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TYPE-AMALGAMATION PROPERTIES AND POLYGROUPOIDS IN

STABLE THEORIES

JOHN GOODRICK, BYUNGHAN KIM, AND ALEXEI KOLESNIKOV

Abstract. We show that in a stable first-order theory, the failure of higher-dimensional
type amalgamation can always be witnessed by algebraic structures we call n-ary poly-

groupoids. This generalizes a result of Hrushovski in [15] that failures of 4-amalgamation
are witnessed by definable groupoids (which correspond to 2-ary polygroupoids in our termi-
nology). The n-ary polygroupoids are definable in a mild expansion of the language (adding
a predicate for a Morley sequence).

Introduction and outline of results

This paper provides a characterization of the failure of type amalgamation properties
in a stable first-order theory T in terms of definable algebraic objects. Suppose that n is
the smallest integer such that T fails to have (n + 2)-amalgamation (we explain what this
means in the next paragraph). We give a method for constructing an algebraic object H
in T which we call an n-ary polygroupoid that witnesses this failure of amalgamation and
which is definable in a mild expansion of the language of T (adding a predicate for a Morley
sequence). This generalizes to higher dimensions the results of Hrushovski in [15] relating
failures of 3-uniqueness (or 4-amalgamation) to definable groupoids. In future work, we hope
to apply these results this to construct a canonical minimal expansion T ∗ ⊇ T to new sorts
which has n-amalgamation for every integer n by a natural generalization of Hrushovski’s
method in [15] of eliminating “groupoid imaginaries.”

Background on type amalgamation. The amalgamation properties considered in this
article concern the simultaneous realization of systems of types. By a type we mean a collec-
tion of formulas p(x) with free variables from a possibly infinite tuple x which is consistent
with T , and the systems of types which we consider are of the form

{ps(xs) : s ( {1, . . . , n}}

where ps is the complete type of a set of |s| elements which are independent over a fixed base
set (which we can take to be some realization of p∅). The theory T has n-amalgamation (or n-
existence) if systems of the type above always have consistent unions, and T has n-uniqueness
if there is never more than one way to amalgamate such a system. In Subsection 1.2 below
we give different-looking definitions of the amalgamation properties in terms of elementary
maps between realizations of the types ps. Applications of the type-amalgamation properties
in simple theories include the construction of canonical bases via 3-amalgamation and a
version of the group configuration theorem under the hypothesis of 4-amalgamation over
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models (see [4]). See also the recent work of Sustretov ([22]) which recasts 4-amalgamation
in terms of Morita equivalence of definable groupoids and gives some applications concerning
the interpretability of non-standard Zariski structures.

It was first pointed out by Shelah that any stable T has 2-uniqueness and 3-amalgamation,
at least if we replace T with the “harmless” canonical extension to additional sorts, T eq (see
[21]) . This is now folklore in the field of model theory. More recently, Hrushovski (in [15])
developed an intriguing generalization of this, proving that for a stable theory for which
T = T eq, the following are equivalent: 3-uniqueness; 4-amalgamation; any finitary definable
connected groupoid is “eliminable” (definably equivalent, in a category theory sense, to a
group); and any finite internal cover of T is almost split. Using groupoid imaginaries, one can
then construct a canonical minimal expansion of T to new sorts which has 4-amalgamation.
Hrushovski posed the problem of how to generalize this to higher dimensions.

Summary of results. Section 1 is devoted to defining all the type amalgamation properties
we will use in this paper (n-existence, n-uniqueness, B(n), and others) and reviewing some
basic facts concerning these properties.

In Section 2, we define the general concepts of n-ary quasigroupoids and n-ary poly-
groupoids and study some of their basic properties. An n-ary polygroupoid is just and
n-ary quasigroupoid which satisfies an additional “associativity” axiom which generalizes
the associativity of composition in an ordinary groupoid; see Definition 2.10 below.

In Section 3, we prove our main result of the paper (Theorem 3.3): in a stable theory
with (≤ n)-uniqueness but not (n+ 1)-uniqueness, then this failure of (n+ 1)-uniqueness is
witnessed by an n-ary polygroupoid which is “almost definable.” More precisely, to make
one of the sorts in the polygroupoid definable, in general we would need to add a unary
predicate for a Morley sequence to make one of the sorts definable, but relative to this the
rest of the structure is first-order definable in the language of T .

Finally, in Section 4 we define a family of canonical examples of connected n-ary poly-
groupoids and study their first-order theories (which we call TG,n, where n ≥ 2 is an integer
and G is a finite abelian group).

Previously studied examples. The polygroupoids described in this paper are closely
related to the structure described by Hrushovski in Example 4.7b of [14] and simultaneously
extend two other previously-studied families of examples.

One such family was described by Pastori and Spiga. In [18], they construct a family of
complete theories Tn (for n ≥ 2) which are totally categorical, stable, have k-existence for
every k ≤ n + 1, but do not have (n + 2)-existence. For the case n = 2, the theory T2 is,
up to interdefinability, exactly Hrushovski’s original example of failure of 4-existence that
appeared in [4].

The theories Tn are (up to bi-interpretability) just the theories TG,n for G = Z/2Z as
constructed below in Section 4, so our examples can be seen as a natural generalization
of those in [18] to an arbitrary abelian group. In the notation of [18], there is a basic
indiscernible set Ω (what we would call “I”) and sorts for [Ω]n (all n-element subsets of Ω)
and for [Ω]n × F2, for the “fiber elements” (what we call the sort P ).

The approach of [18] is to describe the structures via their permutation groups using the
machinery of modules over infinite symmetric groups. We note that it is not immediately
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clear how to generalize the techniques of [18] beyond the context of characteristic 2 since a
crucial lemma of that paper, Proposition 2.2, is false over fields of odd characteristic.

On the other hand, Hrushovski in [15] essentially showed that the theories that we call TG,2

below (that is, the theory of a connected infinite groupoid with Mor(a, a) ∼= G) canonically
witness the failure of 4-existence in a stable theory. The theories we will define as TG,n in
Section 4 below are a simultaneous generalization of these groupoids and the examples Tn
of [18].

Notation and conventions. Throughout this paper, T will denote a complete, multi-

sorted theory with elimination of imaginaries (T = T eq) and with a monster model C |= T
(that is, C is κ-saturated and strongly κ-homogeneous from some “large” cardinal κ which is
bigger than 2|T | and any of the other sets under consideration). Unless otherwise specified,
all elements and sets come from C.

Throughout the article, [n] refers to the n-element set {1, . . . , n} (and not {0, . . . , n− 1},
as is more common in algebraic topology).

For any set A and any integer n ≥ 1, A(n) denotes the set of all ordered tuples from An

consisting of n distinct elements. A(≤n) denotes A(1) ∪ . . . ∪ A(n).
Often we will refer to finite indexed sets of elements such as {a1, . . . , an}. In this context,

if s ⊆ [n], then we will write As for the set {ai : i ∈ s} and we will write As for acl(As). The
capital letters are to distinguish these from the ordered tuples as which we will sometimes
refer to (for example, in Definition 1.19 below).

1. The type amalgamation properties (n-existence and n-uniqueness)

1.1. Definitions and basic facts. In this subsection, we briefly review the definitions of the
type amalgamation properties that we will use in this paper (n-existence or n-amalgamation,
and n-uniqueness). This is to make the current paper more self-contained; more details can
be found in [9]. Our “functorial” approach to the amalgamation properties comes from
Hrushovski ([15]), and these properties were studied even earlier by researchers in simple
theories (for example, in [16]).

Everywhere below, we will assume that T is a simple theory so that we have the standard
well-behaved notion of independence (nonforking) from model theory.

Let P−([n]) = {s : s ( [n]}. If S ⊆ P([n]) is closed under subsets, we view S as a category,
where the objects are the elements of S and morphisms are the inclusion maps. Let C be
a category whose objects are all algebraically closed subsets of C and whose morphisms are
the elementary maps (which are not always surjective).

Definition 1.1. An n-amalgamation problem is a functor A : P−([n]) → C. A solution to
an n-amalgamation problem A is a functor A′ : P([n]) → C that extends A.

We say that A is an amalgamation problem over the set A(∅) (which is also called the
“base set”).

Definition 1.2. If S is a subset of [n] closed under subsets and A : S → C is a functor, then
for s ⊆ t ∈ S, let the transition map

As,t : A(s) → A(t)

be the image of the inclusion s ⊆ t. Functoriality implies that At,u ◦ As,t = As,u whenever
the composition is defined.
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Notation 1.3. If S is a subset of [n] closed under subsets, A : S → C is a functor, and
s ⊂ t ∈ S, we use the symbol At(s) to denote the subset As,t(A(s)) of A(t).

If A : P([n]) → C is a functor, then A− denotes the functor A ↾ P−([n]).

Definition 1.4. Suppose that S is a subset of P([n]) closed under subsets and A : S → C
is a functor.

(1) We say that A is independent if for every nonempty s ∈ S, {As({i}) : i ∈ s} is an
As(∅)-independent set.

(2) We say that A is closed if for every nonempty s ∈ S,

A(s) = acl (∪{As({i}) : i ∈ s}) .

(3) We say that A is over B if A(∅) = B and every transition map As,t fixes B pointwise.

Remark 1.5. If the transition maps are all inclusions in a functor A : S → C, then A is
independent if and only if for every s, t ∈ dom(A), A(t) ⌣

A(t ∩ u)
A(u).

Definition 1.6. Two solutions A′ and A′′ of the n-amalgamation problem A are isomorphic
if there is an elementary map σ : A′([n]) → A′′([n]) such that for any s ( [n],

σ ◦ A′
s,[n] = A′′

s,[n].

They are isomorphic over B if A′, A′′ are both over B and the isomorphism σ can be chosen
so that it fixes B pointwise.

Definition 1.7. (1) A theory T has n-existence, equivalently n-amalgamation, if every
closed independent n-amalgamation problem has an independent solution.

(2) A theory T has n-uniqueness if whenever a closed independent n-amalgamation prob-
lem A has closed independent solutions A′ and A′′, then the solutions A′ and A′′

must be isomorphic.
(3) T has (< n)-uniqueness if it has k-uniqueness for every k such that 2 ≤ k < n.

Similarly for (≤ n)-uniqueness, (< n)-amalgamation, et cetera.

Note that the existence of non-forking extensions of types and the independence theorem
implies that any simple theory has both 2- and 3-existence. In addition, stationarity is
equivalent to 2-uniqueness property, so any stable theory has 2-uniqueness.

Various useful equivalent definitions of n-existence and n-uniqueness can be found in [9]
and [15], of which we recall some of them below.

Definition 1.8. Let T be a theory and A ⊆ C be a small algebraically closed set.

(1) T has n-existence over A if every closed independent n-amalgamation problem A
over A has an independent solution.

(2) T has n-uniqueness over A if every closed independent n-amalgamation problem over
A has at most one independent solution modulo isomorphism over A.

Remark 1.9. In considering the amalgamation properties, without loss of generality one can
restrict attention to closed independent functors A in which every transition map fixes A(∅)
pointwise. Therefore it follows immediately from the definitions that T has n-existence if and
only if T has n-existence over every algebraically closed A, and similarly for the uniqueness
properties. However, having n-existence over A does not necessarily imply having n-existence
over every algebraically closed B ⊇ A, as observed in Remark 3.3 of [11].
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Proposition 1.10. (See Section 1 of [4]) If T is stable and M |= T , then T has n-existence
over M for every n.

The next fact below is important for us in the current paper since it immediately implies
that to check that T has n-existence and n-uniqueness for every n, it suffices just to check
the n-uniqueness properties:

Proposition 1.11. Let T be stable with (< n)-uniqueness (for some n ≥ 3). Then T has
n-uniqueness if and only if T has (n + 1)-amalgamation.

Proof. Mostly, this is straightforward diagram-chasing. See Section 3 of [9] for a proof, or
4.1 of [15] for the left-to-right direction. ⊣

A stable theory may fail 3-uniqueness, or have (< n)-uniqueness but not n-uniqueness for
any n ≥ 3; examples of this were given in [18], and in Section 4 we will give a more general
class of examples via polygroupoids.

Finally, we recall some variants of the amalgamation properties which will be useful to us
later. For further discussion and proofs of the facts below, see [9].

Definition 1.12. Given a tuple a = (a1, . . . , ak) and a set B, let

∂B(a) := dcl


 ⋃

i∈{1,...,k}

aclB(A[k]\{i})


 .

If B = ∅, we omit it.

Definition 1.13. If A ⊆ C, we say that B(n) holds over A if for every A-independent set
{a1, . . . , an},

∂A∪{an}(a1, . . . , an−1) ∩ aclA(a1, . . . , an−1) = ∂A(a1, . . . , an−1).

The theory T has B(n) if it has B(n) over every A ⊆ C.

Fact 1.14. (See Proposition 3.14 of [9]) If T is stable and has (n − 1)-uniqueness, then T
has n-uniqueness if and only if T has B(n). In particular, for stable T , B(3) is equivalent
to 3-uniqueness (since any stable theory has 2-uniqueness).

We recall an alternative formulation of the property B(n) established in [9], Lemma 3.3
(with slight changes in the notation for consistency). Here and throughout, “Aut(C/B)”
denotes the set of all restrictions to C ⊆ C of elementary maps ϕ ∈ Aut(C/B) which map C
onto C.

Fact 1.15. In any simple theory T and n ≥ 2, the following are equivalent:

(1) T has B(n+ 1) over the set B;
(2) For any B-independent set {c1, . . . , cn+1}, any map

ϕ ∈ Aut(aclB(c1, . . . , cn)/∂B(c1, . . . , cn))

can be extended to some ϕ̃ ∈ Aut(C /∂B∪{cn+1}(c1, . . . , cn)).

Definition 1.16. If A ⊆ C and k ≥ n, then T has relative (n, k)-uniqueness over A if for ev-
ery A-independent collection of algebraically closed sets a1, . . . , ak from C

eq, each containing
A, and for any collection of functions {ϕu : u ⊂n−1 {1, . . . , k}} such that:
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(1) ϕu is an elementary map from aclA(au) onto itself; and
(2) for any v ( u, ϕu fixes aclA(av) pointwise,

then the union ⋃

u⊂n−1{1,...,k}

ϕu

is an elementary map.

Fact 1.17. (See Lemma 4.4 of [9]) If T is stable and has B(n) over A (for n ≥ 3), then T
has relative (n, k)-uniqueness over A for every k ≥ n. In particular, if T is stable and has
both (n−1)-uniqueness and n-uniqueness over A, then T has relative (n, k)-uniqueness over
A.

Lemma 1.18. Suppose that T is stable and has (≤ n)-uniqueness. Suppose, moreover, that
we are given two independent sets {a1, . . . , ak} and {b1, . . . , bk} and a system of elementary
bijections

ϕs : As → Bs

indexed by all the s ⊆ [k] with size at most n − 1 (recalling the notational convention that
As := acl({ai : i ∈ s})), and that t ⊆ s implies ϕs extends ϕt. Then there is a single
elementary map

ϕ : A[k] → B[k]

which extends every map ϕs.

Proof. Begin with any elementary map ϕ0 : A[k] → B[k] such that ϕ0(ai) = bi for every

i ∈ [k]. Next, we recursively build a series of elementary bijections ϕ1, . . . , ϕn−1 of B[k] such
that for each j ≤ n− 1, the map

ϕj ◦ ϕj−1 ◦ . . . ◦ ϕ1 ◦ ϕ0

extends every ϕs such that |s| ≤ j: given a series of such maps ϕ1, . . . , ϕj−1 for some j ≤ n−1,
use the fact that T has relative (j + 1, k)-uniqueness (by Fact 1.17 above) to build the map
ϕj. Finally, let ϕ = ϕn−1 ◦ ϕn−2 ◦ . . . ◦ ϕ0.

⊣

For the final lemma of this subsection, we note that with a suitably strong amalgama-
tion assumption, we build “symmetric” systems of algebraically closed sets which generalize
indiscernible sets.

Definition 1.19. Suppose A ∪ {a1, . . . , ak} ⊆ C and 1 ≤ n ≤ k. Then an n-symmetric
system for {a1, . . . , ak} over A is a collection of (generally infinite) tuples {as : s ∈ [k](≤n)}
such that:

(1) as is a tuple enumerating aclA({ai : i ∈ s});
(2) For any permutation σ of [k], there is an elementary map ϕσ ∈ Aut(C/A) such that

ϕσ(as) = aσ(s)

for every s ∈ [k](≤n); and
(3) The maps commute when applied to the tuples as: for any s ∈ [k](≤n) and any two

permutations σ and τ of [k],

ϕσ(ϕτ (as)) = ϕσ◦τ (as).
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Lemma 1.20. Suppose that T has ≤ n-uniqueness and let {a1, . . . , ak} be a Morley sequence
over A = acl(A), where k ≥ n. Then there is an (n− 1)-symmetric system for {a1, . . . , ak}
over A.

Proof. First, we set some terminology for dealing with finite ordered tuples s ∈ [k](≤n−1). We
abuse notation and write “i ∈ s” to mean that i occurs in the tuple s. Given two tuples s =
(a1, . . . , am) and t = (b1, . . . , bm) of the same length m, let σs,t : {a1, . . . , am} → {b1, . . . , bm}
be the bijection defined by σs,t(ai) = bi. We say that s′ is a subtuple of s (and write “s′ ⊆ s”)
if every i ∈ s′ also occurs in s, and furthermore any pair of elements i, j which occur in s′

also occur in s in the same order (so, for example, (1, 3) is a subtuple of (1, 2, 3) but (3, 1)
is not).

Now we establish:

Claim 1.21. There is a system of tuples {as : s ∈ [k](≤n−1)} and a system of elementary
bijections

ϕs,t : as → at

for every pair (s, t) of elements of [k](≤n−1) such that |s| = |t|, such that:

(6) as enumerates all of the elements of aclA({ai : i ∈ s});
(7) ϕs,t fixes the base A pointwise;
(8) if |s| = |t|, s′ is a subtuple of s, and t′ = σs,t(s

′), then the function ϕs′,t′ is equal to
the restriction of ϕs,t to as′;

(9) ϕs,s is the identity map on as; and
(10) if |s| = |t| = |u|, then ϕs,u = ϕt,u ◦ ϕs,t.

Proof. We build the tuples as and the maps ϕs,t by recursion on |s|. For |s| = 1, this is easy,
using the fact that {a1, . . . , ak} is Morley over A. For the recursion step, suppose that we have
defined both the tuples as and the maps ϕs,t for every s ∈ [k](≤m−1), where 1 < m ≤ n− 1.
For the purposes of this proof only, we let [m] denote not the set {1, . . . , m} but rather the
ordered tuple (1, . . . , m). First let a[m] be any enumeration of aclA({ai : 1 ≤ i ≤ m}). By

Lemma 1.18, for any s ∈ [k](m), there is an elementary map

ϕ[m],s : aclA({ai : 1 ≤ i ≤ m}) → aclA({ai : i ∈ s})

such that ϕ[m],s extends every map ϕs′,σ[m],s(s′) where s′ ( [m]. In the special case where

s = [m] we can assume that ϕ[m],[m] is the identity map (since we are assuming inductively

that condition (9) holds for subtuples of [k] of length less than m). For any s ∈ [k](m),
define as to be the image of a[m] under the map ϕ[m],s, and if s, t are any two elements of

[k](m), let ϕs,t := ϕ[m],t ◦
(
ϕ[m],s

)−1
. The fact that these maps ϕs,t form a commuting system

(conditions (9) and (10)) is immediate. To check condition (8), suppose that s′ ( s ∈ [k](m),
t ∈ [k](m), and t′ := σs,t(s

′). Then by the definitions,

ϕs,t(as′) = ϕ[m],t

[(
ϕs,[m]

)
(as′)

]
= ϕ[m],t

[(
ϕs′,σs,[m](s′)

)
(as′)

]

= ϕ[m],t

[
aσs,[m](s′)

]

= ϕσs,[m](s′),t′

[
aσs,[m](s′)

]

= ϕs′,t′(as′) = at′ .
7



⊣

Claim 1.21 gives the tuples as for s ∈ [k](≤n−1). For any permutation σ is of {1, . . . , k},
use Lemma 1.18 gives an elementary map ϕσ extending every map ϕs,t as in the Claim such
that s ∈ [k](≤n−1) and t = σ(s). At this point, it is clear that this forms an (n−1)-symmetric
system.

⊣

2. n-ary polygroupoids

This section is devoted to the study of n-ary quasigroupoids (Definition 2.3) and n-ary
polygroupoids (Definition 2.10). We note that these structures are a simultaneous general-
ization of groupoids (which corresponds to the case n = 2) and n-ary groups (as studied by
Emil Post in [20]). Groupoids generalize groups in the sense that the composition operation
is only partially defined, since we need a compatibility condition s(g) = t(f) to hold in order
to define g ◦ f . On the other hand, n-ary groups (or polyadic groups) have an operation
which is totally defined, but n-ary instead of binary. Our n-ary groupoids have an operation
(given by the Q relation below) which is n-ary and partially defined.

There may be connections with Jacob Lurie’s higher topos theory which it would be good
to clarify further in future research. In particular, connected n-ary quasigroupoids (see
Definition 2.6) look quite similar to (∞, 1)-groupoids in the sense of Definition 1.1.2.4 of
[17], or more precielly, Kan complexes in which n-dimensional horns have unique fillers.

There is no model theory in this section; the connection with failures of amalgamation
properties will be established in Section 3.

Let us start with a preliminary definition.

Definition 2.1. Let M = (P1, . . . , Pn, π
2, . . . , πn) be a structure with sorts Pi, i = 1, . . . , n

and functions πk : Pk → (Pk−1)
k, k = 2, . . . , n. We use the symbol πk

i (f) to refer to the ith
element of the tuple πk(f).

We say that a tuple (f1, . . . , fk+1) ∈ (Pk)
k+1 is compatible if

(1) k = 1 and f1 6= f2; or
(2) k ≥ 2 and πk

i (fj) = πk
j−1(fi) for all 1 ≤ i < j ≤ k + 1.

If the images of the projection maps πi are always compatible tuples, then we can itera-
tively apply the projections to define a concept of an element f ∈ Pi being “over” an i-tuple
from P1:

Definition 2.2. Suppose thatM = (P1, . . . , Pn, , π
2, . . . , πn) is a structure with sorts {P1, . . . , Pn}

and functions πk : Pk → (Pk−1)
k for k = 2, . . . , n, and suppose that for every f ∈ Pk, the

image πk(f) forms a compatible tuple in the sense of the previous definition. Then for any
i ∈ {2, . . . , n} and any f ∈ Pi, we say that f is over (a1, . . . , ai) ∈ (P1)

(i) if:

(1) i = 2 and (a1, a2) = π2(f); or
(2) i > 2 and for every j ∈ {1, . . . , i}, πi

j(f) is over (a1, . . . , âj , . . . , ai).

For any (a1, . . . , ai) ∈ I(i), we denote by Pi(a1, . . . , ai) the set of all f ∈ Pi which are over
(a1, . . . , ai). If f ∈ Pi(a1, . . . , ai), we also write “π(f) = (a1, . . . , ai).”

The point of assuming that πi(f) is always a compatible tuple in the definition above is
that this easily implies that for every i ∈ {2, . . . , n}, the sort Pi is the disjoint union of all
the “fibers” Pi(a1, . . . , ai) where (a1, . . . , ai) ∈ (P1)

(i).
8



Below, we will be dealing with n-sorted structures, with sorts P1, . . . , Pn. We found it
convenient to use separate symbols I and P for the most frequently used sorts P1 and Pn,
respectively.

Definition 2.3. If n ≥ 2, an n-ary quasigroupoid1 is a structure H = (I, P2, . . . , Pn−1, P, Q)
with n disjoint sorts I = P1, P2, . . . , Pn = P equipped with an (n+1)-ary relation Q ⊆ P n+1

and a system of maps 〈πk : 2 ≤ k ≤ n〉 satisfying the following axioms:

(1) For each k ∈ {2, . . . , n}, the function πk maps an element f ∈ P k to a k-tuple
(πk

1(f), . . . , π
k
k(f)).

(2) (Coherence) For any k ∈ {2, . . . , n}, for each f ∈ Pk, the tuple πk(f) is compatible.
(3) (Compatibility and Q) If Q(p1, . . . , pn+1) holds, then (p1, . . . , pn+1) is a compatible

(n+ 1)-tuple of elements of P .
(4) (Uniqueness of horn-filling) Whenever Q(p1, . . . , pn+1) holds, then for any i ∈ {1, . . . , n+ 1},

pi is the unique element x ∈ P which satisfies

Q(p1, . . . , pi−1, x, pi+1, . . . , pn+1).

For any set I and any integer n ≥ 1, we denote by I(n) the set of all ordered n-tuples of
pairwise distinct elements from I. The coherence axiom guarantees, in particular, that every
element in Pj is supported, in the sense made precise below, by j distinct elements from I.

Definition 2.4. Let H = (I, . . . , P, Q) be an n-ary quasigroupoid and suppose that X ⊆
(I ∪ P2 ∪ . . . ∪ P ).

(1) The support of X , denoted supp(X), is the subset of I generated from X by applying
the projection maps 〈πi

j : 2 ≤ i ≤ n, 1 ≤ j ≤ i〉.
(2) The closure cl(X) is

cl(X) := supp(X) ∪
⋃

2≤i≤n

⋃

w∈supp(X)(i)

Pi(w)

Definition 2.5. The n-ary quasigroupoid H = (I, . . . , P, Q) is locally finite if for every
w ∈ I(n), the set P (w) is finite.

Note that for any n-ary quasigroupoid H = (I, . . . , P, Q) and any X ⊆ (I ∪ P2 ∪ . . .∪ P ),
the set cl(X) naturally carries the structure of a “sub-quasigroupoid” of H, where the I-sort
is supp(X), the remaining sorts are the fibers in H above tuples from supp(X), and the
Q-relation is the same as in H only restricted to tuples from P ∩ cl(X).

Definition 2.6. Let H = (I, . . . , P, Q) be an n-ary quasigroupoid. We call H connected if
it satisfies both of the following conditions:

(1) If i ∈ {1, . . . , n− 1}, then any compatible tuple (p1, . . . , pi+1) from Pi is in the image
of πi+1.2

(2) (Existence of horn fillers) Suppose that i ∈ {1, . . . , n+ 1} and 〈pj : 1 ≤ j ≤ n+ 1〉 is
a tuple of elements from P which is compatible with respect to πn. Then there is an
element p′i ∈ P such that Q holds of (p1, . . . , p

′
i, . . . , pn+1).

1The “quasi-” prefix accords with the terminology from abstract algebra that a “quasigroup” is a set with
a binary operation which is divisible but not necessarily associative.

2Note that when i = 1, then this simply says that every ordered pair (a1, a2) of distinct elements from I

is in the image of π2.
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The following two claims show that every “partially compatible” sequence of elements of
P can be completed to a compatible sequence of length n+1 that satisfies Q and that we can
select the compatible elements satisfying the relation Q on all but possibly one n-dimensional
face of an (n + 1)-dimensional tetrahedron.

Definition 2.7. Let H = (P1, . . . , Pn, Q) be an n-ary quasigroupoid. Let Ai ⊂ Pi, i =
1, . . . , n be given sets. We say that the collection {Ai | i = 1, . . . , n} is closed under projec-
tions if for all k = 1, . . . , n− 1, for all a ∈ Ak+1 and all 1 ≤ j ≤ k we have πk+1

j (a) ∈ Ak.
We say that a collection {Ai ⊂ Pi | i = 1, . . . , n} is a compatible system if it is closed

under projections and each i = 2, . . . , n and every tuple w ∈ A
(i)
1 , the set Pi(w) ∩ Ai has at

most one element.

Claim 2.8. Let H = (P1, . . . , Pn, Q) be a connected n-ary quasigroupoid. Let {Ai | i =
1, . . . , n} be a compatible system such that |A1| ≥ n+ 1.

(1) Let 2 ≤ i ≤ n and let f, g ∈ Ai be elements that project onto tuples u, v ∈ A
(i)
1 such

that ∂ju = ∂kv for some 1 ≤ j, k ≤ i, where “∂j” is the operation which deletes the jth entry
of an ordered tuple. Then πi

j(f) = πi
k(g).

(2) There is a maximal compatible system {Bi | i = 1, . . . , n} extending {Ai | i = 1, . . . , n}
that projects onto A1. That is, there are sets Bi satisfying

(a) B1 = A1 and Bi ⊃ Ai for 2 ≤ i ≤ n;

(b) for each i = 2, . . . , n and for every tuple w ∈ A
(i)
1 , the set Pi(w)∩Ai has exactly one

element.

Proof. (1) Let w = ∂ju = ∂kv be the common subtuple. Since {Ai | i = 1, . . . , n} is closed
under projections, we have πi

j(f), π
i
k(g) ∈ Ai−1 are the elements that project onto the same

tuple w. Therefore, πi
j(f) = πi

k(g).
(2) By induction on j ≥ 1, we construct the sets Bj ⊃ Aj such that {B1, . . . , Bj , Aj+1, . . . , An}

form a compatible system and for all 2 ≤ j ≤ n and all w ∈ A
(j+1)
1 , there is a compatible

tuple (f1, . . . , fj+1) of elements of Bj such that fk projects onto ∂k(w) for all k = 1, . . . , j+1.
Let B1 := A1. Suppose the sets B1, . . . , Bj have been constructed. To construct Bj+1,

enumerate all the tuples in the set A
(j+1)
1 = {wi | i < α}. For each tuple wi, if there is

an element f ∈ Aj+1 that projects onto wi, let gi := f ; otherwise, take the compatible
sequence (f1, . . . , fj+1) in Bj such that fk projects onto ∂k(wi). By connectedness of H,
there is an element gi ∈ Pj+1 such that πj+1(gi) = (f1, . . . , fj+1). Let Bj+1 := {gi | i < α}.

By construction, Bj+1 ⊇ Aj+1; for every w ∈ A
(j+1)
1 , there is exactly one element in the set

Bj+1 ∩ P (w); and for any sequence (a1, . . . , aj+2) of elements of A1, the elements of Bj+1

that project onto subsequences of length j + 1 are automatically compatible by (1). ⊣

Claim 2.9. Let H = (I, . . . , P, Q) be a connected n-ary quasigroupoid. Given distinct
a1, . . . , an+2 in I, there exist elements {pij | 1 ≤ i ≤ n + 2, 1 ≤ j ≤ n + 1} ⊂ P such
that

(1) Q(pi1, . . . , p
i
n+1) for all i = 2, . . . , n+ 2;

(2) supp({pij | 1 ≤ j ≤ n + 1}) = {a1, . . . , âi, . . . , an+2} for all i = 1, . . . , n+ 2;

(3) pij = pj+1
i for all 1 ≤ i ≤ j ≤ n + 1.

Moreover, if {p1, . . . , pn+1} ⊂ P have the support {a1, . . . , an+1}, pj projects onto ∂j(a1, . . . , an+1),
and Q(p1, . . . , pn+1) holds, then we may choose pn+2

j = pj for j = 1, . . . , n+ 1.
10



Proof. It suffices to prove the “moreover” clause of the above lemma. Let {A1, . . . , An} be
the compatible system generated by the elements {p1, . . . , pn+1} (that is a system closed
under projections such that An = {p1, . . . , pn+1}. Apply Claim 2.8 to the compatible system
{A1 ∪ {an+2}, A2, . . . , An}; let {B1, . . . , Bn} be the maximal compatible extension. For 2 ≤
i ≤ n + 2 and 2 ≤ j ≤ n + 1, let pij be the unique element of Bn that projects onto

∂j(∂i(a1, . . . , an+2)). For i ≥ 2, by Definition 2.6, we may choose pi1 ∈ Pn(∂i(a2, . . . , an+2))

such that Q(pi1, . . . , p
i
n+1) holds. Finally, let p1j := pj+1

1 for j = 1, . . . , n + 1. This gives the
required collection of elements. ⊣

Definition 2.10. If H = (I, . . . , P, Q) is an n-ary quasigroupoid, we say that H is an n-ary
polygroupoid if it satisfies the following condition:

(Associativity) Suppose that {pij | 1 ≤ i ≤ n+2, 1 ≤ j ≤ n+1} is a collection of elements

in P such that for each i = 1, . . . , n + 2 the elements {pij | 1 ≤ j ≤ n + 1} are compatible

and such that pij = pj+1
i for all 1 ≤ i ≤ j ≤ n+ 1.

For each ℓ = 1, . . . , n + 2, if Q(pi1, . . . , p
i
n+1) holds for all i ∈ {1, . . . , n + 2} \ {ℓ}, then

Q(pℓ1, . . . , p
ℓ
n+1) holds.

It will be useful for later to note that the conclusion of Claim 2.9 can be strengthened, if
we have associativity:

Remark 2.11. If H is an n-ary polygroupoid, then for the set {pij | 1 ≤ i ≤ n+ 2, 1 ≤ j ≤
n+ 1} constructed in Claim 2.9, we also have Q(p11, . . . , p

1
n+1).

Definition 2.12. Let G be a group andH = (I, . . . , P, Q) an n-ary quasigroupoid. A regular
action of G on H is a group action on the set P such that:

(1) For any p ∈ P and any g ∈ G, πn(g.p) = πn(p);
(2) G acts regularly (transitively and faithfully) on each fiber Pn(w), where w is a com-

patible (n+ 1)-tuple from P ; and
(3) If Q(p1, . . . , pn+1) holds, then for any g ∈ G and any i ∈ {1, . . . , n}, we also have

Q(p1, . . . , g.pi, g.pi+1, . . . , pn+1)

(where only the two elements pi and pi+1 have been acted upon by g).

It turns out that the group G in the definition above is always abelian.

Proposition 2.13. Let H be an n-ary quasigroupoid (for n ≥ 2) equipped with a regular
action of the group G, and assume that Q holds on at least one (n+ 1)-tuple. Then:

(1) For any p1, . . . , pn+1 ∈ P and any i < j,

Q(p1, . . . , pn+1) ⇔ Q(p1, . . . , g.pi, . . . , g
(−1)j−i+1

.fj , . . . , pn+1).

(2) The group G is abelian (so we write the group additively below).
(3) If Q(p1, . . . , pn+1) holds, then for any (g1, . . . , gn+1) ∈ Gn+1,

Q(g1.p1, g2.p2, . . . , gn+1.pn+1) ⇔
n+1∑

i=1

(−1)igi = 0.

Proof. The first statement is straightforward, by property (3) of Definition 2.12 and induction
on j − i.
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To establish claim (2), note that Q(p1, . . . , pn+1) implies, for all g, h ∈ G

Q(g.p1, g.p2, p3, . . . , pn+1), Q(h.p1, p2, h
−1.p3, . . . , pn+1)

and, acting by h and g respectively on the sets of elements above we get

Q((hg).p1, g.p2, h
−1.p3, . . . , pn+1), Q((gh).p1, g.p2, h

−1.p3, . . . , pn+1).

It follows from Axiom (2) in the definition of a polygroupoid that (hg).p1 = (gh).p1 and
therefore hg = gh by regularity of the action.

The third statement is immediate from (1). ⊣

From now on, whenever G is a group acting regularly on a quasigroupoid H, then we will
write both the operation of G and its action on H additively.

2.1. Actions and associativity. The next goal (Theorem 2.15 below) is to show that any
n-ary quasigroupoid H with a regular action by a group G which satisfies a certain homo-
geneity assumption (which will always hold in our model-theoretic application) is necessarily
almost associative: the associativity law for Q holds, possibly modulo “twisting” one co-
ordinate by a fixed element of G. Since the twisted version Qg of Q is interdefinable with
Q over G, this can be used later to obtain definable polygroupoids from definable n-ary
quasigroupoids.

Definition 2.14. Let H = (I, . . . , P, Q) be a connected n-ary quasigroupoid. Suppose
that G acts regularly on H. We say that the action is (n + 2)-homogeneous if whenever
(a1, . . . , an+2) and (b1, . . . , bn+2) are tuples from I(n+2) and (A1, . . . , An−1), (B1, . . . , Bn−1) are
maximal compatible systems going up to Pn−1 such that A1 = {a1, . . . , an+2} (respectively,
B1 = {b1, . . . , bn+2}), then there is an isomorphism f : cl(a) → cl(b) such that

(1) f(ai) = bi for every i ∈ {1, . . . , n+ 2};
(2) f(Ak) = Bk for every k ∈ {1, . . . , n− 1}; and
(3) f commutes with the action of G.

Theorem 2.15. Let H = (I, . . . , P, Q) be a connected n-ary quasigroupoid such that |I| ≥
n+ 3, and H is equipped with an (n+ 2)-homogeneous regular action of a group G.

(1) If n is odd, then there is some g ∈ G such that if we define a new relation Qg on P
by

Qg(p1, . . . , pn+1) ⇔ Q(p1, . . . , pn, pn+1 − g),

then the quasigroupoid Hg = (I, . . . , P, Qg) is a polygroupoid.
(2) If n is even, then H is a polygroupoid.

Proof. Let ρ := (p1, . . . , pn+1) be a compatible tuple of elements of P . Define the defect of
ρ, denoted d(ρ), to be the unique element g ∈ G such that Q(p1, . . . , pn, pn+1+ g) holds. Let
τ = (ρ1, . . . , ρn+2) be a sequence of compatible tuples ρi = (pi1, . . . , p

i
n+1) such that pij = pj+1

i

for 1 ≤ i ≤ j ≤ n+ 1. Define the defect of τ to be d(τ) :=
∑n+2

i=1 (−1)id(ρi).
It is clear that for every g ∈ G, there is a compatible tuple ρ with d(ρ) = g. A key

observation is that the defect of a sequence of compatible tuples has to be unique.

Claim 2.16. Let H = (I, . . . , P, Q) be a connected n-ary quasigroupoid, |I| ≥ n + 2, and
suppose that H is equipped with an (n+2)-homogeneous regular action of a group G. There is
a single element g ∈ G such that d(τ) = g for every sequence τ = (ρ1, . . . , ρn+2) of compatible
tuples ρi = (pij)1≤j≤n+1 such that pij = pj+1

i for 1 ≤ i ≤ j ≤ n+ 1.
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Proof. By Claim 2.9, there is at least one sequence τ = (ρ1, . . . , ρn+2) of compatible tuples,
ρi = (pij)1≤j≤n+1, such that pij = pj+1

i . Let g := d(τ). We will show that d(τ̃) = g for any

other sequence τ̃ = (ρ̃1, . . . , ρ̃n+2) of compatible tuples, ρ̃i = (p̃ij)1≤j≤n+1, such that p̃ij = p̃j+1
i

for 1 ≤ i ≤ j ≤ n + 1. Now given such a second sequence τ̃ of tuples, we have the two
compatible systems (A1, . . . , An−1) where Ak is the image of τ in Pk under the π maps, and
(B1, . . . , Bn−1), which is similarly defined using images of τ̃ under the π maps. By (n + 2)-
homogeneity, there is an isomorphism f : cl(τ) → cl(τ̃) which preserves the action of G,
and clearly d(f(τ)) = d(τ). Thus to prove the general case of Claim 2.16, it is sufficient to
consider the case where πn(pij) = πn(p̃ij) for every i, j.

By the transitivity of the action of G on πn-fibers, there is a system of elements gij ∈ G

such that p̃ij = pij + gij. Note that we have g
i
j = gj+1

i . Then for each i = 1, . . . , n+2 we have,

by the definition of d(ρi):

Q(pi1, . . . , p
i
n, p

i
n+1 + d(ρi)) and Q(pi1 + gi1, . . . , p

i
n + gin, p

i
n+1 + gin+1 + d(ρ̃i)).

Thus, by Proposition 2.13(3), we get (−1)n(d(ρ̃i) − d(ρi)) =
∑n+1

j=1 (−1)jgij for each i =

1, . . . , n+2. The equality d(τ̃) = d(τ) now follows from the standard “∂2 = 0” combinatorics:

(−1)n(d(τ̃)− d(τ)) =

n+2∑

i=1

(−1)i
n+1∑

j=1

(−1)jgij =

n+1∑

i=1

n+1∑

j=i

(−1)i+jgij +

n+2∑

i=2

i−1∑

j=1

(−1)i+jgij = 0;

the last equality follows since
n+1∑

i=1

n+1∑

j=i

(−1)i+jgij = −
n+1∑

i=1

n+1∑

j=i

(−1)i+j+1gj+1
i = −

n+2∑

i=2

i−1∑

j=1

(−1)i+jgij .

⊣

Let us call the element g constructed in the above claim the defect of Q. Note that Q is
associative if and only if the defect of Q is 0. The rest of the argument proceeds as follows.
In the case when n is odd and g is the defect of Q, we show that the relation Qg has defect 0.
In the case when n is even, we show that the defect of Q must be 0.

(1) Let n be odd and let g be the defect of Q. Let {pij | 1 ≤ i ≤ n+ 2, 1 ≤ j ≤ n+ 1} be
elements constructed in Claim 2.9. Then we have

Q(p11, . . . , p
1
n, p

1
n+1 − g) and Q(pi1, . . . , p

i
n+1), for i = 2, . . . , n+ 2.

Define Qg by
Qg(p1, . . . , pn+1) ⇐⇒ Q(p1, . . . , pn+1 − g).

Note that the quasigroupoid Hg = (I, . . . , P, Qg) satisfies the assumptions of Claim 2.16.
Therefore, it is enough to check that the defect dg ofQg is 0 for the sequence τ = (ρ1, . . . , ρn+2),
where ρi = (pi1, . . . , p

i
n+1). We see that dg(ρ

1) = 0 and dg(ρ
i) = g for i = 2, . . . , n+ 2. Thus,

the defect dg(τ) = 0 +
∑n+2

i=2 (−1)ig = 0; the last equality holds since the sum has an even
number of terms.

(2) Let a1, . . . , an+3 be any (n+ 3) distinct elements of I. First, using Claim 2.8, we find
a maximal compatible system (B1, . . . , Bn) such that B1 = {a1, . . . , an+3}. This gives the
tuples τk = (ρk,1, . . . , ρk,n+2), where ρk,j is the sequence of n + 1 compatible tuples in Bn

that project onto the subsequences of ∂j(∂k(a1, . . . , an+3)) of length n. By this definition,
the ith element of τk is equal to the kth element of τ i+1 for 1 ≤ k ≤ i ≤ n+ 2.
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Now we consider the element h =
∑n+3

k=1(−1)kd(τk). We calculate h ∈ G in two ways. On
the one hand, the ith term in d(τk) is equal to kth term in d(τ i+1) up to the sign (−1)i+k.
Thus, in h these terms appear with the opposite signs, and we have h = 0. On the other
hand, by the Claim above, all the defects d(τk) are equal to the same value g. Therefore we
can cancel out all of the constituent terms of h in pairs except for one (since n + 3 is odd),
and h = ±g. Thus g = 0, which implies that Q is associative. ⊣

3. Failure of (n+ 1)-uniqueness implies interpretability of an n-ary
polygroupoid over a Morley sequence

In this section, we will establish the main theorem of the paper (Theorem 3.3): a nontrivial
connected finitary n-ary polygroupoid can be defined (relative to a Morley sequence) in any
stable theory which has k-uniqueness for all k ∈ {2, . . . , n} but which fails (n+1)-uniqueness.
This will be done in two steps: first, we show how to define and n-ary quasigroupoid (Propo-
sition 3.13); then, we show that there is a finite nontrivial abelian group G with a regular,
(n+2)-homogeneous action on the quasigroupoid (see Definition 3.20 and Lemma 3.24) and
apply Theorem 2.15 to obtain associativity.

Definition 3.1. If A ⊆ C, then a set X ⊆ C is relatively A-definable if it is definable in the
expansion CA with a single new unary predicate symbol naming the set A.

Definition 3.2. Let A ⊆ C. A quasigroupoid H = (P1, . . . , Pn, Q) is relatively A-definable
if the sets Pi, i = 1, . . . , n, the projections πi, i = 2, . . . , n, as well as the relation Q are
relatively A-definable.

Theorem 3.3. Let T be a stable theory, n ≥ 2, A = acl(A) a small subset of C, and suppose
that T has k-uniqueness for every k ∈ {2, . . . , n}. Then T does not have (n+1)-uniqueness
over A if and only if there some infinite Morley sequence I over A such that:

(1) There is a relatively I-definable n-ary polygroupoid H = (I, P2, . . . , Pn, Q) (that is,
with P1 equal to the Morley sequence I and each of the sets P2, . . . , Pn and Q relatively
I-definable);

(2) H is locally finite and connected;
(3) There is a finite nontrivial I-definable group G with a relatively I-definable regular

action on H;
(4) For every two elements f, g ∈ Pn such that πn(f) = πn(g), if f, g ∈ Pn(a1, . . . , an)

where (a1, . . . , an) ∈ I(n), then there is some ϕ ∈ Aut(aclA(a1, . . . , an)/∂A(a1, . . . , an))
such that ϕ(f) = g.

We emphasize that in the hypothesis of Theorem 3.3, we assume full k-uniqueness for all
k ≤ n (that is, for every small set B ⊆ C, that T has k-uniqueness over B), but that the
conclusion of the theorem is “local”: assuming a failure of (n+1)-uniqueness over some base
set A, we get a relatively I-definable n-ary polygroupoid for some I which is Morley over
the same base set A.

The remainder of this section will be a series of lemmas and definitions whose main purpose
is to establish Theorem 3.3.

We assume throughout the remainder of this section that n ≥ 2 and that the

theory T is stable and has k-uniqueness for all k ∈ {2, . . . , n}. Our object is to study
14



witnesses to the failure of (n+1)-uniqueness, which will be measured by the group G defined
below.

In the proof below, we denote by si the ordered tuple in [n+1](n) which lists the elements
of [n + 1] \ {i} in increasing order. For distinct i, j ∈ [n + 1], let si,j = [n + 1] \ {i, j}, also
listed in the increasing order.

Lemma 3.4. (“Symmetrization Lemma”) Suppose that {a1, . . . , an+1} is a Morley sequence
over A. For any set {ci : i ∈ [n + 1]} such that ci ∈ aclA({aj : j ∈ si}) for each i ∈ [n + 1],
there are tuples asi,j enumerating aclA({ak : k ∈ si,j}) and elements fi for each i ∈ [n + 1]
such that:

(1) fi ∈ aclA({aj : j ∈ si});
(2) if a∂(si) denotes the tuple (asi,1 , . . . , asi,i−1

, asi,i+1
, . . . , asi,n+1

), then for any two i, j ∈
[n+ 1], tp(fi, a∂(si)/A) = tp(fj, a∂(sj)/A);

(3) ci ∈ dcl(fi);
(4) for every i ∈ [n + 1], if ci /∈ dcl(a∂(si)), then fi /∈ dcl(a∂(si)); and
(5) if ci ∈ dclA({cj : j 6= i}) for every i ∈ [n + 1], then fi ∈ dcl({fj : j 6= i}) for each

i ∈ [n+ 1].

Proof. By Lemma 1.20, there is an (n − 1)-symmetric system for {a1, . . . , an+1} over A.
Fix tuples as for s ∈ [n + 1](≤n−1) and elementary maps {ϕσ : σ ∈ Sym([n + 1])} as in
Definition 1.19.

For any two i, j ∈ [n + 1], let σi,j be the unique permutation of [n + 1] which sends the
tuple si to the tuple sj, and for ease of notation let ϕi,j := ϕσi,j

. In particular, note that
ϕi,j(a∂(si)) = a∂(sj), and so tp(a∂(si)/A) = tp(a∂(sj)/A).

For each i ∈ [n + 1], let di be a finite tuple listing all realizations of tp(ci/a∂(si)). Let
f1 ∈ aclA({aj : j 6= 1}) be a finite tuple listing all of the elements of

{ϕσ(dj) : σ is a permutation of [n+ 1] such that σ(j) = 1},

and for every i ∈ {2, . . . , k + 1}, let fi = ϕσ1,i
(f1). This immediately implies that fi ∈

aclA({aj : j 6= i}) and

tp(f1, a∂(s1)/A) = tp(fi, a∂(si)/A),

so properties (1) and (2) of the Lemma hold.
Before proving (3), (4), and (5), we establish some preliminary claims. For the rest of the

proof of the Lemma, we will assume that for every i ∈ [n+ 1], ci ∈ dclA({cj : j 6= i}).

Claim 3.5. If e ∈ fi and tp(e′/a∂(si)) = tp(e/a∂(si)), then e
′ ∈ fi.

Proof. Since tp(f1, a∂(s1)/A) = tp(fi, a∂(si)/A), it suffices to prove the Claim for f1. But this
is clear, since f1 comprises of tuples enumerating all the realizations of certain types over
a∂(s1). ⊣

It is worth emphasizing that ϕσ ◦ ϕτ is not necessarily equal to ϕσ◦τ , so there is an
asymmetry in our definitions: f1 is defined differently than the other fi’s. On the other
hand, since for every i we have

ϕσ◦τ (a∂(si)) = ϕσ

(
ϕτ (a∂(si))

)
,

we immediately obtain:
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Claim 3.6. For any two permutations σ, τ of [n + 1] and any d ∈ aclA({aj : j 6= i}), if
σ(τ(i)) = k, then

tp(ϕσ◦τ (d), a∂(sk)/A) = tp(ϕσ(ϕτ (d)), a∂(sk)/A).

Claim 3.7. For every i ∈ [n + 1], di ∈ fi.

Proof. By applying the elementary map ϕi,1, we obtain

tp(di, fi, a∂(si)/A) = tp(ϕi,1(di), f1, a∂(s1)/A).

But ϕi,1(di) ∈ f1 by the very definition of f1, and therefore di ∈ dcl(fi).
⊣

By the last Claim above, ci ∈ di ∈ fi, establishing (3). Property (4) follows immediately
from (3).

Claim 3.8. For every i ∈ [n + 1], di ∈ dcl({dj : j 6= i}).

Proof. Fix some i ∈ [n+ 1] and some c′i ∈ di such that tp(c′i/a∂(si)) = tp(ci/a∂(si)). Pick any
other j ∈ [n+1] \ {i}, and we claim that there is an element c′j of dj (that is, tp(c

′
j/a∂(sj)) =

tp(cj/a∂(sj))) such that c′i ∈ dcl({c′j} ∪ {ck : k 6= i, j}). (Apply relative (n, n)-uniqueness
over the base set acl(aj) to construct an elementary map ϕ which fixes every tuple a∂(sk)
pointwise, fixes every ck such that k 6= i, j, and sends ci to c

′
i; then let c′j be ϕ(cj).) ⊣

Claim 3.9. For any permutation σ of [n+ 1] and any element e of the tuple fi, ϕσ(e) is an
element of the tuple fσ(i).

Proof. Without loss of generality, we consider an element e ∈ fi such that for some k ∈ [n+1]
and some permutation τ of [n + 1] such that τ(k) = 1,

tp(e, a∂(si)/A) = tp(ϕτ (dk), a∂(s1)/A).

Applying the elementary map ϕ1,i plus Claim 3.6, we conclude

tp(e, a∂(si)/A) = tp(ϕσ1,i◦τ (dk), a∂(si)/A).

Now fix any permutation σ of [n + 1] and say σ(i) = j. Then

tp(e, aσ−1(∂(sj))/A) = tp(ϕσ1,i◦τ (dk), aσ−1(∂(sj))/A).

(This is because aσ−1(∂(sj)) is a permutation of a∂(si) and hence any elementary map ψ such
that ψ(e) = ϕσ1,i◦τ (dk) and ψ fixes a∂(si) ∪ A pointwise will also witness the equality of the
two displayed types above.) Applying the elementary map ϕσ to the two types above and
citing Claim 3.6, we obtain

tp(ϕσ(e), a∂(sj)/A) = tp(ϕσ◦σ1,i◦τ (dk), a∂(sj)/A) = tp(ϕσj,1◦σ◦σ1,i◦τ (dk), a∂(s1)/A).

But by the definitions of f1 and of fj , the element ϕσj,1◦σ◦σ1,i◦τ (dk) is in f1 and hence the
equality of types displayed above implies that ϕσ(e) ∈ fj.

⊣

Claim 3.10. Any element ϕσ(dj) of f1 is in dcl(f2, . . . , fn+1).

Proof. By Claim 3.8, dj ∈ dcl({dk : k 6= j}). By Claim 3.7, dk ∈ fk, so dj ∈ dcl({fk : k 6= j}).
This definability relation is clearly preserved under application of the elementary map ϕσ,
and so Claim 3.10 now follows by Claim 3.9.

⊣
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Finally, we show that for any i ∈ [n+ 1], fi ∈ dcl({fj : j 6= i}). Fix some e ∈ fi such that

tp(e, a∂(si)/A) = tp(ϕσ(dk), a∂(s1)/A)

for some permutation σ of [n + 1]. Therefore

tp(e, a∂(si)/A) = tp(ϕ1,i(ϕσ(dk)), a∂(si)/A),

and applying the same argument by relative (n, n) uniqueness as in the proof of Claim 3.8,
it suffices to show that ϕ1,i(ϕσ(dk)) ∈ dcl({fj : j 6= i}).

By Claim 3.10, ϕσ(dk) ∈ dcl(f2, . . . , fn+1). Applying the elementary map ϕ1,i and Claim 3.9,
we conclude that ϕ1,i(ϕσ(dk)) ∈ dcl({fj : j 6= i}), and by the previous paragraph, we are
finished with the proof of the Lemma.

⊣

Proposition 3.11. Suppose that T is stable and has k-uniqueness for every k ≤ n but
fails to have (n + 1)-uniqueness. Then there is a small algebraically closed set B, a Morley
sequence a1 . . . an+1 over B, and elements

ci ∈ aclB({a1, . . . , an+1} \ {ai})

such that

cn+1 ∈ dclB({c1, . . . , cn}) \ ∂B(a1, . . . , an).

Proof. Since (n + 1)-uniqueness fails and ≤ n-uniqueness holds, by Fact 1.14 above, we
conclude that the property B(n + 1) must also fail. We use the equivalent formulation of
B(n+ 1) given by Fact 1.15.

Fix some B-independent set {b1, . . . , bn+1} and a map ϕ as in Fact 1.15, and assume
without loss of generality that the base set B = ∅ (by adding constants to the language if
necessary): namely, we have ϕ ∈ Aut(B[n]/∂(b1, . . . , bn)) cannot be extended to an automor-
phism that fixes

B[n+1]\{1} ∪ . . . ∪B[n+1]\{n}

pointwise. . We will build a Morley sequence {a1, . . . , an+1} and an automorphism ϕ′ ∈
Aut(A[n]/∂(a1, . . . , an)) which cannot be extended to an automorphism that fixes A[n+1]\{1}∪

. . . ∪A[n+1]\{n} pointwise.
Let a1 be a tuple a11 . . . a

n+1
1 such that q := tp(a11 . . . a

n+1
1 ) = tp(b1 . . . bn+1). Take a set

{a2, . . . , an+1} of realizations of the type q such that the set {a1, . . . , an+1} is independent.
By stationarity, the type of the sequence (a11, a

2
2, . . . , a

n+1
n+1) is also q. Thus, we may assume

that (a11, . . . , a
n+1
n+1) = (b1 . . . , bn+1).

It remains to build the map ϕ′ ∈ Aut(A[n]) using relative (n, n)-uniqueness by amal-
gamating the map ϕ and the identity automorphisms on the algebraic closures of tuples
a1, . . . , âi, . . . , an, where i = 1, . . . , n. The construction of ϕ′ has two stages. For the first
stage, we perform a series of amalgamations to build a system of maps 〈ϕ′′

s : s ⊆ {1, . . . , n}〉
such that:

(1) If s ⊆ {1, . . . , n− 1}, then ϕ′′
s is the identity map on as;

(2) If s = s0 ∪ {n} where s0 ⊆ {1, . . . , n − 1}, then ϕ′′
s is an elementary permutation of

acl(as0 ∪ bn) which extends ϕ; and
(3) If s ⊆ t, then ϕ′′

s ⊆ ϕ′′
t .
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The construction of the maps ϕ′′
s for |s| > 1 goes by induction on |s|, always amalga-

mating over the base set acl(b1, . . . , bn−1) and considering {a1, . . . , an−1, bn} to be the set of
independent “vertices:” if we consider s = {s1, . . . , sk} ⊆ {1, . . . , n}, then once we have the
ϕ′′
t for all |t| < |s|, construct ϕ′′

s using relative (k, k)-uniqueness to find a common extension
of the maps 〈ϕ′′

t : |t| < k〉.
Then let ϕ′′ := ϕ′′

{1,...,n} ∈ Aut(acl(a1, . . . , an−1, bn)). Note that ϕ
′′ ↾ acl(b1, . . . , bn) = ϕ and

for all i ∈ 1, . . . , n− 1 we have ϕ′′ ↾ acl(a1, . . . , âi, . . . , an−1, bn) is an identity automorphism.
Now we obtain ϕ′ using relative (n, n)-uniqueness over acl(bn) on the system of n compat-

ible automorphisms given by ϕ′′ plus the (n− 1) the identity automorphisms on A[n]\{i} for
i = 1, . . . , n− 1.

Finally, we note that it is impossible to amalgamate ϕ′ with the identity automorphisms
on A[n+1]\{i} for i = 1, . . . , n simply because ϕ ⊆ ϕ′ and we assumed that ϕ could not be

extended to an elementary map fixing B[n+1]\{1} ∪ . . . ∪B [n+1]\{n} pointwise.
Now from the existence of the elementary map ϕ′, we quickly find the desired elements ci:

the impossibility of amalgamating ϕ′ with identity maps on the other “edges” implies that
there are finite tuples di ∈ A[n+1]\{i} such that ϕ′(dn+1) 6= dn+1 and

tp(ϕ′(dn+1)/d1, . . . , dn) 6= tp(dn+1/d1, . . . , dn),

and we let cn+1 be a code for the finite set X of all realizations of tp(dn+1/d1, . . . , dn)
and let ci = di for every i ∈ {1, . . . , n}; then evidently cn+1 ∈ acl(a1, . . . , an) and cn+1 ∈
dcl(c1, . . . , cn+1), but since ϕ

′(X) 6= X and ϕ′ fixes ∂(a1, . . . , an) pointwise, cn+1 /∈ ∂(a1, . . . , an).
⊣

Definition 3.12. A symmetric witness to the failure of (n+1)-uniqueness (over B = acl(B))
is an (n + 1)-element Morley sequence I over B and a relatively I-definable connected
quasigroupoid (I, P2, . . . , Pn, Q) such that

(1) (Isolation of types)
(a) For any i ∈ {2, . . . , n} and any f ∈ Pi, the type tp(f/∂(supp(f))) is isolated

over πi(f).
(b) For any two elements f, g of Pn such that πn(f) = πn(g), the type tp(f, g/∂(π(f)))

is isolated over πn(f).
(2) (Algebraicity) For any i ∈ {2, . . . , n} and any f ∈ Pi, f ∈ acl(π(f)).

For n = 3, the definition above is almost the same as that of a “full symmetric witness”
from the article [9] (see also the older Definition 2.2 of [8]), but for the purposes of the
current paper we found it convenient to also assume that the types of all pairs from Pn are
isolated over their projections; this condition is easy to enforce, and will help in establishing
the definability of the group G (see Definitions 3.19 and 3.20 below).

Proposition 3.13. If T is stable with k-uniqueness for every k ≤ n but which does not have
(n+ 1)-uniqueness, then T has a symmetric failure to (n + 1)-uniqueness.

Proof. By Proposition 3.11, there is a Morley sequence a1 . . . an+1 over some small set B and
elements ci ∈ aclB({a1, . . . , an+1} \ {ai}) such that

cn+1 ∈ dclB({c1, . . . , cn}) \ ∂B(a1, . . . , an).

For simplicity of notation, we will assume in the proof below that B = ∅ (expanding the
language to add constants for the elements of B if necessary).
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Without loss of generality, aj ∈ cj whenever i, j are two distinct elements of [n + 1]. We
claim that we may assume that not only cn+1 ∈ dcl(c1, . . . , cn), but also that ci ∈ dcl({cj : j 6=
i}) for each i ∈ [n+ 1]. This can be acheived by replacing the original elements {c1, . . . , cn}
by elements c′i chosen recursively on i so that c′i ∈ T eq is a canonical name for the finite set
of all realizations of

tp(ci/c
′
1, . . . , c

′
i−1, ci+1, . . . , cn+1)

(which is clearly algebraic, since ci is in the algebraic closure of {aj : j 6= i} and by the
assumption that ck and c′k contain aj if k 6= j). Then an easy induction argument shows
that the new elements {c′1, . . . , c

′
n, cn+1} are interdefinable as we wish.

We apply Lemma 1.20 to construct an (n − 1)-symmetric system {as : s ∈ [n + 1](<n)}.
As above, si,j denotes the ordered (n − 1)-tuple which lists the elements of [n + 1] \ {i, j}
in increasing order and a∂(si) is the tuple (as1,i, . . . , asn+1,i

). Throughout the proof of this

Lemma, we use the phrase s ∈ [n+1](k) to mean (by abuse of notation) that s is an ordered
tuple listing k distinct elements of [n+ 1] in increasing order.

Step 1: By the Symmetrization Lemma (Lemma 3.4) applied to the elements ci, there is
a tuple of elements (fn

1 , . . . , f
n
n+1) satisfying all of the following properties:

(1) fn
i ∈ acl({aj : j 6= i}) \ ∂(a1, . . . , âi, . . . , an+1);

(2) For each i ∈ {1, . . . , n+ 1}, fn
i ∈ dcl(fn

1 , . . . , f̂
n
i , . . . , f

n
n+1); and

(3) For any two i, j ∈ {1, . . . , n+ 1},

(fn
i , a∂(si)) ≡ (fn

j , a∂(sj)).

Step 2: Next, for each m ∈ {1, . . . , n−1} and every s ∈ [n+1](m), we construct elements
fm
s satisfying both of the following properties (letting fn

i = fn
si
for uniformity of notation):

(4) Whenever s = (i1, . . . , ik) ∈ [n + 1](k) is increasing and 2 ≤ k ≤ n, tp(fk
s /a∂(s)) is

isolated over (fk−1
s\{i1}

, . . . , fk−1
s\{ik}

);

(5) If m = n− 1 and s = (i1, . . . , in) ∈ [n+ 1](n), then for any gns such that

(gns , a∂(s)) ≡ (fn
s , a∂(s)),

we have that tp(fn
s , g

n
s /a∂(s)) is isolated over (fm

s\{i1}
, . . . , fm

s\{in}
); and

(6) If |s| = |s′′| = k, then (fk
s , a∂(s)) ≡ (fk

s′, a∂(s′)).

For Step 2, we perform the construction of the fn−ℓ
s by induction on ℓ.

Given some m ∈ {2, . . . , n}, suppose that we are given elements fm
s satisfying (4), (5),

and (6) for every increasing s ∈ [n + 1](m). Consider s = (1, . . . , m) and the element fm
s .

Pick elements c1, . . . , cm such that ci ∈ ∂(a1, . . . , âi, . . . , am) and tp(fm
s /a∂(s)) is isolated over

(c1, . . . , cm). In the special case where m = n, we can also pick the ci such that whenever
(gns , a∂(s)) ≡ (fn

s , a∂(s)), the type tp(fn
s , g

n
s /a∂(s)) is also isolated over c1, . . . , cn (since there

are only finitely many such gns ). Now apply the Symmetrization Lemma (Lemma 3.4) to the
elements ci to obtain elements fm−1

s\{1}, . . . , f
m−1
s\{m} such that for any i, j ∈ [m],

(fm−1
s\{i}, as\{i}) ≡ (fm−1

s\{j}, as\{j}).

Because we also have that ci ∈ fm−1
s\{i}, the isolation conditions (4) and (5) clearly hold for

these elements. Finally, if t ∈ [n + 1](m−1) is any increasing tuple which is not contained in
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[m], we let fm−1
t be some element such that

(fm−1
t , a∂(t)) ≡ (fm−1

(1,...,m−1), a∂((a1,...,am−1))).

Finally, we explain how to put the pieces together an use Steps 1 and 2 to build a symmetric
witness to the failure of (n+ 1)-uniqueness as in Definition 3.12. For every nonempty tuple
s ∈ [n+1](≤n), we construct a tuple gs by a recursion on |s|: first, the tuples g(i) are defined
to be f 1

(i) as above; then, for the recursion, if s = (i1, . . . , im), let

gs = (fm
s , gs\{i1}, . . . , gs\{im}).

Note that each member ai of the original Morley sequence is interalgebraic with g(i), and we
let I be an infinite Morley sequence in the type of g(1). For i ∈ {2, . . . , n}, let P 0

i (x; y1, . . . , yi)
be a formula such that P 0

i (x; g(1), . . . , g(i)) isolates the type of g(1,...,i) over (g(1), . . . , g(i)) (this
type is clearly atomic since it is algebraic), and let Pi be the relatively I-definable set

Pi := {b ∈ C : P 0
i (b, c1, . . . , ci) for some tuple of pairwise distinct elements c1, . . . , ci of I}.

F for each i ∈ {2, . . . , n}, there is a definable map πi : P i → (P i−1)i which sends g(1,...,i) to
the tuple (g(2,...,i), . . . , g(1,...,i−1)): in fact, πi(z) simply sends z to the appropriate subtuple
of z. The compatibility of the tuple πi(f) in the sense of Definition 2.1 for any f ∈ P i is
straightforward to check.

Note that for any i ∈ [n + 1], the element gsi is in dcl({gsj : j 6= i}): this is because gsi
consists of elements gsi,j which are definitionally included in the other elements gsj , plus the
element fn

si
, which is in the definable closure of the elements fn

sj
∈ gsj for by Condition (2) of

Step 1. Let Q(x1, . . . , xn+1) be a formula in the type of (gs1, . . . , gsn+1) witnessing that the
tuple is compatible and that any gsi is definable from all of the other gsj ’s (so that axioms
(3) and (4) of Definition 2.3 are satisfied).

The property of isolation of types (condition (1) of Definition 3.12) holds because of
parts (4) and (5) of Step 2 above.

The last thing to check is that the n-ary quasigroupoid (I, P2, . . . , Pn, Q) is connected. So
suppose that (p1, . . . , pn+1) is any compatible (n+1)-tuple from Pn. Say (c1, . . . , cn+1) is the
tuple from I(n+1) such that supp(pi) = (c1, . . . , ĉi, . . . , cn+1). Since I is an indiscernible set,
the definition of Pn gives us that for each i,

(pi, c1, . . . , ĉi, . . . , cn+1) ≡ (gsi, g(1), . . . , ĝ(i), . . . , g(n+1)).

Now if we fix any i ∈ [n + 1], we can use (≤ n)-uniqueness over the set acl(ci) to conclude
that

(p1, . . . , p̂i, . . . , pn+1) ≡ (gs1, . . . , ĝsi, . . . , gsn+1),

and in particular ∃x [Q(p1, . . . , pi−1, x, pi+1, . . . , pn+1)], as required for connectedness.
⊣

From this point on in the section, we fix a Morley sequence I over ∅ = acleq(∅) and a
relatively I-definable connected n-ary quasigroupoid (I, P2 . . . , Pn, π

k : 2 ≤ k ≤ n,Q) which
is a symmetric witness to the failure of (n + 1)-uniqueness over ∅. Our next task is to
construct the group G which will act regularly on this n-ary quasigroupoid.

Definition 3.14. Within the context of the fixed relatively I-definable n-ary quasigroupoid
above:
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(1) If i ∈ {2, . . . , n} and (f1, . . . , fi) is a compatible tuple of elements of Pi−1, then
Pi(f1, . . . , fi) denotes the set of all elements f of Pi such that πi(f) = (f1, . . . , fi).

(2) If (a1, . . . , ai) ∈ I(i), then Pi(a1, . . . , ai) is the set of all f ∈ Pi which are over
(a1, . . . , ai) (in the sense of Definition 2.2). If f ∈ Pi(a1, . . . , ai), then we define
π(f) := (a1, . . . , ai).

Note that due to algebraicity and isolation of types (clauses (1) and (2) of Definition 3.12),
the sets Pi(f) and Pi(a) in (2) and (3) above are always finite.

Lemma 3.15. Fix some (a1, . . . , ai, . . . , an+1) ∈ I(n+1), two distinct numbers i, j ∈ {1, . . . , n+

1}, and two compatible n-tuples f, f
′
from Pn−1 such that

f = 〈fk : 1 ≤ k ≤ n+ 1; k 6= i〉,

f
′
= 〈f ′

k : 1 ≤ k ≤ n+ 1; k 6= j〉,

π(fk) = (a1, . . . , an+1) \ {ai, ak},

π(f ′
k) = (a1, . . . , an+1) \ {aj , ak},

and

fj = f ′
i .

Then given any pair (p, q) from Pn(f)×Pn(f), we can define a permutation χ = χ(i, j; p, q, f
′
)

of Pn(f
′
) by the rule: whenever (r1, . . . , rn+1) is a compatible tuple from Pn such that

Q(r1, . . . , ri−1, p, ri+1, . . . , rj, . . . , rn+1)

holds, then

Q(r1, . . . , ri−1, q, ri+1, . . . , χ(rj), . . . , rn+1)

holds as well.

Proof. Most of the work will go into showing that this rule gives a well-defined function χ.
For ease of notation, let i = 1 and j = n + 1 (the other cases have identical proofs).

What we must show is: given any elements r2, . . . , rn+1, r
′
2, . . . , r

′
n, sn+1, and s′n+1 such

that

Q(p, r2, . . . , rn, rn+1) ∧Q(q, r2, . . . , rn, sn+1),

Q(p, r′2, . . . , r
′
n, rn+1) ∧Q(q, r

′
2, . . . , r

′
n, s

′
n+1),

and the four (n + 1)-tuples in the Q relations above are all compatible and independent,
then s′n+1 = sn+1.

Claim 3.16. There is a family of elementary maps

〈ϕs : {2} ⊆ s ⊆ {1, . . . , n+ 1}〉

satisfying all of the following properties:

(1) ϕs ∈ Aut(As);
(2) If s ⊆ t then ϕs ⊆ ϕt;
(3) If 1 /∈ s or if n+ 1 /∈ s then ϕs is the identity map on As;
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(4) If {1, 2, n+ 1} ⊆ s and i ∈ {1, . . . , n+ 1} \ s, then

ϕs(πs(ri)) = πs(r
′
i),

where the notation “πs(ri)” stands for the natural projection of ri onto an element of
P|s|(〈ai : i ∈ s〉) formed by composing various maps πk

ℓ ; and
(5) If i ∈ {3, . . . , n} and si = {1, . . . , n+ 1} \ {i}, then ϕsi(ri) = r′i.

For the proof of the Claim, we construct the maps ϕs by induction on |s| using amalgama-
tion properties. For the base case, where s = {2}, we simply let ϕ{2} be the identity map on
acl(a2). For the induction step, suppose that |s| = k > 1 and we are given the maps ϕt for all
t ⊂k−1 {1, . . . , n+ 1} such that 2 ∈ t. Let s = {2} ∪ {i1, . . . , ik−1} and for every j ∈ [k − 1],
let sj = s \ {ij}. By the induction hypothesis, the functions {ϕsj : 1 ≤ j ≤ k − 1} form a
compatible system of elementary maps, so by relative (k− 1, n)-uniqueness over acl(a2), the
union of the ϕsj maps can be extended to an elementary map ϕ0

s of As.
If 1 /∈ s, then clearly 1 /∈ sj for every j, so by the induction hypothesis the ϕsj are all

identity maps, and in this case we may choose ϕ0
s = ϕs to be an identity map as well. The

same applies if n+ 1 /∈ s, so we have verified condition (3).
Finally, if {1, 2, n+1} ⊆ s, then we only need to construct ϕs satisfying conditions (4) and

(5) for the particular s under consideration. But since ϕ0
s was constructed as an extension

of the maps ϕsj , we may always construct ϕs as ϕ
1
s ◦ ϕ

0
s for some ϕ1

s ∈ Aut(As) which fixes

the images of the maps
{
ϕsj : j ∈ [k − 1]

}
pointwise.

Now that we have established the Claim, let ϕ := ϕ[n+1] be the union of all of the maps

ϕs. By construction, ϕ(p) = p (since ϕ is the identity on A[n+1]\{1}), ϕ(ri) = r′i for ev-
ery i ∈ {3, . . . , n}, and ϕ(rn+1) = rn+1. So because ϕ must preserve the Q relation on
(p, r2, . . . , rn, rn+1), it follows that ϕ(r2) = r′2. Therefore since Q(q, r2, . . . , rn, sn+1) holds,
we also have (by applying ϕ)

Q(q, r′2, . . . , r
′
n, sn+1),

and comparing this with the Q relation on (q, r′2, . . . , r
′
n, s

′
n+1), we conclude that s

′
n+1 = sn+1

as desired.
⊣

Lemma 3.17. Suppose that i and j are distinct elements of {1, . . . , n+1} and we have three
compatible n-tuples from Pn−1,

f = 〈fk : 1 ≤ k ≤ n+ 1; k 6= i〉,

f
′
= 〈f ′

k : 1 ≤ k ≤ n+ 1; k 6= j〉,

and

f
′′
= 〈fk : 1 ≤ k ≤ n+ 1; k 6= j〉

such that fj = f ′
i = f ′′

i . Then for any two pairs (p, q), (p′, q′) from P (f)× P (f),

χ(i, j; p, q, f
′
) = χ(i, j; p′, q′, f

′
)

if and only if

χ(i, j; p, q, f
′′
) = χ(i, j; p′, q′, f

′′
).

22



Proof. To fix notation, say that (as in Lemma 3.15)

π(fk) = (a1, . . . , an+1) \ {ai, ak}

and

π(f ′
k) = (a1, . . . , an+1) \ {aj, ak}

for some (a1, . . . , an+1) ∈ I(n+1). The first reduction is to note that without loss of generality,

π(f ′′
k ) = (a1, . . . , an+1) \ {aj , ak},

since by 2-uniqueness whichever new realization of tp(a1) occurs in π
n(f

′′
) can be mapped

to ai via an elementary map which fixes acl({a1, . . . , an+1} \ {ai}) pointwise.
The remainder of the proof uses the same argument as in Lemma 3.15: if, say, i = 1 and

j = n + 1, we can perform a similar series of amalgamations to get a compatible family of
maps 〈ϕs : {2} ⊆ s ⊆ {1, . . . , n + 1}〉 which fix the “face” acl(a2, . . . , an+1) pointwise and

map f
′
to f

′′
. ⊣

Lemma 3.18. Suppose that f = (f1, . . . , fn) is a compatible n-tuple from Pn−1 and {r1, . . . , rN}
is a list of all the elements of Pn(f). Then tp(r1ri/f) = tp(r1rj/f) if and only if i = j.

Thus

{tp(rirj/∂(f)) : 1 ≤ i, j ≤ N}

contains exactly N types, represented by the pairs (r1, r1), (r1, r2), . . . , (r1, rN).

Proof. If we fix any other compatible tuple f
′
as in the statement of Lemma 3.15, then it is

immediate from the definition that for any two distinct i, j ∈ {1, . . . , n+ 1}, if rk 6= rℓ then

χ(i, j; r1, rk, f
′
) 6= χ(i, j; r1, rℓ, f

′
).

The relation above is independent of the particular choice of f
′
by Lemma 3.17, and so this

relation is clearly definable over acl(π(r1)) by definability of types. Since tp(r1ri/ acl(π(r1)))
is isolated over f , this proves that there are at least N distinct such types.

The fact that there are only N possible types of pairs (ri, rj) follows from the fact that

for any i, k ∈ {1, . . . , N}, tp(ri/f) = tp(rk/f). ⊣

Definition 3.19. Fix some f ∈ P and let gi = πn
i (f) for each i ∈ {1, . . . , n}. Suppose that

N is the number of realizations of the type q := tp(f/g1, . . . , gn), and let f = f1, f2, . . . , fN
be an enumeration of all the realizations of q.

By Lemma 3.18, there are formulas ϕ(z) = ϕ(z1, . . . , zn), ψ(y, z), and θ1(y1, y2, z), . . . , θN(y1, y2, z)
such that:

(1) ϕ(z) ∈ tp(g1, . . . gn);
(2) ψ(y, z) ∈ tp(f, g1, . . . , gn) and ψ(y, z) ⊢ ϕ(z);
(3) θi(y1, y2, z) ∈ tp(f1, fi, g1, . . . , gn) and θi(y1, y2, z) ⊢ ψ(y1, z) ∧ ψ(y2, z);
(4) Whenever ϕ(c) holds, then ψ(y, c) has precisely N realizations;
(5) Whenever ψ(f, c) ∧ ψ(f ′, c) holds, there is exactly one i ∈ {1, . . . , N} such that

θi(f, f
′, c) holds; and

(6) Whenever ϕ(c) and ψ(f, c) hold, then c = πn(f) = (πn
1 (f), . . . , π

n
n(f)).

Definition 3.20. Suppose that f |= pn and (g1, . . . , gn) = πn(f) (so |= ϕ(g)). Then for
any two i, j ∈ {1, . . . , N}, there is a unique element i ⋆ j ∈ {1, . . . , N} such that whenever
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θi(f2, f3) ∧ θj(f1, f2) holds, then θi⋆j(f1, f3) also holds. This forms a group operation on the
set {1, . . . , N}, and we call the resultant group G.

Furthermore, from now on we will assume that the formulas in Definition 3.19 satisfy the
following additional property:

(7) Whenever θi(f2, f3, c) ∧ θj(f1, f2, c) holds, then θi⋆j(f1, f3, c) also holds.

Definition 3.21. Suppose that ϕ(c) holds.

(1) The equivalence relation ∼c on ψ(y, c)× ψ(y, c) is defined by: (r, s) ∼c (r
′, s′) if and

only if there is some i ∈ {1, . . . , N} such that θi(r, s, c)∧ θi(r
′, s′, c). We use brackets

[(r, s)] to denote the c-class of (r, s). (Note that it is never ambiguous what c is since
c ∈ dcl(r).)

(2) Gc, as a set, is the quotient of ψ(y, c) × ψ(y, c) by the equivalence relation ∼c. We
define a group operation · on Gc by the rule that

[(s, t)] · [(r, s)] = [(r, t)].

(By the properties of the formulas θi, this gives a well-defined binary operation.)

Lemma 3.22. For any two n-tuples c and c′ such that ϕ(c)∧ϕ(c′) holds, there is a canonical
(c, c′)-definable isomorphism Φc,c′ : Gc → Gc′. These automorphisms commute: Φc′,c′′◦Φc,c′ =
Φc,c′′.

Proof. Let Φc,c′([(r, s)]) = [(r′, s′)] if and only if there is some i ∈ {1, . . . , N} such that

|= θi(r, s, c) ∧ θi(r
′, s′, c′).

⊣

At this point it is clear that the isomorphism type of all the groups Gc in the previous
Lemma is the same as the G in Definition 3.20 above. Using the definability of ∼c, we will
think of G as living in C

eq = C and identify it with the concrete groups Gc. Although it is
not immediate from the definition, we will see below that the group G is always abelian.

Definition 3.23. Given a tuple c such that ϕ(c) holds, the standard action of G on ψ(C, c)
is given by the rule: if α = [(r, s)] where

|= ψ(r, c) ∧ ψ(s, c) ∧ θi(r, s, c),

then for any f ∈ ψ(C, c), α(f) is the unique element such that θi(f, α(f), c) holds.

Lemma 3.24. Suppose that Q(r1, . . . , rn+1) holds of some compatible (n+1)-tuple (r1, . . . , rn+1)
from Pn. Then for any α ∈ G and any i ∈ {1, . . . , n},

|= Q(r1, . . . , ri−1, α(ri), α(ri+1), ri+2, . . . , rn+1).

Proof. Suppose that (a1, . . . , an+1) is the realization of I(n+1) such that for any k ∈ {1, . . . , n+ 1},
π(rk) = (a1, . . . , âk, . . . , an+1), and pick any an+2 realizing the nonforking extension of
tp(a1) to (a1, . . . , an+1). Throughout the argument below, we let sk := [n + 2] \ {k} and
sk,ℓ := [n + 2] \ {ℓ, k}, and we use the same symbol sk or sk,ℓ to denote the ordered tuple
enumerating the elements of this set in ascending order.

To ease notation, let

Ak = Ask = acl(a1, . . . , âk, . . . , an+2)
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and
Ak,ℓ = Ask,ℓ = acl(a1, . . . , âk, . . . , âℓ, . . . , an+w).

Use Lemma 1.20 to fix some (n − 1)-symmetric system {as : s ∈ [n + 2](≤n−1)} for
{a1, . . . , an+2}, and let “a∂(si,n+2)” be the tuple

(as1,i,n+2
, . . . , asi,n+1,n+2

).

Let r′i+1 be the unique element such that

|= Q(r1, . . . , ri−1, α(ri), r
′
i+1, ri+2, . . . , rn+1).

We will show that

(∗) (ri, α(ri), a∂(si,n+2)) ≡ (ri+1, r
′
i+1, a∂(si+1,n+2)),

which immediately implies that r′i+1 = α(ri+1), finishing the proof of the Lemma.
Pick some compatible n-tuple g = 〈gk : k ∈ [n+ 2] \ {i, i+ 1}〉 from Pn−1 such that

π(gk) = (a1, . . . , âi, âi+1, . . . , âk, . . . , an+2)

and gn+2 = πn
i (ri+1) = πn

i+1(ri). To prove (∗), it suffices to show:

(∗∗) χ(1, i+ 1; ri, α(ri), g) = χ(1, i+ 1; ri+1, r
′
i+1, g).

Claim 3.25. There is a system of elementary maps 〈ϕs : s ⊆ s0〉 satisfying all of the
following properties:

(1) ϕs ∈ Aut(As);
(2) If s ⊆ t, then ϕs ⊆ ϕt;

(3) If {1, . . . , î, i+ 1, . . . , n+ 1} ⊆ s, then ϕs(ri) = α(ri);

(4) If {1, . . . , i, î+ 1, . . . , n+ 1} ⊆ s, then ϕs(ri+1) = r′i+1;
(5) If |s| < n, then ϕs is the identity map; and
(6) If k ∈ {1, . . . , n+ 1} \ {i, i+ 1} and s ⊆ [n+ 2] \ {k}, then ϕs is the identity map.

To prove Claim 3.25, first pick the maps ϕs for every s ⊆ si+1,n+2 satisfying conditions (4)
and (5) using the fact that (by our assumptions)

(ri+1, a∂(sn+2)) ≡ (r′i+1, a∂(sn+2)).

Then use relative (n, n)-uniqueness over the base set acl(ai) to find a map ϕsn+2 ∈ Aut(acl(a1, . . . , an+1))

which extends ϕsi+1,n+2
and the identity maps on Ask,n+2

for every k ∈ [n + 1] \ {i, i + 1}.
The fact that condition (3) is satisfied is immediate from the definable Q relation which is
preserved by the σ maps.

Claim 3.26. We may extend the system of maps in Claim 3.25 to a system of maps 〈ϕs :
s ⊆ [n+ 2]〉 which continues to satisfy (1)-(6).

To prove Claim 3.26, we simply use relative (n, n)-uniqueness over the base set acl(ai, ai+1)
to amalgamate the map ϕsn+2 from Claim 3.25 with the identity maps on Ask for each
k ∈ [n+ 1] \ {i, i+ 1} (noting that this is coherent by condition (5) of Claim 3.25).

Now that we have Claim 3.26, write ϕ for the map ϕ[n+2] ∈ Aut(A[n+2]). Fix some arbitrary
k ∈ Pn(g) and elements 〈hk, h

′
k : k ∈ {1, . . . , n+ 1} \ {i, i+ 1}〉 such that

π(hk) = (a1, . . . , âi, . . . , âk, . . . , an+2),
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π(h′k) = (a1, . . . , âi+1, . . . , âk, . . . , an+2),

and

(∗ ∗ ∗) Q(ri, h1, . . . , hi−1, k, hi+2, . . . , hn+1) ∧Q(ri+1, h
′
1, . . . , h

′
i−1, k, h

′
i+2, . . . , h

′
n+1).

Then applying the map ϕ to both relations in (∗ ∗ ∗), we have that

Q(α(ri), h1, . . . , hi−1, ϕ(k), hi+2, . . . , hn+1) ∧Q(r
′
i+1, h

′
1, . . . , h

′
i−1, σ(k), h

′
i+2, . . . , h

′
n+1).

Comparing the two Q relations above, we have that, on the one hand,

ϕ(k) = [χ(1, i+ 1; ri, α(ri), g)] (k),

and on the other hand,
ϕ(k) =

[
χ(1, i+ 1; ri+1, r

′
i+1, g)

]
(k).

Since k ∈ Pn(g) was arbitrary, we conclude that χ(1, i+1; ri, α(ri), g) = χ(1, i+1; ri+1, r
′
i+1, g),

establishing (∗∗) and hence the Lemma.
⊣

Corollary 3.27. G is abelian.

Proof. This follows by the same argument as in Proposition 2.13 (2), using Lemma 3.24 plus
the regularity of the action of G on each set ψ(C, c) such that |= ϕ(c). ⊣

Lemma 3.28. Suppose that k ≥ n, (a1, . . . , ak), (b1, . . . , bk) ∈ I(k), and that (A1, . . . , An−1)
and (B1, . . . , Bn−1) are maximal compatible systems going up to Pn−1 in the sense of Defini-
tion 2.7 such that A1 = {a1, . . . , ak} and B1 = {b1, . . . , bk}. Let

acli(a) =
⋃

u⊂i{1,...,k}

acl(au),

and acli(b) is defined similarly. Then there is an elementary map f : acln−1(a) → acln−1(b)
such that f(ai) = bi for every i ∈ {1, . . . , k} and f(Aj) = Bj for every j ∈ {1, . . . , n− 1}.

Proof. Apply Lemma 1.18 and the “isolation of types” clause for a symmetric witness to the
failure of (n+ 1)-uniqueness (part (1) of Definition 3.12).

⊣

Finally, we put all the pieces together to prove the main theorem of the section.
Proof of Theorem 3.3: Recall that we are assuming T is stable with k-uniqueness for every

k ≤ n and that T does not have (n + 1)-uniqueness over A. By Proposition 3.13, there is
a symmetric witness to the failure of (n + 1)-uniqueness over A. In other words, there is
an infinite Morley sequence I over some A = acl(A) and a relatively I-definable connected
n-ary quasigroupoid H = (I, P2, . . . , Pn, Q) satisfying (1) and (2) of Definition 3.12. Clause
(2) of this definition implies that H is locally finite.

The group G defined in Definition 3.20 and its standard action (Definition 3.23) form a
regular action on the quasigroupoid H by Lemma 3.24. By Lemma 3.28 above, this action is
(n+2)-homogeneous (as in Definition 2.14). Now Theorem 2.15 above implies that, possibly
after replacing Q by Qg for some g ∈ G (which certainly preserves relative I-definability),
we may assume that Q is associative. So H is an n-ary polygroupoid. Finally, condition (4)
of Theorem 3.3 is satisfied by H due to clause (1) of Definition 3.12 (“isolation of types”).

For the converse, suppose that we have a Morley sequence I over A and a relatively I-
definable n-ary polygroupoidH satisfying (1)-(4) of the hypothesis. Then for any (a1, . . . , an+1) ∈
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I(n+1) and any f ∈ Pn(a1, . . . , an), evidently f ∈ aclA(a1, . . . , an) (because H is locally finite),
f /∈ ∂A(a1, . . . , an) (by clause (4) and the fact that G 6= 1), and

f ∈ dcl(aclA(â1a2 . . . an+1), aclA(a1â2 . . . an+1), . . . , aclA(a1 . . . ânan+1)

(by picking appropriate elements fi ∈ Pn(a1, . . . , âi, . . . , an+1) and using the Q relation).
Therefore T fails to have the property defined as B(n + 1) above which is equivalent to
(n+ 1)-uniqueness in any stable theory with n-uniqueness (Fact 1.14). ⊣

It is worth noting that the n-ary polygroupoid constructed above is totally categorical:

Corollary 3.29. If T is a stable theory with (≤ n) uniqueness but not (n + 1)-uniqueness,
then there is some Morley sequence I and some relatively I-definable n-ary polgroupoid H =
(I, P2, . . . , Pn, Q) witnessing the failure of (n + 1)-uniqueness such that the complete theory
of H is totally categorical, in the n-sorted language with sorts for I, P2, . . . , Pn, a relation
symbol for Q, and function symbols for the projection maps πi : Pi → (Pi−1)

i.
More precisely, there is a relatively I-definable, totally categorical n-ary polygroupoid as

above such that some closed independent (n+1)-amalgamation problem A in H has two non-
isomorphic solutions, and this yields a closed independent (n+ 1)-amalgamation problem in
the original theory T with two non-isomorphic solutions (since the set I is independent and
the definable structure on H is definable from T ).

Proof. Let H be the n-ary polygroupoid constructed in Theorem 3.3. At this point it is
clear that there is a closed independent (n+1)-amalgamation problem over acl(∅) in H with
two non-isomorphic solutions (use the algebraic closures of independent elements of I as the
“vertices” A({i}), and the non-uniqueness of solutions comes from the interdefinability of
fibers in Pn given by the Q relation).

For the ω-categoricity of H, we show that for every k > 0 there are finitely many complete
k-types over ∅. Since I is an indiscernible set in T , for every permutation σ of I there is
an automorphism ϕσ of the structure H which extends σ. Therefore if A is any set of n · k
distinct elements of I, any orbit of any (f1, . . . , fk) under Aut(H) intersects cl(A). But since
H is locally finite, cl(A) is finite.

Finally, to show that the theory of H is uncountably categorical, note that for any finite
A ⊆ H, the set I\supp(A) is an indiscernible set over A (since any permutation of I\supp(A)
can be extended to an elementary map in Aut(C/A), and hence to an automorphism of H
fixing A). Thus I is a strongly minimal set in the theory of H, and since H is the algebraic
closure of I, it is uncountably categorical.

⊣

4. Examples of n-ary quasigroupoids and n-ary polygroupoids

In this section, we describe a family of examples of connected n-ary quasigroupoids and
n-ary polygroupoids. These are the simplest possible n-ary quasigroupoids equipped with a
regular action of a finite abelian group G: in these examples, the fibers P2, . . . , Pn−1 are all
“trivial” in the sense that for any k ∈ {2, . . . , n − 1} and any (a1, . . . , ak) ∈ I(k), there is a
unique element in Pk(a1, . . . , ak). We will show that their complete theories (in a suitable
language) are totally categorical, eliminate quantifiers, have k-uniqueness for every k ≤ n,
and fail to have (n+ 1)-uniqueness.
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The language Ln for these examples is as follows. There are (n+1) sorts I = P1, P2, . . . , Pn =
P and G, plus function symbols for πk : Pk → (Pk−1)

k. There are function symbols for a
binary operation on G and for an action from (G × P ) to P , both of which we will denote
by “+” without risk of confusion. There is an (n+ 1)-ary relation symbol Q on P . Finally,
for every σ in the symmetric group Sn, there is a function symbol ισ : P → P .

Next we describe the standard countable Ln-structure HG,n whose complete theory will
be TG,n. This structure depends on choices of both an integer n ≥ 2 and a finite nontrivial
abelian group G.

InHG,n, the sort I is interpreted as ω and for every k ∈ {2, . . . , n−1}, the sort Pk is simply
ω(k). The sort Pn is interpreted as ω(n) ×G. The projection functions πk : Pk → (Pk−1)

k are
interpreted in the natural way: for k < n and i ∈ {1, . . . , k},

πk
i ((a1, . . . , ak)) = (a1, . . . , âi, . . . , ak),

and πn is given by

πn
i ((a1, . . . , an), g) = (a1, . . . , âi, . . . , an).

If (f1, . . . , fn+1) is a compatible (n+1)-tuple from P such that fi = ((a1, . . . , âi, . . . , an+1), gi),
then we define Q so that

Q(f1, . . . , fn+1) ⇔
n+1∑

i=1

(−1)igi = 0.

The group G acts on P by the rule

((a1, . . . , an), g) + h = ((a1, . . . , an), g + h).

Finally, the function symbols ισ : P → P are interpreted by the rule

ισ((a1, . . . , an), g) = (aσ(1), . . . , aσ(n)), sign(σ)).

The following facts about HG,n are all easily checked from the definition of the structure:

Proposition 4.1. (1) HG,n is a connected n-ary quasigroupoid.
(2) For any k ∈ {2, . . . , n− 1} and any (a1, . . . , ak) ∈ I(k), |Pk(a1, . . . , ak)| = 1.
(3) HG,n is associative (hence an n-ary polygroupoid).
(4) The action of G on HG,n is regular.
(5) For any σ ∈ Sn and (a1, . . . , an) ∈ I(n), ισ induces a bijection from P (a1, . . . , an) to

P (aσ(1), . . . , aσ(n)).
(6) For any σ, τ ∈ Sn,

ισ◦τ = ισ ◦ ιτ .

(7) For any g ∈ G, any σ ∈ Sn, and any f ∈ P ,

ισ(f + g) = ισ(f) + (−1)sign(g)(g).

(8) If f1, . . . , fn+1 is a compatible tuple from P such that Q(f1, . . . , fn+1) holds, then for
any i ∈ {1, . . . , n− 1}, if σi ∈ Sn is the transposition (i, i+ 1), then

Q(ισi−1
(f1), . . . , ισi−1

(fi−1), fi+1, fi, ισi
(fi+2), . . . , ισi

(fn+1)).
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We think of the maps ισ as “generalized inverse maps” on the sort P , noting that when
n = 2 and σ = (12) this really is an inverse map from Mor(a1, a2) to Mor(a2, a1). It turns
out that is necessary to add the maps ισ to the basic language if we hope to have elimination
of quantifiers. For instance, in the case where n = 3, consider any (a1, a2, a3, a4) ∈ I(4) and
pair of elements (f1, f2) from P such that f1 ∈ P (a1, a2, a4) and f2 ∈ P (a2, a1, a4). From the
pair (f1, f2), we can define a bijection ι(f1,f2) from P (a1, a2, a3) to P (a2, a1, a3) by the rule
that whenever

Q(h1, h2, f1, f)

holds, then so does
Q(h2, h1, f2, ι(f1,f2)(f)).

As is easy to verify, this definition is independent of the choices of h1 and h2. Thus over
acleq(a1, a2) we have a family of definable bijections from P (a1, a2, b) to P (a2, a1, b), which
it turns out is equal to ι(12) + g for some fixed g ∈ G.

Definition 4.2. A connected n-ary polygroupoid with inverses is an Ln-structure satisfying
all the properties (1) through (8) of Proposition 4.1.

Definition 4.3. If (I, <) is any linearly ordered set such that |I| ≥ n with a minimal element
a ∈ I, then the n-star of (I, <) is the set

Starn(I, <) := {(a, b1, . . . , bn−1) : a < b1 < . . . < bn−1}.

A set S ⊆ I(n) is an n-star centered at a or an n-star over I if S = Starn(I, <) for some
linear ordering < on I in which a is the minimal element.

If S is an n-star, a solution on S is a function s : S → Pn such that for any u ∈ S we have
that s(u) ∈ Pn(u).

Proposition 4.4. Suppose H = (I, P2, . . . , Pn, Q,G) and H∗ = (I∗, P ∗
2 , . . . P

∗
n , Q

∗, G∗) are
two connected n-ary polygropuoids with inverses with |I| ≥ n, and that we have the following:

(1) A bijection ϕ : I → I∗;
(2) A group isomorphism ψ : G→ G∗;
(3) An n-star S over I centered at a, which corresponds via ϕ to an n-star S∗ := ϕ(S)

centered at a∗ := ϕ(a); and
(4) Two solutions s : S → Pn and s∗ : S∗ → P ∗

n .

Then there is a unique isomorphism χ : H → H∗ of Ln-structures which extends ϕ ∪ ψ
and satisfies

χ(s(u)) = s∗(ϕ(u))

for every u ∈ S.

Proof. First, we fix a linear ordering < over I such that S = Starn(I, <) and a is the <-
minimal element of I (in fact, for n ≥ 3, this ordering is uniquely determined by the set S).
This transfers via ϕ to a linear ordering over I∗ with a∗ as the minimal element such that
S∗ = Starn(I

∗, <), and we will use the same symbol < for both orderings without risk of
confusion.

Form the partition I(n) = Ia ∪ Ib where Ia consists of all tuples I(n) which contain the

element a and Ib := (I \ {a})(n). Let P = Pa ∪Pb be the corresponding partition of P = Pn,
and we define sets I∗a , I

∗
b , P

∗
a , and P

∗
b in H2 analogously (replacing a everywhere by a∗).
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The first step is to define a function ϕa : Pa → P ∗
a using the inverse maps. Given any

tuple (c1, . . . , cn) ∈ Ia, first select the unique (b1, . . . , bn) ∈ S and the unique σ ∈ Sn such
that

(c1, . . . , cn) = (bσ(1), . . . , bσ(n)).

Then for any f ∈ P (c1, . . . , cn), there is a unique g ∈ G such that

f = ισ [s(b1, . . . , bn)] + g,

and we define
ϕa(f) := ι∗σ [s

∗(ϕ(b1), . . . , ϕ(bn))] + ψ(g).

Observe that it follows immediately from the definition that ϕa respects the action of the
group G, that is, that ϕa(f + g) = ϕa(f) + ψ(g) for any f ∈ dom(ϕa) and any g ∈ G. It
is also immediate that ϕa satisfies the requirement that ϕa(s(u)) = s∗(ϕ(u)) for any u ∈ S,
simply by letting σ be the identity permutation and by letting g = 0.

Now we define a function ϕb : Pb → P ∗
b via ϕa and the Q-relation: if f ∈ Pb, say f ∈

P (c1, . . . , cn), then we can pick elements fi ∈ P (a, c1, . . . , ĉi, . . . , cn) such thatQ(f, f1, . . . , fn)
holds, and then define ϕb(f) to be the unique element of P ∗(ϕ(c1), . . . , ϕ(cn)) such that

Q∗(ϕb(f), ϕa(f1), . . . , ϕa(fn)).

The first thing to check is that ϕb is well-defined, that is, that the definition of ϕb(f)
does not depend on the choice of the elements fi. If we also have Q(f, h1, . . . , hn) where
hi ∈ P (a, c1, . . . , ĉi, . . . , cn), then hi = fi + gi for some gi ∈ G, and by Proposition 2.13,

n∑

i=1

(−1)igi = 0.

The alternating sum of the elements ψ(gi) is also 0 since ψ is a group isomorphism. Therefore
by Proposition 2.13 again,

Q∗(ϕb(f), ϕa(f1) + ψ(g1), . . . , ϕa(fn) + ψ(gn)),

and by the observation above that ϕa commutes with the action of the group G, we conclude
that Q∗(ϕb(f), ϕa(h1), . . . , ϕa(hn)).

We now define χ as the function from H to H∗ which acts as ϕ on the I sort, as ψ on the
G sort, as ϕa∪ϕb on the Pn sort, and commutes with the projection functions πi. Evidently
this χ induces bijections between all the sorts which respect the fibers in P . We must check
that χ respects the rest of the Ln-definable structure: that it commutes with the action of
G and the inverse maps ισ, and that it preserves the Q relation.
χ respects the action of G: Let f ∈ P (u) and g ∈ G. As already observed above, it

follows directly from the definition of ϕa that if u ∈ Pa, then χ(f + g) = χ(f) + χ(g). So
suppose that g ∈ G and f ∈ Pb and

Q(f, f1, . . . , fn)

for elements fi ∈ Pa. We must check that ϕb(f + g) = ϕb(f) + ψ(g). But by the definition
of ϕb and Proposition 2.13,

Q∗(ϕb(f) + ψ(g), ϕa(f1) + ψ(g), ϕa(f2), . . . , ϕa(fn))

holds, and since ϕa commutes with the G action,

Q∗(ϕb(f) + ψ(g), ϕa(f1 + g), ϕa(f2), . . . , ϕa(fn)).
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By Proposition 2.13 again, we also have that

Q(f + g, f1 + g, f2, . . . , fn),

and so
Q∗(ϕb(f + g), ϕa(f1 + g), ϕa(f2), . . . , ϕa(fn)).

Comparing the last two sentences, we conclude that ϕb(f + g) = ϕb(f) + ψ(g).
χ commutes with the inverse maps: Fix σ ∈ Sn and f ∈ P , and we check that

ϕ(ισ(f)) = ι∗σ(ϕ(f)). We break into cases depending on whether f ∈ Pa or f ∈ Pb.
First suppose that f ∈ Pa, and say f ∈ (c1, . . . , cn) where some ci is equal to a1. As in

the definition of ϕa above, we first fix (b1, . . . , bn) ∈ S and τ ∈ Sn such that

(c1, . . . , cn) = (bτ(1), . . . , bτ(n))

and we pick g ∈ G such that
f = ιτ (s(b1, . . . , bn)) + g.

We calculate:
χ (ισ(f)) = ϕa

(
ισ◦τ (s(b1, . . . , bn)) + (−1)sg(σ)g

)
,

which by the definition of ϕa is equal to

ι∗σ◦τ [s
∗(ϕ(b1), . . . , ϕ(bn))] + (−1)sg(σ)ψ(g)

= ι∗σ [ι
∗
τ (s

∗(ϕ(b1), . . . , ϕ(bn))) + ψ(g)]

= ι∗σ(ϕa(f)),

which is what we wanted to show.
For the other case, suppose f ∈ Pb and pick elements fj ∈ Pa (for j ∈ {1, . . . , n}) such

that
Q(f, f1, . . . , fn),

and so by definition of ϕb,
Q∗(ϕb(f), ϕa(f1), . . . , ϕa(fn)).

By property (8) of Proposition 4.1 (the preservation of Q under transpositions) applied to
both of the Q relations immediately above, we conclude that

(†) Q(ισi
(f), ισi

(f1), . . . , fi+1, fi, ισi+1
(fi+2), . . . , ισi+1

(fn))

and

Q∗(ι∗σi
(ϕb(f)), ι

∗
σi
(ϕa(f1)), . . . , ϕa(fi+1), ϕa(fi), ι

∗
σi+1

(ϕ(fi+2)), . . . , ι
∗
σi+1

(ϕa(fn))).

Since we know that ϕa commutes with the inverse maps, we derive from the Q∗ relation
above that

(‡) Q∗(ι∗σi
(ϕb(f)), ϕa(ισi

(f1)), . . . , ϕa(fi+1), ϕa(fi), ϕ(ισi+1
(fi+2)), . . . , ϕa(ισi+1

(fn))).

By (†) and the definition of ϕ, we also have that

(†††) Q∗(ϕb(ισi
(f)), ϕa(ισi

(f1)), . . . , ϕa(fi+1), ϕa(fi), ϕa(ισi+1
(fi+2)), . . . , ϕa(ισi+1

(fn))).

Comparing (‡) with (†††), we conclude that ι∗σi
(ϕb(f)) = ϕb(ισi

(f)), as desired.
χ respects the Q relation: Suppose that h1, . . . , hn+1 are from P . It suffices to check

that, assuming Q(h1, . . . , hn+1) holds, then so does Q∗(ϕ(h1), . . . , ϕ(hn+1)).
Case (a) is when some hi belongs to Pa. By repeated applications of Property (8) of

Proposition 4.1 plus the fact noted above that ϕ commutes with the inverses, it we may
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assume without loss of generality that h1 ∈ Pa. But by the very definition of ϕb given above,
we have that Q(h1, h2, . . . , hn+1) implies Q∗(ϕb(h1), ϕa(h2), . . . , ϕa(hn+1)), which is what we
wanted.

Case (b) is when every hi belongs to Pb. (This seems to be the only step of the proof
which uses the fact that H and H∗ satisfy the associative law.) First we use the asso-
ciativity of H and Remark 2.11 to pick a collection of elements {fij : 1 ≤ i < j ≤ n+ 2}

such that fij ∈ P (a1, b2, . . . , b̂i, . . . , b̂j, . . . , bn+2), the Q relation holds of every tuple Fi =

(f1i, . . . , f̂ii, . . . , fi,n+2) (for each i ∈ {1, . . . , n+2}), and F1 is the original tuple (h1, . . . , hn+1).
Then for every i ∈ {2, . . . , n + 2}, by case (a) immediately above, the Q∗ relation holds of
the tuple χ(Fi) := (χ(f1i), . . . , χ(fi,n+2)). By the associativity of H∗, the Q∗ relation also
holds of χ(F1), that is,

Q∗(χ(h1), . . . , χ(hn+1)),

and we are finished.
Finally, we prove the uniqueness of the isomorphism χ : H → H∗ satisfying the hypotheses

of the Proposition. First note that ϕa is the only possible function which maps Pa onto P ∗
a ,

commutes with the group isomorphism ψ : G → G∗ and the inverse maps ισ, and satisfies
ϕa(s(u)) = s∗(ϕ(u)) for every u ∈ S. Then note that all of P is generated from Pa using the
Q relation, so the map ϕa has at most one extension to a function on all of P which respects
the Q relation. This was all we needed to verify.

⊣

Immediately from Proposition 4.4, we obtain the following important corollaries on auto-
morphisms:

Corollary 4.5. If H = (I, . . . , P, G,Q) is any connected n-ary polygroupoid with inverses
and S ⊆ I(n) is an n-star over I, then for any function ϕ : S → G, there is a unique
automorphism χ ∈ Aut(H/I ∪G) such that for every w ∈ S and every f ∈ P (w),

χ(f) = f + ϕ(w).

Corollary 4.6. For any connected n-ary polygroupoid with inverses H = (I, G, . . .), any
permutation ϕ of I can be extended to an automorphism of H which fixes G pointwise.

Lemma 4.7. Suppose that M = (I, P2, . . . , Pn, G) |= Tn,G (with G finite), and let

Mhome = I(M) ∪ P2(M) ∪ . . . ∪ Pn(M) ∪G(M)

(that is, the union of the “home sorts” of M). Then for any X ⊆Mhome,

acleq(X) ∩Mhome = cl(X)

in the sense of Definition 2.4.

Proof. It is immediate that every element of cl(X) is in acleq(X) (this uses the finiteness of
G). For the other direction, of acleq(X) ∩Mhome contained any element outside of cl(X),
then it would necessarily contain some element a ∈ I \ (X ∩ I). But by Corollary 4.6 and
the infinitude of I, no such element a can belong to acleq(X ∩ I) = acleq(X). ⊣

Corollary 4.8. If H = (I, P,G, . . .) is any connected n-ary polygroupoid with inverses, then
Γ = Aut(H) has the following normal series:
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Γ⊲ Γ1 ⊲ Γ2,

where:

(1) Γ1 = Aut(H/I);
(2) Γ2 = Aut(H/I∪G) ∼=

∏
S G, the direct product of infinitely many copies of G indexed

by some n-star S over I;
(3) Γ2 ⊳ Γ;
(4) Γ1/Γ2

∼= Aut(G); and
(5) Γ/Γ2

∼= Sym(I).

Theorem 4.9. If we define TG,n to be the complete Ln-theory of the structure HG,n above
(for n ≥ 2 and G some finite nontrivial abelian group), then:

(1) TG,n is completely axiomatized by a set of sentences asserting the following:
(a) HG,n is a connected n-ary polygroupoid with inverses (that is, it satisfies proper-

ties (1) through (8) of Proposition 4.1);
(b) I is infinite; and
(c) A list of axioms for the group structure (G,+) (which characterizes G up to

isomorphism, since G is finite).
(2) TG,n is totally categorical.
(3) TG,n has quantifier elimination after adding constants for each element of G.

Proof. We prove all three parts of the theorem simultaneously by a back-and-forth argument
using partial Ln-isomorphisms determined by n-stars. The key point is the following:

Claim 4.10. Suppose that H = (I, P2, . . . , G) and H∗ = (I∗, P ∗
2 , . . . , G

∗) are two connected
n-ary polygroupoids with inverses with a group isomorphism ψ : G → G∗. Then given any
two sets A ⊆ I and A∗ ⊆ I∗, any two elements b ∈ I \ A and b∗ ∈ I∗ \ A∗, and any
isomorphism of Ln-structures χ : cl(A) → cl(A∗) extending ψ, there is an extension χ̃ ⊇ χ
to an isomorphism of Ln-structures such that χ̃ : cl(A ∪ {b}) → cl(A∗ ∪ {b∗}).

To prove Claim 4.10, first pick any a ∈ I and any n-star S ⊆ I(n) centered at a. Let
a∗ = χ(a) and let S∗ be the image of S under χ (which is an n-star centered at a∗). Finally,
pick an arbitrary function s : S → Pn such that s(u) ∈ Pn(u) for every u ∈ S and let
s∗ : S∗ → P ∗

n be the function induced by χ and s, that is, so that s∗(χ(u)) = χ(s(u))
for every u ∈ S. Pick any n-star S̃ ⊇ S (also centered at a) and any extension s̃ ⊇ s to

a selection function s̃ : S̃ → Pn, and let S̃∗ ⊆ (I∗)(n) and s̃∗ : S̃∗ → P ∗
n be induced by

χ as before. Now we define the bijection ϕ : (A ∪ {b}) → (A∗ ∪ {b∗}) as the restriction
of χ to A extended so that ϕ(b) = b∗, and we apply Proposition 4.4 using this ϕ, the
group isomorphism ψ : G → G∗, and the solutions s̃ and s̃∗; this yields an isomorphism
χ̃ : cl(A∪ {b}) → cl(A∗ ∪ {b∗}) of Ln-structures. The fact that χ̃ extends χ follows from the
uniqueness clause of Proposition 4.4 applied to χ̃ ↾ cl(A) and χ.

Given Claim 4.10, we now consider any two connected n-ary polygroupoids with inverses
H = (I, P2, . . . , G) and H∗ = (I∗, P ∗

2 , . . . , G
∗) such that |I| = |I∗| ≥ n and G ∼= G∗. First

note that for any n-element sets A ⊆ I and A∗ ⊆ I∗, there is an isomorphism χ : cl(A) →
cl(A∗) of Ln-structures which extends ψ : G → G∗ (this is straightforward, but since cl(A)
includes fibers Pn(u) for all n! permutations of A, we do need properties (6) and (7) of
Propostion 4.1 to ensure the existence of χ). With this as a base case, we can now use
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Claim 4.10 as the induction step of a standard back-and-forth argument to conclude that
H ∼= H∗ as Ln-structures. This gives us the completeness of the axioms in part (1) of
Theorem 4.9 plus the total categoricity of TG,n. Finally, the elimination of quantifiers for
TG,n in the language Ln plus constants for G also follows immediately from Claim 4.10 by a
standard argument.

⊣

Everywhere below, G is always a finite nontrivial abelian group.

Lemma 4.11. If C a monster model of TG,n and A,B,C substets of I(C) ∪ P (C),

A |⌣
B

C ⇔ [cl(A ∪B) ∩ cl(C ∪B)] = cl(B).

Proof. The direction “⇒” is immediate using the characterization of algebraic closure given
by Lemma 4.7. For the direction “⇐,” suppose that A,B, and C are subsets of C. By
quantifier elimination, the only formulas ϕ(x; c) over C which divide over B are ones which
imply that x ∈ cl(C ∪B) \ cl(B) (since the atomic Ln-formulas over c can only express that
a variable from x is in some finite substructure generated by c). But since TG,n is stable,
forking equals dividing. Therefore if [cl(A ∪B) ∩ cl(C ∪B)] = cl(B), then A |⌣B

C. ⊣

Proposition 4.12. After naming constants for every element of G, TG,n has weak elimina-
tion of imaginaries (that is, elimination of imaginaries up to names for finite sets).

Proof. We use the criterion given by Lemma 16.17 of [19], which says that it suffices to check
the following two conditions (working in C and not Ceq):

(1) There is no strictly decreasing sequence A0 ) A1 ) . . ., where every Ai is the algebraic
closure of a finite set of parameters; and

(2) If A and B are algebraic closures of finite sets of parameters in C, then Aut(C/A∩B)
is generated by Aut(C/A) and Aut(C/B).

Condition (1) is immediate from the characterization of algebraic closure given by Lemma 4.7
(that each Ai is cl(Ii) for some Ii ⊆ I(C)).

For condition (2), suppose that σ ∈ Aut(C /A ∩ B), and assume that A = cl(A0) and
B = cl(B0) where A0, B0 ⊆ I(C). By Proposition 4.4, any permutation of I(C) which fixes
A0 can be extended to an automorphism of Aut(C /A), and likewise for B0 and B.

Using the fact that Sym(I/A0 ∩ B0) is generated by Sym(I/A0) and Sym(I/B0) to find
an automorphism τ ∈ Aut(C) such that τ is in the subgroup generated by Aut(C /A) and
Aut(C /B) and σ̃ := σ ◦ τ−1 fixes I pointwise.

Now we write σ̃ as the composition of two automorphisms σA ∈ Aut(C /A) and σB ∈
Aut(C /B). Take an arbitrary point a ∈ A0 ∩ B0 (if the intersection is empty, choose
a ∈ A0). Let S be an n-star at a and let s : S → Pn be a solution function. Let s∗ = σ̃ ◦ s.
Then s∗ is a solution function on the same n-star S. Let t : S → G be the function uniquely
determined by the condition s∗(a, c1, . . . , cn−1) = s(a, c1, . . . , cn−1) + t(a, c1, . . . , cn−1).

By Proposition 4.4, σ̃ is completely determined by s and s∗ (because it fixes I and G).
Equivalently, the isomorphism σ̃ is uniquely determined by the function t. We now show
how to write t as a sum of two functions tA and tB that give isomorphisms fixing A and B
respectively.

Since σ̃ fixes A ∩ B pointwise, we have

t(a, c1, . . . , cn−1) = 0 for all c1, . . . , cn−1 ∈ A0 ∩B0. (∗)
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Define the functions

tA(a, c1, . . . , cn−1) =

{
0, if c1, . . . , cn−1 ∈ A0;

t(a, c1, . . . , cn−1), otherwise;

tB(a, c1, . . . , cn−1) =

{
t(a, c1, . . . , cn−1), if c1, . . . , cn−1 ∈ A0;

0, otherwise;
.

It is clear that t = tA+tB. For all c1, . . . , cn−1 ∈ B0 we have tB(a, c1, . . . , cn−1) = 0: if at least
one of c1, . . . , cn−1 is not in A0, this follows by the definition; and if c1, . . . , cn−1 ∈ A0 ∩ B0,
the function tB(a, c1, . . . , cn−1) = t(a, c1, . . . , cn−1) = 0 by (∗).

Let σA ∈ Aut(C) be the automorphism determined by the identity permutation of I, iden-
tity isomorphism of G and the function tA. Similarly let σB ∈ Aut(C) be the automorphism
determined by the functon tB. Since the function tA(a, c1, . . . , cn−1) = 0 for all c1, . . . , cn−1 ∈
A0 and tB(a, c1, . . . , cn−1) = 0 for all c1, . . . , cn−1 ∈ B0, we have σA ∈ Aut(C /A) and
σB ∈ Aut(C /B). Finally, since tA(a, c1, . . . , cn−1) + tB(a, c1, . . . , cn−1) = t(a, c1, . . . , cn−1)
for all c1, . . . , cn−1 ∈ I, we have σB ◦ σA = σ̃. Finally, we get σB ◦ σA ◦ τ = σ. ⊣

Proposition 4.13. (1) TG,n has (≤ n)-uniqueness.
(2) T does not have (n + 1)-uniqueness over acl(∅).
(3) If A ⊆ C is any algebraically closed set containing at least one element of I, then T

has k-uniqueness over A for every k.

Proof. (1) We will show that TG,n has n-uniqueness over any set, and note that k-uniqueness
for k < n can be proved by a similar argument. Let A : P−([n]) → C be a closed independent
n-amalgamation problem over the algebraically closed set B ⊆ C (as in the notation of
Section 1), and let A′,A′′ be two independent solutions to A. If A({i}) is the algebraic
closure over B in T eq

G,n of mi elements from I \B (for each i ∈ [n]), then the image of A′
{i},[n]

is the algebraic closure over B of some tuple bi ⊆ I of size mi, and the image of A′′
{i},[n] is

the algebraic closure over B of a tuple ci ⊆ I of size mi, where both families {bi : i ≤ n} and
{ci : i ≤ n} are pairwise disjoint. Pick some a ∈ I which is not contained in B nor in any of
the tuples bi or ci. Choose some n-star S centered at a over the set B ∪ {a} ∪ {bi : i ≤ n}
and another n-star S∗ centered at a over supp(B)∪{a}∪{ci : i ≤ n}. We arbitrarily select a
solution function s : S → Pn as in Proposition 4.4, and note that for any u ∈ S, the element
s(u) must be completely contained in the image of some transition map A′

v,[n] for v a proper

subset of [n]. Fix some bijection

ϕ : supp(B) ∪ {a} ∪ {bi : i ≤ n} → supp(B) ∪ {a} ∪ {ci : i ≤ n}

which fixes supp(B)∪{a} pointwise. Then S is transferred via ϕ to some n-star S∗ centered
at a over the set supp(B) ∪ {a} ∪ {ci : i ≤ n}, and there is a unique solution function
s∗ : S∗ → Pn such that for any u ∈ S, there is some proper subset v of [n] and some f ∈ Pn

such that s(u) = A′
v,[n](f) and s

∗(ϕ(u)) = A′′
v,[n](f). By Proposition 4.4, we can construct a

unique isomorphism

χ : cl(B ∪ {a} ∪ {bi : i ≤ n}) → cl(B ∪ {a} ∪ {ci : i ≤ n})

extending ϕ and the identity map on G and sending s to s∗, and χ is an elementary map
since TG,n eliminates quantifiers. This gives the desired isomorphism between A′ and A′′.
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(2) Let (a1, . . . , an+1) be a sequence of distinct elements of I(C), which form an independent

set (by Lemma 4.11), then pick any elements f1, . . . , fn+1 such that fi ∈ P (a1, . . . , f̂i, . . . , fn+1)
and Q(f1, . . . , fn+1) holds, and clearly fi ∈ acl(a6=i)\dcl(a 6=i), so T does not satisfy the prop-
erty B(n+ 1) over acl(∅).

(3) To show k-uniqueness over A with a ∈ A∩ I, consider two solutions A′ and A′′ to the
same k-amalgamation problem A, and we repeat essentially the same argument as in the
proof of (1), only this time we use n-stars S and S∗ over the given point a. Then

A′([k]) = cl({s(u) : u ∈ S})

and any s(u) for u ∈ S is automatically in the image of some transition map A′
v,[k] for some

v ⊂k−1 [k], so by Proposition 4.4 we can build the desired isomorphism from A′([k]) to
A′′([k]).

⊣

This concludes our discussion of models of TG,n, which establishes that there do indeed
exist connected n-ary polygroupoids for every n ≥ 2 definable in theories that are very well-
behaved (ω-categorical and ω-stable), and that for any finite nontrivial abelian G we can
find such a structure on which G acts regularly (in the sense of Definition 2.12 above). It
seems that it is possible to construct more complicated examples of n-ary polygroupoids,
for example in which the sorts Pk for k ∈ {2, . . . , n − 1} have more than one fiber above
every tuple in I(k), or even with more complicated “inverse maps” ισ : P (a1, . . . , an) →
P (aσ(1), . . . , Pσ(n)) such that ι2(12) 6= id for the transposition (12). We will leave a detailed
study of all these possibilities for a future paper.
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