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Abstract. We study model theoretic tree properties (TP,TP1,TP2) and

their associated cardinal invariants (κcdt, κsct, κinp, respectively). In particu-
lar, we obtain a quantitative refinement of Shelah’s theorem (TP⇒ TP1 ∨TP2)

for countable theories, show that TP1 is always witnessed by a formula in a sin-

gle variable (partially answering a question of Shelah) and that weak k−TP1

is equivalent to TP1 (answering a question of Kim and Kim). Besides, we give

a characterization of NSOP1 via a version of independent amalgamation of

types and apply this criterion to verify that some examples in the literature
are indeed NSOP1.
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1. Introduction

One of the central tasks of abstract model theory is to understand what kinds
of complete first-order theories there are and how complicated they can be. In
practice, this is achieved by classifying theories according to the combinatorial
configurations that do or do not appear among the definable sets in their models.
The most meaningful of these configurations, the so-called dividing lines, have the
property that their absence signals the existence of some positive structure, while
their presence indicates some kind of complexity. Dividing lines come in two flavors:
local properties, which describe the combinatorics of sets defined by instances of a
single formula, and global properties, which describe the interaction of definable sets
generally. Stability, simplicity, NIP are examples of the former, while ω-stability,
supersimplicity, and strong dependence are examples of the latter (see e.g. [10]).
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In this paper, we study some questions around Shelah’s tree property TP and
its relatives SOP1, TP1, TP2 and weak k-TP1, as well as their global analogues
detected by the cardinal invariants κcdt(T ), κinp(T ), and κsct(T ). Our point of
departure is the third chapter of Shelah’s Classification Theory. There, Shelah in-
vestigates the global combinatorics of stable theories in terms of a cardinal invariant
κ(T ) quantifying the complexity of forking in models of T . In the final section of
this chapter, he introduces variations on κ(T ) with the invariants κcdt(T ), κsct(T ),
and κinp(T ) and proves several results about how they relate. In contemporary lan-
guage, these invariants bound the size of approximations to the tree property, the
tree property of first kind, and the tree property of the second kind consistent with
T , respectively. Later as the theory developed, a property of stable theories that
forking satisfies local character was isolated and theories satisfying this condition,
the simple theories, were intensively studied [4, 21, 25]. These theories are exactly
the theories without the tree property, which is to say those theories with κcdt(T )
bounded. Nonetheless, until recently, the aforementioned invariants have received
very little attention and many basic questions remain unaddressed.

Here, we focus on two such questions. Shelah proved that a theory has the tree
property if and only if it has the tree property of the first kind or the tree property
of the second kind [20]. In terms of the invariants, this amounts to the assertion
that κcdt(T ) = ∞ if and only if κinp(T ) + κsct(T ) = ∞. It is natural to ask if
this relationship persists when κcdt(T ) is bounded — in other words, if the equality
κcdt(T ) = κinp(T ) + κsct(T ) holds in general. Shelah also proved that κcdt(T ) = κ
is always witnessed by a sequence of formulas in a single free variable when κ is
an infinite cardinal or ∞. Recently, the first named author proved an analogous
result for κinp(T ) [8]. We consider here whether or not the computation of κsct(T )
similarly reduces to a single free variable. These questions were both raised by
Shelah (Question 7.14 in [20]).

We do not give a complete answer to any of them, but for each of these questions
there are two model-theoretically natural special cases to consider: first, the case
of countable theories and, secondly, the case where one or more of the invariants
in question are unbounded (which reduces to a question about configurations in
a single formula). In Section 3, we show that κcdt(T ) = κinp(T ) + κsct(T ) for
countable T . In Section 4, we show that if κsct(T ) =∞ then this will be witnessed
by a formula in a single free variable by showing that TP1 is always witnessed
by a formula in one free variable. The main ingredient in our argument is the
notion of a strongly indiscernible tree, which is more easily manipulated than the
s-indiscernible trees used in other studies of the tree property of the first kind.

At the present state of the theory, the class of non-simple theories without the
strict order property is poorly understood even at the level of syntax. In their study
of the order E∗, Dzamonja and Shelah introduced a weakening of TP1 called SOP1

[11]. Subsequently, Kim and Kim introduced two infinite families of properties
called k-TP1 and weak k-TP1 for k ≥ 2 and showed

TP1 ⇐⇒ k-TP1 ⇐⇒ weak 2-TP1 =⇒ weak 3-TP1 =⇒ . . . =⇒ SOP1

It was left open whether the properties weak k-TP1 are inequivalent for distinct k
and whether or not weak k-TP1 is equivalent to TP1 [16]. In our work on proving
that TP1 is witnessed by a formula in one free variable, we obtained unexpectedly
a simple and direct proof that the weak k-TP1 hierarchy collapses and that they
are all equivalent to TP1.
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In the final two sections of the paper, we study theories without the property
SOP1. We show that independent amalgamation fails in a strong way in theo-
ries with SOP1 and that they are in fact characterized by this feature. This gives
rise to a useful criterion for showing that a theory is NSOP1 (and hence NTP1).
Leveraging work of Granger [12] and Chatzidakis [6], this allows us to conclude
that both the two sorted theory of infinite-dimensional vector spaces over an alge-
braically closed field with a generic bilinear form, as well as the theory of ω-free
PAC fields of characteristic zero are NSOP1. Finally, we generalize the construction
of the theory of parametrized equivalence relations T ∗feq to give a general method
for constructing NSOP1 theories from simple ones. We learned after this work was
completed that essentially the same construction had been studied by Baudisch [3],
but our emphasis is different. We show that the independence theorem holds for
these structures, allowing us to obtain a proof that T ∗feq is NSOP1 as a corollary.

Acknowledgements. We would like to thank the referee for numerous suggestions
on improving the presentation, Zoé Chatzidakis for her help with Lemma 6.7, and
Alex Kruckman for pointing out an error and a way to fix it in Section 6.3 of an
earlier version of the article.

2. Preliminaries on indiscernible trees

We fix a complete first-order theory T in a language L, M |= T is a monster
model. In several of the arguments below, we will make use of the notion of an
indiscernible tree. For our purposes, there are two different languages we will need
to place on the index model: Ls,λ = {C,∧, <lex, (Pα : α < λ)} and L0 = {C,∧, <lex
} where λ is a cardinal. We may view the tree κ<λ as an Ls,λ− or L0-structure in a
natural way, interpreting C as the tree partial order, ∧ as the binary meet function,
<lex as the lexicographic order, and Pα as a predicate which identifies the αth level
(we will only consider κ = 2 and κ = ω). See [17] and [23] for more details.

Definition 2.1. Suppose that (aη)η∈κ<λ and (aα,i)α<κ,i<ω are collections of tuples
and C is a set of parameters in some model.

(1) We say (aη)η∈κ<λ is an s-indiscernible tree over C if

qftpLs,λ(η0, . . . , ηn−1) = qftpLs,λ(ν0, . . . , νn−1)

implies tp(aη0 , . . . , aηn−1/C) = tp(aν0 , . . . , aνn−1/C), for all n ∈ ω.
(2) We say (aη)η∈κ<λ is a strongly indiscernible tree over C if

qftpL0
(η0, . . . , ηn−1) = qftpL0

(ν0, . . . , νn−1)

implies tp(aη0 , . . . , aηn−1
/C) = tp(aν0 , . . . , aνn−1

/C), for all n ∈ ω.
(3) We say (aα,i)α<κ,i<λ is a mutually indiscernible array over C if, for all α <

κ, (aα,i)i<λ is a sequence indiscernible over C∪{aβ,j : β < κ, β 6= α, j < λ}.

Lemma 2.2. Let (aη : η ∈ κ<λ) be a tree strongly indiscernible over a set of
parameters C.

(1) All paths have the same type over C: for any η, ν ∈ κλ, tp((aη|α : α <
λ)/C) = tp((aν|α : α < λ)/C).

(2) For any η ⊥ ν ∈ κ<λ and any ξ, tp(aη, aν/C) = tp(aξ_0, aξ_1/C).
(3) The tree (a0_η : η ∈ κ<λ) is strongly indiscernible over a∅C.
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Proof. (1) This follows by strong indiscernibility of the tree as for any η, ν ∈ κ<λ,
qftpL0

((η|α : α < λ)) = qftpL0
((ν|α : α < λ)).

(2) Let η ⊥ ν ∈ κ<λ be given, without loss of generality η <lex ν and let
µ = η ∧ ν. Then there are i < j < κ so that µ _ 〈i〉 E η and µ _ 〈j〉 E ν. Then
qftpL0

(η, ν) = qftpL0
(µ _ 〈i〉, µ _ 〈j〉) = qftpL0

(µ _ 0, µ _ 1) = qftpL0
(ξ _

0, ξ _ 1), and we conclude by strong indiscernibility of the tree.
(3) Clear as qftpL0

(η̄) = qftpL0
(ν̄) implies qftpL0

(η̄, ∅) = qftpL0
(ν̄, ∅), provided

∅ is not enumerated in neither η nor ν. �

Lemma 2.3. Let (aη : η ∈ κ<λ) be a tree s-indiscernible over a set of parameters
C.

(1) All paths have the same type over C: for any α, ν ∈ κλ, tp((aη|α)α<λ/C) =
tp((aν|α)α<λ/C).

(2) Suppose {ηα : α < γ} ⊆ κ<λ satisfies ηα ⊥ ηα′ whenever α 6= α′. Then the
array (bα,β)α<γ,β<κ defined by

bα,β = aηα_〈β〉

is mutually indiscernible over C.

Proof. (1) This follows by s-indiscernibility of the tree as for any η, ν ∈ κ<λ,
qftpLs((η|α : α < λ)) = qftpLs((ν|α : α < λ)).

(2) Fix α < γ and let A = {aηα′_〈β〉 : α 6= α′ < γ, β < κ} ∪ C. As the

elements of {ηα : α < γ} are pairwise incomparable, it is easy to check that for any
β0 < . . . < βn−1 < κ and β′0 < . . . < β′n−1 < κ,

qftpLs(aηα_〈β0〉, . . . , aηα_〈βn−1〉/A) = qftpLs(aηα_〈β′0〉, . . . , aηα_〈β′n−1〉/A),

which proves (2). �

Now we note that s-indiscernible and strongly indiscernible trees exist.

Definition 2.4. Suppose I is an L′-structure, where L′ is some language. We say
that I-indexed indiscernibles have the modeling property if, given any (ai : i ∈ I)
from M, there is an I-indexed indiscernible (bi : i ∈ I) in M locally based on the
(ai): given any finite set of formulas ∆ from L and a finite tuple (t0, . . . , tn−1) from
I, there is a tuple (s0, . . . , sn−1) from I so that

qftpL′(t0, . . . , tn−1) = qftpL′(s0, . . . , sn−1)

and also

tp∆(bt0 , . . . , btn−1) = tp∆(as0 , . . . , asn−1).

Fact 2.5. [17, 19, 23] Let I0 denote the L0-structure (ω<ω,E, <lex,∧) and Is be
the Ls,ω-structure (ω<ω,E, <lex,∧, (Pα)α<ω) with all symbols being given their in-
tended interpretations and each Pα naming the elements of the tree at level α. Then
strongly indiscernible trees (I0-indexed indiscernibles) and s-indiscernible trees (Is-
indexed indiscernibles) have the modeling property.

In the arguments below, we will often argue by induction where at each stage it
is necessary to modify a tree of tuples in a way that maintains the indiscernibility
of the tree. A convenient way of organizing these arguments is to make a catalogue
of operations on indiscernible trees and prove that these operations preserve the
relevant indiscernibility.
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Definition 2.6. Fix k ≥ 1.

(1) (widening) The k-fold widening of (aη)η∈ω<ω at level n is defined to be the
tree (a′η)η∈ω<ω where

a′η =

 aη if l(η) < n
(aν_(ki)_ξ, . . . , aν_(ki+(k−1))_ξ) if η = ν _ i _ ξ

where ν ∈ ωn−1, i ∈ ω, ξ ∈ ω<ω.

(2) (stretching) The k-fold stretch of (aη)η∈ω<ω at level n is defined to be the
tree (a′′η)η∈ω<ω where

a′′η =

 aη if l(η) < n
(aη, aη_0, . . . , aη_0k−1) if l(η) = n

aν_0k−1_ξ if η = ν _ ξ for ν ∈ ωn, ξ 6= ∅

(3) (fattening) Given a tree (aη)η∈2<κ , define the k-fold fattening of (aη)η∈2<κ

to be the tree (a
(k)
η )η∈2<κ by induction as follows: for each η ∈ 2<κ let

a
(0)
η = aη. If (a

(n)
η )η∈2<κ has been defined, for each η ∈ 2<κ, let a

(n+1)
η =

(a
(n)
0_η, a

(n)
1_η). Let Ck = {aη : η ∈ 2<k}, the stump below k. Set C0 = ∅.

(4) (restricting) Given the tree (aη)η∈λ<κ and W ⊆ κ, we define the restriction
of (aη)η∈λ<κ to W to be the collection of tuples

{aη : l(η) ∈W and if β 6∈W, then η(β) = 0}.

If the order type of W is α, the restriction of (aη)η∈λ<κ may be naturally
identified with (aη)η∈λ<α .

(5) (elongating) Given η ∈ κ<ω, with l(η) = n, define η̃ ∈ κ<ω to be the tuple
with length k(l(η)− 1) + 1 defined by

η̃(i) =

{
η(i/k) if k|i

0 otherwise

Then define the k-fold elongation of (aη)η∈κ<ω to be the tree (bη)η∈κ<ω
where

bη = (aη̃, aη̃_0, . . . , aη̃_0k−1).
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Proposition 2.7. (1) s-indiscernibility is preserved under widening, stretch-
ing, fattening, restriction, and elongating.

(2) Strong indiscernibility is preserved under restriction, fattening, and elon-
gating. Moreover, if (aη)η∈2<ω is strongly indiscernible, then the k-fold

fattening (a(k))η∈2<ω is strongly indiscernible over Ck.

Proof. The proofs of these facts can be found in Section 7. �

3. Cardinal invariants and tree properties

Definition 3.1. Suppose T is a complete theory and ϕ(x; y) ∈ L is a formula in
the language of T .

(1) ϕ(x; y) has the tree property (TP) if there is k < ω and a tree of tuples
(aη)η∈ω<ω in M such that
• for all η ∈ ωω, {ϕ(x; aη|α) : α < ω} is consistent,
• for all η ∈ ω<ω, {ϕ(x; aη_〈i〉) : i < ω} is k-inconsistent.

(2) ϕ(x; y) has the tree property of the first kind (TP1) if there is a tree of
tuples (aη)η∈ω<ω in M such that
• for all η ∈ ωω, {ϕ(x; aη|α) : α < ω} is consistent,
• for all η ⊥ ν in ω<ω, {ϕ(x; aη), ϕ(x; aν)} is inconsistent.

(3) ϕ(x; y) has the tree property of the second kind (TP2) if there is a k < ω
and an array (aα,i)α<ω,i<ω in M such that
• for all functions f : ω → ω, {ϕ(x; aα,f(α)) : α < ω} is consistent,
• for all α, {ϕ(x; aα,i) : i < ω} is k-inconsistent.

(4) T has one of the above properties if some formula does modulo T .

It is easy to see that if a theory has the tree property of the first or second kind,
then it also has the tree property. Remarkably, the converse is also true.

Fact 3.2. [20] A complete theory T has TP if and only if it has TP1 or TP2.

The above theorem was first proven in different language, before any of the
three properties were actually defined. The purpose of this section is to prove a
refinement of this theorem, by studying the relationship between approximations
to the tree property and those to the tree property of the first or second kind. In
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order to do so, however, it will be necessary to return to the vocabulary in which
Fact 3.2 was initially formulated.

Definition 3.3. The following notions were introduced in [20].

(1) A cdt-pattern of depth κ is a sequence of formulas ϕi(x; yi) (i < κ, i successor)
and numbers ni < ω, and a tree of tuples (aη)η∈ω<κ for which
(a) pη = {ϕi(x; aη|i) : i successor , i < κ} is consistent for η ∈ ωκ,
(b) {ϕi(x; aη_〈α〉) : α < ω, i = l(η) + 1} is ni-inconsistent.

A cdt-pattern with ni ≤ n for all i < κ, is called a (cdt, n)-pattern.
(2) An inp-pattern of depth κ is a sequence of formulas ϕi(x; yi) (i < κ), se-

quences (ai,α : α < ω), and numbers ni < ω such that
(a) for any η ∈ ωκ, {ϕi(x; ai,η(i)) : i < κ} is consistent,
(b) for any i < κ, {ϕi(x; ai,α) : α < ω} is ni-inconsistent.

(3) An sct-pattern of depth κ is a sequence of formulas ϕi(x; yi) (i < κ) and a
tree of tuples (aη)η∈ω<κ such that
(a) for every η ∈ ωκ, {ϕα(x; aη|α) : 0 < α < κ, α successor} is consistent,

(b) If η ∈ ωα, ν ∈ ωβ , α, β are successors, and ν ⊥ η then the formulas
{ϕα(x; aη), ϕβ(x; aν)} are inconsistent.

If instead of (b), we have: for any pairwise incomparable (ηi : i < k),
{ϕl(ηi)(x; aηi) : i < k} is inconsistent, then we call this a (sct, k)-pattern.

(4) For X ∈ {cdt, sct, inp}, we define κnX(T ) to be the first cardinal κ so that
there is no X-pattern of depth κ in n free variables, and ∞ if no such κ
exists. We define κX(T ) = supn∈ω{κnX}.

Remark 3.4. We note that the notion of a (cdt, n)-pattern strengthens that of a
cdt-pattern by imposing a uniform finite bound on the size of the inconsistency at
each level, while the notion of an (sct, n)-pattern weakens that of an sct-pattern by
only requiring any n incomparable elements to be inconsistent rather than any 2.
One can regard an (sct, n)-pattern as an approximation to a witness to n-TP1 (see
Definition 4.1 below).

Observation 3.5. Fix a complete theory T .

(1) κnsct(T ) ≥ n, κninp(T ) ≥ n and κncdt(T ) ≥ n for all n.

(2) (a) κcdt(T ) =∞ if and only if κcdt(T ) > |T |+ if and only if T has TP.
(b) κsct(T ) =∞ if and only if κsct(T ) > |T |+ and only if T has TP1.
(c) κinp(T ) =∞ if and only if κinp(T ) > |T |+ if and only if T has TP2.

(3) max{κnsct(T ), κninp(T )} ≤ κncdt(T ).

Proof. (1) follows from the fact that “=” is in the language.
(2) As each case is entirely similar, we’ll sketch the argument for (a) only. If

κcdt (T ) > |T |+, then in the pattern witnessing it we may assume that ϕi (x, yi) =
ϕ (x, y) and ki = k, because |T | ≥ ℵ0. This is a witness to TP. And then using
compactness we can find a pattern witnessing that κncdt(T ) > κ for any cardinal κ.

(3) If ϕi(x; yi) (i < κ), (ai,α : α < ω), (ni)i<ω form an inp-pattern of depth
κ, obtain a cdt-pattern of depth κ with respect to the same formulas by defining
(bη)η∈ω<κ by bη = al(η),η(l(η)−1). �

Lemma 3.6. (1) If there is an sct-pattern (cdt-pattern) of depth κ modulo T , then
there is an sct-pattern (cdt-pattern) ϕα(x; yα), (aη)η∈ω<κ in the same number of
free variables so that (aη)η∈ω<κ is an s-indiscernible tree.
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(2) If there is an inp-pattern of depth κ modulo T , then there is an inp-pattern
ϕα(x; yα) (α < κ), (kα)α<κ, (aα,i)α<κ,i<ω in the same number of free variables so
that (aα,i)α<κ,i<ω is a mutually indiscernible array.

Proof. (1) By compactness and Fact 2.5.
(2) This is Lemma 2.2 of [8]. �

Now we fix a complete theory T and for X ∈ {cdt, sct, inp}, we write κX for
κX(T ).

Proposition 3.7. Assume that κncdt ≥ ℵ0. Then either κninp ≥ ℵ0 or κnsct,k ≥ ℵ0

for some k ∈ ω (i.e. there are (κsct, k)-patterns in n variables of arbitrary finite
depth). In fact, if κninp < ℵ0, then one can take k = κninp.

Proof. If κninp ≥ ℵ0 does not hold, then in fact we have κninp ≤ k for some k ∈ ω.
Fix an arbitrary m ∈ ω, then by assumption and Lemma 3.6 we can find(

aη : η ∈ ω<2m
)
, (ϕi (x, yi) : i < 2m) , (ki : i < 2m) an s-indiscernible cdt-pattern

with |x| = n, i.e.:

(1)
(
aη : η ∈ ω<2m

)
is an s-indiscernible tree,

(2) {ϕi (x, aη�i) : i < 2m} is consistent for every η ∈ ω2m,
(3)

{
ϕi
(
x, aη_〈j〉

)
: j ∈ ω

}
is ki-inconsistent for every i < 2m− 1 and η ∈ ωi.

For l < m and ν ∈ ωl we define ν∗ = (ν (0) , 0, ν (1) , 0, . . . , ν (l − 1) , 0) ∈ ω<2m.
Let {ν0, . . . , νk−1} ⊆ ω<m be pairwise E-incomparable, and let li = l(ν∗i ).

Claim.
{
ϕli
(
x, aν∗i

)
: i < k

}
is inconsistent.

Proof. By definition of ν∗i and assumption on νi’s it follows that for any i, i′ < k
the elements ν∗i � (li − 1) and ν∗i′ � (li′ − 1) are incomparable. Then by Lemma
2.3(2) we see that the sequences āi =

(
aν∗i �(li−1)̂ 〈j〉 : j ∈ ω

)
are mutually indis-

cernible. But if
{
ϕli
(
x, aν∗i

)
: i < k

}
was consistent, this would give us an inp-

pattern of depth k, contrary to the assumption (as
{
ϕli
(
x, aν∗i �(li−1)̂ 〈j〉

)
: j ∈ ω

}
is kli-inconsistent for every i).

Now using the claim it is easy to see that
{
ϕ2l(η) (x, aη∗) : η ∈ ω<m

}
is an (sct, k)-

pattern of depth m. As m was arbitrary, we conclude that κnsct,k ≥ ℵ0. �

Proposition 3.8. Let k < ω be fixed. Assume that for any n < ω we have, in
some fixed number of variables, an (sct, k)-pattern of depth n. Then there are, in
the same number of variables, (cdt, 2)-patterns of arbitrary finite depth.

Proof. Let m ∈ ω be arbitrary, and let (aη : η ∈ ω<m×m) , (ϕi (x, yi) : i < m×m)
be an s-indiscernible (sct, k)-pattern - in particular this is a cdt-pattern such that
for i < m×m, {ϕi(x; aη) : l(η) = i} is k-inconsistent.

For i < m, consider

Γi (x) =
∧
l<m

(ϕi×m+l (x, a0i×m_0_0l−1) ∧ ϕi×m+l (x, a0i×m_1_0l−1)) .

Case 1. Γi (x) is consistent for some i < m.
Obtain an s-indiscernible tree, using Lemma 2.7(1), by first taking the 2-fold

widening of (aη)η∈ωm×m at level i×m+1, then taking the restriction to {i×m+ l :
l < m}. Let (ψl : l < m) be chosen so that

ψl (x, b0l) = ϕi×m+l (x, a0i×m_0_0l−1) ∧ ϕi×m+l (x, a0i×m_1_0l−1) .
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Then (bη : η ∈ ω<m) , (ψl : l < m) is a cdt-pattern of depth m such that, for all

l < m, {ψl(x; bη) : l(η) = l} is bk2 c-inconsistent.
Case 2. Γi (x) is inconsistent for every i < m.
Using Lemma 2.7(1), obtain an s-indiscernible tree (bη)η∈ω<m by taking the

m-fold elongation of (aη)η∈ω<m×m . Let (ψl : l < m) be chosen so that

ψl(x; b0l) =
∧
r<m

ϕl×m+r(x; a0l×m_0r ).

Then (bη)η∈ω<m , (ψl : l < m) is an (cdt, 2)-pattern.
Repeating several times if necessary we conclude. �

For κ ≤ ω, finding an sct-pattern of depth κ is equivalent to finding a (cdt, 2)-
pattern of depth κ.

Lemma 3.9. Let κ ≤ ω, and let (aη : η ∈ ω<κ) , (ϕi (x, yi) : i < κ) be a (cdt, 2)-
pattern (i.e. for every η ∈ ω<κ the set

{
ϕl(η)+1 (x, aη̂ j) : j ∈ ω

}
is 2-inconsistent).

For η ∈ ω<κ define bη = aη�0aη�1 . . . aη�(l(η)−1)aη and ψi (x; yi,0, . . . , yi,i−1) =∧
j<i ϕj (x, yj). Then (bη : η ∈ ω<κ) , (ψi (x, ȳi) : i < κ) is an sct-pattern.

Proof. If η ∈ ωn for n < κ, then the set {ψi (x, bη�i) : i < n} contains only conjunc-
tions of formulas from {ϕi (x, aη�i) : i < n} which is consistent by assumption. On
the other hand if η1, η2 ∈ ω<κ are incomparable, let η = η1∧η2. Then ψl(η1) (x, bη1)

implies ϕl(η)+1

(
x, aη̂ η1(l(η)+1)

)
and ψl(η2) (x, bη2) implies ϕl(η)+1

(
x, aη̂ η2(l(η)+1)

)
,

and these two implied formulas are inconsistent by assumption. �

Combining Propositions 3.7 and 3.8 with Lemma 3.9, we have:

Proposition 3.10. If κncdt ≥ ℵ0, then either κninp ≥ ℵ0 or κnsct ≥ ℵ0.

Remark 3.11. Inspecting the proof, we actually get the following bound: κnsct ≥
(
κncdt

2 )
1

κn
inp .

The next proposition is an analog of Proposition 3.8 for inp-patterns. It is not
used in this paper, but we include it for reference.

Proposition 3.12. Let k < ω be fixed. Assume that for any n < ω we have, in
some fixed number of free variables, an inp-pattern of depth n such that each row
is k-inconsistent. Then there are, in the same number of variables, inp-patterns of
arbitrary finite depths in which every row is 2-inconsistent.

Proof. Let m ∈ ω be arbitrary, and let (ai,j)i<m×m,j∈ω , (ϕi (x, yi))i<m×m be an

inp-pattern with mutually indiscernible rows such that every row is k-inconsistent.
For i < m, consider Γi (x) =

∧
i×m≤l<(i+1)×m (ϕl (x, al,0) ∧ ϕl (x, al,1)).

Case 1. Γi (x) is consistent for some i < m.
Then for l < m we take ψl (x, bl,0) = ϕi×m+l (x, ai×m+l,0)∧ϕi×m+l (x, ai×m+l,1)

and bl,j = ai×m+l,2jai×m+l,2j+1.
Case 2. Γi (x) is inconsistent for every i < m.
Then for l < m we take ψl (x, bl,0) =

∧
r<m ϕl×m+r (x, al×m+r,0) and bl,j =

(al×m+r,j : r < m).
It is easy to see that in each of the cases (bi,j)i<m,j<ω , (ψi (x, yi))i<m is an inp-

pattern of depth m, and moreover it is max
{

2,
⌈
k
2

⌉}
-inconsistent (

⌈
k
2

⌉
-inconsistent

in the first case and 2-inconsistent in the second case). As m was arbitrary, this
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shows that there are inp-pattern of arbitrarily large finite depth with max
{

2,
⌈
k
2

⌉}
-

inconsistent rows. Repeating the argument several times if necessary we conclude.
�

Now we consider the case of countably infinite patterns.

Proposition 3.13. κncdt ≥ ℵ1 implies κnsct ≥ ℵ1.

Proof. Suppose (ϕi : i < ω), (aη)η∈ω<ω is a cdt-pattern. By replacing aη with
bη = (a∅, aη|1, . . . , aη|l(η)−1, aη) and ϕi(x; aη) by

ψi(x; bη) :=
∧
j≤i

ϕj(x; aη|j),

if necessary, we may assume that if ν C η, then

|= (∀x)[ϕl(η)(x; aη)→ ϕl(ν)(x; aν)].

Then by replacing (aη)η∈ω<ω by an s-indiscernible tree locally based on it, we may
moreover assume the (aη)η∈ω<ω are s-indiscernible by Fact 2.5.

By induction, we will construct cdt-patterns (ϕni : i < ω), (anη )η∈ω<ω so that

(1) (anη )η∈ω<ω is s-indiscernible.
(2) For all η ∈ ω<n and i < j,

{ϕnl(η)+1(x; anη_〈i〉), ϕ
n
l(η)+1(x; anη_〈j〉)}

is inconsistent.
(3) If ν C η, then

|= (∀x)[ϕnl(η)(x; anη )→ ϕnl(ν)(x; anν )].

(4) For all η, if n, n′ ≥ l(η), then anη = an
′

η . For all m ≤ m′, ϕm′m = ϕmm.

For the base case, let ϕ0
i = ϕi for all i and a0

η = aη for all η. (1) is satisfied by
assumption, (2) is vacuous, and (3) follows from the initial remarks above. Now
suppose we have constructed (ϕni : i < ω) and (anη )η∈ω<ω . By definition of a
cdt-pattern, there is a least k ≥ 1 so that⋃

i<2k

{ϕnn+1+j(x; an0n_〈i〉_0j ) : j < ω}

is inconsistent. By compactness, there is N so that

(3.14)
⋃
i<2k

{ϕnn+1+j(x; a0n_〈i〉_0j ) : j < N}

is inconsistent. Let (bη)η∈ω<ω be the N -fold stretch of (an)η∈ω<ω at level n. Let
(ψi(x; zi) : i < ω) be defined as follows: for i ≤ n, zi = yi and ψi(x; zi) = ϕi(x; yi).
Let zn+1 = (yn+1, yn+2, . . . , yn+N ) and

ψn+1(x; zn+1) =
∧
j<N

ϕnn+1+j(y; yn+1+j).

Finally, for i > n + 1, let zi = yi+N−1 and ψi(x; zi) = ϕi+N−1(x; yi+N−1). By
Lemma 7.4, (bη)η∈ω<ω is an s-indiscernible tree and, by construction, (ψi(x; zi) :
i < ω), (bη)η∈ω<ω is a cdt-pattern. Moreover, this cdt-pattern satisfies

(5) {ψn+1(x; b0n_〈i〉) : i < 2k} is inconsistent and

(6) {ψn+1+j(x; b0n_〈i〉_0j ) : i < 2k−1, j < ω} ∪ {ψl(x; b0l) : l < ω} is consis-
tent.
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Condition (5) follows by the inconsistency (3.14) and the definition of ψn+1. To see
(6), we note that by the minimality of k,

{ψn+1+j(x; b0n_〈i〉_0j ) : i < 2k−1, j < ω}
is consistent. By (3) above and the definition of the ψm, this establishes (6).

Let (cη)η∈ω<ω be the 2k−1-fold widening of (bη)η∈ω<ω at level n + 1. Let
(χi(x;wi) : i < ω) be defined as follows: if i < n + 1, let wi = zi and χi(x;wi) =

ψi(x; zi). If i ≥ n + 1, let wi = (z0
i , . . . , z

2k−1−1
i ) a tuple of variables consisting of

2k−1 copies of zi. Then put

χi(x;wi) =
∧

j<2k−1

ψi(x; zji ).

By Lemma 7.3, (cη)η∈ω<ω is s-indiscernible and, by construction, (χi(x;wi) : i < ω),
(cη)η∈ω<ω is a cdt-pattern and, moreover, if i 6= j

{χn+1(x; c0n_〈i〉), χn+1(x; c0n_〈j〉)}
is inconsistent. For all m < ω and η ∈ ω<ω, define ϕn+1

m = ξm and an+1
η = cη.

We have satisfied requirements (1)-(3) and since our construction did not modify
the formulas and parameters with level at most n, the construction never injures
requirement (4).

Finally, define a cdt-pattern (ϕ∞n : n < ω), (a∞η )η∈ω<ω by ϕ∞n = ϕnn and a∞η =

a
l(η)
η . Our construction gives

(7) (a∞η )η∈ω<ω is s-indiscernible.
(8) If η ∈ ωω, {ϕ∞(x; a∞η|n) : n < ω} is consistent.

(9) If ν C η, then |= (∀x)[ϕ∞l(η)(x; a∞η )→ ϕ∞l(ν)(x; a∞ν )].

(10) For all n, and i 6= j {ϕ∞n+1(x; a∞0n_〈i〉), ϕ
∞
n+1(x; a∞0n_〈j〉)} is inconsistent.

By s-indiscernibility, (9) and (10) imply that if η ⊥ ν, then

{ϕ∞l(η)(x; a∞η ), ϕ∞l(ν)(x; a∞ν )}

is inconsistent. This shows (ϕ∞n : n < ω) and (a∞η )η∈ω<ω form an sct-pattern. We
have thus shown κnsct ≥ ℵ1. �

We obtain the main theorem of this section.

Theorem 3.15. If T is countable, then κcdt(T ) = κsct(T ) + κinp(T ). Moreover,
κncdt(T ) = κnsct(T ) + κninp(T ), provided κncdt(T ) is infinite.

Proof. By Observation 3.5, κncdt(T ) ≥ n for any T and κcdt(T ) > |T |+ if and only if
κcdt(T ) =∞. It follows that, for countable theories, the possible values of κcdt(T ),
and the only possible infinite values of κncdt(T ), are ℵ0, ℵ1, and ∞. The case of ℵ0

is treated in Proposition 3.10, ℵ1 is handled by Proposition 3.13, and for ∞ the
result follows from Shelah’s theorem (Fact 3.2). �

4. TP1 and weak k − TP1

Say that a subset {ηi : i < k} ⊆ ω<ω is a collection of distant siblings if given
i 6= i′, j 6= j′, all of which are < k, ηi ∧ ηi′ = ηj ∧ ηj′ .

Definition 4.1. Fix k ≥ 2.

(1) The formula ϕ(x; y) has SOP2 if there is a collection of tuples (aη)η∈2<ω

satisfying the following.
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(a) For all η ∈ 2ω, {ϕ(x; aη|α) : α < ω} is consistent.
(b) If η, ν ∈ 2<ω and η ⊥ ν, then {ϕ(x; aη), ϕ(x; aν)} is inconsistent.

(2) The formula ϕ(x; y) has weak k-TP1 if there is a collection of tuples (aη)η∈ω<ω
satisfying the following.
(a) For all η ∈ ωω, {ϕ(x; aη|α) : α < ω} is consistent.
(b) If {ηi : i < k} ⊆ ω<ω is a collection of distinct distant siblings, then
{ϕ(x; aηi) : i < k} is inconsistent.

(3) The formula ϕ(x; y) has k-TP1 if there is a collection of tuples (aη)η∈ω<ω
satisfying the following.
(a) For all η ∈ ωω, {ϕ(x; aη|α) : α < ω} is consistent.
(b) If {ηi : i < k} ⊆ ω<ω is a collection of distinct pairwise incomparable

nodes, then {ϕ(x; aηi) : i < k} is inconsistent.
(4) The theory T has either of the above properties if some formula does.

We remark that TP1 is equivalent to SOP2 in a strong way:

Fact 4.2. If a theory has TP1 witnessed by a formula ϕ, then the theory also has
SOP2 witnessed by the same formula, and vice versa.

We recall the argument from [1]. Suppose ϕ(x; y) witnesses SOP2 with respect
to the tree of parameters (bη)η∈2<ω . Define a map h : ω<ω → 2<ω recursively by
h(∅) = ∅ and h(β _ 〈i〉) = h(β) _ 1i _ 0, where 1i denotes the all 1’s sequence of
length i. It is straightforward to check that ϕ(x; y) witnesses TP1 with respect to
the parameters (bh(η))η∈ω<ω . The converse is obvious. Although SOP2 and TP1 are
equivalent, it will be important for us to notationally distinguish them, as various
combinatorial constructions are simplified by a judicious choice of the index set.

In [16], Kim and Kim show that k-TP1 is equivalent to TP1 for all k ≥ 2, but
the questions of whether weak k-TP1 is equivalent to TP1 was left unresolved.
Using strongly indiscernible trees, we settle this, as well as show that TP1 is always
witnessed by a formula in a single free variable.

4.1. Finding and manipulating indiscernible witnesses.

Lemma 4.3. (1) If T has weak k-TP1 witnessed by ϕ(x; y) then there is a
strongly indiscernible tree (aη)η∈ω<ω witnessing this.

(2) If ϕ(x; y) has TP1 then there is a strongly indiscernible tree witnessing this.
(3) If ϕ(x, y) has SOP2, then there is a strongly indiscernible tree (aη)η∈2<ω

witnessing this.

Proof. (1) This was observed in [23], but we sketch a proof here for completeness.
Let (bη)η∈ω<ω be a tree of tuples with respect to which ϕ(x; y) witnesses weak k-
TP1. Let (aη)η∈ω<ω be locally based on the tree (bη)η∈ω<ω . Suppose η0, . . . , ηn−1 ∈
ω<ω lie along a path and let ψ(y0, . . . , yn−1) denote the formula (∃x)

∧
i<n ϕ(x; yi).

Then there are ν0, . . . , νn−1 ∈ ω<ω so that

qftpL0
(η0, . . . , ηn−1) = qftpL0

(ν0, . . . , νn−1)

and

tpψ(aη0 , . . . , aηn−1) = tpψ(bν0 , . . . , bνn−1).

The first equality implies that ν0, . . . , νn−1 all lie along a path so {ϕ(x; bνi) : i <
n} is consistent. By the second equality, {ϕ(x; aηi) : i < n} is consistent. By
compactness, this shows that all paths are consistent. Showing that any k distinct
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distant siblings remain inconsistent is similar. So ϕ(x; y) witnesses weak k-TP1

with respect to the tree (aη)η∈ω<ω .
(2) This follows from (1) as weak 2-TP1 and TP1 are the same.
(3) By Fact 4.2, ϕ(x, y) has TP1. Now by (2), we may find a strongly indiscernible

tree (aη)η∈ω<ω such that ϕ witnesses TP1 with respect to (aη)η∈ω<ω . Making the
identification 2<ω = {η ∈ ω<ω : η(k) ∈ {0, 1} for all k < l(η)}, it is easy to see
that (2<ω,C, <lex,∧) is an L0-substructure of (ω<ω,E, <lex,∧) since 2<ω is closed
under the ∧-function and all the symbols in L0 acquire their natural interpretation
on 2<ω via restriction from ω<ω. It follows that if η0, . . . , ηn−1 and ν0, . . . , νn−1

are two sequences from 2<ω with

qftpL0
(η0, . . . , ηn−1) = qftpL0

(ν0, . . . , νn−1)

in 2<ω, then this equality also holds in ω<ω and hence

tp(aη0 , . . . , aηn−1
) = tp(aν0 , . . . , aνn−1

),

so (aη)η∈2<ω is strongly indiscernible. Moreover, paths in 2ω are paths also in ωω

and incomparables in 2<ω remain incomparable when considered as elements in
ω<ω so it is clear that ϕ(x; y) will witness SOP2 with respect to (aη)η∈2<ω . �

Remark 4.4. We aren’t making the (ostensibly) stronger claim that if ϕ(x; y) wit-
nesses SOP2 with respect to the tree (bη)η∈2<ω then there is a strongly indiscernible
tree (aη)η∈2<ω based on it — the proof of the existence of a strongly indiscernible
tree witness involved going through TP1 and then restricting.

Lemma 4.5. (1) If (aη)η∈ω<ω is a strongly indiscernible tree and ϕ(x; y) is a
formula so that for some η ∈ ωω, {ϕ(x; aη|n) : n < ω} is consistent and for
some ξ ∈ ω<ω, {ϕ(x; aξ_0), ϕ(x; aξ_1)} is inconsistent, then T has TP1.

(2) If (aη)η∈2<ω is a strongly indiscernible tree and ϕ(x; y) is a formula so that
for some η ∈ 2ω, {ϕ(x; aη|n) : n < ω} is consistent and for some η ∈ 2<ω,
{ϕ(x; aη_0), ϕ(x; aη_1)} is inconsistent, then T has SOP2.

Proof. Both parts are immediate by Lemma 2.2, (1) and (2). �

Lemma 4.6. (Path Collapse) Suppose κ is an infinite cardinal, (aη)η∈2<κ is a tree
strongly indiscernible over a set of parameters C and, moreover, (a0α : 0 < α < ω)
is indiscernible over cC. Let

p(y; z) = tp(c; (a0_0γ : γ < κ)/C).

Then if

p(y; (a0_0γ )γ<κ) ∪ p(y; (a1_0γ )γ<κ)

is not consistent, then T has SOP2, witnessed by a formula with free variables y.

Proof. We may add C to the language, so assume C = ∅. With p defined as above,
suppose

p(y; (a0_0γ : γ < κ)) ∪ p(y; (a1_0γ : γ < κ))

is inconsistent. Then by indiscernibility and compactness, there is a formula ψ and
n < ω so that

{ψ(y; a0, . . . , a0_0n−1)} ∪ {ψ(y; a1, a10, . . . , a1_0n−1)}
is inconsistent. Let (bη)η∈2<κ denote the n-fold elongation of (aη)η∈2<κ . By Lemma
2.7, (bη : η ∈ 2<κ) is strongly indiscernible. Since c |= {ψ(y; b0α) : α < κ} and
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ψ(y; b0) ∧ ψ(y; b1) is inconsistent (by strong indiscernibility), by Lemma 4.5, ψ
witnesses SOP2. �

Remark 4.7. It is significant that the type p does not contain a∅ as a parameter.
As b0 and b1 are incomparable and ψ(x; b0) and ψ(x; b1) are inconsistent, we can
conclude that ψ(x; bη) and ψ(x; bν) are inconsistent for all incomparable η, ν by
strong indiscernibility. But, for example, strong indiscernibility does not guarantee
b0_0b0_1 has the same type as b0b1 over a∅ as 0 ∧ 1 = ∅ while 0n−1 _ 0 ∧ 0n−1 _
1 = 0n−1.

We now give two applications of the path-collapse lemma.

4.2. Weak k − TP1.

Theorem 4.8. Given k ≥ 2, T has weak k-TP1 if and only if T has TP1.

Proof. We will show that if T has weak k-TP1, then T has SOP2. Let ϕ(x; y)
witness weak k-TP1 with respect to the strongly indiscernible tree (aη)η∈ω<ω . Let
n be maximal so that

{ϕ(x; a〈i〉_0α) : i < n, α < ω}
is consistent. By definition of weak k-TP1, n is at least 1 and at most k − 1. Let
C = {a〈i〉_0α : i < n − 1, α < ω} (and put C = ∅ in the case that n = 1). Given
η ∈ ω<ω, let η̂ be defined by

η̂(i) =

{
η(i) + n− 1 if i = 0

η(i) otherwise,

for all i < l(η). The tree (bη)η∈ω<ω defined by bη = aη̂ is strongly indiscernible over
C. By choice of n,

{ϕ(x; a〈i〉_0α) : i < n, α < ω}
is consistent, so let c realize it. By compactness, Ramsey, and automorphism, we
may assume (b0α : 0 < α < ω) (i.e. (a〈n−1〉_0α : α < ω)) is indiscernible over c.
Letting the type p be defined by

p(y; z) = tp(c; (b0_0α : α < α)/C),

and unravelling definitions, we see that the type

p(y; (b0_0α : α < ω)) ∪ p(y; (b1_0α : α < ω))

implies {ϕ(x; a〈i〉_0α) : i < n+1, α < ω} and is therefore inconsistent by the choice
of n. By path-collapse, we’ve shown that T has SOP2, completing one direction.
The other direction is obvious. �

4.3. Reducing to one variable.

Proposition 4.9. Suppose T witnesses SOP2 via ϕ(x, y; z). Then there is a for-
mula ϕ0(x; v) with free variables x and parameter variables v, or a formula ϕ1(y;w)
with free variables y and parameter variables w so that one of ϕ0 and ϕ1 witness
SOP2.

Proof. Let ϕ(x, y; z) witness SOP2 with respect to the strongly indiscernible tree
(aη)η∈2<ω . The first path is consistent and it is an indiscernible sequence so it
follows that there is some (c, c0) |= {ϕ(x, y; a0α) : α < ω} and such that moreover
(a0α : α < ω) is indiscernible over c0 (by Ramsey, automorphism, and compactness).
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Define the function h : 2<ω → 2<ω recursively by h(∅) = ∅ and h(η _ 〈i〉) =
h(η) _ 0 _ 〈i〉. Define the tree (bη)η∈2<ω by bη = ah(η). It is proved in Lemma
7.7(1) that (bη)η∈2<ω is a strongly indiscernible tree. For each n, define a map
hn : 2<ω → 2<ω by

hn(η) =

{
h(η) if l(η) ≤ n

h(ν) _ ξ if η = ν _ ξ, l(ν) = n.

By Lemma 7.7(2), the tree (dn,η)η∈2<ω defined by dn,η = ahn(η) is strongly indis-
cernible as well. Moreover, as paths in (bη)η∈2<ω and (dn,η)η∈2<ω are contained
in paths in (aη)η∈2<ω and incomparable elements in these trees correspond to in-
comparable elements in (aη)η∈2<ω , ϕ witnesses SOP2 with respect to these trees of
parameters as well.

Assume that no formula in the variable y has SOP2. By induction, we will choose
cn so that

(*) {ϕ(x, cn; dn,η|m) : m < n} ∪ {ϕ(x, cn; dn,η_0α) : α < ω}

is consistent for every η ∈ 2≤n.

For this, consider (d
(n)
n,η)η∈2<ω , the nth-fattening of (dn,η), and let Cn = (dn,η :

η ∈ 2<n). By induction we show:

Claim. There is cn+1 such that
(

(d
(n+1)
n+1,0α) : α < ω

)
is indiscernible over cn+1Cn

and

cn

(
d

(n)
n,0_0_0α

)
≡
d
(n)

n,∅Cn
cn+1

(
d

(n)
n,0_0_0α

)
≡
d
(n)

n,∅Cn
cn+1

(
d

(n)
n,0_1_0α

)
.

Note that d
(n)
n,∅Cn = Cn+1.

Proof: The base case is above. Let

pn(y, z) = tp
(
cn, (d

(n)
n,0_0_0α : α < ω)/(dn,∅)

(n)Cn

)
.

By the path-collapse lemma,

pn

(
y,
(

(d
(n)
n,0_0_0α) : α < ω

))
∪ pn

(
y,
(

(d
(n)
n,0_1_0α) : α < ω

))
is consistent. Let cn+1 realize it. Moreover, as(

d
(n)
n,0_0_0α , d

(n)
n,0_1_0α

)
α<ω

=
(
d

(n+1)
n+1,0α

)
α<ω

is an indiscernible sequence, by Ramsey, automorphism, and compactness we may
assume that it is indiscernible over cn+1Cn. This shows (*).

By the definition of the trees (dn,η)η∈2<ω , we have shown that

{ϕ(x, cn; bη|m) : m < n} ∪ {ϕ(x, cn; bη_0α) : α < ω}

is consistent for each n and η ∈ 2≤n. By compactness, we can find one c which works
for all possible paths in 2ω simultaneously, giving a tree (c, bη)η∈2<ω witnessing
SOP2 for ϕ(x; y, z). �

Remark 4.10. The necessity of defining the trees (bη)η∈2<ω and (dn,η)η∈2<ω via h
and hn, respectively, stems from a technical obstacle in applying the path-collapse
lemma: starting with the tree (aη)η∈2<ω , we cannot apply the path collapse lemma
directly to the type

q(y; (a0α : α < ω)) = tp(c0/(a0α : α < ω)),
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as this type has a∅ as a parameter (see Remark 4.7 above). This is corrected by
the offset functions h and hn, allowing us to apply the path-collapse lemma ‘higher’
in the tree, where the parameters of interest are indiscernible over what we have
constructed so far.

Corollary 4.11. (1) T has SOP2 if and only if there is some formula in a
single free variable witnessing this

(2) T has TP1 if and only if there is some formula in a single free variable
witnessing this

At this point it is natural to ask if κ1
sct = κnsct holds for arbitrary n, at least for

countable theories. Corollary 4.11 resolves the case of ∞, and we remark that the
case of ℵ1 follows from a standard argument in simplicity theory.

Proposition 4.12. Any theory satisfies κ1
cdt = κncdt, for all n ∈ ω.

Proof. The following are equivalent (see e.g. [4, Proposition 3.8]).

(1) κncdt ≤ κ.
(2) For any type p (x) ∈ Sn (A), there is some A0 ⊆ A such that |A0| < κ and

p does not divide over A0.

Clearly κncdt ≥ κ1
cdt. Assume now that κ1

cdt ≤ κ for some κ. We show by induction
that (2) above holds for all n with respect to κ. Given a1 . . . anan+1 and A, it
follows by the inductive assumption that a1 . . . an |̂ A0

A for some A0 ⊆ A with

|A1| < κ and an+1 |̂ A1a1...an
Aa1 . . . an for some A1 ⊆ A with |A1| < κ. Combined

this implies (by left transitivity and right base monotonicity of dividing in arbitrary
theories, see e.g. [9, Section 2]) that a1 . . . anan+1 |̂ A0A1

A and |A0 ∪A1| < κ. �

Corollary 4.13. If κnsct ≥ ℵ1 then κ1
sct ≥ ℵ1.

Proof. By Proposition 3.13, it is enough to show that κ1
cdt ≥ ℵ1, which follows by

assumption and Proposition 4.12. �

The case of ℵ0 appears to involve more complicated combinatorics and we leave
it for future work.

5. Independence and amalgamation in NSOP1 theories

We recall the definition of SOP1 from [22]:

Definition 5.1. A formula ϕ(x; y) exemplifies SOP1 if and only if there are (aη)η∈2<ω

so that

• For all η ∈ 2ω, {ϕ(x; aη|n) : n < ω} is consistent,
• If η _ 0 E ν ∈ 2<ω, then {ϕ(x; aη_1), ϕ(x; aν)} is inconsistent.

Given an array (ci,j)i<ω,j<2, write ci = (ci,0, ci,1) and c<i for (cj)j<i.

Lemma 5.2. Suppose (ci,j)i<ω,j<2 is an array and ϕ(x; y) is a formula over C
with

(1) For all i < ω, ci,0 ≡Cc<i ci,1;
(2) {ϕ(x; ci,0) : i < ω} is consistent;
(3) j ≤ i =⇒ {ϕ(x; ci,0), ϕ(x; cj,1)} is inconsistent,

then T is SOP1.
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Proof. For each n, define a subtree Tn of 2<ω by

Tn = {η _ 0α : η ∈ 2≤n, α < ω} ∪ {η _ 0α _ 1 : η ∈ 2≤n, α < ω}.
Let P (Tn) ⊆ 2ω be the set of infinite branches of Tn. Namely,

P (Tn) = {η _ 0ω : η ∈ 2≤n}.
As a first step, by induction on n we build an ascending sequence of trees (lη, rη)η∈Tn ,
so that:

(1) if η ∈ P (Tn), (lη|α, rη|α)α<ω ≡C (cα,0, cα,1)α<ω,
(2) if η _ 0 ∈ Tn then rη_0 = lη_1,
(3) if η ∈ 2≤n then (lη_0, rη_0) ≡ClEηrEη (lη_1, rη_1).

For the n = 0 case, define l0α = cα,0, r0α = cα,1 and l0α_1 = r0α_0 for all α < ω.
For each α < ω, we can choose σα ∈ Aut(M/Cc<α) such that σα(cα,0) = cα,1. Let
r0α_1 = σα+1(cα+1,1) = σα+1(r0α_0). This defines (lη, rη)η∈T0 satisfying (1)-(3).

Now by induction suppose (lη, rη)η∈Tn has been defined. Suppose η ∈ P (Tn+1)\
P (Tn). Then there is ν ∈ 2≤n so that η = ν _ 1 _ 0ω. Then ν _ 1 ∈ Tn and, by
induction,

(lν_0, rν_0) ≡ClEνrEν (lν_1, rν_1)

and rν_0 = lν_1. Choose an automorphism σ ∈ Aut(M/ClEνrEν) such that
σ(lν_0, rν_0) = lν_1, rν_1. Then define

(lν_1_0α , rν_1_0α) = σ(lν_0_0α , rν_0_0α) and

(lν_1_0α_1, rν_1_0α_1) = σ(lν_0_0α_1, rν_0_0α_1)

for all α < ω. This completes the construction of (lη, rη)η∈Tn+1
, properties (1)–(3)

are satisfied because of the inductive assumption. We obtain (lη, rη)η∈2<ω as the
union over all n of (lη, rη)η∈Tn .

Now we check that with respect to the parameters (lη)η∈2<ω , ϕ witnesses SOP1.
Fix any path η ∈ 2ω, we have to check that {ϕ(x; lη|α) : α < ω} is consistent.
But given any n, lE(η|n) ⊂ Tn and by (1), lE(η|n) ≡C (cα,0)α≤n hence {ϕ(x; lη|α) :
α ≤ n} is consistent, as {ϕ(x; cα,0) : α ≤ n} is consistent, by hypothesis. Then
{ϕ(x; lη|α) : α < ω} is consistent by compactness.

Now fix η ⊥ ν ∈ 2<ω so that (η ∧ ν) _ 0 E η and (η ∧ ν) _ 1 = ν. We
must check {ϕ(x; lη), ψ(x; lν)} is inconsistent. As ν = (η ∧ ν) _ 1, we know that
lν = l(η∧ν)_1 = r(η∧ν)_0 by (2). Let ξ = (η ∧ ν) _ 0. Then ξ E η and lν = rξ so
it suffices to show {ϕ(x; lη), ϕ(x; rξ)} is inconsistent. Let n = l(η) and m = l(ξ).
Then m ≤ n and by (1), we have (lη, rξ) ≡C (cn,0, cm,1). By hypothesis, this implies
{ϕ(x; lη), ϕ(x; rξ)} is inconsistent, so we finish. �

Definition 5.3. Suppose |̂ is an Aut(M)-invariant ternary relation on small sub-
sets of M.

(1) We say |̂ satisfies weak independent amalgamation over models if, given
M |= T , b0c0 ≡M b1c1 satisfying bi |̂ M ci for i = 0, 1 and c0 |̂ M c1, there
is b satisfying bc0 ≡M bc1 ≡M b0c0.

(2) We say |̂ satisfies independent amalgamation over models if, givenM |= T ,
b0 ≡M b1 satisfying bi |̂ M ci for i = 0, 1 and c0 |̂ M c1, there is b satisfying
bc0 ≡M b0c0 and bc1 ≡M b1c1.

(3) We say |̂ satisfies stationarity over models if: given M |= T , if b0 ≡M b1
and b0 |̂ M c, b1 |̂ M c then b0 ≡Mc b1.
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Definition 5.4. Suppose A,B,C are small subsets of the monster M.

(1) We say A |̂ i
C
B if and only if tp(A/BC) can be extended to a global type

Lascar-invariant over C. We denote its dual by |̂ ci - i.e. A |̂ i
C
B holds if

and only if B |̂ ci
C
A.

(2) We say A |̂ u
C
B if and only if tp(A/BC) is finitely satisfiable in C. We

denote its dual by |̂ h - i.e. A |̂ h
C
B if and only if B |̂ u

C
A.

Suppose q(x) and r(y) are global M -invariant types. Recall that the product
q(x) ⊗ r(y) ∈ Sxy(M) is defined by q(x) ⊗ r(y) = tp(ab/M) where b |= r and
a |= q|Mb.

Proposition 5.5. Fix a model M |= T . Suppose c1 |̂ iM c0, cj |̂ iM bj for j = 0, 1
and b0c0 ≡M b1c1, but there is no b such that bc0 ≡M bc1 ≡M b0c0. Then T has
SOP1.

Proof. Let p(x; y) = tp(b0c0/M). Our assumption entails that p(x; c0) ∪ p(x; c1) is
inconsistent. By compactness, there is some ϕ(x; y) ∈ p(x; y) so that {ϕ(x; c0), ϕ(x; c1)}
is inconsistent. Fix a global M -invariant type r so that c0 |= r|Mb0

and a global

M -invariant type q so that c1 |= q|Mc0
. Then c1c0 |= (q ⊗ r)|M . Let (ci1, c

i
0)1≤i<ω

be a Morley sequence in (q ⊗ r)|Mb0c0c1 and put (c01, c
0
0) = (c1, c0).

First, we note that b0 |= {ϕ(x; ci0) : i < ω} so a fortiori {ϕ(x; ci0) : i < ω} is
consistent. Secondly, for any N < ω, we have

(c10c
1
1) . . . (cN0 c

N
1 )

i

|̂
M

c0c1

so by M -invariance and the fact that c0 ≡M c1, we know that

c0 ≡Mc10c
1
1...c

N
0 c

N
1
c1

Next, as c11 |= q|Mc0c1 , we have c11 ≡Mc0 c1 and therefore {ϕ(x; c0), ϕ(x; c11)} is
inconsistent. As (ci1, c

i
0)i<ω is an M -indiscernible sequence, we’ve shown the fol-

lowing.

(1) If X ⊆ ω and j < k for all k ∈ X, then {ϕ(x; ck0) : k ∈ X} ∪ {ϕ(x; cji )} is
consistent for i = 0, 1.

(2) If X ⊆ ω and j < k for all k ∈ X, then, writing cX for an enumeration of

{ck0ck1 : k ∈ X}, we have cj0 ≡McX cj1.

(3) If j ≤ k then {ϕ(x; cj0), ϕ(x; ck1)} is inconsistent.

Now by compactness (reversing the ordering on the sequence of pairs), we can find
an array (di,j)i<ω,j<2 such that the following holds.

(1) For all i < ω, di,0 ≡Md<i
di,1;

(2) {ϕ(x; di,0) : i < ω} is consistent;
(3) j ≤ i =⇒ {ϕ(x; di,0), ϕ(x; dj,1)} is inconsistent.

By Lemma 5.2, this implies T has SOP1. �

The following argument is an elaboration on [8, Proposition 6.20], which, in turn,
was an elaboration on an argument of Kim [15, Proposition 2.6].

Proposition 5.6. Assume ϕ(x; y) witnesses SOP1. Then there are M , c0, c1, b0, b1
so that c0 |̂ uM c1, c0 |̂ uM b0, c1 |̂ uM b1, b0c0 ≡M b1c1 and |= ϕ(b0, c0) ∧ ϕ(b1, c1)

but ϕ(x; c0) ∧ ϕ(x; c1) is inconsistent.
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Proof. Suppose T has SOP1 witnessed by ϕ. By compactness, we may assume that
we have a tree of tuples (aη)η∈2<κ for κ large enough (≥ 2|T | suffices) so that

• For all η ∈ 2κ, {ϕ(x; aη|α) : α < κ} is consistent
• η _ 0Cν ∈ 2<κ, then {ϕ(x; aη_1), ϕ(x; aν)} is inconsistent.

Fix a Skolemization T Sk of T and in what follows, we’ll work modulo this expanded
theory. We will construct a sequence (ηi, νi)i<ω of elements of 2<κ satisfying the
following.

(1) aνi , aηi have the same type over aη<i , aν<i
(2) If i < j then ηi C ηj and ηi C νj .
(3) (ηi ∧ νi) _ 0Cηi and (ηi ∧ νi) _ 1 = νi.

Given n, suppose (ηi, νi : i < n) have been chosen satisfying (1)-(3). Consider the
sequence (aηn−1_0α_1 : α < κ). As κ is large enough, there are α < β < κ so that
aηn−1_0α_1, aηn−1_0β_1 have the same type over (aη<n , aν<n). Let νn = ηn−1 _

0α _ 1 and ηn = ηn−1 _ 0β _ 1. Now (1) and (2) are clearly satisfied, and, as
α < β, (ηn ∧ νn) = ηn−1 _ 0α so (3) follows. This completes the construction.

Now we claim that (aηi , aνi)i<ω satisfies:

(4) {ϕ(x; aηi) : i < ω} is consistent,
(5) aνi , aηi have the same type over aν<i , aη<i ,
(6) {ϕ(x; aνi), ϕ(x; aνj )} is inconsistent for i 6= j.

Here (5) is immediate from our choice of the sequence and we get (4) since i < j
implies ηi C ηj and paths are consistent. To see (6), notice that if i < j then as
ηi C νj and ηi ⊥ νi, we have (νi ∧ νj) = (ηi ∧ νi) and hence (νi ∧ νj) _ 0 E νj and
νi = (νi ∧ νj) _ 1 from which (6) follows, using SOP1.

By compactness and Ramsey, we can find b and (aηi , aνi)i≤ω+1 indiscernible
over b, satisfying (4)-(6), and such that b |= {ϕ(x; aηi) : i ≤ ω + 1}. Let M =
Sk(aηi , aνi)i<ω. Then we have aηω+1

|̂ u
M
b and aνω |̂

u

M
aηω+1

by indiscernibility.

As aνω , aηω start an M -indiscernible sequence, there is σ ∈ Aut(M/M) sending
aηω 7→ aνω . Let b′ = σ(b). Then b′ ≡M b, aνω |̂

u

M
b′ (as aηω |̂

u

M
b by indiscerni-

bility) and |= ϕ(b′; aνω ). But {ϕ(x; aηω+1), ϕ(x; aνω )} is inconsistent by (5) and (6).

As ϕ is an L-formula, M is, in particular, an L-model and |̂ u in the sense of T Sk

implies |̂ u in the sense of T . �

Theorem 5.7. The following are equivalent.

(1) |̂ ci satisfies weak independent amalgamation: given any M |= T , b0c0 ≡M
b1c1 so that c1 |̂ iM c0 and cj |̂ iM bj for j = 0, 1, there is b so that bc0 ≡M
bc1 ≡M b0c0.

(2) |̂ h satisfies weak independent amalgamation: given any M |= T , b0c0 ≡M
b1c1 so that c1 |̂ uM c0 and cj |̂ uM bj for j = 0, 1, there is b so that bc0 ≡M
bc1 ≡M b0c0.

(3) T is NSOP1.

Proof. (1) =⇒ (2) is clear.
(2) =⇒ (3) is Proposition 5.6.
(3) =⇒ (1) is Proposition 5.5. �

Proposition 5.8. Assume there is an Aut(M)-invariant independence relation |̂
on small subsets of the monster M |= T such that it satisfies the following properties,
for an arbitrary M |= T and arbitrary tuples from M.
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(1) Strong finite character: if a 6 |̂
M
b, then there is a formula ϕ(x, b,m) ∈

tp(a/bM) such that for any a′ |= ϕ(x, b,m), a′ 6 |̂
M
b.

(2) Existence over models: M |= T implies a |̂
M
M for any a.

(3) Monotonicity: aa′ |̂
M
bb′ =⇒ a |̂

M
b.

(4) Symmetry: a |̂
M
b ⇐⇒ b |̂

M
a.

(5) Independent amalgamation: c0 |̂ M c1, b0 |̂ M c0, b1 |̂ M c1, b0 ≡M b1 im-
plies there exists b with b ≡c0M b0, b ≡c1M b1.

Then T is NSOP1.

Proof. Claim Let M |= T , then a |̂ u
M
b =⇒ a |̂

M
b.

Proof of claim. If a 6 |̂
M
b then by strong finite character, there is some ϕ(x;m, b) ∈

tp(a/Mb) so that a′ 6 |̂
M
b for any a′ with |= ϕ(a′;m, b). However, as a |̂ u

M
b, it fol-

lows that there is some a′ ∈M such that |= ϕ(a′;m, b). Then b 6 |̂
M
a′ by symmetry

and b 6 |̂
M
M by monotonicity, contradicting existence.

Now assume towards contradiction that T has SOP1, and letM, c0, c1, b0, b1, ϕ(x; y)
as given in Proposition 5.6. By the claim and symmetry of |̂ we have c0 |̂ M c1,

b0 |̂ M c0, b1 |̂ M c1. As |̂ satisfies independent amalgamation over models, there

is some b |̂
M
c0c1, b ≡c0M b0, b ≡c1M b1. This contradicts the inconsistency of

{ϕ(x; c0), ϕ(x; c1)}.

Remark 5.9. (1) We don’t require the local character here, as it would then
give simplicity according to the theorem of Kim and Pillay [18].

(2) We do require strong finite character, which is not required in Adler’s def-
inition of mock stability and mock simplicity (see [2, the discussion after
Definition 12]). Indeed, there are mock stable examples arbitrarily high in
the SOPn hierarchy.

6. Examples of NSOP1 theories

6.1. Vector spaces with a generic bilinear form. Let L denote the language
with two sorts V and K containing the language of abelian groups for variables
from V , the language of rings for variables from K, a function · : K × V → V , and
a function [ ] : V × V → K. T∞ is the model companion of the L-theory asserting
that K is a field, V is a K-vector space of infinite dimension with the action of K
given by ·, and [ ] is a non-degenerate bilinear form on V . If (K,V ) |= T∞ then K
is an algebraically closed field.

The theory T∞ was introduced by Nicolas Granger in [12], who observed that its
completions are not simple, but nonetheless have a notion of independence called Γ-
non-forking satisfying essentially all properties of forking in stable theories, except
local character.

Definition 6.1. We are using the notation from [12, Notation 9.2.4]. Let M =

(V, K̃) be a sufficiently saturated model of T∞. Let A ⊆ B ⊂ M and c ∈ M

with c a singleton. Let c |̂ Γ

A
B be the assertion that KAc |̂ KA KB in the sense

of non-forking independence for algebraically closed fields and one of the following
holds:

(1) c ∈ K̃
(2) c ∈ 〈A〉
(3) c 6∈ 〈B〉 and [c,B] is Φ-independent over A,
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where ‘[c,B] is Φ-independent over A’ means that whenever {b0, . . . , bn−1} is a
linearly independent set in BV ∩ (V \ 〈A〉) then the set {[c, b0], . . . , [c, bn−1]} is
algebraically independent over the field KB(KAc).

By induction, for c = (c0, . . . , cm) define c |̂ Γ

A
B by

c
Γ

|̂
A

B ⇐⇒ (c0, . . . , cm−1)
Γ

|̂
A

B and cm
Γ

|̂
Ac0...cm−1

Bc0 . . . cm−1.

Fact 6.2. [12, Theorem 12.2.2] Let M = (V,K) |= T∞. Then the relation on
subsets of M given by Γ-non-forking is automorphism invariant, symmetric, and
transitive. Moreover, it satisfies extension, finite character, and stationarity over a
model.

Lemma 6.3. If c is a tuple and A,B are small sets with c 6 |̂ Γ

A
B, then there is a

formula ϕ(x; a, b) ∈ tp(c/AB) so that

|= ϕ(c′; a, b) =⇒ c′
Γ

6 |̂
A

B.

Proof. Suppose c = (c0, . . . , cn−1) a tuple and c 6 |̂ Γ

A
B. Let k be maximal so

that (c0, . . . , ck−1) |̂ Γ

A
B. It follows that ck 6 |̂ Γ

Ac0...ck−1
Bc0 . . . ck−1, so one of the

following possibilities occurs:

(1) KAc0...ck 6 |̂
ACF

KAc0...ck−1

KBc0...ck−1

(2) ck ∈ 〈Bc0 . . . ck−1〉 \ 〈Ac0 . . . ck−1〉
(3) There is a linearly independent set {d0, . . . , dl−1} from (Bc0 . . . ck−1)V ∩

(V \ 〈Ac0 . . . ck−1〉) so that {[ck, d0], . . . , [ck, dl−1]} is not algebraically in-
dependent over KBc0...ck−1

(KAc0...ck).

The existence of the desired formula requires an argument only in case (3). In this
case, there is a nonzero polynomial p(x0, . . . , xl−1; a, b, c0, . . . , ck) with coefficients
in KBc0...ck−1

(KAc0...ck) so that p([ck, d0], . . . , [ck, dl−1]; a, b, c0, . . . , ck) = 0. By
reindexing the dj , we may assume that there is m ≤ l so that dj = cij for j < m
and dj ∈ B for j ≥ m. Let d = (dm, . . . , dl−1). Writing y = (y0, . . . , yk), let
χ(y; a, b, d) be the formula which asserts the following:

(1) the polynomial p(x0, . . . , xl−1; a, b, y) is a nonzero polynomial;
(2) the set {yi0 , . . . , yim−1

} ∪ {dm, . . . , dl−1} is linearly independent;
(3) p([yk, yi0 ], . . . , [yk, yim−1

], [yk, dm], . . . , [yk, dl−1]; a, b, y) = 0

Then χ(y; a, b, d) ∈ tp(c/B) and if |= χ(c′; a, b, d) then it is easy to check c′ 6 |̂ Γ

A
B.
�

Corollary 6.4. The two-sorted theory T∞ of infinite dimensional vector spaces
over algebraically closed fields with a generic bilinear form is NSOP1.

6.2. ω-free PAC fields of characteristic zero.

Definition 6.5. A field F is called pseudo-algebraically closed if every absolutely
irreducible variety defined over F has an F -rational point. A field F is called ω-free
if it has a countable elementary substructure F0 with G(F0) ∼= F̂ω, the free profinite
group on countably many generators.
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In [5], Chatzidakis showed that a PAC field has a simple theory if and only if it
has finitely many degree n extensions for all n so an ω-free PAC field will not be
simple. Nonetheless, she showed that an ω-free PAC field comes equipped with a
notion of independence which is well-behaved.

Fact 6.6. [6, 7] Suppose F is a sufficiently saturated ω-free PAC field of charac-
teristic zero. Given A = acl(A), B = acl(B), C = acl(C) with C ⊆ A,B ⊆ F ,

write A |̂ I
C
B to indicate that A |̂ ACF

C
B and AalgBalg ∩ acl(AB) = AB. Ex-

tend this to non-algebraically closed sets by stipulating a |̂ I
D
b holds if and only if

acl(aD) |̂ I
acl(D)

acl(bD). Then |̂ I satisfies existence over models, monotonicity,

symmetry, and independent amalgamation over models.

It remains to check that |̂ I satisfies strong finite character. The proof of it was
pointed out to us by Zoé Chatzidakis, whom we would like to thank.

Lemma 6.7. Suppose F is a sufficiently saturated ω-free PAC field of characteristic

zero. If a, b, c are tuples from F and a |̂ I
c
b then there is a formula ϕ(x; b, c) ∈

tp(a/bc) so that if F |= ϕ(a′; b, c) then a′ 6 |̂ I
c
b.

Proof. If a 6 |̂ ACF

c
b, then the existence of such a formula is clear, so we may as-

sume a |̂ ACF

c
b. As a 6 |̂ I

c
b, there are β ∈ 〈cb〉alg, α ∈ 〈ca〉alg not in F such that

F (α) = F (β) and β /∈ F 〈c〉alg. We choose them so that F (β) is Galois over F
(always possible since F ∩ 〈ca〉alg〈cb〉alg is Galois over (F ∩ 〈ca〉alg)(F ∩ 〈cb〉alg) =
acl(ca) acl(cb)).

Some of the conjugates of β over 〈cb〉 might lie in F 〈c〉alg and this will be wit-
nessed by elements of acl(cb) = F ∩〈cb〉alg. We choose an element b′ of acl(cb) such
that 〈cbb′〉 contains 〈cbβ〉 ∩ F and 〈cbb′〉 is closed under Aut(acl(cb)/〈cb〉). Let the
formula θ(y; b, c) isolate tp(b′/bc).

Let P (Y, b, c) be a minimal polynomial of b′ over 〈bc〉, and let Q(Z, Y, b, c) be
such that Q(Z, b′, b, c) is a minimal polynomial of β over 〈cbb′〉.

Claim. If |= θ(b1, b, c), then P (b1, b, c) = 0, Q(Z, b1, b, c) is irreducible of degree
[〈cbβ〉 : 〈cbb′〉] and a solution of Q defines a Galois extension, which is not contained
in F 〈c〉alg.

The first two assertions of the claim are immediate. For the last one, assume
that (b1, b2) satisfies P (b1, b, c) = 0 ∧ Q(b2, b1, b, c) = 0, and that Q(Z, b1, b, c) is
irreducible and defines a Galois extension of the right degree (all this is expressible
in tpF (b′/bc)), but that b2 ∈ F 〈c〉alg. Then there is a formula in tpF (b1/cb) which
will say that such a b2 exists, and is therefore not in tpF (b′/bc).

Similarly let a′ ∈ acl(ac) be such that 〈caα〉 ∩ F = 〈caa′〉 and let R(W,T, c) be
such that R(W,a, c) is a minimal polynomial of a′ over 〈ca〉 and let S(X,W, T, c)
be such that S(X, a′, a, c) is a minimal polynomial of α over 〈caa′〉.

The formula ϕ(t, b, c) is a conjunction of the following assertions:

• ∃yθ(y, b, c),
• R(W, t, c) is not the trivial polynomial,
• (∃w)R(w, t, c) = 0 and S(X,w, t, c) is irreducible over F of degree [〈caα〉 :
〈caa′〉],

• (∀z)[Q(z, y, b, c) = 0→ “F (z) contains a root of S(X,w, t, c) = 0”.
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These statements are first-order using standard facts on interpretability of finite
algebraic extensions of a field in a field and definability of irreducibility (see e.g.
[24]).

Assume now that d satisfies ϕ(t, b, c). Let y = b1 and w = d1 ∈ F be as
guaranteed to exist by ϕ, and let b2 be a root of Q(Z, b1, b, c) = 0; then F (b2) is
a proper Galois extension of F of degree [〈cbβ〉 : 〈cbb′〉] which is not contained in
F 〈c〉alg.

Because d satisfies ϕ, if d2 satisfies S(X, d1, d, c) = 0, then F (d2) = F (b2). As

F (b2) 6⊆ F 〈c〉alg, we necessarily have d 6∈ 〈c〉alg and, therefore, either d 6 |̂ ACF

c
b or,

otherwise, 〈cd〉alg〈cb〉alg ∩ F 6= acl(cd)acl(cb). This shows d 6 |̂ I
c
b. �

Corollary 6.8. The theory of ω-free PAC fields of characteristic 0 is NSOP1.

6.3. Examples via Parametrization. In this subsection, we show how to con-
struct NSOP1 theories from simple ones. We start with a simple theory T obtained
as the theory of a Fräıssé limit satisfying the strong amalgamation property and,
by analogy with the theory of parametrized equivalence relations T ∗feq, form the
parametrization of this structure. We show that the resulting theories are NSOP1

by proving an independence theorem for a natural independence notion associated
to these theories. The construction we perform here was studied by Baudisch [3]
in the context of arbitrary model complete theories eliminating ∃∞. We expect
that our results hold in this greater generality as well, but our setting already
encompasses many interesting examples and simplifies the study of amalgamation.

We begin by recalling some facts from Fräıssé theory.

Definition 6.9. (SAP) Suppose K is a class of finite structures. We say K has
the Strong Amalgamation Property (SAP) if given A,B,C ∈ K and embeddings
e : A → B and f : A → C there is a D ∈ K and embeddings g : B → D and
h : C → D so that the following diagram commutes:

B
g

  
A

e

??

f

��

D

C

h

>>

and, moreover, (img) ∩ (imh) = imge (and hence = imhf , as well).

The following is a useful criterion for SAP:

Fact 6.10. [14] Suppose K is the age of a countable ultrahomogeneous structure
M . Then the following are equivalent:

(1) K has the strong amalgamation property.
(2) M has no algebraicity.

Let K denote a Fräıssé class in a finite relational language L = 〈Ri : i < k〉 where
each relation symbol Ri has arity ni. Let T the complete L-theory of the Fräıssé
limit of K. We’ll define a new language Lpfc which contains two sorts P and O.
For each i < k, there is an (ni + 1)-ary relation symbol Rix where x is a variable of
sort P and the suppressed ni variables belong to the sort O.
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Given an Lpfc-structure M , it is convenient to write M = (A,B) where O(M) =
A and P (M) = B. We will refer to elements named by O as objects and elements
named by P as parameters. Given b ∈ B, we define the L-structure associated to b
in M, denoted Ab, to be the L-structure interpreted in M with domain A and each
relation symbol Ri interpreted by Rib(A). If b ∈ B and C ⊆ A, write 〈C〉b to denote
the L-substructure of Ab generated by C (as we assume the language is relational,
this will have C as its domain).

We describe a class of finite structures Kpfc to be the class defined in the following
way. Let

Kpfc = {M = (A,B) ∈ Mod(Lpfc) : |M | < ℵ0, (∀b ∈ B)(∃D ∈ K) (Ab ∼= D)}

From now on, we’ll assume K also satisfies SAP.

Lemma 6.11. Kpfc is a Fräıssé class satisfying the Strong Amalgamation Property
(SAP).

Proof. HP is clear and, as we allow the empty structure to be a model in Kpfc, JEP
follows from SAP. So we show SAP.

First, we may assume that 3 models in the amalgamation diagram have the
same set of parameters. Suppose (A,D), (B,E) and (C,F ) are in Kpfc and we
have embeddings

(C,F )

(A,D)

i

::

j

$$
(B,E)

By moving F and E over D if necessary, we may assume that i and j are just the
inclusion maps on parameters and that F ∩E = D. By SAP in K, for each d ∈ D,
there are embeddings fd, gd and Gd ∈ K so that the following diagram commutes,

Cd
fd

!!
Ad

i

>>

j

  

Gd

Bd

gd

==

where i and j are the induced maps, so that fd(Cd) ∩ gd(Bb) = (fd ◦ i)(Ad). Since
the language is relational, HP implies that we may take Gd = fd(Cd) ∪ gd(Dd).
Moreover, we may choose fd and gd so that they are the same functions for all d ∈ D
on the underlying sets C and B respectively. Call these functions f and g. Let G
be the underlying set of Gd for some (all) d ∈ B. Now define a structure (G,E∪F )
so that for all d ∈ D = E ∩ F , Gd is as above, if a ∈ E \ F , Ga is some structure
in K extending g(Ba) and, likewise, if a ∈ F \ E, Ga is some structure extending
f(Ca). The functions f and g extend to embeddings f : (C,F ) → (G,E ∪ F )
and g : (B,E) → (G,E ∪ F ) so that f and g are both inclusions on parameters.
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By construction, it is clear that fi = gj. Moreover, fi(A) = f(C) ∩ g(B) and
fi(D) = f(E) ∩ g(F ), which establishes SAP in Kpfc. �

As Kpfc is a Fräıssé class, there is a unique countable ultrahomogeneous Lpfc-
structure with age Kpfc. Let Tpfc denote its theory. By Fräıssé theory, this theory
eliminates quantifiers and is ℵ0-categorical.

Lemma 6.12. Suppose (A,B) |= Tpfc. Then, for all b ∈ B, Ab |= T .

Proof. Since the property that for all b ∈ B, Ab |= T is an elementary property,
it suffices to check this when (A,B) is the unique countable model of Tpfc. If
d, e ∈ Ab satisfy tpL(d) = tpL(e) then, by quantifier-elimination, it is easy to check
tpLpfc

(b, d) = tpLpfc
(b, e) and ultrahomogeneity of (A,B) implies there is an Lpfc-

automorphism of (A,B) fixing b and taking d to e. The induced L-automorphism
of Ab witnesses that Ab is ultrahomogeneous. By Fräıssé theory there is up to
isomorphism a unique countable ultrahomogeneous L-structure with age K so Ab
is isomorphic to a model of T , so Ab |= T . �

Suppose M = (A,B) is a monster model of Tpfc. Given a formula ϕ ∈ L and a
parameter p ∈ B, define ϕp ∈ Lpfc to be the formula obtained by replacing each
occurrence of Ri by Rip and giving the objects their eponymous interpretations in
Ap – formally, this defines ϕp for atomic ϕ and then the full definition follows by
induction on the complexity of the formulas. If C ⊆ A is a set of objects and q is
an L-type over C (considered as a subset of Ap), we define the type qp by

qp = {ϕp : ϕ ∈ q}.

Lemma 6.13. Suppose {pi : i < α} ⊆ B is a collection of distinct parameters
and qi : i < α) is a sequence of non-algebraic L-types over C ⊆ A (possibly with
repetition), where qi is considered as a type in Api . Then the Lpfc-type

⋃
i<α q

i
pi is

consistent.

Proof. By compactness, it suffices to consider the case where α < ω and when the
qi are all finite types. Hence, we simply have to show

M |= (∃x)
∧
i<α

qipi(x).

Moreover, by quantifier-elimination in T , we may assume that each qi is quantifier-
free. For each i < α, let Ci ∈ Age(Api) the finite substructure generated by the
elements of C mentioned in all of the qi. So, the underlying set of each Ci is the
same, although the interpretations of the relations may differ. Given any i < α, we
know that

Api |= (∃x)
∧
qipi(x)

so there is Di ∈ Age(Api) containing a witness di to the above existential formula.
By non-algebraicity of each type, we may assume that di 6∈ Ci and, by HP, that
Di = C ∪ {di}.

Now define an Lpfc-structure E with underlying set of objects C ∪ {∗} where
∗ is some new element and its parameters are {pi : i < α}, and the relations are
interpreted so that for each i < α, the map is the identity on C and sends di 7→ ∗ is
an isomorphism of L-structures from Di to Epi . It is clear that E ∈ Kpfc so there
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is a copy F isomorphic over C ∪ {pi : i < α} to it in Age(M). Now

F |= (∃x)
∧
i<α

qipi(x)

and hence this is satisfied in M, so we’re done. �

Lemma 6.14. Suppose A,B,C ⊆ A are small sets of objects, F ⊆ B is a small set
of parameters, A ∩ B ⊆ C, and b0, b1 ∈ B satisfy b0 ≡CF b1. Then there is some
b ∈ B so that b ≡ACF b0 and b ≡BCF b1 (all in Lpfc).

Proof. Given a set D ⊆ A and p ∈ B, recall that we write 〈D〉p for the L-
substructure of Ap with underlying set D. By compactness, it suffices to prove the
lemma when A,B,C, and F are finite. By quantifier-elimination, demanding some
b ∈ B so that b ≡AC b0 and b ≡BC b1 is equivalent to asking that 〈AC〉b ∼= 〈AC〉b0
and 〈BC〉b ∼= 〈AC〉b1 . Now, as b0 ≡C b1, 〈C〉b0 may be identified with 〈C〉b1 .
We may view C, 〈AC〉b0 , and 〈BC〉b1 as elements of K. In K, we have inclusions
i : C → 〈AC〉b0 and j : C → 〈BC〉b1 , so by SAP, there are embeddings f, g and a
D ∈ K so that the following diagram commutes

〈AC〉b0
f

##
C

i
;;

j

##

D

〈BC〉b1

g

;;

where f(AC)∩ g(BC) = C. By HP, D may be taken to have f(AC)∪ g(BC) as its
domain. Since A∩B ⊆ C, D is isomorphic over C to an L-structure with underlying
set A ∪B ∪ C, so we may assume that f and g are both inclusions. Let b∗ denote
some new parameter element outside of F and define a structure with parameter
set {b∗, b0, b1} ∪ F and A ∪B ∪C as its set of objects so that 〈ABC〉b∗ ∼= D. This
clearly defines a structure in Kpfc. In the substructure with only A ∪ C as the set
of objects, there is an automorphism fixing F taking b∗ to b0. This shows that
b∗ ≡ACF b0 and a symmetric argument shows b∗ ≡BCF b1. It follows that we can
find such a b∗ in B. �

Towards proving an independence theorem for Tpfc, we will define a notion of
independence for parameterized structures.

Definition 6.15. ( |̂ pfc
)

(1) Suppose p ∈ B is a parameter. Suppose A,B,C ⊆ A. We define |̂ p by

A
p

|̂
C

B in M ⇐⇒ A |̂
C

B in Ap,

where the undecorated |̂ on the right-hand side denotes the usual non-
forking independence – i.e. tp(A/BC) does not fork over C.

(2) If A,B,C ⊆ A and D,E, F ⊆ B, we define |̂ pfc
by

A,D
pfc

|̂
C,F

B,E ⇐⇒ D ∩ E ⊆ F, and for all p ∈ F,A
p

|̂
C

B.
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Proposition 6.16. Assume T is a simple theory. Suppose A,B ⊆ A are small sets
of objects and D,E ⊆ B are small sets of parameters and M = (C,F ) is a small
model of Tpfc satisfying

A,D
pfc

|̂
C,F

B,E

Suppose moreover that a0, a1 are tuples from A and b0, b1 are tuples from B satis-

fying a0, b0 |̂ pfc

CF
A,D, a1, b1 |̂ pfc

C,F
B,E and a0, b0 ≡CF a1, b1. Then there are a

from A and b from B so that a, b ≡ACDF a0, b0 and a, b ≡BCEF a1, b1.

Proof. First, we solve the amalgamation problem for objects. Without loss of
generality, D,E, F are pairwise disjoint. By Lemma 6.12, we know that for each

p ∈ F , Cp is a model of T . By definition of |̂ pfc
, we know that in Ap, we have

A |̂ p
C
B, a0 |̂ pC A and a1 |̂ pC B. As T is simple, the independence theorem over

a model implies that there is some tuple ap in Ap such that ap ≡LAC a0, ap ≡LBC a1

and ap |̂ pC AB. For each p ∈ F , let qp(x) = tpL(ap/ABC) considered as an L-
type in Ap. By Lemma 6.13, denoting the relativization of qp to the parametrized
language with respect to p by qpp , we know that the type

⋃
p∈F q

p
p is consistent. Let

a be a realization. Then a ≡AC a0 and a ≡BC a1 in Ap for all p ∈ F so a ≡ACF a0

and a ≡BCF a1.
Now we solve the problem for parameters. First assume that b0, b1 are single-

tons in B. Without loss of generality b0, b1 /∈ F (as otherwise they are equal by
assumption, and there is nothing to do). By quantifier-elimination, we need some
b 6∈ D ∪ E ∪ F so that 〈aAC〉b ∼= 〈a0AC〉b0 and 〈aBC〉b ∼= 〈a1BC〉b1 . First, find
b2 ≡ACF b0 and b3 ≡BCF b1 outside of D∪E ∪F so that 〈aAC〉b2 ∼= 〈a0AC〉b0 and
〈aBC〉b3 ∼= 〈a1BC〉b1 . So ab2 ≡ACF a0b0 and ab3 ≡BCF a1b1. Now b2 ≡aCF b3
and aAC ∩ aBC ⊆ aC, so Lemma 6.14 applies and we can find a b so that
〈aAC〉b ∼= 〈aAC〉b2 and 〈aBC〉b ∼= 〈aBC〉b3 , and we can take this b to be outside
of D∪E ∪F . Now as b 6∈ D∪E ∪F , we have ab ≡ACDF a0b0 and ab ≡BCEF a1b1.

Now let b0 = (b0,i : i < k), b1 = (b1,i : i < k) be arbitrary tuples from B.
Without loss of generality, all of the elements in {bt,i : i < k} are pairwise-distinct,
for t ∈ {0, 1}. Let St = {i < k : bt,i /∈ F} for t ∈ {0, 1}, note that S0 = S1 = S
as b0 ≡F b1. Repeatedly applying the argument above for singletons, we can find
pairwise distinct b′i for i ∈ S such that a, b′i ≡ACDF a0, b0,i and a, b′i ≡BCEF a1, b1,i
for all i ∈ S. Let b∗ = (b∗i : i < k) be defined by taking b∗i = b0,i = b1,i for all i /∈ S
and b∗i = b′i for all i ∈ S. As there are no relations in the language involving more
than one element from the parameter sort except for the equality, it follows that
a, b∗ ≡ACDF a0, b0 and a, b∗ ≡BCEF a1, b1 — as wanted.

�

Theorem 6.17. Assume T is simple. Then |̂ pfc
is an Aut(M)-invariant inde-

pendence relation on small subsets of the monster M |= Tpfc such that it satisfies,
for an arbitrary M |= Tpfc:

(1) strong finite character: if a 6 |̂ pfc

M
b, then there is a formula ϕ(x, b,m) ∈

tp(a/bM) such that for any a′ |= ϕ(x, b,m), a′ 6 |̂ pfc

M
b;

(2) existence over models: M |= Tpfc implies a |̂ pfc

M
M for any a;

(3) monotonicity: aa′ |̂ pfc

M
bb′ =⇒ a |̂ pfc

M
b;

(4) symmetry: a |̂ pfc

M
b ⇐⇒ b |̂ pfc

M
a;
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(5) independent amalgamation: c0 |̂ pfc

M
c1, b0 |̂ pfc

M
c0, b1 |̂ pfc

M
c1, b0 ≡M b1

implies there exists b with b ≡c0M b0, b ≡c1M b1.

Proof. Automorphism invariance and (1)-(4) are immediate from the definition of

|̂ pfc
, using that T is simple and hence non-forking independence satisfies all these

properties; (5) was proven in Proposition 6.16. �

Corollary 6.18. Suppose T is a simple theory which is the theory of a Fräıssé limit
of a Fräıssé class K satisfying SAP. Then Tpfc is NSOP1. Moreover, if the D-rank
of T is ≥ 2, then Tpfc is not simple.

Proof. By Proposition 5.8, Tpfc is NSOP1, as |̂ pfc
gives an independence relation

satisfying all the hypotheses. So now we prove that Tpfc is not simple, under the
assumption that the D-rank of T is ≥ 2. This assumption implies that there is an
L-formula ϕ(x; y) and an indiscernible sequence (ai)i<ω so that {ϕ(x; ai) : i < ω}
is k-inconsistent for some k and the set defined by ϕ(x; ai) is infinite. Let M |= T
be some model containing the sequence (ai)i<ω. Construct an Lpfc-structure N
with domain ω tM and relations interpreted so that N |= Ri(b) ⇐⇒ M |= R(b)
for each tuple b ∈ M , every i < ω, and relation symbol R of L. Extend N to
Ñ |= Tpfc. Let ψ(x; y, z) be the formula ϕz(x; y) and define an array (bij)i,j<ω
by bij = (aj , i) ∈ M × ω ⊂ Ñ2. Using Lemma 6.13, it is easy to check that
for all f : ω → ω,

⋃
i<ω{ψ(x; bif(i))} is consistent. Also {ψ(x; bij) : j < ω} is

k-inconsistent for all i so ψ witnesses TP2. �

Remark 6.19. For the above argument to work, we used that the formula witnessing
dividing was non-algebraic — this fails in many natural examples (e.g. the random
graph). However, given an L-structure M , define the imaginary cover of M as
follows: let L′ be the language L together with a new binary relation symbol E for
an equivalence relation, and let M̃ be the L′-structure obtained by replacing each
element of M with an infinite E-class and defining the relations of L on M̃ on the
corresponding E-classes. Now it is easy to check that Age(M̃) has SAP, the theory

of M̃ is simple of D-rank at least 2.

Corollary 6.20. T ∗feq is NSOP1.

Proof. The theory T of an equivalence relation with infinitely many infinite classes
is a stable theory, obtained as the Fräıssé limit of all finite models of the theory of
an equivalence relation. This class has no algebraicity, so it satisfies SAP. Tpfc is
exactly T ∗feq, so it is NSOP1. �

This result was claimed in [22], but the proof is apparently incorrect due to
an illegitimate use of tree-indiscernibles. See the footnote on [13, p. 22] for a
discussion.

6.4. Theories approximated by simple theories. In her thesis [13], Gwyneth
Harrison-Shermoen considers theories that have a model approximated by a di-
rected system H of homogeneous substructures, each of which has a simple theory.

She proves that such theories carry an invariant independence notion |̂ lim
satis-

fying strong finite character, monotonicity, symmetry, and existence over a model
(existence over a model is implied by Claim 3.3.4 in [13]). Finally, she observes
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that if non-forking independence |̂ f satisfies the independence theorem over alge-

braically closed sets for each model in H, then so does |̂ lim for the approximated
theory. Hence, we obtain the following:

Corollary 6.21. Suppose T is a theory approximated, in the sense of Harrison-
Shermoen, by a directed system of structures each with a simple theory in which

|̂ f satisfies the independence theorem over algebraically closed sets. Then T is
NSOP1.

7. Lemmas on preservation of indiscernibility

Lemma 7.1. Suppose η0, . . . , ηl−1, ν0, . . . , νl−1 are elements of ω<ω. Let η and ν
denote enumerations of the ∧-closures of {ηi : i < l} and {νi : i < l} respectively.
Then if

qftpLs(η0, . . . , ηl−1) = qftpLs(ν0, . . . , νl−1),

then

qftpLs(η) = qftpLs(ν).

Proof. Easy. See Remark 3.2 from [17] �

Lemma 7.2. Let η0, . . . , ηl−1, ν0, . . . , νl−1 ∈ ω<ω be such that

qftpLs(η0, . . . , ηl−1) = qftpLs(ν0, . . . , νl−1).

Suppose i < l and η C ηi, ν C νi with l(η) = l(ν). Then, setting ηl = η and νl = ν,
we have

qftpLs(η0, . . . , ηl) = qftpLs(ν0, . . . , νl).

Proof. Without loss of generality, we may take {ηi : i < l} and {νi : i < l} to be
∧-closed, by the previous lemma. Then {ηi : i < l+ 1} and {νi : i < l+ 1} are also
∧-closed. So we need only to check that for any j, j′ < l + 1

(1) ηj C ηj′ ⇐⇒ νj ⇐⇒ ν′j
(2) ηj <lex ηj′ ⇐⇒ νj <lex νj′

We have 3 cases.
Case 1: j, j′ < l.
(1) and (2) follow by assumption.
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Case 2: j < l and j′ = l

ηj C ηl ⇐⇒ ηj C ηi and l(ηj) ≤ l(ηl)

⇐⇒ ηj C ηi ∧
∨

k<l(ηl)

Pk(ηj)

⇐⇒ νj C νi ∧
∨

k<l(νl)

Pk(νj)

⇐⇒ νj C νl.

ηj <lex ηl ⇐⇒ l(ηj ∧ ηi) < l(ηl) and ηj <lex ηi

⇐⇒

 ∨
k<l(ηl)

Pk(ηj ∧ ηi)

 ∧ ηj <lex ηi
⇐⇒

 ∨
k<l(νl)

Pk(νj ∧ νi)

 ∧ νj <lex νi
⇐⇒ νl <lex νj .

Case 3: j = l and j′ < l

ηl C ηj ⇐⇒ ηl C (ηi ∧ ηj)

⇐⇒
∨

l(ηl)<k≤l(ηi)

Pk((ηi ∧ ηj))

⇐⇒
∨

l(νl)<k≤l(νi)

Pk((νi ∧ νj))

⇐⇒ νl C νj
ηl <lex ηj ⇐⇒ (l(ηj ∧ ηi) < l(ηl))→ ηi <lex ηj

⇐⇒

 ∨
k<l(ηl)

Pk(ηj ∧ ηi)

→ ηi <lex ηj

⇐⇒

 ∨
k<l(νl)

Pk(νj ∧ νi)

→ νi <lex νj

⇐⇒ νl <lex νj .

�

Lemma 7.3. Let (aη)η∈ω<ω be an s-indiscernible tree. If (a′η)η∈ω<ω is the k-fold
widening of (aη)η∈ω<ω at level n, then (a′η)η∈ω<ω is also s-indiscernible.

Proof. Pick η0, . . . , ηl−1 and ν0, . . . , νl−1 in ω<ω so that

qftpLs(η0, . . . , ηl−1) = qftpLs(ν0, . . . , νl−1).

By Lemma 7.2, we may assume that {ηi : i < l} and {νi : i < l} are both ∧-closed
and closed under initial segment. Moreover, we may assume that these elements
have been enumerated so that for some m ≤ l, l(ηi), l(νi) < n if and only if i ≥ m.
So for each i < m, we may write

ηi = µi _ αi _ ξi

νi = υi _ βi _ ρi,
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where µi, υi ∈ ωn−1, αi, βi ∈ ω, and ξi, ρi ∈ ω<ω. For each i < m, let

ηi = (µi _ (kαi) _ ξi, µi _ (kαi + 1) _ ξi, . . . , µi _ (kαi + k − 1) _ ξi)

νi = (υi _ (kβi) _ ρi, υi _ (kβi + 1) _ ρi, . . . , υi _ (kβi + k − 1) _ ρi).

and for m ≤ i < l, let ηi = ηi, νi = νi. Now we must show that

qftpLs(η0, . . . , ηl−1) = qftpLs(ν0, . . . , νl−1).

It is clear that the sets
⋃
i<l ηi and

⋃
i<l νi are closed under initial segment. They

are also closed under ∧: this is obvious for elements of length < n and for elements
of longer length whose meet has length < n by our assumptions. On the other hand
if, for some i, i′ < l and j, j′ < k, l((ηi)j), l((νi′)j′) ≥ n and l((ηi)j ∧ (νi′)j′) ≥ n,

then if j = j′, we have (ηi)j ∧ (νi′)j′ = (ηi ∧ ηi′)j and if j 6= j′, then (ηi)j ∧ (νi′)j′

is equal to the common initial segment of each element of length n− 1. In the first
case, the meet is enumerated in one of the tuples because our initial set of tuples
was ∧-closed, in the second case because it was taken to be closed under initial
segment. To check equality of the quantifier-free types, we have 3 cases:

Case 1: i, i′ ≥ m Follows by assumption, as for any i ≥ m, ηi = ηi and νi = νi.
Case 2: i ≥ m, i′ < m and j < k

ηi C (ηi′)j ⇐⇒ νi C (νi′)j

ηi <lex (ηi′)j ⇐⇒ νi <lex (ηi′)j

(ηi′)j <lex ηi ⇐⇒ (νi′)j <lex νi

Case 3: i, i′ < m and j, j′ < k

(ηi)j C (ηi′)j′ ⇐⇒ ηi C ηi′ and j = j′

⇐⇒ νi C νi′ and j = j′

⇐⇒ (νi)j C (νi′)j′

(ηi)j <lex (ηi′)j′ ⇐⇒ (ηi <lex ηj and (l(ηi ∧ ηj) < n or j = j′)) or

(l(ηi ∧ ηi′) ≥ n and j < j′)

⇐⇒ (νi <lex νj and (l(νi ∧ νj) < n or j = j′)) or

(l(νi ∧ νi′) ≥ n and j < j′)

⇐⇒ (νi)j <lex (νi′)j′ .

�

Lemma 7.4. Let (aη)η∈ω<ω be an s-indiscernible tree. If (a′′η)η∈ω<ω is the k-fold
stretch of (aη)η∈ω<ω at level n, then (a′′η)η∈ω<ω is also s-indiscernible.

Proof. Given η ∈ ω<ω, let

η =


η if l(η) < n

(η, η _ 0, . . . , η _ 0k−1) if l(η) = n
ν _ 0k−1 _ ξ if η = ν _ ξ, with ν ∈ ωn, ξ 6= ∅

Pick η0, . . . , ηl−1, ν0, . . . , νl−1 ∈ ω<ω so that

qftpLs(η0, . . . , ηl−1) = qftpLs(ν0, . . . , νl−1),

and, without loss of generality, we may suppose {ηi : i < l} and {νi : i < l} are
both ∧-closed. We must show that

qftpLs(η0, . . . , ηl−1) = qftpLs(ν0, . . . , νl−1).



32 ARTEM CHERNIKOV AND NICHOLAS RAMSEY

Assume that {ηi : i < l} is ordered so that i < m if and only if l(ηi) = n, and
similarly for {νi : i < l}. Clearly {ηi : i < l} and {νi : i < l} are also ∧-closed,
so we have to check that the two sequences of tuples have the same quantifier type
with respect to the relations <lex and C. We’ll show this by considering the various
cases:

Case 1: i, i′ ≥ m. Then

ηi C ηi′ ⇐⇒ ηi C ηi′

⇐⇒ νi C νi′

⇐⇒ νi C νi′

ηi <lex ηi ⇐⇒ ηi <lex ηi′

⇐⇒ νi <lex νi′

⇐⇒ νi <lex νi′ .

Case 2: i, i′ < m and j, j′ < k. Then

(ηi)j C (ηi′)j′ ⇐⇒ (ηi = ηi′) ∧ (j < j′)

⇐⇒ (νi = νi′) ∧ (j < j′)

⇐⇒ (νi)j C (ν)j′

(ηi)j <lex (ηi′)j′ ⇐⇒ ηi <lex ηi′ ∨ (νi = νi′ ∧ j < j′)

⇐⇒ νi <lex νi′ ∨ (νi = νi′ ∧ j < j′)

⇐⇒ (νi)j <lex (νi′)j′ .

Case 3: i < m, i′ ≥ m, j < k.

(ηi)j C ηi′ ⇐⇒ ηi C ηi′

⇐⇒ νi C νi′

⇐⇒ (νi)j C νi
ηi′ C (ηi)j ⇐⇒ ηi′ C ηi

⇐⇒ νi′ C νi
⇐⇒ (νi′)j C νi

(ηi)j <lex ηi′ ⇐⇒ ηi <lex ηi′

⇐⇒ νi <lex νi′

⇐⇒ (νi)j <lex νi′

ηi′ <lex (ηi)j ⇐⇒ νi′ <lex νi

⇐⇒ νi′ <lex νi

⇐⇒ νi′ <lex (νi)j .

�

Lemma 7.5. (1) Each tuple a
(n)
η may be enumerated as (aν_η : ν ∈ 2n)

(2) If (aη)η∈2<κ is strongly indiscernible, then for all n, the n-fold fattening

(a
(n)
η )η∈2<κ is strongly indiscernible over Cn

Proof. (1) This is trivial for n = 0. Then if true for n, we have

a(n+1)
η = (a

(n)
0_η, a

(n)
1_η) = ((aν_0_η : ν ∈ 2n), (aν_1_η : ν ∈ 2n)) = (aξ_η : ξ ∈ 2n+1).
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(2) By (1) we have a
(n+1)
η = (aµ_η : µ ∈ 2n). Let µ = (µ ∈ 2≤n). In order to show

indiscernibility over Cn have to show that if η0, . . . , ηk−1, ν0, . . . , νk−1 ∈ 2<ω and

qftpL0
(η0, . . . , ηk−1) = qftpL0

(ν0, . . . , νk−1)

then qftpL0
(µ, (aµ_η0 : µ ∈ 2n), . . . , (aµ_ηk−1

: µ ∈ 2n)) is equal to qftpL0
(µ, (aµ_ν0 :

µ ∈ 2n), . . . , (aµ_νk−1
: µ ∈ 2n)). To this end, we may assume {η0, . . . , ηk−1} and

{ν0, . . . , νk−1} are meet-closed. Then 2≤n∪{µ _ ηi : µ ∈ 2n, i < k} and 2≤n∪{µ _
νi : µ ∈ 2n, i < k} is also meet-closed and we just have to check that the tuples in
the above equation have the same time with respect to the language Lt = {C, <lex}.
Choose ξ0, ξ1 from the tuple (µ, (aµ_η0 : µ ∈ 2n), . . . , (aµ_ηk−1

: µ ∈ 2n)) and ρ0, ρ1

from (µ, (aµ_ν0 : µ ∈ 2n), . . . , (aµ_νk−1
: µ ∈ 2n)) so that ξi sits in the same po-

sition in the enumeration of the tuple as ρi for i = 0, 1. Now, we must show that
ξ0 <lex ξ1 if and only if ρ0 <lex ρ1 and ξ0 E ξ1 if and only if ρ0 E ρ1. Choose
arbitrary µ0, µ1 ∈ 2≤n, ηi, ηj , νi, νj .

Case 1: l(µ0) = l(µ1) = n, ξ0 = µ0 _ ηi, ξ1 = µ1 _ ηj , and hence ρ0 = µ0 _ νi
and ρ1 = µ1 _ νj .

µ0 _ ηi E µ1 _ ηj ⇐⇒ µ0 = µ1 ∧ ηi E ηj
⇐⇒ µ0 = µ1 ∧ νi E νj
⇐⇒ µ0 _ νi C µ1 _ νj

µ0 _ ηi <lex µ1 _ ηj ⇐⇒ µ0 <lex µ1 ∨ (µ0 = µ1 ∧ ηi <lex ηj)
⇐⇒ µ0 <lex µ1 ∨ (µ0 = µ1 ∧ νi <lex νi′)
⇐⇒ µ0 _ νi <lex µ1 _ νj

Case 2: ξ0 = µ0, ξ1 = µ1, ρ0 = µ0, and ρ1 = µ1.
Clear.
Case 3: l(µ0) = n, ξ0 = µ0 _ ηi, ξ1 = µ1, ρ0 = µ0 _ νi, ρ1 = µ1.
It is never the case that µ0 _ ηi C µ1 or µ0 _ νi C µ1 so it suffices to check

<lex:

µ0 _ ηi <lex µ1 ⇐⇒ µ0 <lex µ1

⇐⇒ µ0 _ νi <lex µ1.

Case 4: l(µ1) = n, ξ0 = µ0, ξ1 = µ1 _ νj , ρ0 = µ0, ρ1 = µ1 _ νj .

µ0 E µ1 _ ηj ⇐⇒ µ0 E µ1

⇐⇒ µ0 E µ1 _ νj

µ0 ≤lex µ1 _ ηj ⇐⇒ µ0 ≤lex µ1

⇐⇒ µ0 ≤lex µ1 _ νj

�

Lemma 7.6. If (aη)η∈2<ω is strongly indiscernible, then for all natural numbers
k ≥ 1, the k-fold elongation (a′η)η∈2<ω of (aη)η∈2<ω is also strongly indiscernible.

Proof. Given η ∈ 2<ω, with l(η) = n, we defined η̃ ∈ 2<ω to be the element with
length k(l(η)− 1) + 1 defined by

η̃(i) =

{
η(i/k) if k|i

0 otherwise
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As the k-fold elongation of (aη)η∈2<ω is defined to be the tree (bη)η∈2<ω where

bη = (aη̃, aη̃_0, . . . , aη̃_0k−1).

Write η for the tuple (η̃, η̃ _ 0, . . . , η̃ _ 0k−1). We are reduced to showing that if
η0, . . . , ηl−1, ν0, . . . , νl−1 are elements of 2<ω so that

qftpL0
(η0, . . . , ηl−1) = qftpL0

(ν0, . . . , νl−1)

then

qftpL0
(η0, . . . , ηl−1) = qftpL0

(ν0, . . . , νl−1).

We may assume that {ηi : i < l} and {νi : i < l} are both ∧-closed, from which it
follows that {ηi : i < l} and {νi : i < l} are both ∧-closed. So we must check that
(ηi : i < l) and (νi : i < l) have the same quantifier-free type with respect to the
language Lt = 〈E, <lex〉. We note

η̃i _ 0l E η̃j _ 0l
′
⇐⇒ η̃i C η̃j ∨ (η̃i = η̃j ∧ l ≤ l′)
⇐⇒ ηi C ηj ∨ (ηi = ηj ∧ l ≤ l′)
⇐⇒ νi C νj ∨ (νi = νj ∧ l ≤ l′)
⇐⇒ ν̃i C ν̃j ∨ (ν̃i = ν̃j ∧ l ≤ l′)
⇐⇒ ν̃i _ 0l C ν̃j _ 0l

′

η̃i _ 0l <lex η̃j _ 0l
′
⇐⇒ η̃i <lex η̃j ∨ (η̃i = η̃j ∧ l < l′)

⇐⇒ ηi <lex ηj ∨ (ηi = ηj ∧ l < l′)

⇐⇒ νi <lex νj ∨ (νi = νj ∧ l < l′)

⇐⇒ ν̃i <lex ν̃j ∨ (ν̃i = ν̃j ∧ l < l′)

⇐⇒ ν̃i _ 0l <lex ν̃j _ 0l
′
.

�

Lemma 7.7. Suppose (aη)η∈2<ω is a strongly indiscernible tree over C.

(1) Define a function h : 2<ω → 2<ω by h(∅) = ∅ and h(η) = h(ν) _ 0 _ 〈i〉
whenever η = ν _ 〈i〉. Then (ah(η))η∈2<ω is strongly indiscernible over C.

(2) For each n, define a map hn : 2<ω → 2<ω by

hn(η) =

{
h(η) if l(η) ≤ n

h(ν) _ ξ if η = ν _ ξ, l(ν) = n.

Then (ahn(η))η∈2<ω is strongly indiscernible over C.

Proof. (1) At the outset, we note that η E ν ⇐⇒ h(η) E h(ν) and η <lex ν ⇐⇒
h(η) <lex h(ν). The only difficulty arises from ∧ which is not preserved by h,
because if η ⊥ ν and η ∧ ν = ξ then h(η) ∧ h(ν) = h(ξ) _ 0.

It suffices to show that if η, ν are finite tuples from 2<ω with qftpL0
(η) =

qftpL0
(ν) then qftpL0

(h(η)) = qftpL0
(h(ν)). Given such η, ν, it is clear that if

qftpL0
(h(η)) 6= qftpL0

(h(ν)) then qftpL0
(h(η′)) 6= qftpL0

(h(ν′)) where η′ and ν′

are the ∧-closures of η and ν respectively. So we may assume η and ν are ∧-closed.
We may assume that the tuple η = 〈ηi : i < k〉 is enumerated so that for some l ≤ k,
if i < l, then there are ηj ⊥ ηj′ so that ηj ∧ ηj′ = ηi. It follows that the ∧-closure
of h(η) may be enumerated as 〈h(ηi) : i < k〉 _ 〈h(ηi) _ 0 : i < l〉, and, likewise,
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the ∧-closure of h(ν) can be enumerated as 〈h(νi) : i < k〉 _ 〈h(νi) _ 0 : i < l〉.
Now we note that, by definition of h, if i, j < k

h(ηi) C h(ηj) _ 0 ⇐⇒ h(ηi) _ 0 C h(ηj)

⇐⇒ h(ηi) _ 0 C h(ηj) _ 0

⇐⇒ h(ηi) C h(ηj)

h(ηi) <lex h(ηj) _ 0 ⇐⇒ h(ηi) _ 0 <lex h(ηj)

⇐⇒ h(ηi) _ 0 <lex h(ηj) _ 0

⇐⇒ h(ηi) <lex h(ηj)

And similarly for νi, νj . As h respects C and <lex, and qftpL0
(η) = qftpL0

(ν), it
follows that qftpL0

(h(η)) = qftpL0
(h(ν)).

(2) is entirely similar. �
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