m∈A .

The ordering on P is given by

〈τn, ϕn, Kn,m〉n,m∈A ≤ 〈τ ′n, ϕ′
n, K

′
n,m〉n,m∈A′ ⇐⇒

A ⊇ A′ & ∀n, m ∈ A′(n 6= m =⇒ τn ⊇ τ ′n & ϕn ⊇ ϕ′
n & Kn,m ≤ K ′

n,m

)
.

The poset P is countable, so it is just Cohen forcing in disguise. We will use A(p),

τ
(p)
n , ϕ

(p)
n , etc. to denote the various items given by p ∈ P, and when there is no

danger of confusion the superscript will be dropped. The domain of a condition p
is defined to be

(46) dom(p) =
⋃

n∈A dom(τn) .

If G ⊂ P is a filter, then each

Tn =
⋃
p∈G

t(p)
n

is a tree on ω, sk ∈ Tn ∩ Tm =⇒ k ≤ K
(p)
n,m for any p ∈ G such that n,m ∈ A(p)

and hence Tn ∩ Tm is finite, and each

Φn =
⋃
p∈G

ϕ(p)
n : Tn → <ωω
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is Lipschitz. Moreover if G is sufficiently generic, then each Tn is pruned and non-
empty, and hence 〈(Tn, Φn) | n ∈ ω〉 ∈ F . Conversely, any such sequence yields a
filter G ⊆ P as follows: for any p = 〈τn, ϕn, Kn,m〉n,m∈A ∈ P, set

p < 〈(Tn, Φn) | n ∈ ω〉
just in case for every n, m ∈ A, n 6= m:

• ∀u ∈ dom(τn)
(
τn(u) = 1 ⇐⇒ u ∈ Tn

)
,

• Φn � tn = ϕn,
• ∀k (sk ∈ Tn ∩ Tm =⇒ k ≤ Kn,m),

and let
G = {p ∈ P | p < 〈(Tn, Φn) | n ∈ ω〉} .

Thus we will say that 〈(Tn, Φn) | n ∈ ω〉 ∈ F is generic if ∃p ∈ D p < 〈(Tn, Φn) |
n ∈ ω〉 for every dense D ⊆ P.

If we fix a condition p forcing the sequence to be in the set j−1“K, which is
non-meager in F (see (34)), then by replacing P with its localization Pp

(47) Pp = {p′ ∈ P | p′ ≤ p},
we may assume that every generic yields a \-function with code in K. In other
words, we may assume that

(48) K = F.

So let us fix a G ⊂ P generic over V, and hence a P-generic sequence

(49) 〈(Tn, Φn) | n ∈ ω〉 ∈ F .

Let

(50) fn : [Tn] → R , y 7→
⋃

k Φn(y � k) ,

be the Lipschitz function induced by Φn’s, and let

(51) f =
⋃

n fn :
⋃

n[Tn] → R ,

be the \-function defined by G. By genericity, each [Tn] is nowhere dense, hence

(52)
⋃

n[Tn] is meager.

Working in V[G], a map

{(s, u) ∈ <ω2× <ωω | lh(s) = lh(u)} → F

(s, u) 7→ 〈(T (s,u)
n , Φ(s,u)

n ) | n ∈ ω〉
(53)

is constructed. For brevity we will say that
〈
(T

(s,u)
n , Φ

(s,u)
n ) | n ∈ ω

〉
is the sequence

given by (s, u). The sequences given by the (s, u)’s will be P-generic sequences over
V. Let

f (s,u)
n : [T (s,u)

n ] → R
be the Lipschitz map induced by Φ

(s,u)
n , and let

f (s,u) =
⋃

n f
(s,u)
n :

⋃
n[T

(s,u)
n ] → R
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be the \-function given by (s, u). Recall that H (defined in (8)) is a superset of
F , and it is a Polish space. Fix a compatible complete metric d for it. Then the
sequence

k 7→
〈
(T (x�k,z�k)

n , Φ(x�k,z�k)
n ) | n ∈ ω

〉
∈ F ⊂ H

is a d-Cauchy for each pair (x, z) ∈ ω2× R, and the limit〈
(T (x,z)

n , Φ(x,z)
n ) | n ∈ ω

〉
∈ H

is called the sequence given by (x, z). It is not, in general, an element of F and a

fortiori need not be P-generic, since it may happen that [T
(x,z)
0 ] is not disjoint from

some [T
(x,z)
n ]. For (x, z) ∈ ω2× R, let

f (x,z)
n : [T (x,z)

n ] → R

be the Lipschitz function induced by Φ
(x,z)
n , and if the [T

(x,z)
n ]’s are disjoint, let

f (x,z) =
⋃

n f
(x,z)
n :

⋃
n[T

(x,z)
n ] → R .

In this case, the construction will guarantee that

(54) f (x,z) � (R \ {z}) = f � (R \ {z}) ,

where f is as in (51), and that

(55) z ∈ [T
(x,z)
0 ] and f

(x,z)
0 (z) = x .

In fact we need to find a real z̄ such that for all x ∈ ω2 the sequence 〈(T (x,z)
n , Φ

(x,z)
n ) |

n ∈ ω〉 is in F . In other words, we must find a z̄ such that for all x ∈ ω2 the
sequence given by (x, z̄) is P-generic over V. To achieve this we use forcing again.
Let Q ∈ V[G] be the Cohen forcing to add a new real z̄. By (52), z̄ /∈

⋃
n[Tn]. Let

g(x) = j
(
〈(T (x,z̄)

n , Φ(x,z̄)
n ) | n ∈ ω〉

)
∈ F

where j is as in (34). The function g : ω2 → R is continuous and

f g(x) � (R \ {z̄}) = f � (R \ {z̄}) ,

z ∈ dom(f g(x),0) and f g(x),0(z̄) = x ,

which imply conditions (42) and (43), and hence the theorem will be proved.
Here come the details. We will ensure that:

Requirements:

(A)
⋃

n[T
(s,u)
n ] =

⋃
n[Tn], and

⋃
n f

(s,u)
n =

⋃
n fn = f .

(B) If lh(s) = lh(u) = k + 1, then either

〈(T (s,u)
n , Φ(s,u)

n ) | n ∈ ω〉 = 〈(T (s�k,u�k)
n , Φ(s�k,u�k)

n ) | n ∈ ω〉 ,

or else there is a unique j > 0 such that(
T

(s,u)
0 6= T

(s�k,u�k)
0 & T

(s,u)
j 6= T

(s�k,u�k)
j

)
∨

(
Φ

(s,u)
0 6= Φ

(s�k,u�k)
0 & Φ

(s,u)
j 6= Φ

(s�k,u�k)
j

)
.
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Moreover, in this second case, for n ∈ {0, j} the tree T
(s,u)
n may differ from

T
(s�k,u�k)
n and the map Φ

(s,u)
n may differ from Φ

(s�k,u�k)
n only on the nodes

extending u, that is

∀v ∈ <ωω
[(

v ∈ T (s,u)
n 4T (s�k,u�k)

n ∨(
v ∈ T (s,u)

n ∩ T (s�k,u�k)
n & Φ(s,u)

n (v) 6= Φ(s�k,u�k)
n (v)

))
=⇒ v ⊇ u

]
and this is the first time that the j-th coordinate has been changed, that is

∀k′ < k
(
T

(s�k′,u�k′)
j = T

(s�k,u�k)
j & Φ

(s�k′,u�k′)
j = Φ

(s�k,u�k)
j

)
.

(C) u ∈ T
(s,u)
0 and Φ

(s,u)
0 (u) = s.

(D) 〈(T (s,u)
n , Φ

(s,u)
n ) | n < ω〉 depends only on (s, u) and 〈(Tn, Φn) | n < ω〉, and

therefore belongs to V[G].

(E) Each 〈(T (s,u)
n , Φ

(s,u)
n ) | n < ω〉 is P-generic over V.

We are ready to construct, by induction on lh(s) = lh(u), the map in (53) satis-
fying the requirements (A)–(E) above.

The construction:

The sequence given by (∅, ∅) is the original generic sequence in (49), that is

〈(T (∅,∅)
n , Φ(∅,∅)

n ) | n < ω〉 = 〈(Tn, Φn) | n < ω〉 .

It is easy to verify that (A)–(E) hold.

Suppose lh(s) = lh(u) = k +1, and suppose that the codes have been defined for all
(s′, u′) of length ≤ k, and that satisfy (A)–(E).

Case 1: u ∈ T
(s�k,u�k)
0 and Φ

(s�k,u�k)
0 (u) = s.

Then set

〈(T (s,u)
n , Φ(s,u)

n ) | n ∈ ω〉 = 〈(T (s�k,u�k)
n , Φ(s�k,u�k)

n ) | n ∈ ω〉 .
Requirements (A)–(E) hold by the inductive assumption.

Case 2: otherwise, that is: u ∈ T
(s�k,u�k)
0 =⇒ Φ

(s�k,u�k)
0 (u) 6= s.

Since the sequence given by (s � k, u � k) is P-generic over V by (E), a density

argument implies there is a least j > 0 such that u ∈ T
(s�k,u�k)
j , Φ

(s�k,u�k)
j (u) = s, and

∀k′ < k
(
T

(s�k′,u�k′)
j = T

(s�k,u�k)
j & Φ

(s�k′,u�k′)
j = Φ

(s�k,u�k)
j

)
.

Define 〈T (s,u)
n , Φ

(s,u)
n | n ∈ ω〉 as follows:

(i) v ∈ T
(s,u)
n ⇐⇒ v ∈ T

(s�k,u�k)
n and Φ

(s,u)
n (v) = Φ

(s�k,u�k)
n (v) for all v if

n 6∈ {0, j}, and for v 6⊇ u if n ∈ {0, j}.
(ii) v ∈ T

(s,u)
0 ⇐⇒ v ∈ T

(s�k,u�k)
j and Φ

(s,u)
0 (v) = Φ

(s�k,u�k)
j (v) for v ⊇ u.

(iii) v ∈ T
(s,u)
j ⇐⇒ v ∈ T

(s�k,u�k)
0 and Φ

(s,u)
j (v) = Φ

(s�k,u�k)
0 (v) for v ⊇ u.
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Thus the move from the sequence given by (s � k, u � k) to the sequence given by
(s, u) involves interchanging the u-cone of T0 with the u-cone of Tj, and similarly
for Φ. (This interchanging is phrased precisely in clauses (ii) and (iii).) It is clear
that a change of this kind maintains the requirements (A) and (D), and satisfies
the requirement (B). Moreover the change secures the requirement (C) since j was

specifically chosen so that u ∈ T
(s�k,u�k)
j and Φ

(s�k,u�k)
j (u) = s. It remains to verify

that requirement (E) holds for 〈(T (s,u)
n , Φ

(s,u)
n ) | n ∈ ω〉.

Claim 31. 〈(T (s,u)
n , Φ

(s,u)
n ) | n ∈ ω〉 is P-generic over V.

Proof. Say that a condition p = 〈τn, ϕn, Kn,m〉n,m∈A in P is nice just in case that:

• τn, n ∈ A, all have the same domain. Moreover they all have domain equal
to {si | i < K} for some K ∈ ω which we denote K(p).

• Kn,m ≤ K for all n 6= m, both in A.

• Each Kn,m is minimal, in the sense that there is no p′ ≤ p with K
(p′)
n,m < Kn,m.

(Equivalently, Kn,m = 0 or else τn and τm disagree on sKn,m−1.)

Notice that every condition can be strengthened to a nice condition. The set of nice
conditions is therefore dense in P. Notice further that a nice condition is completely
determined by 〈τn, ϕn〉n∈A, since Kn,m is precisely specified by the final clause.

For each nice condition p = 〈τn, ϕn, Kn,m〉n,m∈A let π(p) be the nice condition
p∗ = 〈τ ∗n, ϕ∗

n, K
∗
n,m〉n,m∈A determined by:

(i) v ∈ τ ∗n ⇐⇒ v ∈ τn and ϕ∗
n(v) = ϕn(v) for all v if n 6∈ {0, j}, and for v 6⊇ u

if n ∈ {0, j}.
(ii) v ∈ τ ∗0 ⇐⇒ v ∈ τj and ϕ∗

0(v) = ϕj(v) for v ⊇ u.
(iii) v ∈ τ ∗j ⇐⇒ v ∈ τ0 and ϕ∗

j(v) = ϕ0(v) for v ⊇ u.

(These clauses, and the demand that p∗ be nice, completely determine p∗.)
It’s easy to check that q ≤ p =⇒ π(q) ≤ π(p). Moreover it’s clear that π is its

own inverse, and therefore π is an isomorphism on nice conditions.

〈T (s,u)
n , Φ

(s,u)
n | n ∈ ω〉 and π are defined so that p < 〈(T (s�k,u�k)

n , Φ
(s�k,u�k)
n ) | n ∈ ω〉

iff π(p) < 〈(T (s,u)
n , Φ

(s,u)
n ) | n ∈ ω〉. Using this, the fact that π is an isomorphism on

nice conditions, the fact that the nice conditions are dense in P, and the genericity of

〈(T (s�k,u�k)
n , Φ

(s�k,u�k)
n ) | n ∈ ω〉, it follows that 〈(T (s,u)

n , Φ
(s,u)
n ) | n ∈ ω〉 is generic. �

Cases 1 and 2 above complete the construction of the map (s, u) 7→ 〈(T (s,u)
n , Φ

(s,u)
n ) |

n ∈ ω〉 as in (53), satisfying (A)–(E).

By (B), for every pair (s, u) of length k+1, for every n ∈ ω, and for every v ∈ <ωω,

(56) lh(v) ≤ k =⇒
(
(v ∈ T (s,u)

n ⇐⇒ v ∈ T (s�k,u�k)
n ) & Φ(s,u)

n (v) = Φ(s�k,u�k)
n (v)

)
,

hence for any (x, z) ∈ ω2× R let

T (x,z)
n = {v ∈ <ωω | ∃k ≥ lh(v) v ∈ T (x�k,z�k)

n }
= {v ∈ <ωω | ∀k ≥ lh(v) v ∈ T (x�k,z�k)

n } .
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Then T
(x,z)
n is a pruned tree, and Φ

(x,z)
n : T

(x,z)
n → <ωω is Lipschitz, where for

v ∈ T
(x,z)
n and u ∈ <ω2 we set

Φ(x,z)
n (v) = u ⇐⇒ ∃k ≥ lh(v) Φ(x�k,z�k)

n (v) = u

⇐⇒ ∀k ≥ lh(v) Φ(x�k,z�k)
n (v) = u .

Therefore the map
ω2× R → H , (x, z) 7→ 〈(T (x,z)

n , Φ(x,z)
n ) | n ∈ ω〉

is continuous. Let f
(x,z)
n : [T

(x,z)
n ] → R be the Lipschitz function induced by Φ

(x�k,z�k)
n .

By (C), z ∈ [T
(x,z)
0 ] and f

(x,z)
0 (z) = x, so (55) holds.

Claim 32. Suppose z /∈
⋃

n[Tn]. Then

(a) n > 0 =⇒ z /∈ [T
(x,z)
n ],

(b)
⋃

n[T
(x,z)
n ] = {z} ∪

⋃
n[Tn],

(c) n 6= m =⇒ [T
(x,z)
n ] ∩ [T

(x,z)
m ] = ∅.

Proof. (a) If ∀k
(
T

(x�k,z�k)
n = T

(x�k+1,z�k+1)
n

)
then T

(x,z)
n = Tn, hence the condition

follows from z /∈
⋃

n[Tn]. Otherwise, let k be such that T
(x�k,z�k)
n 6= T

(x�k+1,z�k+1)
n .

Notice that k is unique by (B). Again by (B), T
(x,z)
n = T

(x�k+1,z�k+1)
n , and since

[T
(x�k+1,z�k+1)
n ] ⊆

⋃
m[Tm] by (A), the result follows.

(b) Let y 6= z. By (B)

(57) y � k 6= z � k =⇒ ∀n
(
y ∈ [T (x,z)

n ] ⇐⇒ y ∈ [T (x�k,z�k)
n ]

)
and therefore y ∈

⋃
n[T

(x,z)
n ] ⇐⇒ y ∈

⋃
n[Tn] by (A).

(c) Towards a contradiction, suppose y ∈ [T
(x,z)
n ] ∩ [T

(x,z)
m ]. By part (a) y 6= z so

by (57) above, y ∈ [T
(x�k,z�k)
n ] ∩ [T

(x�k,z�k)
m ] for all sufficiently large k, contradicting

the fact that the [T
(x�k,z�k)
n ] are disjoint. �

Therefore if z /∈
⋃

n[Tn], then the [T
(x,z)
n ]’s are disjoint, hence the \-function

f (x,z) =
⋃

n f
(x,z)
n :

⋃
n[T

(x,z)
n ] → R is defined. The next Claim shows that (54)

holds.

Claim 33. Suppose z /∈
⋃

n[Tn]. Then f (x,z) �
⋃

n[Tn] = f .

Proof. Let y ∈ [Tn] and let k be least such that y � k 6= z � k. By condition (B)

y ∈ [T
(x�k,z�k)
m ] for some m, and hence f

(x,z)
m (y) = f

(x�k,z�k)
m (y) = f(y) by (A) and

(B). �

Let Q be the usual Cohen forcing to add an element of R: Q = <ωω and the
ordering is reverse inclusion, u′ ≤ u ⇐⇒ u′ ⊇ u. Let z̄ be Q-generic over V[G].
Then by (52) z̄ /∈

⋃
n[Tn]. In order to complete the proof it is enough to show that

g(x), the code for f (x,z̄), is in K (= F by (48)) for every x ∈ ω2. Therefore it is

enough to verify that 〈(T (x,z̄)
n , Φ

(x,z̄)
n ) | n ∈ ω〉 is P-generic over V, for every x ∈ ω2.
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We now step-back into V.
Let 〈(Ṫn, Φ̇n) | n ∈ ω〉 be the P-name for the generic sequence of disjoint closed

sets and Lipschitz functions, let ż be the Q-name for the generic real, so that

(〈(Ṫn, Φ̇n) | n ∈ ω〉, ż)

can be construed as the canonical P×Q-name for the generic object. For (s, u) ∈
<ω2 × <ωω with lh(s) = lh(u), let 〈(Ṫ (s,u)

n , Φ̇
(s,u)
n ) | n ∈ ω〉 be the P-name for

〈(T (s,u)
n , Φ

(s,u)
n ) | n ∈ ω〉. Let ẋ be a P×Q-name for an element of the Cantor space,

and let 〈(Ṫ (ẋ,ż)
n , Φ̇

(ẋ,ż)
n ) | n ∈ ω〉 be the P ×Q-name for the sequence given by the

interpretations of ẋ and ż in the generic extension. Let D = {D ⊆ P | D is dense}:
by (E)

(58) 
P 〈(Ṫ (s,u)
n , Φ̇(s,u)

n ) | n ∈ ω〉 is Ď-generic

and in order to finish the proof we must check that

(59) 
P×Q 〈(Ṫ (ẋ,ż)
n , Φ̇(ẋ,ż)

n ) | n ∈ ω〉 is Ď-generic.

Towards a contradiction, suppose there are D ∈ D and (p, u) ∈ P×Q such that

(60) (p, u) 
P×Q 〈(Ṫ (ẋ,ż)
n , Φ̇(ẋ,ż)

n ) | n ∈ ω〉 does not meet Ď .

Let k = lh(u). By (58), for any s ∈ k2 and any p′ ∈ P there are p∗s ∈ P and ps ∈ D
such that p∗s ≤ p′ and

(61) p∗s 
P p̌s < 〈(Ṫ (s,u)
n , Φ̇(s,u)

n ) | n ∈ ω〉 .
Applying this argument 2k-many times, for each s ∈ k2 we can find ps ∈ D and
p∗s ∈ P satisfying (61) and such that the p∗s’s extend one another2 and each of them
extends p. Let p∗ be the strongest of the p∗s’s, and let w = uam, where m is large
enough so that w /∈

⋃
s∈k2 dom(ps). (The domain of a condition is defined in (46).)

Therefore, for any s ∈ k2

p∗ 
P p̌s < 〈(Ṫ (s,u)
n , Φ̇(s,u)

n ) | n ∈ ω〉 .
For any n ∈ ω, for any s′ ∈ k+12, and any (t, v) ∈ <ω2 × <ωω with t ⊃ s′, v ⊇ w,
and lh(t) = lh(v),


P Ṫ (s′,w)
n , Φ̇(s′,w)

n may differ from Ṫ (t,v)
n , Φ̇(t,v)

n only on nodes extending w

by (B), and since w is not in the domain of any of the ps’s, then for each s ∈ k2

p∗ 
P ∀(t, v) ∈ <ω2× <ωω
(
lh(t) = lh(v) & t ⊃ š & v ⊇ w̌ =⇒

p̌s < 〈(Ṫ (t,v)
n , Φ̇(t,v)

n ) | n ∈ ω〉
)
.

Since ps ∈ D then

(p∗, w) 
P×Q 〈(Ṫ (ẋ,ż)
n , Φ̇(ẋ,ż)

n ) | n ∈ ω〉 meets Ď,

contradicting (60), as (p∗, w) ≤ (p, u). This completes the proof of Theorem 29.

2This is why we restricted to x ∈ ω2, rather than x ∈ R: at each stage of the approximation we
only need to worry about finitely many s.
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6. Appendix

Recall from (6) that PTr, the collection of all non-empty pruned trees on ω, is (or
better: can be identified with) a Gδ subset of ω2. Hence ωPTr can be construed as
the Polish space of all codes for Σ0

2 sets. Let π1 : ωPTr � Σ0
2

π1(〈Tn | n < ω〉) =
⋃

n[Tn] .

Similarly ω×2PTr is Polish and π2 : ω×2PTr � 2-Σ0
2

π2(〈Tn,i | (n, i) ∈ ω × 2〉) =
⋃

n[Tn,0] \
⋃

n[Tn,1] .

As in Proposition 28, a function F : ω×2PTr → ωPTr induces an injection of 2-Σ0
2

into Σ0
2 iff

∀~T , ~S ∈ ω×2PTr
(
π2(~T ) = π2(~S) ⇐⇒ π1(F (~T )) = π1(F (~S))

)
.

The map 2-Σ0
2 � Σ0

2, A 7→ π1(F̄ (~T )) for some/any ~T ∈ ω×2PTr such that π2(~T ) =
A, will be the injection induced by F .

We will sketch a proof of

Theorem 34. Assume AD. Then there is no F : ω×2PTr → ωPTr which induces an
injection 2-Σ0

2 � Σ0
2.

This was our first result and the techniques employed in its proof—once properly
generalized—led to Theorem 1. The proof of Theorem 34 rests on two intermediate
results: the first is a weaker version of the theorem, Lemma 35 below, saying that
no such F can be continuous, and the second is a generalization to all F ’s.

Lemma 35. Assume ZF + DC. Then there is no continuous F : ω×2PTr → ωPTr
which induces an injection of 2-Σ0

2 into Σ0
2.

Proof. Since every real yields a pruned tree via the map H : R � PTr, x 7→ {x �
n | n ∈ ω}, then ω×2R can be embedded into ω×2PTr via the map

H2 : ω×2R � ω×2PTr 〈xn,i | (n, i) ∈ ω × 2〉 7→ 〈H(xn,i) | (n, i) ∈ ω × 2〉 .

Therefore every x ∈ ω×2R yields a set in 2-Σ0
2

D(2; x) = Diff(2; H2(x))

= {xn,0 | n < ω} \ {xn,1 | n < ω}

Note that D(2; x) is indeed a countable set and hence an element of Σ0
2, but we shall

think of it as an element of 2-Σ0
2. Since Φ2 is continuous, it is enough to show that

there is no continuous F : ω×2R → ωPTr such that for all x, y ∈ ω×2R
D(2; x) = D(2; y) ⇐⇒

⋃
n[F (x)n] =

⋃
n[F (y)n] .

Towards a contradiction assume that such an F exists. We will often blur the
distinction between a countable sequence of reals a ∈ ω×2R and the countable set of
reals it defines, ran(a) = {an,i | (n, i) ∈ ω× 2}. In particular the usual set theoretic
operations and properties applied to elements of ω×2R are really meant to be applied
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to the sets of reals defined by them, so that a ⊆ b, a∪ b, . . . stand for {an,i | (n, i) ∈
ω × 2} ⊆ {bn,i | (n, i) ∈ ω × 2}, {an,i | (n, i) ∈ ω × 2} ∪ {bn,i | (n, i) ∈ ω × 2}, . . .

Fix a, b, c ∈ ωR pairwise disjoint sequences of reals, and assume that c is dense
(i.e., {cn | n ∈ ω} is dense in R). Let x ∈ ω×2R be defined by

xn,0 = an, yn,0 = bn, xn,1 = yn,1 = cn .

Therefore x = a ∪ c (or better: ran(x) = ran(a) ∪ ran(c)), y = b ∪ c, hence x ∪ y =
a ∪ b ∪ c, x ∩ y = c, D(2; x) = a \ c = a and D(2; y) = b \ c = b, and therefore⋃

n[F (x)n] 6=
⋃

n[F (y)n]. We are out to show a contradiction from the assumption
that

⋃
n[F (x)n]4

⋃
n[F (y)n] 6= ∅; for the sake of definitiveness suppose there is some

w ∈
⋃

n[F (x)n] \
⋃

n[F (y)n] .

Let p be a function p : A → R with A ⊂ ω × 2 finite. Then

C(p) = {x ∈ ω×2R | ∀(n, i) ∈ A (xn,i = pn,i)}
= {x ∈ ω×2R | x ⊃ p}

is a closed subset of ω×2R. We say that p is x-restricted iff

(n, 0) ∈ A =⇒ pn,0 ∈ {xm,i | (m, i) ∈ ω × 2}
(n, 1) ∈ A =⇒ pn,1 ∈ {cm | m ∈ ω}

Thus an x-restricted p is an approximation to a z with D(2; z) = D(2; x)—see
Lemma 37 for the precise statement.

Claim 36. If p is x-restricted, U ⊆ ω×2R is open, and U ∩ C(p) 6= ∅, then there is
q ⊃ p such that q is x-restricted and C(q) ⊆ U ∩ C(p).

Proof. Without loss of generality we may assume that U is a basic open set of the
form

U =
∏

(n,i)∈B

Vn,i ×
∏

(n,i)∈ω×2\B

R

where B ⊂ ω × 2 is finite and the Vn,i ⊆ R are open and non-empty. By case
assumption pn,i ∈ Vn,i for (n, i) ∈ B ∩ dom(p), so we can define q : B ∪ dom(p) → R
to be p on dom(p) and for (n, i) ∈ B \ dom(p) set q(n, i) = ci, where i is least such
that ci ∈ Vn,i. Such an i exists by density of c. �

For a fixed x-restricted p consider the following game G(p): I plays x-restricted
pn’s and II plays open sets Un ⊆ ω×2R subject to the rules that

• diam(Un) < 2−n and Un ∩ C(pn) 6= ∅,
• p = p0, pn ⊆ pn+1, and C(pn+1) ⊆ Un ∩ C(pn).

(The diameters of the Un’s is taken with respect to a complete metric on ω×2R
compatible with the product topology.) The first player to violate these rules loses.
If 〈(pn, Un) | n ∈ ω〉 is a complete play of G(p) then

⋂
n C(pn) is a singleton {z}, since

the C(pn)’s are closed and of shrinking diameter. Then I wins G(p) iff D(2; z) =
D(2; x).

Lemma 37. If p is x-restricted, then I has a winning strategy for G(x, p).
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Proof. Let Σ be the following strategy for I: Set Σ(∅) = p0 = p, and suppose
〈p0, U0, . . . , pn〉 is a position according to Σ and that neither player has violated the
rules so far. Suppose Un is open, of diameter < 2−n and Un ∩C(pn) 6= ∅. By Claim
36 there is an x-restricted q ⊇ p such that C(q) ⊆ Un ∩ C(pn). We now define
Σ’s response to Un to be the function pn+1 obtained by extending q as follows:
choose (h, 0), (k, 1) /∈ dom(q) and set pn+1(h, 0) = an and pn+1(k, 1) = cn. Therefore
〈(pn, Un) | n ∈ ω〉 is a play according to Σ in which II has followed the rules, and
if z is the unique element of

⋂
n C(pn), then D(2; z) = {an | n ∈ ω}, which is what

we had to prove. �

Lemma 38. There is an x-restricted p and a k < ω, such that

∀z ∈ C(p) w ∈ [F (z)k] .

Proof. Suppose not. We will construct a z̄ ∈ ω×2R such that

(a) D(2; z̄) = D(2; x) and
(a) w /∈

⋃
n[F (z̄)n].

This is a contradiction, since w ∈
⋃

n[F (x)n] and
⋃

n[F (x)n] =
⋃

n[F (z̄)n] by (a)
above and by assumption on F . We will construct a complete play 〈(pn, Un) | n ∈ ω〉
according to a winning strategy for I in G(∅) and will take z̄ to be the unique element
of

⋂
n C(pn) so that (a) will follow from Lemma 37. (Note that the empty function

is x-restricted.) We will maintain that ∀z ∈ C(pn) w /∈ [F (z)n]: this will imply that
w /∈

⋃
k[F (z̄)k], establishing thus (b). Therefore it is enough to construct the Un’s so

that II never violates the rules of G(∅). Suppose 〈p0, U0, . . . , pn〉 is a position of G(∅)
according to Σ and that II has not broken the rules so far. Since F is continuous,
the set Vn = {z ∈ ω×2R | w /∈ [F (z)n]} is open. By case assumption C(pn)∩Vn 6= ∅,
so II can simply shrink Vn to a Un with diam(Un) < 2−n and C(pn) ∩ Un 6= ∅. �

We can now reach a contradiction, establishing thus Lemma 35. Fix p and k as
in Lemma 38 and choose z ⊃ p such that {zn,0 | (n, 0) /∈ dom(p)} = {bn | n ∈ ω}
and {zn,1 | (n, 1) /∈ dom(p)} = {pn,0 | (n, 0) ∈ dom(p)}. Then D(2; z) = b = D(2; y)
and hence

⋃
n[F (z)n] =

⋃
n[F (y)n]. But z ∈ C(p), so w ∈ [F (z)k] ⊆

⋃
n[F (y)n],

contradicting our choice of w. �

Suppose now F : ω×2PTr → ωPTr is a function (not necessarily continuous) that
induces an injection of 2-Σ0

2 into Σ0
2. By determinacy F is continuous on a comeager

G ⊆ ω×2PTr. Unfortunately we cannot apply the technique of Lemma 35, since G

need not to contain codes for (differences of) countable sets, nor to be closed under
equivalences of codes, that is, π2(x) = π2(y) and x ∈ G does not imply y ∈ G. The
solution is to continuously re-interpret the codes for 2-Σ0

2 inside G, that is construct
a continuous G : ω×2PTr → G such that

(62) π2(x) = π2(y) ⇐⇒ π2(G(x)) = π2(G(y))

and then compose with F (which is continuous on G) and appeal to Lemma 35 to
reach a contradiction.

Theorem 39 (ZF + DC). Let G ⊆ ω×2PTr be comeager. Then there exist
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• a continuous G : ω×2PTr → G,
• a pruned tree W ,
• a Lipschitz homeomorphism H : R → [W ], and
• an Fσ set J ⊆ R \ [W ],

such that for each 〈Tn,i | (n, i) ∈ ω × 2〉 ∈ ω×2PTr, letting 〈T ′
n,i | (n, i) ∈ ω × 2〉 =

G(〈Tn,i | (n, i) ∈ ω×2〉) ∈ G, the part of
⋃

n[T ′
n,0]\

⋃
n[T ′

n,1] in [W ] is homeomorphic
to

⋃
n[Tn,0] \

⋃
n[Tn,1] via H, and the part outside [W ] is equal to J , that is(⋃

n[T ′
n,0] \

⋃
n[T ′

n,1]
)
∩ [W ] = H“

(⋃
n[Tn,0] \

⋃
n[Tn,1]

)
,(⋃

n[T ′
n,0] \

⋃
n[T ′

n,1]
)
\ [W ] = J .

(63)

It is not hard to see that (63) implies (62). Since AD implies that every set in
the plane can be uniformized on a comeager set, then it can be shown that any
injection 2-Σ0

2 � Σ0
2 is induced by a continuous F : G → ωPTr on a comeager G,

and therefore Theorem 39 will imply that

AD =⇒ |Σ0
2| < |2-Σ0

2| ,
which is what we wanted to show.

The proof of Theorem 39 is rather technical and will not be given here, but it is
based on a Baire-category argument, just like the proof of Theorem 29.
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