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ON THE EXISTENCE OF A STRONG MINIMAL PAIR

GEORGE BARMPALIAS, MINGZHONG CAI, STEFFEN LEMPP, AND THEODORE A. SLAMAN

Abstract. We show that there is a strong minimal pair in the computablyenumerable Turing degrees,
i.e., a pair of nonzero c.e. degreesa andb such thata∩ b = 0 and for any nonzero c.e. degreex ≤ a,
b ∪ x ≥ a.

1. Introduction

Much of the work on the degree structure of the computably enumerable (c.e.) Turing degrees has
focused on studying its finite substructures and how they canbe extended to larger substructures.
There are several reasons for this: The partial order of the c.e. degrees is a very complicated algebraic
structure, with an undecidable first-order theory, by Harrington and Shelah [HS82]. So, on the one
hand, as in classical algebra, a complicated structure is often best understood by studying its finite
substructures. On the other hand, the existential fragmentof the first-order theory of this degree
structure (in the language of partial ordering<, least element 0 and greatest element 1) is known to
be decidable by Sacks [Sa63], whereas by Lempp, Nies and Slaman [LNS98], the∃∀∃-theory of this
structure (in the language of partial ordering only) is undecidable. However, the decidability of the
∀∃-theory of this structure has been an open question for a longtime; and it is this question which
can be rephrased in purely algebraic terms as a question about finite substructures:

Question 1.1(Extendibility Question). LetP andQi (with i < n) be finite posets such that for all
i < n,P ⊆ Qi. Under what conditions onP and theQi can any embedding ofP into the c.e. Turing
degrees be extended to an embedding ofQi into the c.e. Turing degrees for some i (which may depend
on the embedding ofP)?

Call a partially ordered setP boundedif it contains distinguished least and great elements 0 and 1,
respectively. We can now formulate the following modified

Question 1.2(Extendibility Question with 0 and 1). Let P andQi (with i < n) be finite bounded
posets such that for all i< n, P ⊆ Qi. Under what conditions onP and theQi can any embedding
ofP into the c.e. Turing degrees (preserving 0 and 1) be extendedto an embedding ofQi into the c.e.
Turing degrees (preserving 0 and 1) for some i?

The answer forn = 1 to Question 1.2 was given by the following
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Theorem 1.3(Slaman, Soare [SS99]). Uniformly in finite bounded posetsP andQ, there is an ef-
fective procedure to decide whether any embedding ofP into the c.e. Turing degrees (preserving 0
and 1) be extended to an embedding ofQ into the c.e. Turing degrees (preserving 0 and 1).

This result of Slaman and Soare built on a long line of research into the algebraic structure of the
c.e. degrees, starting with the Sacks Splitting and DensityTheorems [Sa63b, Sa64] and the proof of
the existence of a minimal pair of c.e. degrees by Lachlan [La66] and Yates [Ya66].

In their proof in [SS99], Slaman and Soare identify two basicobstacles to extending an embedding.
The first of these is lattice-theoretic: The c.e. degrees form an upper semilattice in which the meet
of some but not all pairs of degrees exists. In fact, the majorhurdle toward deciding the∀∃-theory
of this structure has been the long-standing lattice embeddings problem, asking for an (effective)
characterization of those finite lattices which can be embedded into the c.e. Turing degrees. (Note
that the lattice embeddings problem can be phrased as a subproblem of the Extendibility Question
by making all theQi one-point extensions ofP, each testing the preservation of a particular meet or
join in the lattice embedding. Lerman [Le00] gave a noneffective (indeed aΠ0

2-)condition for lattice
embeddability; a more recent survey is Lempp, Lerman and Solomon [LLS06].)

The other basic obstacle to extending an embedding identified by Slaman and Soare is a phenom-
enon sometimes called “saturation”; a minimal example of itis given by settingP = {0, a, b, 1} (with
incomparablea, b) andQ = P ∪ {x, z} (with 0 < x < a, z andb < z < 1 but x � b anda � z). In
the general case, there may be a number of such elementsx ∈ Q − P, and for eachx there will be a
non-empty setZ(x) ⊆ Q − P of suchz.

An early example of a specific instance of an answer to the Extendibility Question 1.2 forn > 1
was given by Lachlan’s Nondiamond Theorem [La66]: No minimal pair of c.e. degrees can cup to0′.
(For this, we setP = {0, a, b, 1} (with incomparablea, b), Q0 = P ∪ {x} (with 0 < x < a, b), and
Q1 = P ∪ {y} (with a, b < y < 1).) So this is an instance of two lattice-theoretic obstructions which
cannot be overcome individually, but can be overcome in combination.

The main theorem of this paper provides an example where a lattice-theoretic obstruction and a
“saturation” obstruction cannot each be overcome either individually or in combination:

Main Theorem. There is astrong minimal pairin the c.e. Turing degrees, i.e., there are nonzero c.e.
degreesa andb such thata∩ b = 0 and for any nonzero c.e. degreex ≤ a, b ∪ x ≥ a.

Note that this is an instance of the Extendibility Question 1.2 by settingP = {0, a, b, 1} (with
incomparablea, b), Q0 = P ∪ {x} (with 0 < x < a, b) andQ1 = P ∪ {x, z} (with 0 < x < a, z and
b < z< 1 but x � b anda � z).

We should mention here that our Main Theorem has a long and twisted history. It was discussed
and claimed, in both directions, by a number of researchers over the past 25 years. The only pub-
lished proof is in Lerman’s monograph [Le10], where he attributes the theorem to Slaman (also see
the review by Barmpalias [Ba11]). However (per personal communication with Lerman), the proof
published by Lerman [Le10] has a gap, which is filled by a feature which we introduce in our proof
here.

We would like to state here the following related question, which we leave open:

Question 1.4. Is there a “two-sided” strong minimal pair; i.e., are there nonzero c.e. degreesa andb
such thata ∩ b = 0, for any nonzero c.e. degreex ≤ a, b ∪ x ≥ a, and for any nonzero c.e. degree
y ≤ b, a∪ y ≥ b?

This is, of course, an instance of the Extendibility Question 1.2 (withn = 3, combining one lattice-
theoretic and two “saturation” obstructions, namely, setting P = {0, a, b, 1} (with incomparablea, b),
Q0 = P ∪ {w} (with 0 < w < a, b), Q1 = P ∪ {x, z} (with 0 < x < a, z andb < z < 1 but x � b and
a � z), andQ2 = P∪{x′, z′} (with 0 < x′ < b, z′ anda < z′ < 1 butx′ � a andb � z′). We remark here
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that our Question 1.4 has a negative answer if we also requirethe join of (the images of)a andb to be
“branching” (i.e., meet-reducible); i.e., any embedding of P = {0, a, b, c, d, e, 1} (with incomparable
a, b, incomparabled, e, anda, b < c < d, e) extends to an embedding ofQ0 = P ∪ {w} (with 0 <

w < a, b), Q1 = P ∪ {x, z} (with 0 < x < a, z andb < z < 1 but x � b anda � z), Q2 = P ∪ {x′, z′}
(with 0 < x′ < b, z′ anda < z′ < 1 but x′ � a andb � z′), Q3 = P ∪ {y} (with a, b < y < c), or
Q4 = P∪{y′} (with c < y′ < d, e). This last result was observed by Slaman by combining Theorem 1.3
with the Non-Embeddability Condition (NEC) of Ambos-Spiesand Lerman [AL86]. This last result
also suggests that the full answer to our Extendibility Questions 1.1 and 1.2 is likely to be very hard.

2. Requirements and Priority Tree

In this section we describe a set of requirements that guarantee our main theorem, and the way
these requirements can be assigned to strategies on a priority tree. This methodology is rather stan-
dard for priority arguments of this type, and the reader is referred to the arguments in [FeSo81, SS93]
(Harrington’s plus-cupping theorem and Slaman’s triple) which exhibit certain similarities. More-
over, these ideas are refinements of certain devices that were used in Lachlan’s original0′′′-priority
argument in [La75]. We will also refer to these constructions in Section 3, in order to explain the
origins of the basic strategies for meeting our requirements.

2.1. List of requirements. As usual, we construct two c.e. setsA and B such that in the enda =
deg(A) and b = deg(B). We first have the requirements which satisfy thata and b form a strong
minimal pair:

Ri : Φi(A) = Wi ⇒ [∃Γ(Γ(B⊕Wi) = A) ∨ ∃∆(∆ =Wi)] .

Then we have the diagonalization requirements which guarantee thatA is not belowB [B not being
belowA will be guaranteed automatically]:

Si : Ψi(B) , A.

Note that eachSi states that there exists anx such thatΨi(B; x) , A(x). In the construction, each
Si-node has subsidiarySi, j-nodes, each using a possibly differentkilling point (to be defined and
clarified later) for forcingΨi(B; x) to diverge. We call a node associated with suchSi a parent node
and a node associated withSi, j a child node. At each stage, the collection of anSi-parent node and
its previously visited, uncanceled child nodes is called anSi-family (of that stage).

2.2. Discussion of the requirements in a historical context.It is worth noting the similarity of
the requirements with those of the arguments in [La75, FeSo81, SS93]. Such a discussion may be
beneficial to the reader who is familiar with these older and simpler arguments; but it may also be
helpful to the reader who is not an expert in0′′′-priority arguments and might like to first consult
these simpler proofs. In its simple form, Harrington’s plus-cupping theorem (presented in [FeSo81]
but also in [Sho90]) asserts the existence of a nonzero degree a such that every noncomputablew ≤ a
cups to0′ (i.e., there exists someb < 0′ such that0′ ≤ a∪b). The main requirements for this theorem
(excluding the noncomputability ofA) can be written as

R∗i : Φi(A) =Wi ⇒
[

∃Γ, Bi (Γ(Bi ⊕Wi) = A ∧ ∅′ �T Bi) ∨ ∃∆(∆ =Wi)
]

.

The similarity of the plus-cupping requirements with our requirements of Section 2.1 is clear. The
main difference is that in the plus-cupping requirements, for eachWi we can build a different Bi

while in our requirements there is a uniqueB that must accommodate all conditions. Another relevant
example is the construction of a so-called ‘Slaman triple’,i.e., three degreesa, b, c such thata > 0,
c � b and for all noncomputablew ≤ a we havec ≤ w ∪ b. This was published in [SS93] (based
on some unpublished notes of Slaman from 1983) and it is clearthat if we also requirea = c then a
Slaman triple becomes the strong minimal pair of our main theorem. The requirements for a Slaman
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triple (excluding the noncomputability ofa andc � b, which is similar to our positiveSi-requirements
in Section 2.1) are

R∗∗i : Φi(A) =Wi ⇒ [∃Γ (Γ(B⊕Wi) = C) ∨ ∃∆(∆ =Wi)] .

The similarities ofR∗∗i with our Ri are also clear. Instead of using the same set for the roles ofA
and C we use two, therefore relaxing the conflict that is generatedbetween the positive and the
negative requirements. On the other hand, we use a singleB here, in contrast withR∗i , where we had
a differentBi for each conditionR∗i .

The strategies used in the arguments in [FeSo81, SS93] involve a gap-cogap technique for the
construction of the Turing reductionsΓ, which originated in [La75] and which will also be used in our
argument. In Section 3, we will discuss this technique in detail, as well as the additional difficulties
that conditionsRi present, which are the reason for the more complicated approach we eventually
take.

2.3. Priority tree. Our priority tree is defined top down, i.e., the top node has the highest priority.
Each node has several possible outcomes, prioritized left to right.

EachRi-nodeα has two outcomes:i (infinite) and f (finite). Along thei-outcome, we are defining
a functionalΓα for computingA from B ⊕Wi. Such a nodeα is activeat someβ below if there is
no gα-outcome (see below) betweenβ andα and there are noα′ andβ′ with α′ ⊂ α ⊂ β′ ⊂ β such
thatα′ andβ′ form a pair (see definition below).

EachSi-parent nodeβ has three outcomes:d (diagonalization),g (gap, defined below), andw
(wait). Theg-outcome stands for an apparent computationΨi(B; x) = 0 against which we cannot
diagonalize (i.e., putx into A without risking to lose the computationΨi(B; x) = 0). We arrange the
priority tree in such a way that immediately following theg-outcome of eachSi-parent node, we have
its firstSi,0-child node.

EachSi, j-child nodeβ is below theg-outcome of itsSi-parent node and has outcomesgα0, . . . , gαk , c
(ordered from left to right). Eachgα (which, following convention, again stands for “gap”) corre-
sponds to one activeR-nodeα above theSi-parent node (not theSi, j-child node), ordered in such
a way that ifα ⊂ α′, thengα is to the left ofgα′ . For the nodes extending thegα-outcome, we
say thatα and this child nodeβ form a pair. In addition, we also define a computable function∆
along thegα-outcome for computing the setW corresponding to the requirement atα. Extending a
gα-outcome, we stop adding newSi,k-child nodes (and believe that this requirement has been satisfied
forever). There is only onec-outcome (c stands for “claim”) to the right of all thegα-outcomes. Ex-
tending such an outcome, we continue to add newSi,k-child nodes. Of course, we arrange the priority
tree in a reasonable way such that along every infinite path, each requirement is represented at most
once by a strategy (or pair of strategies, in the case of theR-requirements) which is not enclosed by
any other pair.

3. Overview of the Strategies and Their Conflicts

In this section we discuss the basic strategies that are a starting point for the more complex strate-
gies that are needed for the satisfaction of the requirements. We start with the standard gap-cogap
strategy for the satisfaction for simple combinations of prioritized conditions, and slowly build the
ideas needed for the general case. Recall that the tree of strategies grows from the root downwards, so
that a strategy nodeaboveanother is of higher priority with respect to the latter one.The main con-
flict occurs between the ‘positive’ requirements (or strategies)S j (which typically put numbers intoA
and try to preserve aB-computation by restraining the enumeration of small numbers intoB) and the
‘negative’ requirementsRi which typically facilitate the enumeration of numbers intoB, which are
often needed for the rectification of the functionalΓi that they build. The latter rectification is needed
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due to the enumeration of numbers intoA by some positive strategies. In the preliminary Sections 3.1
and 3.2, we assume that strategyS j operates from a single node, instead of being split into a parent
node and child nodes as we described in Section 2.3. We do thisfor simplicity, as these sections only
serve as an illustration of the typical gap-cogap strategy,which is sufficient for simple configurations
of requirements but not for the full construction.

3.1. Typical gap-cogap strategy: oneS below oneR. The strategy of anRi-node is to simply
enumerateΓi-computations for the reductionΓi(B ⊕Wi) = A, and enumerate a number intoB when
there is a numberk such thatΓi(B⊕Wi; k) = A(k). In the latter case, this number would typically be
the current use of the computationΓi(B⊕Wi; k), and its enumeration facilitates the rectification of the
reduction. Whenk is the witness of some positive requirement (or some relatedparameter, see below)
then the use of the rectified computation may need to be increased to a large number (for reasons that
will become clear when we discuss theS j-strategy).

TheS j typically picks a witnessx and waits for the computationΨ j(B; x) to converge with output
value 0. If and when this happens, a typical diagonalizationstrategy would prompt for the enumera-
tion of x into A and the preservation of theB-use of the computationΨ j(B; x). However, this naive
strategy is not successful in the present context, since thehigher-priorityRi-strategy may enumerate
into B a number that can destroy the computationΨ j(B; x). Such an enumeration may be caused due
to the enumeration ofx into A byS j, and the instructions ofRi to maintain the correctness ofΓi. This
is the primary conflict between the requirements, and at thiselementary level it can be resolved by a
standard gap-cogap strategy on the behalf ofS j (much like in the arguments in [FeSo81, SS93] which
we discussed in Section 2.2).

The gap-cogap strategy forS j typically operates in cycles, periodically restrainingA or B, thus
building a potential computation∆ for the setWi . Prior to the start of the alternating cycles, it chooses
a witnessx. The first step in each cycle is:

(w) Wait for the computationΨ j(B; x) to converge with output value 0.

If and when this happens, it checks if theB-use of the computationΓi(B⊕Wi) is less than theB-use
of the computationΨ j(B; x). If this is not true, then it can safely enumeratex into A and restrain
the B-use of the computationΨ j(B; x), thereby securing the disagreementΨ j(B; x) , A(x). Note
that in this case, theΓi-rectification that may be prompted byRi will not affect this diagonalization.
Otherwise, it will consider theWi-use ofΓi(B⊕Wi; x), sayuw, and

(a1) drop any restraint onA (thus allowingWi to change, under the assumption thatΦi(A) =Wi);
(a2) define∆ =Wi up touw and restrain enumerations intoB up to theB-use ofΨ j(B; x).

This action initiates an interval of stages that may be called an ‘A-gap’, which is characterized by
a lack of restraint onA and the enforcement of a restraint onB. During this interval of stages,Ri

receives the instruction to increase the use ofΓi(B ⊕Wi; x) to a large number (larger than the use of
Ψ j(B; x)) in the event thatWi changes belowuw. When the strategy is revisited (as in a standard tree
of strategies argument),

(b1) if Wi has changed belowuw since the stage theA-gap was opened, it enumeratesx into A,
while enforcing a permanent restraint onB for the preservation ofΨ j(B; x) , A(x);

(b2) otherwise, it closes theA-gap (thereby reinforcing a restraint onA, equal to the use of the
current, possibly new computationΦi(A) = Wi up touw), and opens aB-gap by dropping the
restraint onB and enumerating theB-use ofΓi(B⊕Wi ; x) into B.

Note that step (b2) is possible sinceS j works under the assumption that the reductionΦi (A) =Wi has
infinitely many expansionary stages. Moreover, note that the B-enumeration in step (b2) will destroy
the computationΨ j(B; x). Now let us review the long-term behavior of theS j. The routine comes to
halt if one of the following cases occurs at some stages0:
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(1) Ψ j(B; x) remains undefined or not equal to 0 at all stages larger thans0; or
(2) x is enumerated intoA byS j.

In the first case,S j is clearly satisfied (this can be viewed as aΣ0
2-outcome). In the second case,

according to the strategy, the disagreementΨ j(B; x) , A(x) will be preserved (since theB-use of
Γi(B⊕Wi; x) would be larger than theB-use ofΨ j(B; x)). Hence in this case also (assuming that basic
priority is respected amongst the requirements)S j is met in aΣ0

2-way. The interesting case is when
these events do not occur, in which case the following cycle of ‘states’ of theS j-strategy repeats
indefinitely:

(3.1) (w)→ (a1)→ (a2)→ (b2)→ (w)→ · · ·

Under this infinitaryΠ0
2-scenario, the witnessx remains fixed, while theS j-strategy alternates be-

tweenA-gap states (whenB-restraint is imposed but notA-restraint) andB-gap states (whenA-re-
straint is imposed but notB-restraint). TheA-gap interval consists of the steps (w), (a1), (a2) (where
the latter two typically occur at the same stage) while theB-gap interval consists of step (b2). In this
case, observe that theS j-strategy builds a total computable function∆ which correctly computesWi:
new computations are produced at the (a2) steps, and throughout the stages none of these compu-
tations are falsified. Indeed, if such a computation were falsified (through aWi-change below the
maximum initial segment of numbers on which∆ is defined) then the strategy would execute step
(b1), thus ending the perpetual cycle (3.1) and producing a successfulΣ0

2-outcome forS j. On the
other hand, under this outcome, the use ofΓi(B⊕Wi; x) is driven to infinity, thereby makingΓi partial
at the chosen numberx. This aspect of the strategy is sometimes known as ‘capricious destruction’
of Γi, since our strategy intentionally ‘kills’ the very reduction that we build at a higher-priority node
(but for good reasons, see the next paragraph).

Hence, under this infinitaryΠ0
2-outcome ofS j (often called a ‘gap outcome’), the actions of this

strategy satisfy the higher-priorityRi , as well as itself since the use ofΨ j(B; x) is driven to infinity. On
the other hand,S j can pass the information thatΓi is partial atx to the lower-priority requirements,
so a lowerS j′ can successfully implement a standard diagonalization strategy by only considering
computationsΨ j′ (B; y) which have useB-use below theB-use ofΓi(B; x) (which goes monotonically
to infinity). In the next section, we see that this gap-cogap strategy also works in a nested environment,
thus satisfyingS j below any finite number ofRi-strategies.

3.2. Typical gap-cogap strategy: oneS below manyR. When anS j-strategy works below a finite
number ofRi-strategies, it needs to resolve the same issues as the ones discussed in Section 3.1, but
this time with respect to each of the higher-priority strategies. More specifically, it may have trouble
preserving a diagonalizationΨ j(B; x) , A(x) due to a number ofΓ-reductions that are being built
with higher priority. In this section, we show that a nested version of the strategy we discussed in
Section 3.1 suffices to deal with these conflicts. This nesting approach is also typical in arguments like
those in [FeSo81, SS93]. For simplicity, suppose that a nodeworking forS0 is below a node forR1,
which in turn is below a node working forR0. The methodology we give below generalizes trivially
to the case where we have a node forS0 below nodes forRk, . . . ,R0. The idea is to implement the
gap-cogap strategy forS0 sequentially, first with respect toR1 and then with respect toR0.

Consider the gap-cogap strategy ofS0 with respect toR1. Under theΠ0
2-outcome of this strat-

egy,W1 is proven computable whileΓ1 is partial at a specified level (namely the witnessx of S0).
In this case, another requirementS1 can work belowS0, with the additional information thatΓ1 is
partial atx. Then a standard gap-cogap strategy for the copy ofS1 againstR0 alone can successfully
work for satisfaction of both requirements (as in Section 3.1).

On the other hand, there is a possibility that this gap-cogaproutine ofS0 againstR1 ends up
having aΣ0

2-outcome. In this case, the strategy would typically go to step (b1). However, at such a
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stage,S0 can no longer proceed directly with the diagonalizationΨ j(B; x) , A(x). Indeed, the higher-
priority R0 could potentially destroy such a disagreement (in a way thatwe have already discussed:
through a rectification of itsΓ0 reduction). In this case,S0 needs to start a new gap-cogap cycle with
respect toR0. If this nested cycle repeats indefinitely, it provides a computation∆0 for W0 while
making bothΓ0 andΓ1 partial atx. In this case, the highest priorityR0 is met, at the expense ofR1

andS0 which are ‘injured’ and need to be satisfied by means of additional copies of their strategies
under the information thatΓ0 is partial atx. This is certainly possible, as it reduces to the cases we
have already discussed. If, on the other hand, the second (nested) gap-cogap cycle ofS0 reaches step
(b1), then it can diagonalize, thereby producing the disagreementΨ j(B; x) , A(x) and preserving it
indefinitely (since the relevantΓ0- andΓ1-uses are sufficiently large, due to theW0- andW1-changes
that occurred, respectively).

We may sum up the nesting of the gap-cogap strategies as follows. StrategyS0 first attempts
to ‘clear’ the computationΨ j(B; x) from theΓ1-use onx. If and when it achieves this (through a
W1-change) it proceeds to clear this computation from theΓ0-use onx. If and when this is achieved,
it can successfully diagonalize. In any other case (except the trivial case whenΨ j(B; x) remains
undefined or not equal to 0), it produces aΠ0

2-outcome that enables copies of the existing strategies to
satisfy their corresponding requirements at nodes of lowerpriority. It is important to note that in the
above scenario, after the computationΨ j(B; x) is cleared from theΓ1-use onx, the strategy has one
chance to clear it from theΓ0-use onx (namely, in the next cycle when theA-restraints drop). If this
fails, the strategy starts the module anew, waiting again for the convergence ofΨ j(B; x).

Note that here we have two differentΠ0
2-outcomes corresponding to the following cases:

(1) we never clear theΓ1-use;
(2) we clear theΓ1-use infinitely often but we never clear theΓ0-use.

Also note that we only attempt to clear theΓ0-use when we have already cleared theΓ1-use. In this
sense, we say thatS0 first opens a gap forR1 and then forR0.

These nested gap-cogap strategies are sufficient for dealing with oneS-strategy below any finite
number ofR-strategies. When we consider multipleS-strategies below a number ofR-strategies, new
conflicts occur, which we discuss in the following sections.

Now in our formal construction (see Section 4.1), we insteadhandle the gap-cogap requirements
from different notes by alternating globalA-stages andB-stages in the background. DuringA-stages,
we are allowed to changeA but notB; during B-stages, we are allowed to changeB but notA. Later
in the discussion, we will useA-stages andB-stages instead of the gap-cogap terminology.

In particular, in the above construction, we do not need to make enumerations immediately but can
wait for an appropriate stage to perform the action. For example, after we enumerated a diagonal-
ization witnessx into A during anA-stage, we cannot simultaneously enumerate theΓ-use (for the
correction of theΓ functional computingA) into B, but we can do this later when we next time visited
the correspondingR node.

3.3. A minimal new example: two S below two R. Here, we illustrate the idea by a minimal
example where we see a conflict which needs some new strategy,and we will briefly explain how to
handle the conflict. (See Figure 1.)

First of all, for later purposes, we want to separate a parentnodeS0 and its child nodesS0, j.
Roughly each child node is taking care of the old strategies which selects theR-requirement above to
pair with and defines the corresponding function∆. The first child nodeS0,0 is always immediately
following its parent node’sg-outcome.

LetR0 andR1 be two consecutiveR-requirements, and let theR1-node be extending theR0-node’s
i-outcome. Consider anS0-node extending theR1-node’si-outcome. Now, at theS0-node, as in a
usual construction of this type, we may have a diagonalization witnessx0, but the useψ0(x0) may
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Figure 1. A minimal example (left) and a complete example (right)

always be too large (say,≥ γ1(x0)), and so we go to theg-outcome. At the firstS0,0-child node, we
useγ1(x0) to kill the computationΨ0(B; x0) infinitely often, say. At the same time, theS0,0-child
node will build a function∆1 to correctly computeW1 (for theR1-node).

Now, to make sure that∆1 is always correct, theS0,0-child node has to set up some mechanism
to prevent injury. In the construction, we implement an alternatingA-stage/B-stage approach, so that
at each stage, at most oneA or B can change. There are now two cases here. During aB-stage,A
does not change, and soW1 = Φ1(A) (up to the length of agreement) will not change, either, since
otherwise, we will not visit theS0-node again. During anA-stage,A can change butB does not.
If now W1 changes, then we can increase theΓ1-use while preserving theΨ0(B; x0)-computation.
Then we observe thatγ1(x0) > ψ0(x0), and so we will switch to the left of the outcome associated
with ∆1. In this process, unless we move to the left of the outcome associated with∆1, we see that
theΨ0(B; x0)-computation is used to protect∆1 during A-stages, since only aW1-change without
a B-change guarantees that we can move to the left of the outcomeassociated with∆1; so, in the
argument, it is crucial that we can preserve the use ofΨ0(B; x0).

Now, say, extending the∆1-outcome, we have anotherS1-node with a witnessx1. During an
A-stages0, it might want to enumeratex1 into A for its own diagonalization (and soA would be
changed). By the observation above, we have to protect the use ofΨ0(B; x0) at the same time. How-
ever, if we implement the diagonalization procedure forS1 here, then later ats1 > s0 theR0-node’s
Γ0-functional, after observing a change atx1 in A, will inevitably addγ0(x1) into B for Γ0-correction
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(unlessW0 has changed froms0 to s1, but this is not in our control). Ats1, however, there is no
guarantee thatγ0(x1) > ψ0(x0).

The solution is thus briefly as follows: In such a situation atstages0, we instead go to a different
outcome to the right of the∆1-outcome, which we call thec-outcome. We stay at thisc outcome as
long asγ0(x1) ≤ ψ0(x0) (since otherwise, there is no problem). So at a following stages1 > s0, as
long asγ0(x1) ≤ ψ0(x0) is still true, instead of usingγ0(x0) to kill theΨ0(B; x0)-computation, we can
useγ0(x1). We say thatx1 is theclaim point for this c-outcome at this stages0. We count this as a
small step toward success. Later at the nextS0,1-child node, we have a similar scenario for which
we may go to thec-outcome with a larger claim point, etc. If this happens infinitely often along
the true path (i.e., there are infinitely manyS0, j-nodes with ac-outcome along the true path), then
we are using larger and larger numbers to pushψ0(x0) to infinity, and so theS0-requirement will be
satisfied in aΠ3-way; on the other hand,Γ1 is still active (since it is only injured finitely often at each
argument), so we do not have to build∆1 for it.

From a local viewpoint, the conflict happens when we see a computation atS1 which we want to
use to diagonalize, and some higher requirements (R1−S0) put some restraint on the diagonalization.
So thec-outcome with a larger claim pointx1 essentially allows us to freeze the computation atS1

and at the same time allowR1 andS0 to continue working towards success by switching the killing
point from x0 to x1.

From a global viewpoint, while other outcomes are standard in this type of gap-cogap construction,
each suchc-outcome is aΣ2-type of outcome, which states that in the construction, there is a stage
with a claim point such that we will keep this claim point (stay in the c-outcome) forever in the
following construction.

Node Symbol Access Action Sub-action Outcomes Type

R α normal definesΓ B-enumerations i, f Π0
2 / Σ

0
2

S-parent β normal or child-link clearing/claim A-enumeration d,g,w Σ0
1 / Π

0
2 / Σ

0
2

S-child β j n. or own-parent-link defines∆ B-enumerations gαt , c Π0
2 / Σ

0
2

Table 1. Nodes on the priority tree, their main actions and their outcomes

3.4. The new idea: c-outcomes. The use of thec-outcomes is new and in fact crucial to our con-
struction, so it is important to explain its use and address the differences between ac-outcome and a
standardg-outcome (gap outcome) for example as in Section 3.1.

As we have mentioned above, thec-outcome in our minimal example essentially allows us to
freeze the computation at theS1 node (see Figure 1) as well as∆1 to the left of thec-outcome, while
waiting for a later stage when diagonalization is safe to perform (i.e., theΓ1-use is large enough). It is
important that here we do not perform any enumeration at thisc-outcome. A natural attempt, which
actually fails to work, would be to perform the same gap-cogap operation with the new witnessx1

at thec-outcome. The reason is that, it is possible that such a witness x0 or x1 at which theΓ1-use
is used to pushΨ0(x0)-use may change and possibly go to infinity. All the lower priority nodes, for
a successful construction, need to guess at the outcome correctly. However, with only one (or even
infinitely many)c-outcome where the gap-cogap strategy is performed, it is not possible for the lower
priority nodes to know whether the witness will stop increase or go to infinity.

In general, ac-outcome is an outcome of aS-child node, but unlike ag-outcome (of the same child
node) it does not enumerate any elements (intoB). Instead such enumeration is delayed tog-outcomes
of otherS-children nodes below thisc-outcome.
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Along thec-outcome, theS requirement at the parent node is satisfied as we push its useΨ(x)
to infinity for a fixed x (the diagonalization witness at the parent node). This is the same as along
the g-outcomes to the left of thec-outcome. What makes ac-outcome different is that the delay of
B-enumerations allows us to satisfy the requirementR by keeping the correspondingΓ total. Note
thatg-outcomes always kill suchΓ functional and so they need to build∆’s in order to satisfyR.

In addition, such delay also allows us to work on other (lowerpriority) requirements between the
S-children nodes. That is, if a lower priority node is only below ac-outcome of the “S-family” but
not any of theg-outcomes of the children nodes, then it believes thatΓ is still total and so active.
As a result, this also requires some minor adjustments to thedifferent numbers used in our standard
gap-cogap construction, which we will describe in the complete example below.

3.5. A complete example: clearing point, killing point and claim point. Now we complete the
minimal example above to add in all the features of the construction. In particular, we will explain
various numbers used during the construction. (See again Figure 1.) Table 1 can be helpful as a guide
on the general structure of the argument and the complexity of the outcomes of the strategies.

Suppose we have two consecutiveR-requirementsR0 andR1, and theR1-node is extending the
R0-node’si-outcome. Extending theR1-node’si-outcome, we again have anS0-node followed by its
firstS0,0-child node. Now, extending thec-outcome of theS0,0-node (with a claim pointx′), we have
anR2-node followed (along itsi-outcome) by anS1-node.

Let x1 be the diagonalization witness forS1. When we try to diagonalize againstΨ1 at stage
s0 when we see a convergent computationΨ1(x1), we first need to make sure thatψ1(x1) < γi(x1)
for i = 0, 1, 2; in addition, notice that theS0-family currently has ac-outcome, which means that
extending any outcome of theS1-node (e.g., thed-outcome), there will be moreS0, j-child nodes, and
later at any stages> s0 they will possibly enumerateγ0(x′) or γ1(x′) into B in order to pushψ0(B; x0)
to infinity. This means that, for successful diagonalization againstΨ1, we also need to care about
possibleΓ-use enumerations atx′ (which is< x1). So here at stages0 we call such a numberx′ the
clearing pointatS1 and use it to clear the computation: For clearance, we requireψ1(x1) < γi(x′) for
i = 0, 1, 2. If this is not true, then we usex′ (instead ofx1) to pushψ1(B; x1) at the firstS1,0-child
node.

Say, at theS1,0-node, we choose to go along thegα2-outcome building∆2 (sinceψ1(x1) ≥ γ2(x′)).
Now extending thisgα2-outcome, say, we first have anS0,1-child node. As required by theS0,0-node,
theS0,1-node usesx′ to pushψ0(B; x0) to infinity. We call such a numberx′ thekilling point atS0,1.
Say after stages1 > s0, such a child node also has ac-outcome (whose claim pointx2 comes from
someS2-node extending one of itsg-outcomes, as in the minimal example). Extending such ac-out-
come, we have anS3-parent node, say with diagonalization witnessx3.

From theS3-node’s point of view,R2 has been satisfied (by theS1,0-node), andR0 andR1 are still
active. The clearing point at theS3-node isx2, because it believes that the newS0-family members
will use x2 instead ofx′ as the killing point. So theS3-node checks whetherψ3(x3) < γi(x2) for
i = 0, 1.

Now suppose this is true, i.e., we have a cleared computation, say at stages2 > s1. Then, according
to the minimal example above, we next want to make sure that∆2 is preserved, and we try to clear
theΨ1(B; x1)-computation by going to thec-outcome of theS1,0-node.

The tricky part is that, this time at stages1, for successful clearance, we actually wantψ1(x1) <
γi(x2) (for i = 0, 1) (instead ofψ1(x1) < γi(x3)): The reason here is that, to the right of this∆2,
later at any stages > s2 it is possible that a newS0, j-child node will usex2 as the killing point and
enumerateγ0(x2) or γ1(x2) into B, and we do not want these numbers to injureΨ1(B; x1), which we
use to protect∆2. We say thatx2 is theclaim point of this c-outcome at stages2 (later this claim
point is used as the killing point for newS1,k-child nodes). When we go to thec-outcome, i.e., the



ON THE EXISTENCE OF A STRONG MINIMAL PAIR 11

Ψ1(B; x1)-computation is not cleared, then the associatedclaimhere is that after this stage, it is always
the case that we do not get a clearance, i.e., it is always the case thatψ1(x1) ≥ γi(x2) for i = 0 or 1.

Point S-node Outcome Complexity

Witness Parent All Σ0
1

Clearing Parent All Σ0
1

Claim Child c Π0
2

Killing Child c Π0
2

Table 2. Parameters of theS-nodes (parents and children), associated outcomes and their complexity modulo initialization.

3.6. Overview of theS-strategies. Table 2 summarizes the parameters we have introduced for the
S-nodes (parents and children). In this section, we summarize their dynamics and basic features, in
a top-down description (as opposed to the bottom-up motivational discussion of Section 3.5). The
diagonalization is done at the parent node, with a witness which is fixed, as long as the parent node
is not injured. The same is true of theclearing point, which is another parameter of the parent node.
The clearing point is always less than or equal to the witness. In the simple case that we described
in Section 3.3, we use the witness as a clearing point, but in the presence of more requirements, we
need to differentiate between the two. The clearing point is the number on which we may force the
associatedΓ-functional to be partial.

Associated with thec-outcome of eachSi j -child node is theclaim pointof the node. Each time
that thec-outcome is activated, it may have a different claim point. EachSi j -child node also has a
killing point, which is calculated from the claim points of the higher-priority child nodes. In this way,
the killing points of child nodes are raised according to theclaim points of the higher-priority child
nodes withc-outcomes. Thec-outcome of a child nodeβ j is initiated by a parent node belowβ j (not
its own parent).

Satisfaction ofS Main outcome Outcome Complexity

Ψ(B; x) ↑ co-finitely wait outcome (parent) Γ total Σ0
2

Ψ(B; x) ↓, A(x) co-finitely diagonalization (parent) Γ total Σ0
2

Ψ(B; x) ↑ infinitely often gap outcome (child) Γ partial Σ0
3

Ψ(B; x) ↑ infinitely often all children truec-outcomes Γ total Π0
3

Table 3. Four different ways that requirementS with witnessx may be satisfied, and their complexity relative to the
corresponding parent node.

Along with thec-outcome, anSi j -child node implements a gap-cogap strategy, sequentiallywith
respect to the∆-functionals of higher-priority child nodes. This gap module looks for appropriate
changes in the approximation to the corresponding setsW, starting from the closest and moving
monotonically toward the root of the tree. The usual gap-cogap operation of a child node may be
interrupted by itsc-outcome infinitely often. Infinitely manyc-outcomes along the child nodes of
a parent node (in the ‘true path’) means that the functional we try to diagonalize against is partial.
Table 3 displays all the different ways that requirementS can be satisfied. The first three ways
displayed are typical to a gap-cogap argument. However, thelast case is special and corresponds to
the case when all children fail to succeed with their gap-cogap strategy. In that case,Ψ(B; x) becomes
partial due to the enumeration ofΓ-uses on larger and larger arguments. Table 3 also displays the
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effect that the outcomes have on the functionalΓ that we build forS. Note that in the context of
the global construction, where many requirements are present, the global outcomes are slightly more
complex (e.g. aΓ-functional that is left intact by some child node may end up partial due to a child of
another parent).

4. Construction

4.1. Accessible path, stage dichotomy, accessible nodes and visited nodes. In the construction,
each stage is either anA-stage or aB-stage. We can arrange that all even stages areA-stages and all
odd stages areB-stages. DuringA-stages, we are allowed to changeA but not B; during B-stages,
we are allowed to changeB but not A. Each node first ignores the stage setting and follows the
construction. When the node wants to changeA or B, it checks whether the current stage setting
allows this action. If so, it changesA or B as planned; if not, it terminates the stage and waits.

In addition, each node must try to pass down alternatingA-stages andB-stages along its (believed)
true outcome. If the stage setting is not the one expected, the node needs to wait for another stage to
go to the outcome we want. For instance, if a node needs to go toan outcome, and at the last stage
that outcome was accessible was anA-stage, then we are expecting aB-stage this time. If this is a
B-stage, then there is no problem; if this is anA-stage, then we terminate the stage.

Now, in these two cases when we terminate the stage (since thestage is not the one we wanted),
at the very next stage (notice that the stage has changed fromA to B or from B to A), we first check
whether anyW has changed (from the previous stage) for thoseW’s along the accessible path, up to
the previous length of agreement. If so, then for the highestone, we switch to thef -outcome if the
length of agreement has decreased (and it is easy to see that then we have a permanent win unless
the node is initialized), or to thei-outcome if the length of agreement increased (and so we switch
to the left if we went to thef -outcome at the previous stage). Otherwise (if there is noW-change,
or the length of agreement does not change, or the length of agreement has increased and we went
to the i-outcome at the previous stage), then we directly go throughthe same accessible path and
continue the construction at the node where we terminated the stage.1 So either we can changeA or B
as planned, or we can go to the outcome we wanted. In other words, at each node, if the last stage
was a terminated stage and there is noW-change, then we continue to the same outcome without any
extra action.

As in a usual priority tree construction, at each stages, we inductively construct anaccessiblepath
(up to lengths) on the priority tree. At each node along the accessible path, we try to decide the
outcome at stagesand whether we want to changeA or B. WheneverA or B is changed, we terminate
the current stage and go to the next stage. We keep the nodes that are to the left of, or compatible with,
the accessible path and initialize the nodes that are to the right. Note that we may build a link in the
construction and skip some nodes along the accessible path (without going through the construction
for them at that stage). So we shall distinguish between notions of a node being visited and being
accessible. Beingvisitedmeans that we allow this node to act according to the construction below;
and beingaccessibleonly means that the node is on the accessible path, which doesnot necessarily
mean that the node itself is visited but possibly only some extension of it is.

In the following subsections, we always assume that we are ata visited node at stages.

4.2. R-node. Consider anR-nodeα and note that if the last stage was a terminated stage andW
has not changed, then we continue to the same outcome withoutany action. Otherwise, we check
whether thelength of agreementhas increased since the last staget when we visited this node and

1The intuition is that, since no one has changedA or B from the last stage, and theW’s have not changed, either, unless we
can diagonalize, all the uses of computations remain the same. (See Lemma 5.1 for the full proof later on.)
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the i-outcome was accessible (or if such a staget does not exist, then we check whether the length of
agreement is positive). If not, then we go to thef -outcome. If so, then we go to thei-outcome.

TheR-nodeα also defines a functionalΓ along thei-outcome. We make sure thatΓ is well-defined,
i.e., we will not enumerate axioms that use the same oracle but give different outputs. In particular,
we may have somerequeststo add some numbers intoB here which were assigned by nodes below.
What we do is simply put these numbers intoB as planned if the correspondingW has not yet changed
(see Section 4.3.1).

For convenience, we allow theW-use andB-use for the samex to be different (so we formally
write γ(W; x) andγ(B; x) to denote these uses, but later, when it is clear from the context that we are
talking about theB-use, we will simply writeγ(x)). Since all the sets we consider are c.e., at each
stage we only need to keep one axiomΓ(B ⊕W; x) for a fixed x. We have two cases in which we
increase the use. The first case is that some node below putsγ(B; x) into B but A(x) = 0; in this case,
we increase theB-use to be large and fresh, and increase theW-use to be the length of agreement
betweenΦ(A) andW at this stage. The second case is when theW-use changes; then we increase the
B-use to be large and fresh and keep theW-use the same. In all other cases, we do not increase the
uses but simply update the axiom with the current oracle.

Of course, we obey the usual monotonicity rules of axioms, that is, whenever we change the uses
for somex, we automatically makeΓ(B⊕W; y) undefined for ally > x. In any case, we will ensure
thatΓ(B⊕W; x) = A(x) for all x ≤ the current length of agreement betweenΦ(A) andW at this stage;
if a use forΓ(B⊕W; x) had never been picked before, then we pick theB-use large and fresh, and the
W-use to be the current length of agreement betweenW andΦ(A); otherwise, the use is specified as
above.

4.3. S-parent node. At anSi-nodeβ, if this is the first time at which we visit this node, then we pick
a fresh diagonalization witnessx for it. Now if we already have a diagonalization witnessx, then we
check whetherΨi(B; x) converges to 0 with abelievablecomputation. Here, and in the following, a
computationΨi(B; x)[s] ↓ is believable when there are no numbers below the use of this computation
that may enterB at a later stage, by the nodes aboveβ (such are uses ofΓ-functionals aboveβ that
are partial from the point of view ofβ). If not, then we go to thew-outcome and continue to the
next node. If we find out that earlier we have already visited the d-outcome (i.e., we have already
performed diagonalization at this node andA(x) = 1). andβ has not been initialized since, then we
continue to go to thed-outcome.

If there is such a believable computationΨi(B; x) ↓= 0 (where, when we see a believable such
computation, we immediately initialize every node extending thew-outcome) but we have not yet
performed diagonalization (i.e., enumeratedx into A), then we perform the following construction.
We first check whether we can perform diagonalization (see below in Section 4.3.1) and if so, follow
the instructions; if not, then we go to theg-outcome (or some other outcomes according to Sec-
tion 4.3.2 below) and continue to the next node.

4.3.1. Diagonalization, setting clearing and claim points.At β, we consider thoseSi′-requirements
which haveg-outcome alongβ and none of whose child nodes has ag-outcome alongβ. We think
of theSi′-family as a whole as announcing the currentkilling point for the requirementSi′ , which is
defined as the greatest number among all claim points of allSi′-child nodes above or to the left ofβ
as well as the clearing point atSi′ . Then we let theclearing point y atβ be the least of these killing
points announced by theSi′-families from above as well asx (if there is no such higher-prioritySi′).

2

2Sincex is a fresh number when it is picked, thisy is always less than or equal tox (Lemma 5.8). Roughly speaking, thisy
is going to be the least killing point when we go to the right ofβ, and so for successful diagonalization, we want to make
sure thatβ’s computation is protected when we switch to the right of it.In the complete example in Section 3.5, ourx here
is x3 there, and oury here isx2 there.
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We check whetherγk(y) > ψi(x) (for the clearing pointy defined above) for each activeRk above.
If not, then we go down to theg-outcome here (see Section 4.3.2) and, at the firstSi-child nodeSi,0,
we will go to the correspondinggαk-outcome defining a function∆ and addγk(y) into B there (for the
greatest suchk, see details below in Section 4.4). Ifγk(y) > ψi(x), then we proceed to the following
check.3

Here, it is possible that for some other∆′ defined at anSi′-child nodeβ′ aboveβ (along the same
path), we use the correspondingΨi′(B; x′)-computation to protect∆′, yet someγk(x) enteringB for Γk

above thisSi′-node may cause injury, i.e.,γk(x) ≤ ψi′(x′).
If there is no suchβ′, i.e., for everyβ′ alongβ, we haveγk(x) > ψi′(x′) as above, then we can

put x into A and go to thed-outcome ofβ. While doing that, we issue requests at each activeR-node
aboveβ to addγ(x) into B as follows: Later when we visitR’s i-outcome, if the correspondingW-use
(for Γ(B⊕W; x)) has changed, then we do not addγ(x) into B, but otherwise, we addγ(x) into B.

If we see suchβ′, then fix the lowest (i.e., we process these nodes from the bottom up) suchβ′

for which γk(x) ≤ ψi′(x′), we consider allSi′′ -nodes aboveβ′ which have ag-outcome alongβ′ but
such that no child node has ag-type outcome alongβ′ (i.e., theSi′′-requirements that are still active
at β′). For each suchSi′′-node, we only look at its child nodes belowβ′ (theSi′′-family belowβ′).
These child nodes define a current killing point, i.e., the maximum claim point (if suchSi′′-family
belowβ′ is empty, then let this current killing point be infinity). Then we let theclaim point zof β be
the minimum number among all these killing points ofSi′′-families belowβ′ (for all suchβ′), as well
asx, the diagonalization witness atβ. So automaticallyz is less than or equal tox. 4

This c-outcome atβ′ is now associated with theclaim that “after this stages, it is always the
case thatψ′(x′) is greater than or equal toγk(z) for some activeΓk above theSi′-parent node”. (For
convenience we denote this claim byC(β′, z, s).) In addition, thisc-outcome announces thatz is
the new killing point for lower-prioritySi′-child nodes, overwriting the old announcements made by
higher-priority child nodes for the sameSi′ . That is,Si′ , as a whole requirement, now switches the
killing point to z. In this case, we say thatβ initiates thec-outcome atβ′.5 We go to thec-outcome
of β′ and continue to the next node along that path.

4.3.2. Possible link to child.Now, at this time, if we do not have a chance to diagonalize, there might
be someSi′-child nodes below, whosec-outcome has been initiated with a claim about the size of
ψi′(x′) and someΓ-uses of possibly largerx′′ (see above). We check if any of these claims turn
out to be false. For those correspondingc-outcomes whose claims turn out to be false, we initialize
everything below thec-outcome of these child nodes and everything to the right of them.

In addition, we check whether there is anSi, j-child node such that the last time it was visited we
went to one of itsg-outcomes, and now with the current conditions we see that wecan switch to the
left to thatg-outcome. If there is such a child node, then we build a link directly from theSi-parent
nodeβ to that child node, skipping every node between them. Otherwise, we stay at theSi-parent
nodeβ and proceed to the next node along theg-outcome.

4.4. S-child node. When we reach anSi, j-child nodeβ j of anSi-nodeβ, the construction proceeds
as follows. First, as we have mentioned above,β j checks whether thec-outcome was accessible at
the last staget when we visitedβ j. If so, we check if the associated claimC(β j , z, t) is still true. In
that case, we go down to that outcome without doing anything here. If the claim is false, then we

3If so, note thaty ≤ x, so it is automatic thatγk(x) ≥ γk(y) > ψi(x) and it seems that we are safe to putx into A.
4Later we will see that it is automatically greater than the killing point at β′ (Lemma 5.9). In the complete example in
Section 3.5, ourz here happens to bex2 there as well, just like oury here isx2 there, but this need not be true in general.
5Later, when we reach the parent node forβ′, we can check whether the conditionγk(z) ≤ ψ′(x′) is still true, i.e., whether
this claim is still true; if not, then we will initialize everything extending thec-outcome atβ′ and declare that this nodeβ′

now gives permission for diagonalization atβ.
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have already initialized everything extending thec-outcome ofβ j when we reachβ. In that case, there
must be someS-parent noteβ′′ below somegα-outcome ofβ j which initiated thec-outcome ofβ j

here. If this nodeβ′′ has not been initialized since, then we directly link to thisβ′′, allowing it to
finish trying its diagonalization (without visiting the nodes betweenβ j andβ′′). If this β′′ has already
been initialized, then we proceed as in the following paragraph.

Otherwise, i.e., if we didn’t visit thec-outcome the last time we visitedβ j , then we have akilling
point yhere decided by higher-prioritySi, j′-child nodesβ j′ above or to the left ofβ j (or byβ itself if
there is no suchβ j′ ): y is the largest of all the claim points of theseβ j′ as well as the clearing point
at β. We also know thatγ(y) ≤ ψi(x) for some functionalΓ by some activeR-node aboveβ; let α be
the lowest-priority suchR-node. Now we go to thegα-outcome. If this is aB-stage, we also addγ(y)
into B. For the functional∆ associated with thegα-outcome, we extend∆ up to theW-useγ(W; y).
Then we continue to the next node, this finishes the inductivestep of the accessible path construction.

5. Verification

We start with a few technical lemmas, then we can show that there is a leftmost path accessible
infinitely often (thetrue path) and every node on the true path has a true outcome. We then show that
all the functionalsΓ (unless killed) and all functions∆ built along the true path are well-defined. This
allows us to show that all requirements are satisfied.

5.1. Technical lemmas. First of all, in our construction, we separated the stages into A-stages and
B-stages, and only allowed changes inA or B at A-stages orB-stages, respectively. Sometimes, we
may encounter the situation that the algorithm wants to change A but the current stage is aB-stage,
or vice versa, and so in the construction, we simply terminate the stage and immediately try the next
stage. (See Section 4.1 for details.) We start with a lemma proving that in this case, either we will
change the accessible path due to aW-change (which will cause either initialization of the nodethat
wanted to enumerate, or the permanent satisfaction of the requirement of a higher-priority node), or
we can perform the desiredB- or A-enumeration at the next stage.

Lemma 5.1 (Accessibility ofA/B-stages). Suppose at stage s, we terminated the stage because the
stage was not of the type we wanted. Then at the next stage s+ 1, either some W changes and we
switch to the left or right of the accessible path at stage s, or we can perform the enumeration we
wanted to perform at stage s.

Proof. According to the construction, assume that someW along the accessible path (of stages)
changes at stages+ 1 by x enteringW: If this change decreases the length of agreement betweenW
andΦ(A) and switches the outcome of a strategy along the accessiblepath at stagesfrom ani-outcome
to an f -outcome, then we have permanent satisfaction of anR-requirement (unless some higher-
priority node acts), sinceW(x) = 1 and we have a computationΦ(A; x) = 0. If this change increases
the length of agreement or does not change it, then actually it will not affect any of the∆’s previously
defined below thei-outcome (since we only define∆ up to the length of agreement). Now, if we do
not switch the accessible path between stagessands+1, then obviously, since we have not changedA
or B from stages to stages+ 1, all criteria required for action remain the same, and we can perform
the action (go to a certain outcome or changeA or B) as at the previous stages. �

Usually, in a priority tree argument, one can simply see by inspection that, for any computation
(e.g., ofΨ, Φ) witnessed at a node, the use cannot be changed by any node to the right of it (by the
choice of sufficiently large witnesses). However, in our construction, this is not true. The problem is
that, along ac-outcome of anS-child node, the killing pointz is determined by some node extending a
gα-outcome of theS-child node, i.e., to the left of itsc-outcome. Therefore, potentially anyB-change
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up toγ(z) via at a node extending thec-outcome might injure someΨ-computations to the left of it.
So we need a lemma stating that, in certain cases, such injurycannot happen.

Lemma 5.2 (Link to a parent node). In the construction, if we see that a claim for a c-outcome
at someSi, j-nodeβ becomes false and build a link to anSi′-nodeβ′ along a gα-outcome (which
initiated the c-outcome), then at that time, the computation atβ′ is still the same as whenβ′ initiated
the c-outcome.

Proof. Say, at stages0, β′ initiated thec-outcome and by the criterion in the construction, we know
that the useψ(x) at β′ (for the diagonalization witnessx at β′) is ≤ γ(y) for the least possible killing
point y that can be used to the right ofβ′. If such y in the definition decreases (i.e., some node to
the right uses a smaller number as the killing point), then wewould have initializedβ′ and would not
build a link fromβ. This means that when we build a link back toβ′, its computation is preserved.�

Lemma 5.3(Diagonalization of parent preserved). If anS-node has performed diagonalization, then
unless it is initialized, its computationΨ(B; x) is always preserved.

Proof. The argument is almost the same as the previous lemma. If a killing point y had decreased,
then it would mean that the node had been initialized. If the killing point has not decreased, then by
our criterion, the computation is preserved. �

5.2. True path lemmas. Since our tree is finitely branching, there clearly is a leftmost path accessi-
ble infinitely often (which we call thetrue path). The slightly tricky problem is that in the construc-
tion, there are two cases when we build a link between two nodes and skip nodes in between: The
first case is when anSi-node sees that anSi, j-child node can now switch to the left; thesecondis
from ac-outcome of anSi, j-node to anSi′-node below one of itsgα-outcomes. It is conceivable that
some node on the true path is skipped infinitely often but not visited infinitely often, or its outcome
is along the true path but is actually not thetrue outcome(the leftmost outcome we choose infinitely
often when visiting the node). The following few lemmas showthat this case cannot happen. The
idea to prove this is as follows: Each time we skip over a nodeβ, we always “blame” a node below it
and make sure that such a node can only do this finitely often before β is visited again.

Lemma 5.4(First case skip). If a nodeβ is skipped via the first case, then some node below it switches
left. In addition, ifβ is never visited again and never skipped by the second case, then the skip for the
first case can only happen finitely often, and each time we willgo strictly to the left of the previous
visit.

Proof. The first claim follows by inspection of the construction. For the second claim, note that for
every such link which skipsβ, β must be between anS-node and one of its child nodes. A somewhat
tricky situation may arise that during such a stage whenβ is skipped, we may add new nodes below it
which may cause extra links. But observe that such a new link must be associated with anS′-parent
node of higher priority than theS-node which causes the skip at the current stage, so by induction on
the number ofS-parent nodes aboveβ, one can see that, ifβ is never visited again, such a skip (for
the first case) can only happen finitely often. More precisely, we associate each skip to a combination
of S- andR-nodes of higher priority thanβ, and assign a natural priority on these combinations. It is
then easy to check that each time we go to the left, such a combination increases in priority, and so
this cannot happen forever. �

Lemma 5.5 (Second case skip). At any stage, for any givenβ, there can be at most one nodeβ′

belowβ which has initiated a c-outcome at a node aboveβ such that the associated claim is still true.
That is, during any fixed stage, there can be at most one node which makes us skipβ for the second
case.
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Proof. Supposes0 is the first stage such that thec-outcome ofβ′ is initiated. Then, of course, at
stages0, there is only one such node (we jump to thec-outcome ats0). After that, eitherβ′ is
initialized; or the associated claim never becomes false, and so the claim of the lemma remains true;
or later the claim becomes false at stages1 and we build a link directly toβ′ skippingβ. At that stage,
we note that the computation atβ′ is still the same as that at stages0 (by Lemma 5.2). So at stages1,
eitherβ′ again initiates anotherc-outcome even higher, or it follows diagonalization and nowthere
are no nodes which make us skipβ (for the second case). The same situation happens at every stage
afterwards, and so the lemma follows. �

Lemma 5.6(True path). Along the true path, every node is visited infinitely often, therefore all out-
comes along the true path are true outcomes.

Proof. This follows essentially by combining Lemmas 5.4 and 5.5. Suppose someβ on the true path
is never visited again. Whenever we skipβ via the second case, then some node below performs
diagonalization, which means that any nodes extending thed-outcome will be fresh at that stage. At
that moment, the only reason we can skipβ is the first case, and so the next time we skip overβ,
we must travel to the left of the current visit. It then follows that below any of these diagonalization
outcomesd, we will not have new nodes added which request diagonalization, since each such new
S-node is visited only once.

Therefore we eventually switch to the left of this diagonalization outcome, and by the same argu-
ment as in Lemma 5.4 above, such skips cannot happen infinitely often. So one can only skip overβ
finitely often, and the lemma follows. �

In addition, we need to show that every node along the true path “passes down” infinitely many
A-stages andB-stages (in fact, in alternating order), so every node has the chance to perform the
action it wants to eventually.

Lemma 5.7 (Alternating stages on true path). In the construction, every node on the true path is
visited infinitely often at A-stages and at B-stages, respectively.

Proof. This is because in the construction, we require that when we pass to an outcome, we require
a different type of stage (A-stage orB-stage) than the one when we last time went to that outcome
(otherwise, we wait and do nothing). Along the true path, as we proved above, every node is actually
visited infinitely often, and so by this criterion, every node is visited at alternatingA-stages and
B-stages. �

Now in the following arguments, we always assume that we havea nodeξ on the true path and
we have passed the stage when all nodes to the left stop acting. Here, action include being visited or
accessible, orc-outcome initiation. Since there is finite injury along the true path, we also assume
thatξ is the last node along the true path for its requirement, and we only consider stages when it is
visited.

5.3. Witnesses and functionals.First, we prove two lemmas about the witnesses and various other
points we use in the construction.

Lemma 5.8 (Clearing point and witness of parent node). Given anS-node with diagonalization
witness x, the clearing point y (as in the construction) is always less than or equal to x, and such y is
stable if no node to the left acts again.

Proof. This is by inspection of our construction. �

Lemma 5.9(Claim and killing point of child node underc-outcome). Given anSi, j-child node, when
its c-outcome is initiated (byβ, say), the corresponding claim point z (as in the construction) is always
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strictly larger than its killing point, and is always less than or equal to the diagonalization witness
at β.

Proof. The second claim is by inspection of the definition of suchz. The first claim follows from the
fact (proved by induction) that suchz is always a diagonalization witness below anSi, j-child node’s
gα-outcome (for someα), and so larger than the killing point (whenever it changes,every node below
is initialized automatically). �

Next, we show that along the true path, every functional is correct on its domain (modulo finite
incorrectness for the∆’s). It follows that the functional computes the set we want if it has total
domain.

Lemma 5.10(Γ-functionals). Every functionalΓ is correct on its domain.

Proof. This is basically by inspection of the construction that when we add any numberx into A, we
always make sure to issue requests to add the correspondingγ(x)-uses intoB atΓ. It may be the case
that later when we visitΓ, the correspondingW has changed up to the use, and sinceW is c.e., such
a change automatically makes the functional undefined and sothere is no problem in not addingγ(x)
into B in this case. IfW has not changed, then, of course, by the construction, we will addγ(x) into B
so that we can correct the axiom. �

The next lemma is going to be the most crucial and most complicated lemma in the proof. Let us
first sketch the argument: To show that∆ =W, it suffices to show that whenever we define some∆ as
an initial segment ofW, then this initial segment ofW is not going to change in the construction later.
Now atB-stages, this is obvious sinceW = Φ(A) whereA does not change. AtA-stages, the argument
is much trickier, but is very similar to the standard argument used in the style of Lachlan’s gap-cogap
construction. Basically, we have a computationΨ(B; x) to protect an initial segment ofW in such a
way that if it changed (after we changedA) then we would switch to the left of the∆-outcome. The
difficult part is to show that afterA changes, theB-use ofΨ(x) is always protected. This is usually
true since we have only been to the right of such∆, but remember that in our construction, actions to
the right may injure computations to the left.

Lemma 5.11(∆-functionals). Every function∆ is correct on its domain (modulo a fixed finite amount
of injury). More precisely, for every such∆, there is a stage after which∆ is not going to be injured
again.

Proof. Say, such∆ is defined along agα-outcome (with killing pointx′) of βi , which is a child node
for β (whereβ has diagonalization witnessx).

In addition, we know that, for each parent nodeβ′ aboveβ and active atβ, every child node of
this β′ along the true path has truec-outcome. Now we have to wait for a stages0 such that every
suchβ′ has a child node belowβ (on the true path) with a truec-outcome initiated (i.e., ac-outcome
that will not be initialized later).

We claim that after stages0, the∆-axioms are always correct, i.e., computeW = Φ(A). If A does
not change, then, of course,W cannot change. So we only need to consider the case whenA changes,
in particular, belowβi ’s gα′-outcomes, since otherwise, such anA-change must be to the right and
cannot change the initial segment ofW witnessed atβ′.

Suppose that at some later stages1, some nodēβ belowβi ’s gα-outcome performs diagonalization
(most likely via a link under the second case). According to the construction, such a nodēβ must
receive permission from every child node withgα′ -outcome above it. In particular,βi needs to give
permission thatγ(z) > ψ(x), wherez is the associated claim point atβi , and theΓ-uses range over
all Γ’s active aboveβ.
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By the definition of stages0, suchγ(z)’s are going to be the least possible numbers enteringB
when we switch to the left ofβ; and by Lemma 5.9,z is less than or equal to the diagonalization
witness added intoA. In addition, by inspection of the construction, we know that at stages1, the
computationΨ(B; x) converges. (Otherwise, the permission criterionγ(z) > ψ(x) is always false.)

So we know that, after we add the diagonalization witness into A at stages1, and before we come
back toβ, the computationΨ(B; x) at β is always preserved. Now it suffices to show thatW = Φ(A)
up toγ(x′) is preserved (recall thatx′ is the killing point at∆ and we always defineW up toγ(x′)).

Otherwise, when we reach theR-node and go to itsi-outcome, we would see that the useγ(W; x′)
has changed, and so according to the construction, we will increase itsB-use without changingBhere.
In particular, we know that when we reachβ for the first time afters1, γ(x′) > ψ(x), and according to
the construction atS-nodes, we would immediately build a link to thisβi and switch to the left of the
outcome where∆ is defined, and this, of course, contradicts the assumption. �

5.4. Final verification. We are now ready to prove the satisfaction of all requirements. The follow-
ing two lemmas complete the verification of the constructionof Section 4 and the proof of our main
theorem.

Lemma 5.12(Si-requirements). EverySi-requirement is satisfied.

Proof. Let β be the lastSi-parent node along the true path. It is easy to check that, once we perform
diagonalization, then theΨi(B; x)-use is going to be preserved (as we choose the killing pointy
to be the least one such that someγ(y) may enterB later in the construction). So we only need
to consider the case when we infinitely often see a believablecomputationΨi(B; x) but we cannot
perform diagonalization.

Our argument now splits into two cases. One is that there is anSi-child node belowβ on the
true path which has truegα-outcome (we call this case theΣ3-outcome forβ, i.e., the requirement
is satisfied in aΣ3-fashion). The other is that everySi-child node belowβ on the true path has true
c-outcome (similarly, we sayβ has trueΠ3-outcome).

In the first case, obviously according to the criterion atβ, ψi(x) ≥ γ(x′) for the killing point x′

at β, and the latter goes to infinity by our construction. SoΨi(B; x) diverges and our requirement is
satisfied.

In the second case, by our criterion for going toc-outcomes,ψi(x) is going to be greater than or
equal toγ(z) for arbitrary largez, and this also implies thatΨi(B; x) diverges.

In addition, in the second case, it is easy to see that, for each claim pointz, all Si-child nodes
eventually give up usingzand start using the nextz′ as a killing point (later this will allow us to show
that the “impact” of this action on each higher-priorityΓ is finite). �

Lemma 5.13(Ri-requirements). EveryRi-requirement is satisfied.

Proof. We letα be the lastRi-node along the true path. Of course, we only need to considerthe case
thatW = Φ(A) is total, and so we go to thei-outcome ofα infinitely often, buildingΓ. Now if there
is anSi-child node along the true path with trueg-outcome associated withα, then by Lemma 5.11,
the function∆ built there is going to correctly computeW, and so theRi-requirement is satisfied.

If there is no suchS-child node along the true path, then we need to argue that foreach fixedx,
γ(x) only changes finitely often, and so by Lemma 5.10,Γ is going to be a functional computingA
from B⊕W, and ourΦ-requirement is also satisfied.

So fix anx. We can assume thatA(x) = 0 in the end, since otherwise, afterx entersA, theΓ-use is
going to change for the last time and then settle down forever. By our construction, ifW changes, we
only increase theB-use without changing theW-use, and so the only case in which we may increase
the Γ-use forever is that it happens infinitely often that someS-child node belowα has outcomes
associated withα and putsγ(y) for y ≤ x into B during B-stages (wherey is the killing point). By
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induction hypothesis, we can assume thatΓ(B⊕Wi; x′) has settled down for everyx′ < x. Obviously,
only finitely manyS-requirements can usex as a killing point. Now by the last paragraph of the proof
of the previous lemma and by our assumption, all such child nodes which usex as its killing point
will eventually give up usingx, and so eventually eachΓ(B⊕Wi; x)-use settles down. �
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