arXiv:1610.03591v1l [math.LO] 12 Oct 2016

ON THE EXISTENCE OF A STRONG MINIMAL PAIR

GEORGE BARMPALIAS, MINGZHONG CAIl, STEFFEN LEMPP, AND THEQDRE A. SLAMAN

AsstracT. We show that there is a strong minimal pair in the computablymerable Turing degrees,
i.e., a pair of nonzero c.e. degreeandb such thata N b = 0 and for any nonzero c.e. degrnee a,
buxz>a

1. INTRODUCTION

Much of the work on the degree structure of the computablyrearable (c.e.) Turing degrees has
focused on studying its finite substructures and how theybeaextended to larger substructures.
There are several reasons for this: The partial order of thalegrees is a very complicated algebraic
structure, with an undecidable first-order theory, by Haton and Shelalj [HS82]. So, on the one
hand, as in classical algebra, a complicated structuretes difest understood by studying its finite
substructures. On the other hand, the existential fragmoktite first-order theory of this degree
structure (in the language of partial orderiagleast element 0 and greatest element 1) is known to
be decidable by Sackf [S§63], whereas by Lempp, Nies anca8IftNS98], thedv3-theory of this
structure (in the language of partial ordering only) is widable. However, the decidability of the
V¥3-theory of this structure has been an open question for atiomg and it is this question which
can be rephrased in purely algebraic terms as a question ffiteisubstructures:

Question 1.1(Extendibility Question) Let? and @; (with i < n) be finite posets such that for all

i <n,P C Q. Under what conditions o and theQ; can any embedding & into the c.e. Turing
degrees be extended to an embeddin@;onto the c.e. Turing degrees for some i (which may depend
on the embedding @?)?

Call a partially ordered s&® boundedf it contains distinguished least and great elements 0 and 1
respectively. We can now formulate the following modified

Question 1.2(Extendibility Question with 0 and 1)Let# and @; (with i < n) be finite bounded
posets such that for all £ n, # € Q;. Under what conditions o® and theQ; can any embedding
of £ into the c.e. Turing degrees (preserving 0 and 1) be extetwlad embedding a®; into the c.e.
Turing degrees (preserving 0 and 1) for some i?

The answer fon = 1 to Questior] 1]2 was given by the following

Date July 18, 2018.
2010Mathematics Subject Classificatiof3D25.
Key words and phrasesTuring degrees, computably enumerable, minimal pair,nstea of embeddings.
This research was partially carried out while the first,dldnd fourth authors were visiting fellows at the Isaac Newto
Institute for the Mathematical Sciences in the program “Setics & Syntax”. The first author’s research was supported b
theResearch fund for international young scientistenbers 613501-10236 and 613501-10535 from the Nationairdla
Science Foundation of China, and kmternational Young Scientist Fellowshiumber 2010-Y2GBO03 from the Chinese
Academy of Sciences. The second author’s research wag papborted by an AMS Simons Travel Grant and NSF Grant
DMS-1266214. The third author’s research was partly supddsy AMS-Simons Foundation Collaboration Grant 209087.
The fourth author’s research was supported by the NatiariahSe Foundation, USA, under Grant No. DMS-1001551 and
by the Simons Foundation.

1

http://arxiv.org/abs/1610.03591v1

2 GEORGE BARMPALIAS, MINGZHONG CAIl, STEFFEN LEMPP, AND THHOBORE A. SLAMAN

Theorem 1.3(Slaman, Soard [SS99]Wniformly in finite bounded posef8 and Q, there is an ef-
fective procedure to decide whether any embedding wofto the c.e. Turing degrees (preserving 0
and 1) be extended to an embeddingldhto the c.e. Turing degrees (preserving 0 and 1).

This result of Slaman and Soare built on a long line of researo the algebraic structure of the
c.e. degrees, starting with the Sacks Splitting and Deif$igorems|[[Sa63lp, Sd64] and the proof of
the existence of a minimal pair of c.e. degrees by LacHlaggland Yates[[Ya@6].

In their proof in [SS99], Slaman and Soare identify two basistacles to extending an embedding.
The first of these is lattice-theoretic: The c.e. degrees fan upper semilattice in which the meet
of some but not all pairs of degrees exists. In fact, the majodle toward deciding thé3-theory
of this structure has been the long-standing lattice emhgddproblem, asking for an ffective)
characterization of those finite lattices which can be erdbeddnto the c.e. Turing degrees. (Note
that the lattice embeddings problem can be phrased as ackldupr of the Extendibility Question
by making all the@; one-point extensions @, each testing the preservation of a particular meet or
join in the lattice embedding. Lermah [L400] gave a rféeetive (indeed a19-)condition for lattice
embeddability; a more recent survey is Lempp, Lerman andrSah [CLS06].)

The other basic obstacle to extending an embedding idehbfieSlaman and Soare is a phenom-
enon sometimes called “saturation”; a minimal example &f given by setting? = {0, a, b, 1} (with
incomparablea, b) andQ = P U {x,z} (with 0 < x < a,zandb < z< 1 butx £ banda £ 2). In
the general case, there may be a number of such elemen — £, and for eachx there will be a
non-empty seZ(x) € Q — P of suchz

An early example of a specific instance of an answer to ther@itéity Question[1]2 fon > 1
was given by Lachlan’s Nondiamond Theordm [a66]: No miripzr of c.e. degrees can cup@b
(For this, we sefP = {0,a,b, 1} (with incomparablea,b), Qy = P U {X} (with 0 < X < a,b), and
Q1 =P Uiy} (witha,b <y < 1).) So this is an instance of two lattice-theoretic obstoms which
cannot be overcome individually, but can be overcome in doation.

The main theorem of this paper provides an example wherdieekiheoretic obstruction and a
“saturation” obstruction cannot each be overcome eithdivigually or in combination:

Main Theorem. There is astrong minimal paiin the c.e. Turing degrees, i.e., there are nonzero c.e.
degreesa andb such thatan b = 0 and for any nonzero c.e. degrge< a, b U x > a.

Note that this is an instance of the Extendibility QuestioR Ay setting? = {0,a,b,1} (with
incomparablea, b), Qy = P U {x} (with 0 < x < a,b) and@Q; = P U {x,z} (with 0 < x < a,zand
b<z<1butx¢ banda g 2).

We should mention here that our Main Theorem has a long arsddgivhistory. It was discussed
and claimed, in both directions, by a number of researchess the past 25 years. The only pub-
lished proof is in Lerman’s monograph [L¢10], where he ltites the theorem to Slaman (also see
the review by Barmpaliad [BafL1]). However (per personal momication with Lerman), the proof
published by Lermar{]Cell0] has a gap, which is filled by a fieatuhich we introduce in our proof
here.

We would like to state here the following related questiohjc we leave open:

Question 1.4.1s there a “two-sided” strong minimal pair; i.e., are ther@nzero c.e. degreesandb
such thatan b = 0, for any nonzero c.e. degree< a, b U x > a, and for any nonzero c.e. degree
y<b,auy>Db?

This is, of course, an instance of the Extendibility Quesfid? (withn = 3, combining one lattice-
theoretic and two “saturation” obstructions, namely,isgtP = {0, a, b, 1} (with incomparable, b),
Qo =PuUw (withO<w<ab),Q =PU{xz (wWith0 < x< azandb < z< 1 butx £ band
atz2,and@; = PU{x,Z}(withO< X < b,Z anda< Z < 1butx £ aandb £ Z). We remark here

ON THE EXISTENCE OF A STRONG MINIMAL PAIR 3

that our Questiof 1.4 has a negative answer if we also retiénein of (the images of andb to be
“branching” (i.e., meet-reducible); i.e., any embeddiigPo= {0,a,b, c,d, e, 1} (with incomparable
a, b, incomparablal, e, anda,b < ¢ < d, €) extends to an embedding & = P U {w} (with 0 <
w<abh),Q =PuU{xz (withO<x<azandb<z<lbutxg bandag 2,Q, =P U{X,Z}
with0 < X <b,Zanda< Z <1butx £ aandb £ Z), Qs = P U {y} (witha,b <y < ¢), or
Q4 = PU{Y'} (withc < ¥ < d, €). This last result was observed by Slaman by combining Térefir.3
with the Non-Embeddability Condition (NEC) of Ambos-Spasd Lerman([JAL8B]. This last result
also suggests that the full answer to our Extendibility @oas[I.] and I]2 is likely to be very hard.

2. REQUIREMENTS AND PRIORITY TREE

In this section we describe a set of requirements that gteeasur main theorem, and the way
these requirements can be assigned to strategies on dyptited. This methodology is rather stan-
dard for priority arguments of this type, and the readerfisrred to the arguments if [FeSp§I, JS93]
(Harrington’s plus-cupping theorem and Slaman’s triplélick exhibit certain similarities. More-
over, these ideas are refinements of certain devices thatweed in Lachlan’s origind)”’ -priority
argument in[[Ca75]. We will also refer to these construddiom Section[]3, in order to explain the
origins of the basic strategies for meeting our requiresent

2.1. List of requirements. As usual, we construct two c.e. sétsand B such that in the end =
deg@) andb = degB). We first have the requirements which satisfy thandb form a strong
minimal pair:
Ri: Oi(A) =W = [AFTC(BoW) = A) v JAA = W)].
Then we have the diagonalization requirements which gteeghatA is not belowB [B not being
below A will be guaranteed automatically]:

Si: ¥i(B) # A

Note that eacl; states that there exists arsuch that¥;(B; xX) # A(X). In the construction, each
Si-node has subsidiarg; j-nodes, each using a possiblyffdrentkilling point (to be defined and
clarified later) for forcing¥;(B; x) to diverge. We call a node associated with st parent node
and a node associated wifh; achild node At each stage, the collection of &j-parent node and
its previously visited, uncanceled child nodes is calledsafamily (of that stage).

2.2. Discussion of the requirements in a historical context.It is worth noting the similarity of
the requirements with those of the arguments/in [L475, F§38898]. Such a discussion may be
beneficial to the reader who is familiar with these older antpter arguments; but it may also be
helpful to the reader who is not an expertQff -priority arguments and might like to first consult
these simpler proofs. In its simple form, Harrington’s ptugpping theorem (presented [n [FeSo81]
but also in [ShoJ0]) asserts the existence of a nonzero elegnach that every noncomputable< a
cups to0’ (i.e., there exists sonte< 0’ such thall’ < aub). The main requirements for this theorem
(excluding the noncomputability &) can be written as

R O(A) =W = [AN,B (CBi®@W) = A A 0 £1 B) vIAA = W)].

The similarity of the plus-cupping requirements with ougugements of Sectioh 2.1 is clear. The
main diference is that in the plus-cupping requirements, for aafchve can build a dferentB;
while in our requirements there is a unig@¢hat must accommodate all conditions. Another relevant
example is the construction of a so-called ‘Slaman trigle’, three degrees b, ¢ such thata > 0,

c £ b and for all noncomputables < a we havec < w U b. This was published i[[SSP3] (based
on some unpublished notes of Slaman from 1983) and it is theadif we also requir@ = c then a
Slaman triple becomes the strong minimal pair of our maioria@. The requirements for a Slaman

4 GEORGE BARMPALIAS, MINGZHONG CAIl, STEFFEN LEMPP, AND THHOBORE A. SLAMAN

triple (excluding the noncomputability afandc £ b, which is similar to our positiveS;-requirements
in Section[2]1) are

R @A) =W = [AT (T(BeW,) = C) v IA(A = W)].

The similarities ofR™ with our R; are also clear. Instead of using the same set for the rolés of
and C we use two, therefore relaxing the conflict that is generdteidveen the positive and the
negative requirements. On the other hand, we use a dlgéxe, in contrast witbRi*, where we had

a differentB; for each conditiorR;.

The strategies used in the arguments[in [Fel5p81,]SS93venmigap-cogap technique for the
construction of the Turing reductiofis which originated in[[La75] and which will also be used in our
argument. In Sectiof] 3, we will discuss this technique iraitieds well as the additional fiiculties
that conditionsR; present, which are the reason for the more complicated apprave eventually
take.

2.3. Priority tree. Our priority tree is defined top down, i.e., the top node hashighest priority.
Each node has several possible outcomes, prioritizedoleiilht.

EachR;-nodea has two outcomes:(infinite) andf (finite). Along thei-outcome, we are defining
a functionall’, for computingA from B & W;. Such a node is active at somes below if there is
no g,-outcome (see below) betwegranda and there are na’ andg’ with @’ c @ c 8/ c 8 such
thate’ andg’ form a pair (see definition below).

Each S;-parent node3 has three outcomest (diagonalization),g (gap, defined below), and
(wait). Theg-outcome stands for an apparent computati§(B; x) = 0 against which we cannot
diagonalize (i.e., puk into A without risking to lose the computatioH;(B; x) = 0). We arrange the
priority tree in such a way that immediately following th®utcome of eacls;-parent node, we have
its first S o-child node.

EachsS; j-child nodegs is below theg-outcome of itsS;-parent node and has outcongs, . . ., gy, C
(ordered from left to right). Eachb, (which, following convention, again stands for “gap”) a®r
sponds to one activR-nodea above theS;-parent noder(ot the S; j-child node), ordered in such
a way that ifa c o, theng, is to the left ofg,.. For the nodes extending tlgg-outcome, we
say thatae and this child nodgs form apair. In addition, we also define a computable functibn
along theg,-outcome for computing the s&¥ corresponding to the requirementaat Extending a
g.-outcome, we stop adding neWy-child nodes (and believe that this requirement has beesfisdt
forever). There is only one-outcome ¢ stands for “claim”) to the right of all thg,-outcomes. Ex-
tending such an outcome, we continue to add &gxvchild nodes. Of course, we arrange the priority
tree in a reasonable way such that along every infinite patth eequirement is represented at most
once hy a strategy (or pair of strategies, in the case oRthequirements) which is not enclosed by
any other pair.

3. OVERVIEW OF THE STRATEGIES AND THEIR CONFLICTS

In this section we discuss the basic strategies that aretagtpoint for the more complex strate-
gies that are needed for the satisfaction of the requiresnéne start with the standard gap-cogap
strategy for the satisfaction for simple combinations abyitized conditions, and slowly build the
ideas needed for the general case. Recall that the treatdgitr's grows from the root downwards, so
that a strategy nodaboveanother is of higher priority with respect to the latter ofibe main con-
flict occurs between the ‘positive’ requirements (or sgas)S; (which typically put numbers inté
and try to preserve B-computation by restraining the enumeration of small nuisbgo B) and the
‘negative’ requirement®; which typically facilitate the enumeration of numbers iBpwhich are
often needed for the rectification of the functiomathat they build. The latter rectification is needed

ON THE EXISTENCE OF A STRONG MINIMAL PAIR 5

due to the enumeration of numbers idtdy some positive strategies. In the preliminary Sect[ofls 3.
and[3.R, we assume that strate§jyoperates from a single node, instead of being split into ergar
node and child nodes as we described in Se¢tidn 2.3. We dfottgamplicity, as these sections only
serve as an illustration of the typical gap-cogap stratetich is suficient for simple configurations
of requirements but not for the full construction.

3.1. Typical gap-cogap strategy: oneS below oneR. The strategy of arR;-node is to simply
enumeratd’j-computations for the reductidn(B & W) = A, and enumerate a number ifBovhen
there is a numbek such thaf’j(B & Wi; k) = A(K). In the latter case, this number would typically be
the current use of the computatidr(B e W ; k), and its enumeration facilitates the rectification of the
reduction. Wheik is the witness of some positive requirement (or some rejzdeaimeter, see below)
then the use of the rectified computation may need to be isedeto a large number (for reasons that
will become clear when we discuss tSe-strategy).

TheS; typically picks a withesx and waits for the computatioff(B; x) to converge with output
value 0. If and when this happens, a typical diagonalizastoategy would prompt for the enumera-
tion of x into A and the preservation of tH&-use of the computatiol¥;(B; X). However, this naive
strategy is not successful in the present context, sinchiger-priority R;-strategy may enumerate
into B a number that can destroy the computatifiB; x). Such an enumeration may be caused due
to the enumeration of into A by Sj, and the instructions o®; to maintain the correctness Bf. This
is the primary conflict between the requirements, and atdleisientary level it can be resolved by a
standard gap-cogap strategy on the behalfjaimuch like in the arguments iff [FeS$41, S|S93] which
we discussed in Sectign P.2).

The gap-cogap strategy fdt; typically operates in cycles, periodically restrainiAgor B, thus
building a potential computatiof for the seM. Prior to the start of the alternating cycles, it chooses
a witnessx. The first step in each cycle is:

(w) Wait for the computatiot¥;(B; x) to converge with output value 0.

If and when this happens, it checks if tBeuse of the computatioh;(B & W) is less than th&-use
of the computationt;(B; x). If this is not true, then it can safely enumeraténto A and restrain
the B-use of the computatio(B; x), thereby securing the disagreemdfji(B; x) # A(X). Note
that in this case, thE;j-rectification that may be prompted & will not affect this diagonalization.
Otherwise, it will consider th&\i-use ofl;(B @ W; x), sayuy, and

(al) drop any restraint of (thus allowingW; to change, under the assumption tgtA) = W);
(a2) defineA = W; up tou, and restrain enumerations inBoup to theB-use of¥(B; X).

This action initiates an interval of stages that may be dadle ‘A-gap’, which is characterized by

a lack of restraint orA and the enforcement of a restraint Bn During this interval of stage$;
receives the instruction to increase the us€&;B @ W;; X) to a large number (larger than the use of
¥i(B; X)) in the event thatVi changes belows,. When the strategy is revisited (as in a standard tree
of strategies argument),

(b1) if W, has changed below, since the stage thA-gap was opened, it enumeratemto A,
while enforcing a permanent restraint Brior the preservation o¥'j(B; x) # A(X);

(b2) otherwise, it closes tha&-gap (thereby reinforcing a restraint én equal to the use of the
current, possibly new computatidn (A) = W; up tou,), and opens 8-gap by dropping the
restraint orB and enumerating thB-use ofT;(B @ W; X) into B.

Note that step (b2) is possible sinSgworks under the assumption that the reductlp(®) = W has
infinitely many expansionary stages. Moreover, note thaBtenumeration in step (b2) will destroy
the computatior¥;(B; X). Now let us review the long-term behavior of tg. The routine comes to
halt if one of the following cases occurs at some stgge

6 GEORGE BARMPALIAS, MINGZHONG CAIl, STEFFEN LEMPP, AND THHOBORE A. SLAMAN

(1) ¥(B; x) remains undefined or not equal to O at all stages larger d§jaor
(2) xis enumerated inté by S;.

In the first casesS; is clearly satisfied (this can be viewed a§%1outcome). In the second case,
according to the strategy, the disagreem&ntB; x) # A(x) will be preserved (since thB-use of
Ii(B@&W,; X) would be larger than thB-use of¥(B; x)). Hence in this case also (assuming that basic
priority is respected amongst the requiremets)s met in azg—way. The interesting case is when
these events do not occur, in which case the following cytlstates’ of theS;-strategy repeats
indefinitely:

(3.1) (W) > (al)— (a2)— (b2) - (W) - -

Under this infinitaryHg-scenario, the witness remains fixed, while theSj-strategy alternates be-
tweenA-gap states (wheB-restraint is imposed but n&-restraint) andB-gap states (wheA-re-
straint is imposed but n@-restraint). TheA-gap interval consists of the steps (w), (al), (a2) (where
the latter two typically occur at the same stage) whileBhgap interval consists of step (b2). In this
case, observe that tif§-strategy builds a total computable functiarwhich correctly compute®y;:
new computations are produced at the (a2) steps, and thoatgfe stages none of these compu-
tations are falsified. Indeed, if such a computation wersiffatl (through aA;-change below the
maximum initial segment of numbers on whighis defined) then the strategy would execute step
(b1), thus ending the perpetual cycfe 3.1) and producingcaessfuld-outcome forS;. On the
other hand, under this outcome, the us&;6B @ W;; X) is driven to infinity, thereby makin; partial
at the chosen number This aspect of the strategy is sometimes known as ‘capisciestruction’
of T, since our strategy intentionally ‘kills’ the very reduanti that we build at a higher-priority node
(but for good reasons, see the next paragraph).

Hence, under this infinitari][‘z)—outcome ofS; (often called a ‘gap outcome’), the actions of this
strategy satisfy the higher-priorif§;, as well as itself since the use'Bf(B; X) is driven to infinity. On
the other handgS; can pass the information thBt is partial atx to the lower-priority requirements,
so a lowerS; can successfully implement a standard diagonalizaticategfy by only considering
computations¥ (B; y) which have usd-use below thé-use ofl’i(B; x) (which goes monotonically
to infinity). In the next section, we see that this gap-codeqiegy also works in a nested environment,
thus satisfyingS; below any finite number oR;-strategies.

3.2. Typical gap-cogap strategy: oneS below manyR. When anS;-strategy works below a finite
number ofR;-strategies, it needs to resolve the same issues as theisoessed in Sectign 3.1, but
this time with respect to each of the higher-priority stgée. More specifically, it may have trouble
preserving a diagonalizatiotj(B; X) # A(X) due to a number of-reductions that are being built
with higher priority. In this section, we show that a nestedsion of the strategy we discussed in
Sectior{ 3]1 sffices to deal with these conflicts. This nesting approachastgfscal in arguments like
those in [FeSo81, SS93]. For simplicity, suppose that a maatking for Sy is below a node foRj,
which in turn is below a node working f&Rg. The methodology we give below generalizes trivially
to the case where we have a node Srbelow nodes foRy, ..., Re. The idea is to implement the
gap-cogap strategy fd¥g sequentially, first with respect ®; and then with respect t&p.

Consider the gap-cogap strategy & with respect toR;. Under theHg-outcome of this strat-
egy, Wy is proven computable whilE; is partial at a specified level (namely the witnessf Sy).
In this case, another requireme$ can work belowSg, with the additional information thdt; is
partial atx. Then a standard gap-cogap strategy for the copgyycgainstRg alone can successfully
work for satisfaction of both requirements (as in Secfid}).3.

On the other hand, there is a possibility that this gap-cagagine of Sy againstR; ends up
having azg—outcome. In this case, the strategy would typically go &pgbl). However, at such a

ON THE EXISTENCE OF A STRONG MINIMAL PAIR 7

stageSp can no longer proceed directly with the diagonalizatioiB; x) # A(X). Indeed, the higher-
priority Ro could potentially destroy such a disagreement (in a waywleahave already discussed:
through a rectification of itfy reduction). In this cas&§y needs to start a new gap-cogap cycle with
respect toRp. If this nested cycle repeats indefinitely, it provides a patationAq for Wy while
making bothl'y andT’; partial atx. In this case, the highest priorif)y is met, at the expense 6
andSp which are ‘injured’ and need to be satisfied by means of aulditi copies of their strategies
under the information thdty is partial atx. This is certainly possible, as it reduces to the cases we
have already discussed. If, on the other hand, the secostef)e@ap-cogap cycle ¢y reaches step
(b1), then it can diagonalize, thereby producing the desagrent?';(B; X) # A(x) and preserving it
indefinitely (since the relevaility- andI';-uses are dticiently large, due to th&- andW;-changes
that occurred, respectively).

We may sum up the nesting of the gap-cogap strategies asvollGtrategySy first attempts
to ‘clear’ the computation?’j(B; X) from theI';-use onx. If and when it achieves this (through a
Wi-change) it proceeds to clear this computation fromlifi@se onx. If and when this is achieved,
it can successfully diagonalize. In any other case (exdsgptirivial case whe¥(B; x) remains
undefined or not equal to 0), it produceﬂ‘%}outcome that enables copies of the existing strategies to
satisfy their corresponding requirements at nodes of Igmierity. It is important to note that in the
above scenario, after the computati®i(B; x) is cleared from thd’;-use onx, the strategy has one
chance to clear it from thEg-use onx (namely, in the next cycle when ti#erestraints drop). If this
fails, the strategy starts the module anew, waiting agaithi® convergence oF;(B; x).

Note that here we have twofférentl'lg-outcomes corresponding to the following cases:

(1) we never clear thE;-use;
(2) we clear thd'1-use infinitely often but we never clear thg-use.

Also note that we only attempt to clear thg-use when we have already cleared Iheuse. In this
sense, we say thal first opens a gap foR1 and then forRg.

These nested gap-cogap strategies affecant for dealing with oneS-strategy below any finite
number ofR-strategies. When we consider multifestrategies below a number &tstrategies, new
conflicts occur, which we discuss in the following sections.

Now in our formal construction (see Sectipn]4.1), we insteaddle the gap-cogap requirements
from different notes by alternating glob&istages an@-stages in the background. DuriAgstages,
we are allowed to changk but notB; during B-stages, we are allowed to charigdéut notA. Later
in the discussion, we will usA-stages and-stages instead of the gap-cogap terminology.

In particular, in the above construction, we do not need tkemmumerations immediately but can
wait for an appropriate stage to perform the action. For etamafter we enumerated a diagonal-
ization witnessx into A during anA-stage, we cannot simultaneously enumeratel tuse (for the
correction of thd” functional computing®) into B, but we can do this later when we next time visited
the correspondin@® node.

3.3. A minimal new example: two S below two R. Here, we illustrate the idea by a minimal
example where we see a conflict which needs some new stratedjyye will briefly explain how to
handle the conflict. (See Figule 1.)

First of all, for later purposes, we want to separate a pamede Sy and its child nodesSo ;.
Roughly each child node is taking care of the old strategigsiselects th&-requirement above to
pair with and defines the corresponding functtonThe first child nodeSo is always immediately
following its parent node’g-outcome.

Let Ry andR; be two consecutiv®-requirements, and let ttf& -node be extending th&y-node’s
i-outcome. Consider afSp-node extending th&;-node’si-outcome. Now, at th&p-node, as in a
usual construction of this type, we may have a diagonatinatvitnessxg, but the uselo(xg) may

8 GEORGE BARMPALIAS, MINGZHONG CAIl, STEFFEN LEMPP, AND THHOBORE A. SLAMAN

Ro Ro
i i
R R1
i i
So(Xo) So(Xo)
g g
Soo Soo
A W o(X)
S1(x1) So1 Ro
i
Sa(xa)
g
S10
So1 So1
y c(x2)

Sa(x2) S3(x3)

Figure 1. A minimal example (left) and a complete examplghf)i

always be too large (say, y1(Xo)), and so we go to thg-outcome. At the firstSqo-child node, we
usey1(Xo) to kill the computation¥o(B; Xo) infinitely often, say. At the same time, ti& o-child
node will build a functiorA; to correctly comput&V, (for theRi-node).

Now, to make sure thak, is always correct, thé&go-child node has to set up some mechanism
to prevent injury. In the construction, we implement anraliing A-stag¢B-stage approach, so that
at each stage, at most oAeor B can change. There are now two cases here. DuriBestage,A
does not change, and 8¢ = ®,(A) (up to the length of agreement) will not change, eithercesin
otherwise, we will not visit theSp-node again. During aA-stage,A can change buB does not.

If now W; changes, then we can increase Iheuse while preserving th&y(B; Xg)-computation.
Then we observe that (X)) > Yo(Xg), and so we will switch to the left of the outcome associated
with A;. In this process, unless we move to the left of the outcomecésted withA;, we see that
the ¥ (B; Xg)-computation is used to protedh; during A-stages, since only @/;-change without

a B-change guarantees that we can move to the left of the outemsmciated with\1; so, in the
argument, it is crucial that we can preserve the uségB; Xp).

Now, say, extending th&i-outcome, we have anoth&t;-node with a witness;. During an
A-stages, it might want to enumerate; into A for its own diagonalization (and s& would be
changed). By the observation above, we have to protect thefily(B; Xp) at the same time. How-
ever, if we implement the diagonalization procedureS$grere, then later &, > s the Rg-node’s
I'p-functional, after observing a changexatin A, will inevitably addyq(x;) into B for I'p-correction

ON THE EXISTENCE OF A STRONG MINIMAL PAIR 9

(unlessWy has changed frongy to si, but this is not in our control). A, however, there is no
guarantee thatg(x1) > vo(Xo).

The solution is thus briefly as follows: In such a situatiostagesy, we instead go to a fierent
outcome to the right of tha;-outcome, which we call the-outcome. We stay at thisoutcome as
long asyo(x1) < ¥o(Xo) (since otherwise, there is no problem). So at a followiraget; > S, as
long asyop(x1) < yo(Xo) is still true, instead of usingo(xo) to kill the Wo(B; xp)-computation, we can
useyo(x1). We say thatx; is theclaim pointfor this c-outcome at this stagg). We count this as a
small step toward success. Later at the n&xi-child node, we have a similar scenario for which
we may go to thec-outcome with a larger claim point, etc. If this happens itdig often along
the true path (i.e., there are infinitely mafy j-nodes with ac-outcome along the true path), then
we are using larger and larger numbers to pusihxo) to infinity, and so theSy-requirement will be
satisfied in d13-way; on the other hand; is still active (since it is only injured finitely often at dac
argument), so we do not have to buid for it.

From a local viewpoint, the conflict happens when we see a atatipn atS; which we want to
use to diagonalize, and some higher requiremefis-(Sp) put some restraint on the diagonalization.
So thec-outcome with a larger claim poing essentially allows us to freeze the computatiobat
and at the same time allo®, andSy to continue working towards success by switching the Igllin
point from xg to X;.

From a global viewpoint, while other outcomes are standathis type of gap-cogap construction,
each suclt-outcome is &,-type of outcome, which states that in the constructionietlie a stage
with a claim point such that we will keep this claim point {sta the c-outcome) forever in the
following construction.

Node Symbol Access Action Sub-action Outcomes Type
R @ normal define§ B-enumerations i, f 9 /=8
S-parent B normal or child-link clearingglaim A-enumeration d,g,w /M9 /%8
S-child Bi n. or own-parent-link defines B-enumerations g, C m9/=9

Table 1. Nodes on the priority tree, their main actions aedt thutcomes

3.4. The new idea: c-outcomes. The use of the-outcomes is new and in fact crucial to our con-
struction, so it is important to explain its use and addreedifferences betweenaoutcome and a
standardy-outcome (gap outcome) for example as in Sedfioh 3.1.

As we have mentioned above, theoutcome in our minimal example essentially allows us to
freeze the computation at tki#y node (see Figurg 1) as well Ag to the left of thec-outcome, while
waiting for a later stage when diagonalization is safe téquar (i.e., thel';-use is large enough). Itis
important that here we do not perform any enumeration atctoigtcome. A natural attempt, which
actually fails to work, would be to perform the same gap-gogperation with the new witnesg
at thec-outcome. The reason is that, it is possible that such a sgtqgor x; at which thel';-use
is used to pusiy(Xp)-use may change and possibly go to infinity. All the lowepgty nodes, for
a successful construction, need to guess at the outcomectiprrHowever, with only one (or even
infinitely many)c-outcome where the gap-cogap strategy is performed, itipessible for the lower
priority nodes to know whether the witness will stop inceeas go to infinity.

In general, a&-outcome is an outcome of$child node, but unlike g-outcome (of the same child
node) it does not enumerate any elements @)tdnstead such enumeration is delayed-mutcomes
of otherS-children nodes below thisoutcome.

10 GEORGE BARMPALIAS, MINGZHONG CAI, STEFFEN LEMPP, AND THEDORE A. SLAMAN

Along the c-outcome, theS requirement at the parent node is satisfied as we push it¥(9e
to infinity for a fixed x (the diagonalization witness at the parent node). Thisdsstime as along
the g-outcomes to the left of the-outcome. What makes@outcome diferent is that the delay of
B-enumerations allows us to satisfy the requiremgrity keeping the correspondifdgtotal. Note
thatg-outcomes always kill such functional and so they need to buidds in order to satisfyR.

In addition, such delay also allows us to work on other (lopséority) requirements between the
S-children nodes. That is, if a lower priority node is only ®&lac-outcome of the S-family” but
not any of theg-outcomes of the children nodes, then it believes Ihat still total and so active.
As a result, this also requires some minor adjustments tditferent numbers used in our standard
gap-cogap construction, which we will describe in the catekexample below.

3.5. A complete example: clearing point, killing point and claim point. Now we complete the
minimal example above to add in all the features of the cantn. In particular, we will explain
various numbers used during the construction. (See aggindfl..) Tabl¢]1 can be helpful as a guide
on the general structure of the argument and the complekityecoutcomes of the strategies.

Suppose we have two consecutiRerequirementsRy andRi, and theRi-node is extending the
Ro-node’si-outcome. Extending th&;-node’si-outcome, we again have &hp-node followed by its
first Sp,0-child node. Now, extending theoutcome of theSpp-node (with a claim poink’), we have
anR,-node followed (along its-outcome) by ai$1-node.

Let x; be the diagonalization witness f&t;. When we try to diagonalize again$t at stage
S when we see a convergent computati®(x;), we first need to make sure that(x;) < vi(x1)
fori = 0,1,2; in addition, notice that thé&g-family currently has a-outcome, which means that
extending any outcome of tite -node (e.g., the-outcome), there will be mor§o j-child nodes, and
later at any stage > sy they will possibly enumeratgy(x’) or y1(X’) into B in order to pushyo(B; Xg)
to infinity. This means that, for successful diagonalizatagainst¥;, we also need to care about
possiblel’-use enumerations at (which is< x1). So here at stags) we call such a numbex the
clearing pointat S1 and use it to clear the computation: For clearance, we re@(x;) < y;(X’) for
i =0,1,2. If this is not true, then we usé (instead ofx;) to pushy1(B; x;) at the firstSy o-child
node.

Say, at theS; o-node, we choose to go along tfg-outcome buildingA, (sincey1(x1) > y2(X)).
Now extending thig),,-outcome, say, we first have &g 1-child node. As required by th8q o-node,
the Sp.1-node uses’ to pushy(B; Xo) to infinity. We call such a numbet thekilling point at S 1.
Say after stags; > 5, such a child node also hascautcome (whose claim poing comes from
someS,-node extending one of itgoutcomes, as in the minimal example). Extending suctoat-
come, we have af3-parent node, say with diagonalization witnesgs

From theS3-node’s point of viewR; has been satisfied (by ti# o-node), andRp andR; are still
active. The clearing point at th8z;-node isx,, because it believes that the n&y-family members
will use x, instead ofx’ as the killing point. So th&s3-node checks whethers(xs) < yi(x2) for
i=01.

Now suppose thisis true, i.e., we have a cleared compujaiynat stage, > s;. Then, according
to the minimal example above, we next want to make sureAbas preserved, and we try to clear
the ¥1(B; x1)-computation by going to the-outcome of theS; p-node.

The tricky part is that, this time at stagg, for successful clearance, we actually wegntx;) <
vi(x2) (for i = 0,1) (instead ofy1(x1) < vi(X3)): The reason here is that, to the right of tiAs,
later at any stage > s, it is possible that a new, j-child node will usex, as the killing point and
enumerate/g(X2) or y1(x2) into B, and we do not want these humbers to inji##gB; x;), which we
use to protect\,. We say thatx, is theclaim pointof this c-outcome at stage, (later this claim
point is used as the killing point for ne®, -child nodes). When we go to tleeoutcome, i.e., the

ON THE EXISTENCE OF A STRONG MINIMAL PAIR 11

¥1(B; x1)-computation is not cleared, then the associataiuin here is that after this stage, itis always
the case that we do not get a clearance, i.e., it is alwaysabethaty1(x1) > vi(xo) fori = 0 or 1.

Point S-node Outcome Complexity

Witness Parent All 0
Clearing Parent Al %0
Claim Child c I
Killing Child c 119

Table 2. Parameters of tifenodes (parents and children), associated outcomes anddngplexity modulo initialization.

3.6. Overview of the S-strategies. Table[2 summarizes the parameters we have introduced for the
S-nodes (parents and children). In this section, we summahigir dynamics and basic features, in

a top-down description (as opposed to the bottom-up mativak discussion of Section 3.5). The
diagonalization is done at the parent node, with a witnesshwis fixed, as long as the parent node

is not injured. The same is true of thkearing point which is another parameter of the parent node.
The clearing point is always less than or equal to the witnesshe simple case that we described

in Section[3]3, we use the witness as a clearing point, biterptesence of more requirements, we
need to diferentiate between the two. The clearing point is the numbewxtdch we may force the
associated'-functional to be partial.

Associated with the-outcome of eacls;j-child node is theclaim pointof the node. Each time
that thec-outcome is activated, it may have dfdrent claim point. Eacl$;j;-child node also has a
killing point, which is calculated from the claim points of the highemepty child nodes. In this way,
the killing points of child nodes are raised according todte@m points of the higher-priority child
nodes withc-outcomes. The-outcome of a child nodg; is initiated by a parent node belgsy (not
its own parent).

Satisfaction of S Main outcome Outcome Complexity
Y(B; x) T co-finitely wait outcome (parent) I total %
Y(B; x) |# A(X) co-finitely diagonalization (parent) I total 9
Y(B; x) T infinitely often gap outcome (child) I partial P
Y(B; x) 7 infinitely often all children true-outcomes T total I3

Table 3. Four dterent ways that requiremestwith witnessx may be satisfied, and their complexity relative to the
corresponding parent node.

Along with thec-outcome, arsjj-child node implements a gap-cogap strategy, sequentially
respect to the\-functionals of higher-priority child nodes. This gap mtlooks for appropriate
changes in the approximation to the corresponding ¥étstarting from the closest and moving
monotonically toward the root of the tree. The usual gapapogperation of a child node may be
interrupted by itsc-outcome infinitely often. Infinitely mang-outcomes along the child nodes of
a parent node (in the ‘true path’) means that the functioreaty to diagonalize against is partial.
Table[3 displays all the fierent ways that requiremert can be satisfied. The first three ways
displayed are typical to a gap-cogap argument. Howevelaiease is special and corresponds to
the case when all children fail to succeed with their gapapogirategy. In that cas#(B; x) becomes
partial due to the enumeration Bfuses on larger and larger arguments. Téble 3 also disgtays t

12 GEORGE BARMPALIAS, MINGZHONG CAI, STEFFEN LEMPP, AND THEDORE A. SLAMAN

effect that the outcomes have on the functiofidhat we build forS. Note that in the context of
the global construction, where many requirements are ptege global outcomes are slightly more
complex (e.g. &-functional that is left intact by some child node may end agipl due to a child of
another parent).

4. CONSTRUCTION

4.1. Accessible path, stage dichotomy, accessible nodes andted nodes. In the construction,
each stage is either astage or éB-stage. We can arrange that all even stageg\astages and all
odd stages arB-stages. DuringA-stages, we are allowed to changéut not B; during B-stages,
we are allowed to changB but not A. Each node first ignores the stage setting and follows the
construction. When the node wants to chaiger B, it checks whether the current stage setting
allows this action. If so, it changesor B as planned; if not, it terminates the stage and waits.

In addition, each node must try to pass down alternatirsjages an@-stages along its (believed)
true outcome. If the stage setting is not the one expectedidte needs to wait for another stage to
go to the outcome we want. For instance, if a node needs to go twtcome, and at the last stage
that outcome was accessible was/astage, then we are expectingBastage this time. If this is a
B-stage, then there is no problem; if this isA&stage, then we terminate the stage.

Now, in these two cases when we terminate the stage (sincgabe is not the one we wanted),
at the very next stage (notice that the stage has changedAitonB or from B to A), we first check
whether anyw has changed (from the previous stage) for tid&galong the accessible path, up to
the previous length of agreement. If so, then for the higbas{ we switch to thé-outcome if the
length of agreement has decreased (and it is easy to sedématve have a permanent win unless
the node is initialized), or to theoutcome if the length of agreement increased (and so welswit
to the left if we went to thef-outcome at the previous stage). Otherwise (if there i$\MAohange,
or the length of agreement does not change, or the lengthreéagent has increased and we went
to thei-outcome at the previous stage), then we directly go thrabhghsame accessible path and
continue the construction at the node where we terminatedt&g@ So either we can changeor B
as planned, or we can go to the outcome we wanted. In otherswatetach node, if the last stage
was a terminated stage and there isM@hange, then we continue to the same outcome without any
extra action.

As in a usual priority tree construction, at each stggge inductively construct aaccessiblgath
(up to lengths) on the priority tree. At each node along the accessible, pa¢ghtry to decide the
outcome at stageand whether we want to changeor B. WhenevetA or B is changed, we terminate
the current stage and go to the next stage. We keep the nadesdho the left of, or compatible with,
the accessible path and initialize the nodes that are tdghe MNote that we may build a link in the
construction and skip some nodes along the accessible w#kiogt going through the construction
for them at that stage). So we shall distinguish betweeronstof a node being visited and being
accessible. Beingisited means that we allow this node to act according to the congirubelow;
and beingaccessibleonly means that the node is on the accessible path, whichroi@ewcessarily
mean that the node itself is visited but possibly only sontereston of it is.

In the following subsections, we always assume that we amevigited node at stage

4.2. R-node. Consider anR-nodea and note that if the last stage was a terminated stagéfand
has not changed, then we continue to the same outcome wainguaction. Otherwise, we check
whether thdength of agreemerttas increased since the last stagenen we visited this node and

IThe intuition is that, since no one has chandeat B from the last stage, and thi#'s have not changed, either, unless we
can diagonalize, all the uses of computations remain the sébee Lemm@.l for the full proof later on.)

ON THE EXISTENCE OF A STRONG MINIMAL PAIR 13

thei-outcome was accessible (or if such a stadees not exist, then we check whether the length of
agreement is positive). If not, then we go to theutcome. If so, then we go to th@utcome.

TheR-nodea also defines a function&ilalong thei-outcome. We make sure tHats well-defined
i.e., we will not enumerate axioms that use the same oraclgibei different outputs. In particular,
we may have someequestgo add some numbers in®here which were assigned by nodes below.
What we do is simply put these numbers iBtas planned if the correspondiifg has not yet changed
(see Sectiof 4.3.1).

For convenience, we allow th&/-use andB-use for the samea to be diferent (so we formally
write y(W; x) andy(B; x) to denote these uses, but later, when it is clear from theegbthat we are
talking about theB-use, we will simply writey(x)). Since all the sets we consider are c.e., at each
stage we only need to keep one axidifB @ Wi, x) for a fixedx. We have two cases in which we
increase the use. The first case is that some node below(®)ts) into B but A(X) = 0; in this case,
we increase th@-use to be large and fresh, and increase\WWhase to be the length of agreement
betweend(A) andW at this stage. The second case is wherMihese changes; then we increase the
B-use to be large and fresh and keep Wiaise the same. In all other cases, we do not increase the
uses but simply update the axiom with the current oracle.

Of course, we obey the usual monotonicity rules of axioma, i) whenever we change the uses
for somex, we automatically mak&(B & W, y) undefined for aly > x. In any case, we will ensure
thatT'(Be W; x) = A(X) for all x < the current length of agreement betwdgd) andW at this stage;
if a use forT(B & W; X) had never been picked before, then we pickBhgse large and fresh, and the
W-use to be the current length of agreement betw&'eand ®(A); otherwise, the use is specified as
above.

4.3. S-parent node. At anS;-nodeg, if this is the first time at which we visit this node, then welpi

a fresh diagonalization witnesgfor it. Now if we already have a diagonalization withesshen we
check whethel;(B; X) converges to 0 with aelievablecomputation. Here, and in the following, a
computation¥;(B; X)[g] | is believable when there are no numbers below the use ofdhipatation
that may enteB at a later stage, by the nodes abgvésuch are uses df-functionals aboves that
are partial from the point of view gf). If not, then we go to thev-outcome and continue to the
next node. If we find out that earlier we have already visitezld-outcome (i.e., we have already
performed diagonalization at this node aidk) = 1). andB has not been initialized since, then we
continue to go to thd-outcome.

If there is such a believable computatidfyB; x) |= 0 (where, when we see a believable such
computation, we immediately initialize every node extegdihew-outcome) but we have not yet
performed diagonalization (i.e., enumeratethto A), then we perform the following construction.
We first check whether we can perform diagonalization (sémbie Section[4.3]1) and if so, follow
the instructions; if not, then we go to tlgeoutcome (or some other outcomes according to Sec-
tion below) and continue to the next node.

4.3.1. Diagonalization, setting clearing and claim pointat 3, we consider thos&; -requirements
which haveg-outcome along and none of whose child nodes hag-autcome alongs. We think
of the Sj--family as a whole as announcing the currkifiing point for the requiremens;, which is
defined as the greatest number among all claim points d;atthild nodes above or to the left gf
as well as the clearing point &. Then we let theclearing point y aiB be the least of these killing
points announced by th®,-families from above as well as(if there is no such higher—priorwi/).ﬁ

2Sincexis a fresh number when it is picked, thyiss always less than or equal XC(Lemm). Roughly speaking, this

is going to be the least killing point when we go to the righBotind so for successful diagonalization, we want to make
sure thap’s computation is protected when we switch to the right ofritthe complete example in Secti3.5, otrere

is x3 there, and ouy here isx, there.

14 GEORGE BARMPALIAS, MINGZHONG CAI, STEFFEN LEMPP, AND THEDORE A. SLAMAN

We check whetheyy(y) > ¢i(X) (for the clearing poiny defined above) for each actif above.

If not, then we go down to thg-outcome here (see Sectipn 4]3.2) and, at theSirsthild nodeS; o,
we will go to the corresponding,, -outcome defining a function and addyk(y) into B there (for the
greatsﬂst suchk, see details below in Sectign}4.4)./4f(y) > ¢i(X), then we proceed to the following
chec

Here, it is possible that for some oth&t defined at ari-child nodes’ aboves (along the same
path), we use the correspondify (B; x')-computation to protea’, yet someyx(x) enteringB for 'y
above thisS; -node may cause injury, i.ex(X) < yi (X).

If there is no suclg’, i.e., for everys’ alongg, we havey(X) > vi(X') as above, then we can
put x into A and go to thed-outcome of3. While doing that, we issue requests at each a®iede
abovegs to addy(x) into B as follows: Later when we visfR's i-outcome, if the correspondiry-use
(for I'(B & W; X)) has changed, then we do not agd) into B, but otherwise, we adg(x) into B.

If we see suchp’, then fix the lowest (i.e., we process these nodes from therbatip) suchs’
for which y(X) < ¢y (X'), we consider allS;~--nodes abov@’ which have ag-outcome along’ but
such that no child node hagyatype outcome along’ (i.e., theS;.-requirements that are still active
atp’). For each sucl$;--node, we only look at its child nodes belg@k (the S;--family belowg’).
These child nodes define a current killing point, i.e., thesimam claim point (if suchS;--family
belowg’ is empty, then let this current killing point be infinity). &h we let theclaim point zof 8 be
the minimum number among all these killing points$f-families belows’ (for all suchg’), as well
asx, the diagonalization witness gt So automatically is less than or equal ta []

This c-outcome a3’ is now associated with thelaim that “after this stages, it is always the
case thaty’(x’) is greater than or equal ta(2) for some activd’y above theS; -parent node”. (For
convenience we denote this claim BY3’,z s).) In addition, thisc-outcome announces thatis
the new killing point for lower-priorityS;--child nodes, overwriting the old announcements made by
higher-priority child nodes for the san® . That is,S;, as a whole requirement, now switches the
killing point to z. In this case, we say thgtinitiates the c-outcome aﬁ’.ﬂ We go to thec-outcome
of 8/ and continue to the next node along that path.

4.3.2. Possible link to child.Now, at this time, if we do not have a chance to diagonalizeetimight
be someS;.-child nodes below, whose-outcome has been initiated with a claim about the size of
Yi(X') and somd -uses of possibly largex” (see above). We check if any of these claims turn
out to be false. For those correspondimgutcomes whose claims turn out to be false, we initialize
everything below the-outcome of these child nodes and everything to the righterft

In addition, we check whether there is &n;-child node such that the last time it was visited we
went to one of itgg-outcomes, and now with the current conditions we see thatameswitch to the
left to thatg-outcome. If there is such a child node, then we build a limkeatly from theS;-parent
nodeg to that child node, skipping every node between them. Otiserwve stay at theS;-parent
nodeB and proceed to the next node along ¢heutcome.

4.4. S-child node. When we reach as; j-child nodeg; of anSij-nodeg, the construction proceeds
as follows. First, as we have mentioned abgechecks whether the-outcome was accessible at
the last stagé when we visite@s;. If so, we check if the associated cla@{g;, z t) is still true. In

that case, we go down to that outcome without doing anytherg.hlif the claim is false, then we

3if so, note thay < x, so it is automatic thag(X) > yk(y) > ¢i(X) and it seems that we are safe to pumto A.

4Later we will see that it is automatically greater than thiéirig point atg’ (Lemma). In the complete example in
Secti05, our here happens to be there as well, just like ouy here isx, there, but this need not be true in general.
SLater, when we reach the parent nodefggrwe can check whether the conditipg(2) < y/(X) is still true, i.e., whether
this claim is still true; if not, then we will initialize evgthing extending the-outcome ap’ and declare that this nogg
now gives permission for diagonalizationzat

ON THE EXISTENCE OF A STRONG MINIMAL PAIR 15

have already initialized everything extending theutcome of3; when we reacis. In that case, there
must be someS-parent notgd” below someg,-outcome ofg; which initiated thec-outcome ofg;
here. If this nodes” has not been initialized since, then we directly link to s allowing it to
finish trying its diagonalization (without visiting the neslbetwee; andg”). If this 5 has already
been initialized, then we proceed as in the following paapbr

Otherwise, i.e., if we didn't visit the-outcome the last time we visiteg], then we have &illing
point yhere decided by higher-priorit$; j -child nodes3; above or to the left of; (or by g itself if
there is no suclgj): y is the largest of all the claim points of thegSg as well as the clearing point
atB. We also know thay(y) < vi(x) for some functional” by some activeR-node aboves; let o be
the lowest-priority suckR-node. Now we go to thg,-outcome. If this is 8B-stage, we also addy)
into B. For the functionalA associated with thg,-outcome, we extend up to theW-usey(W,y).
Then we continue to the next node, this finishes the industiep of the accessible path construction.

5. VERIFICATION

We start with a few technical lemmas, then we can show thaétisea leftmost path accessible
infinitely often (thetrue path) and every node on the true path has a true outcome. We thentlsab
all the functionald” (unless killed) and all functiona built along the true path are well-defined. This
allows us to show that all requirements are satisfied.

5.1. Technical lemmas. First of all, in our construction, we separated the stagesAnstages and
B-stages, and only allowed changesAror B at A-stages oB-stages, respectively. Sometimes, we
may encounter the situation that the algorithm wants to gh&nbut the current stage isBrstage,

or vice versa, and so in the construction, we simply terreitia¢ stage and immediately try the next
stage. (See Sectign }.1 for details.) We start with a lemrogipy that in this case, either we will
change the accessible path due W-ahange (which will cause either initialization of the ndtat
wanted to enumerate, or the permanent satisfaction of theresnent of a higher-priority node), or
we can perform the desird8t or A-enumeration at the next stage.

Lemma 5.1 (Accessibility of A/B-stages) Suppose at stage s, we terminated the stage because the
stage was not of the type we wanted. Then at the next stagk sither some W changes and we
switch to the left or right of the accessible path at stagersye can perform the enumeration we
wanted to perform at stage s.

Proof. According to the construction, assume that sdMelong the accessible path (of stage
changes at stage+ 1 by x enteringW: If this change decreases the length of agreement betWeen
and®(A) and switches the outcome of a strategy along the accegsitiiat stagsfrom ani-outcome

to an f-outcome, then we have permanent satisfaction oRaequirement (unless some higher-
priority node acts), sincé&/(x) = 1 and we have a computatidr(A; X) = 0. If this change increases
the length of agreement or does not change it, then actaaliyl not affect any of theA’s previously
defined below thé-outcome (since we only define up to the length of agreement). Now, if we do
not switch the accessible path between stagagis+ 1, then obviously, since we have not changed
or B from stagesto stages + 1, all criteria required for action remain the same, and wepEform
the action (go to a certain outcome or charger B) as at the previous stage m|

Usually, in a priority tree argument, one can simply see lspéttion that, for any computation
(e.g., of ¥, @) witnessed at a node, the use cannot be changed by any ndueright of it (by the
choice of stficiently large witnesses). However, in our constructiois thnot true. The problem is
that, along a-outcome of arS-child node, the killing pointzis determined by some node extending a
g.-outcome of theS-child node, i.e., to the left of its-outcome. Therefore, potentially aBychange

16 GEORGE BARMPALIAS, MINGZHONG CAI, STEFFEN LEMPP, AND THEDORE A. SLAMAN

up toy(2) via at a node extending theeoutcome might injure som#-computations to the left of it.
So we need a lemma stating that, in certain cases, such icguryot happen.

Lemma 5.2 (Link to a parent node)In the construction, if we see that a claim for a c-outcome
at someS; j-nodes becomes false and build a link to @y -nodes’ along a g,-outcome (which
initiated the c-outcome), then at that time, the compuia#ity?’ is still the same as whesi initiated

the c-outcome.

Proof. Say, at stageyp, 8’ initiated thec-outcome and by the criterion in the construction, we know
that the use/(x) atg’ (for the diagonalization withessatg’) is < y(y) for the least possible killing
point y that can be used to the right gf. If suchy in the definition decreases (i.e., some node to
the right uses a smaller number as the killing point), thewagld have initializeg8” and would not
build a link fromg. This means that when we build a link backstoits computation is preserved o

Lemma 5.3(Diagonalization of parent preserved) an S-node has performed diagonalization, then
unless it is initialized, its computatioH(B; X) is always preserved.

Proof. The argument is almost the same as the previous lemma. Ifiregkidoint y had decreased,
then it would mean that the node had been initialized. If tiisg point has not decreased, then by
our criterion, the computation is preserved. m|

5.2. True path lemmas. Since our tree is finitely branching, there clearly is a lef$irpath accessi-
ble infinitely often (which we call thérue path. The slightly tricky problem is that in the construc-
tion, there are two cases when we build a link between two s1@ate skip nodes in between: The
first case is when ai-node sees that afj j-child node can now switch to the left; tlsecondis
from ac-outcome of ars; j-node to anSj.-node below one of itg,-outcomes. It is conceivable that
some node on the true path is skipped infinitely often but mted infinitely often, or its outcome
is along the true path but is actually not tinee outcomethe leftmost outcome we choose infinitely
often when visiting the node). The following few lemmas shibwat this case cannot happen. The
idea to prove this is as follows: Each time we skip over a nfdee always “blame” a node below it
and make sure that such a node can only do this finitely oftéardng is visited again.

Lemma 5.4(First case skip)If a nodegs is skipped via the first case, then some node below it switches
left. In addition, if8 is never visited again and never skipped by the second dasethe skip for the
first case can only happen finitely often, and each time wegwilitrictly to the left of the previous
visit.

Proof. The first claim follows by inspection of the construction.rBee second claim, note that for
every such link which skipg, 8 must be between asi-node and one of its child nodes. A somewhat
tricky situation may arise that during such a stage whenskipped, we may add new nodes below it
which may cause extra links. But observe that such a new lingt tne associated with &i-parent
node of higher priority than th8-node which causes the skip at the current stage, so by indumt

the number ofS-parent nodes aboyg& one can see that, ff is never visited again, such a skip (for
the first case) can only happen finitely often. More precjsed/associate each skip to a combination
of S- andR-nodes of higher priority thaB, and assign a natural priority on these combinations. It is
then easy to check that each time we go to the left, such a catidm increases in priority, and so
this cannot happen forever. m]

Lemma 5.5 (Second case skip)At any stage, for any giveB, there can be at most one nogé
belowg which has initiated a c-outcome at a node abgwich that the associated claim is still true.
That is, during any fixed stage, there can be at most one nod# wiakes us skig for the second
case.

ON THE EXISTENCE OF A STRONG MINIMAL PAIR 17

Proof. Supposes, is the first stage such that tleeoutcome ofg’ is initiated. Then, of course, at
stagesy, there is only one such node (we jump to treutcome atsy). After that, eitherg’ is
initialized; or the associated claim never becomes falsé sa the claim of the lemma remains true;
or later the claim becomes false at stagand we build a link directly t@’ skippings. At that stage,
we note that the computation gitis still the same as that at stage(by Lemmg5.R). So at stagg,
eithers’ again initiates another-outcome even higher, or it follows diagonalization and ribere
are no nodes which make us sldgfor the second case). The same situation happens at eagey st
afterwards, and so the lemma follows.]

Lemma 5.6 (True path) Along the true path, every node is visited infinitely oftéerafore all out-
comes along the true path are true outcomes.

Proof. This follows essentially by combining Lemmfs|5.4 5.5@se somg on the true path
is never visited again. Whenever we sldpria the second case, then some node below performs
diagonalization, which means that any nodes extendingl-ihgtcome will be fresh at that stage. At
that moment, the only reason we can sRifs the first case, and so the next time we skip ger
we must travel to the left of the current visit. It then follswhat below any of these diagonalization
outcomedd, we will not have new nodes added which request diagonalizasince each such new
S-node is visited only once.

Therefore we eventually switch to the left of this diagoration outcome, and by the same argu-
ment as in Lemmp 5.4 above, such skips cannot happen infioitein. So one can only skip ovgr
finitely often, and the lemma follows.]

In addition, we need to show that every node along the trule ‘fpatsses down” infinitely many
A-stages andB-stages (in fact, in alternating order), so every node hashance to perform the
action it wants to eventually.

Lemma 5.7 (Alternating stages on true pathin the construction, every node on the true path is
visited infinitely often at A-stages and at B-stages, rebsy.

Proof. This is because in the construction, we require that whenasgs o an outcome, we require

a different type of stageAtstage orB-stage) than the one when we last time went to that outcome
(otherwise, we wait and do nothing). Along the true path, apvoved above, every node is actually
visited infinitely often, and so by this criterion, every o visited at alternating\-stages and
B-stages. O

Now in the following arguments, we always assume that we laamedeé on the true path and
we have passed the stage when all nodes to the left stop .aklerg, action include being visited or
accessible, oc-outcome initiation. Since there is finite injury along thee path, we also assume
thaté is the last node along the true path for its requirement, am@nly consider stages when it is
visited.

5.3. Witnesses and functionals.First, we prove two lemmas about the witnesses and varides ot
points we use in the construction.

Lemma 5.8 (Clearing point and witness of parent nod€jiven anS-node with diagonalization
witness x, the clearing point y (as in the construction) 8als less than or equal to x, and such y is
stable if no node to the left acts again.

Proof. This is by inspection of our construction. |

Lemma 5.9(Claim and killing point of child node underoutcome) Given ansS; j-child node, when
its c-outcome is initiated (b, say), the corresponding claim point z (as in the constamtis always

18 GEORGE BARMPALIAS, MINGZHONG CAI, STEFFEN LEMPP, AND THEDORE A. SLAMAN

strictly larger than its killing point, and is always lessatt or equal to the diagonalization witness
atp.

Proof. The second claim is by inspection of the definition of sachhe first claim follows from the
fact (proved by induction) that suahis always a diagonalization witness below&y-child node’s
g.-outcome (for some), and so larger than the killing point (whenever it changeeyy node below
is initialized automatically). m|

Next, we show that along the true path, every functional rsem on its domain (modulo finite
incorrectness for the's). It follows that the functional computes the set we wdnt has total
domain.

Lemma 5.10(I'-functionals) Every functional is correct on its domain.

Proof. This is basically by inspection of the construction that wie add any numberinto A, we
always make sure to issue requests to add the correspopirgses intoB atI'. It may be the case
that later when we visiE, the correspondinyV has changed up to the use, and si#Wés c.e., such
a change automatically makes the functional undefined atitese is no problem in not addingx)
into B in this case. IW has not changed, then, of course, by the construction, waedhy(x) into B
so that we can correct the axiom.]

The next lemma is going to be the most crucial and most comtpliclemma in the proof. Let us
first sketch the argument: To show that W, it suffices to show that whenever we define sakres
an initial segment ofV, then this initial segment diV is not going to change in the construction later.
Now atB-stages, this is obvious sinté = ®(A) whereA does not change. Ad-stages, the argument
is much trickier, but is very similar to the standard argutnesed in the style of Lachlan’s gap-cogap
construction. Basically, we have a computati¥(B; x) to protect an initial segment &% in such a
way that if it changed (after we chang@dl then we would switch to the left of th&-outcome. The
difficult part is to show that aftek changes, th&-use of¥(x) is always protected. This is usually
true since we have only been to the right of siglout remember that in our construction, actions to
the right may injure computations to the left.

Lemma 5.11(A-functionals) Every functiomA is correct on its domain (modulo a fixed finite amount
of injury). More precisely, for every suck there is a stage after which is not going to be injured
again.

Proof. Say, such is defined along g,-outcome (with killing pointx’) of g;, which is a child node
for B (whereB has diagonalization witness.

In addition, we know that, for each parent ngéleaboveg and active a3, every child node of
this 8’ along the true path has trweoutcome. Now we have to wait for a stagesuch that every
suchg’ has a child node below (on the true path) with a true-outcome initiated (i.e., eoutcome
that will not be initialized later).

We claim that after stags), the A-axioms are always correct, i.e., complte= O(A). If A does
not change, then, of coursé@/ cannot change. So we only need to consider the case whbanges,
in particular, belows;'s g, -outcomes, since otherwise, such &thange must be to the right and
cannot change the initial segmentWfwitnessed g8’.

Suppose that at some later staggesome nodg@ belowp;’s g,-outcome performs diagonalization
(most likely via a link under the second case). Accordingh® ¢tonstruction, such a nogemust
receive permission from every child node wigh-outcome above it. In particulgs; needs to give
permission thay(2) > y(X), wherez is the associated claim point &t and thel'-uses range over
all I''s active aboves.

ON THE EXISTENCE OF A STRONG MINIMAL PAIR 19

By the definition of stages), suchy(2)'s are going to be the least possible numbers enteing
when we switch to the left g8; and by Lemmd 5|9z is less than or equal to the diagonalization
witness added inté\. In addition, by inspection of the construction, we knowtthfistages;, the
computation¥(B; x) converges. (Otherwise, the permission critendr) > ¥(x) is always false.)

So we know that, after we add the diagonalization witnessAnat stages;, and before we come
back tog, the computationt(B; x) atg is always preserved. Now it fiices to show thatV = ®(A)
up toy(x’) is preserved (recall that is the killing point atA and we always defing/ up toy(x')).

Otherwise, when we reach tienode and go to itsoutcome, we would see that the yg&V; x’)
has changed, and so according to the construction, we wikt@se itd8-use without changin® here.

In particular, we know that when we reaggtior the first time afters;, y(x’) > y(x), and according to
the construction as-nodes, we would immediately build a link to thgsand switch to the left of the
outcome where is defined, and this, of course, contradicts the assumption. m]

5.4. Final verification. We are now ready to prove the satisfaction of all requiremenhe follow-
ing two lemmas complete the verification of the constructb®ection[4 and the proof of our main
theorem.

Lemma 5.12(S;-requirements) EveryS;-requirement is satisfied.

Proof. Let B be the lastS;-parent node along the true path. It is easy to check thag wecperform
diagonalization, then th&;(B; x)-use is going to be preserved (as we choose the killing point
to be the least one such that sow(®) may enterB later in the construction). So we only need
to consider the case when we infinitely often see a believatmeputation¥;(B; x) but we cannot
perform diagonalization.

Our argument now splits into two cases. One is that there iS;ashild node below3 on the
true path which has trug,-outcome (we call this case th&-outcome forg, i.e., the requirement
is satisfied in &3-fashion). The other is that eve§j-child node belows on the true path has true
c-outcome (similarly, we sag has trudlz-outcome).

In the first case, obviously according to the criteriomBatsi(x) > y(X’) for the killing point x’
atB, and the latter goes to infinity by our construction. ‘B¢B; x) diverges and our requirement is
satisfied.

In the second case, by our criterion for goingctoutcomesysi(X) is going to be greater than or
equal toy(2) for arbitrary largez, and this also implies thai;(B; x) diverges.

In addition, in the second case, it is easy to see that, fdn elem pointz, all S;-child nodes
eventually give up usingand start using the next as a killing point (later this will allow us to show
that the “impact” of this action on each higher-priorliys finite). m]

Lemma 5.13(R;-requirements) EveryR;-requirement is satisfied.

Proof. We leta be the lasR;-node along the true path. Of course, we only need to contidezase
thatW = ®(A) is total, and so we go to tHeoutcome ofx infinitely often, buildingl". Now if there
is anSj-child node along the true path with trgeoutcome associated with, then by Lemma 5.11,
the functionA built there is going to correctly compu®, and so theR;-requirement is satisfied.

If there is no suclS-child node along the true path, then we need to argue thatafcn fixedx,
¥(X) only changes finitely often, and so by Lemfma b.Il@s going to be a functional computing
from B@ W, and our®-requirement is also satisfied.

So fix anx. We can assume tha{x) = 0 in the end, since otherwise, afteentersA, thel'-use is
going to change for the last time and then settle down for&xpur construction, ifV changes, we
only increase th@&-use without changing theé/-use, and so the only case in which we may increase
the I'-use forever is that it happens infinitely often that safiehild node belowr has outcomes
associated witlw and putsy(y) for y < x into B during B-stages (wherg is the killing point). By

20 GEORGE BARMPALIAS, MINGZHONG CAI, STEFFEN LEMPP, AND THEDORE A. SLAMAN

induction hypothesis, we can assume @ W; X') has settled down for everyf < x. Obviously,
only finitely manyS-requirements can useas a killing point. Now by the last paragraph of the proof
of the previous lemma and by our assumption, all such chittbeaavhich use as its killing point
will eventually give up using, and so eventually eadi{B & W; x)-use settles down.]

REFERENCES

[AL86] Ambos-Spies, Klaus and Lerman, Manuel, Lattice eddirgs into the recursively enumerable degrees, J. Sym-
bolic Logic51(1986), 257-272.

[Ball] Barmpalias, Georg&eview of Lerman’s "A framework for priority arguments” (tteire Notes in Logic, vol. 34.
Cambridge University Press, NY, 2010, »v176 pp.)Bull. Symbolic Logic,17 (2011), 464—-467.

[FeSo81] P. A. Fejer and R. Soafhe Plus-Cupping Theorem for the Recursively Enumerabigees in: “Logic Year
1979-80: University of Connecticut”,1981, pp. 49-62.

[HS82] Harrington, Leo and Shelah, Sahafidre undecidability of the recursively enumerable degrBefi. AMS (N.S.)
6(1982), 79-80.

[La66] Lachlan, Alistair H.,Lower bounds for pairs of recursively enumerable degréaec. London Math. Soc. (3)
16(1966), 537-569.

[La75] Lachlan, Alistair H. A recursively enumerable degree which will not split ovédedser onesAnn. Math. Logic
9(1975), 307-365.

[LLS06] Lempp, Stfen; Lerman, Manuel; and Solomon, D. Rdembedding finite lattices into the computably enumer-
able degrees — a status suryéy: “Logic Colloquium '02", Lect. Notes Log. 27, Assoc. Syalic Logic, La Jolla,
CA, 2006, pp. 206-29.

[LNS98] Lempp, Stéen; Nies, André and Slaman, Theodore The I1;-theory of the computably enumerable Turing
degrees is undecidahl&rans. Amer. Math. So&50(1998), 2719-2736.

[Le00] Lerman, ManuelA necessary and gicient condition for embedding principally decomposabléditattices into
the computably enumerable degredan. Pure Appl. Logicl01-(2000), 275-297.

[Le10] Lerman, ManuelA Framework for Priority Argumentd.ecture Notes in Logic, Cambridge University Press, 2010.

[Sa63] Sacks, Gerald EDegrees of unsolvabilipAnn. Math. Studies No. 55, Princeton University Press, d&ton, N.J.,
1963.

[Sa63b] Sacks, Gerald E., On the degrees less@hamn. of Math. (2)77 (1963), 211-231.

[Sa64] Sacks, Gerald E., The recursively enumerable degmeedense, Ann. of Math. (8D 1964, 300-312.

[Sho90] Shoenfield, J.R., Non-bounding constructions,.Aure and Applied Logi&01990, 191-205.

[SS93] Shore, R. and Slaman, Theodore A., Working below lafggursively enumerable degree, J. Symb. L&6§it993,
824-859.

[SS99] Slaman, Theodore A., and Soare, RobeBxtension of embeddings in the computably enumerable egre.
Math. (2)154(2001), 1-43.

[So87] Soare, Robert IRecursively enumerable sets and degré&esspectives in Mathematical Logic, Springer-Verlag,
Berlin, 1987.

[Ya66] Yates, C. E. M.A minimal pair of recursively enumerable degreg&sSymbolic Logic31 (1966), 159-168.

George Barmpalias: (1) Srate Key LaB oF COMPUTER SCIENCE, INSTITUTE OF SOFTWARE, CHINESE ACADEMY OF SCIENCES,
Beumg 100190, Giva anD (2) ScrooL oF M aTHEMATICS, STATISTICS AND OPERATIONS RESEARCH, VicTORIA UNIVERSITY, WELLING-
TON, NEW ZEALAND

E-mail addressbarmpalias@gmail.com

URL: http://www.barmpalias .netl

Mingzhong Cai: DepartMENT OF M aTHEMATICS, DaRTMOUTH CoOLLEGE, HANOVER, NH 03755, USA
E-mail addressMingzhong.Cai@dartmouth.edu
URL: http://math.dartmouth.edu/" cai

Steffen Lempp: DepaRTMENT oF M ATHEMATICS, UNIVERSITY OF WisconsiN, Mabison, W1 53706, USA
E-mail addresslempp@nath.wisc.edu
URL: I'lttp://www.math.wisc . edu/"lempd

Theodore A. Slaman: DeEpARTMENT OF M aTHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720, USA
E-mail addressslaman@math.berkeley.edu
URL: http://www.math.berkeley. edu/~slamar{

http://www.barmpalias.net
http://math.dartmouth.edu/~cai
http://www.math.wisc.edu/~lempp
http://www.math.berkeley.edu/~slaman

