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THE DOWNWARD DIRECTED GROUNDS HYPOTHESIS AND

VERY LARGE CARDINALS

TOSHIMICHI USUBA

Abstract. A transitive model M of ZFC is called a ground if the universe V is

a set forcing extension of M . We show that the grounds of V are downward set-

directed. Consequently, we establish some fundamental theorems on the forcing

method and the set-theoretic geology. For instance, (1) the mantle, the intersec-

tion of all grounds, must be a model of ZFC. (2) V has only set many grounds if

and only if the mantle is a ground. We also show that if the universe has some

very large cardinal, then the mantle must be a ground.

1. Introduction

After Cohen’s solution of the continuum hypothesis, the forcing method became
an important tool of set-theory. While many independent results are proved by the
forcing method, the nature of forcing is also a fundamental topic in this field.

The forcing method uses second order objects, ground models, and generic exten-
sions. A natural framework for treating such objects is a second-order set theory
such as Von Neumann-Bernays-Gödel set-theory. However in the first order set
theory ZFC, it is more difficult to treat. On the other hand, Laver [10] and,
independently, Woodin found that a ground model is definable in its set-forcing
extension. Later, Fuchs-Hamkins-Reitz [4] refined Laver and Woodin’s result, and
they give a uniform definition of all ground models of the universe:

Theorem 1.1 (Reitz [12], Fuchs-Hamkins-Reitz [4]). There is a first order formula
ϕ(x, r) of set theory such that:

(1) For each r, the class Wr = {x : ϕ(x, r)} is a ground model of V .
(2) For every ground model M of V , there is r such that M = Wr.

This allows us to treat ground models within the first order set theory ZFC.
Using this uniform definition, a study of the structure of all ground models was
initiated, which attempts a study of the nature of the forcing method. The study is
now called the set-theoretic geology. In [4], some notions in the forcing method and
the set-theoretic geology were introduced. One of the most important and natural
concepts is the notion of the mantle:

2010 Mathematics Subject Classification. Primary 03E40, 03E45, 03E55.
Key words and phrases. Forcing method, Set-theoretic geology, Downward directed grounds

hypothesis, Large cardinal, Generic multiverse.

1

http://arxiv.org/abs/1707.05132v2


Definition 1.2. Themantle is the intersection of all ground models of the universe.

The mantle is a very natural and canonical object in the context of the forcing
method. Fuchs-Hamkins-Reitz [4] proved the structure of the mantle can be ma-
nipulated by class forcings. For example, they proved that the universe V can be
the mantle of some class forcing extension V [G]. Besides the natural definition of
the mantle, there are many open questions about the mantle. An important one
is whether the mantle is a model of ZFC or not. If it is a model of ZFC, then the
mantle can be seen as the core of all ground models.

The key to the solution of this question is the downward directedness of the
ground models. The downward directed grounds hypothesis, DDG, is the assertion
that every two ground models have a common ground model. The strong DDG
is the assertion that every collection {Wr : r ∈ X} of ground models indexed by
some set X has a common ground model. In [4], it was proved that if DDG holds,
then the mantle is a model of ZF. Furthermore, if the strong DDG holds, then the
mantle satisfies the axiom of choice. The DDG is not only a key to the solution,
but it expresses a fundamental property of the structure of ground models.

All known models, such as L[A], K, HOD, and class forcing extensions, satisfy
the strong DDG, and their mantles are models of ZFC. So one might expect that
the DDG is a theorem of ZFC. Meanwhile, attempts have been made to construct
a counterexample by the forcing method or inner model construction.

In this paper, we prove that the strong DDG is actually a theorem of ZFC.

Theorem 1.3. The strong DDG holds.

Because of this result, under ZFC, some fundamental properties of the set-
theoretic geology can be derived without any assumptions. For example, we prove
the following:

Theorem 1.4. (1) The mantle is a model of ZFC.
(2) The universe V has only set many ground models if and only if the mantle

is the minimum ground of all forcing extensions of V .

Next we look at the statement that “V has class many ground models”. A natural
model of this statement is given by a class Easton forcing extension, and one can
show that this statement is consistent with supercompact cardinals as follows. For
a cardinal κ, by restricting the domain of Easton forcing, we may assume that a
class Easton forcing is κ-directed closed. Combining this observation with Laver’s
indestructiblity theorem ([9]), we have the consistency of the statement that “V
has class many ground models”+ “there exists a supercompact cardinal”.

In contrast to supercompact cardinals, it is known that some very large cardinals,
such as extendible cardinals, cannot be indestructible for directed closed forcing
(Bgaria-Hamkins-Tsaprounis-Usuba [1]), so we cannot prove the consistency of
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“V has class many ground models”+“there exists an extendible cardinal” by this
method. Hence it is natural to ask whether existence of class many ground models
is consistent with very large cardinals. In the last half of this paper, we will give a
partial answer to this question, we show that some very large cardinal is inconsistent
with class many ground models.

Definition 1.5. Let κ be an infinite cardinal. We say that κ is hyper-huge if for
every λ > κ, there is an elementary embedding j : V → M into some inner model
M such that the critical point of j is κ, λ < j(κ), and j(λ)M ⊆ M .

We show that our hyper-huge cardinal excludes class many ground models. Fur-
thermore, if a hyper-huge cardinal exists, then the mantle must be the minimum
ground model of the universe. This indicates an unexpected connection between
large cardinal axioms and the forcing method.

Theorem 1.6. Suppose a hyper-huge cardinal exists. Then the universe V has
only set many ground models, and the mantle is a ground model of V .

In the last section, we show some interesting consequences of main theorems,
and will prove some fundamental properties about set-theoretic geology and the
generic multiverse.

2. Basic materials

In this section, we present some basic notations, definitions, and known facts.
We also make some easy observations.

Throughout this paper, V will denote the universe, so V is a transitive model of
ZFC containing all ordinals unless otherwise specified.

Note 2.1. In this paper, a class means a second order object in the sense of Von
Neumann-Bernays-Gödel set-theory unless otherwise specified. We do not require
that a class M is definable in V with some parameters, but we assume that V
satisfies the replacement schemes for the formulas of the language {∈,M} (where
we identify M as a unary predicate). Note that, for every definable class M , V
satisfies the replacement schemes for the formulas of the language {∈,M}. Hence,
every definable class is a class in our sense. Also note that if W is a ground model
of V , then W is a class in our sense.

In this paper, we will assume that a transitive model M ⊆ V of ZF(C) is a class
of V unless otherwise specified.

See Theorem 13.9 in Jech [7], and see Definition 13.2 in [7] for the definition of
the Gödel operations.

Fact 2.2. Let N ⊆ V be a transitive class containing all ordinals. Then N is a
model of ZF if and only if N is closed under the Gödel operations and N is almost
universal, that is, for every set x ⊆ N , there is y ∈ N with x ⊆ y.
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Note that the replacement schemes for the formulas of the language {∈, N} is
needed to prove this fact.

By Fact 2.2, for a transitive class N ⊆ V containing all ordinals, the statement
“N is a model of ZFC” is an abbreviation of the first order formula of the language
{∈, N} that “N is closed under the Gödel operations”+ “N is almost universal”+
“N satisfies the axiom of choice”.

For a transitive model M of ZFC and an ordinal α, let Mα be the set of all
x ∈ M with rank < α.

We discuss the consistency strength of a hyper-huge cardinal. Recall that an
infinite cardinal κ is 2-huge if there exists a transitive model N of ZFC and an
elementary embedding j : V → N with critical point κ such that N is closed under
j(j(κ))-sequences.

Lemma 2.3. Suppose κ is 2-huge. Then Vκ is a model of ZFC+“there are proper
class many hyper-huge cardinals”. Hence the consistency strength of the existence
of a hyper-huge cardinal is strictly weaker than of the existence of a 2-huge cardinal.

Proof. Let j : V → N be a 2-huge embedding with critical point κ. First we check
that Vj(κ) is a model of “κ is hyper-huge”. To see this, take λ with κ < λ < j(κ).

Now we let (κ, λ) → (κ′, λ′) be the assertion that there is an elementary embed-
ding j : V → M for some M such that:

(1) the critical point of j is κ,
(2) λ < j(κ) = κ′,
(3) λ′ = j(λ), and
(4) M is closed under λ′-sequences.

Note that (κ, λ) → (κ′, λ′) is equivalent to the existence of a normal ultrafilter U
over P(λ′) with {x ⊆ λ′ : x ∩ κ ∈ κ, ot(x ∩ κ′) = κ, ot(x) = λ} ∈ U .

Since j is a 2-huge embedding and λ < j(κ), we have j(λ) < j(j(κ)) and (κ, λ) →
(j(κ), j(λ)). Now κ is j(κ)-supercompact in V , hence j(κ) is j(j(κ))-supercompact
in N , actually in V . j(κ) < j(λ) < j(j(κ)), hence we have there is some κ′, λ′ <
j(κ) with (κ, λ) → (κ′, λ′) in V by a standard reflection argument using the j(j(κ))-
supercompactness of j(κ). This shows that κ is hyper-huge in Vj(κ) = Nj(κ). By
the elementarity of j, we have that {α < κ : α is hyper-huge in Vκ} is unbounded
in κ. �

A poset P is weakly homogeneous if, for every p, q ∈ P, there is an automorphism
f on P such that f(p) is compatible with q.

For an infinite cardinal χ, let H(χ) be the set of all sets x such that the transitive
closure of x has cardinality < χ. It is known that if χ is regular uncountable,
then H(χ) is a transitive model of ZFC−P, ZFC minus the power set axiom, with
χ ⊆ H(χ).
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Here we recall some definitions and facts about set-theoretic geology. See Fuchs-
Hamkins-Reitz [4] for more information.

Definition 2.4. A transitive model M ⊆ V of ZFC is a ground of V if there exists
a poset P ∈ M and an (M,P)-generic filter G ⊆ P with M [G] = V .

Note that V is a ground of V by the trivial forcing.
It is known that all grounds can be defined uniformly.

Fact 2.5 (Reitz [12], Fuchs-Hamkins-Reitz [4]). There is a first order formula
ϕ(x, r) of set-theory such that:

(1) For each r, the (definable) class Wr = {x : ϕ(x, r)} is a ground of V .
(2) For every ground M of V , there is r such that M = Wr.

For this formula ϕ, the collection {Wr : r is a set} consists of the grounds of V .

Definition 2.6. The downward directed grounds hypothesis, DDG, is the assertion
that, the grounds are downward directed, that is, for every r and s, there is t such
that Wt ⊆ Wr ∩Ws. The strong DDG is the assertion that, for every set X , there
is s such that Ws ⊆

⋂

r∈X Wr.

Next we explicitly define how to count the grounds.

Definition 2.7. We say that V has only set many grounds if there is a set X such
that the collection {Wr : r ∈ X} consists of the grounds of V , that is, for every
s, there is r ∈ X with Wr = Ws. If there is no such X , then V has proper class
many grounds. If |X| < κ (≤ κ, respectively), then V has only < κ many grounds
(κ many grounds, respectively).

Definition 2.8 (Fuchs-Hamkins-Reitz [4]). The mantle, denoted by M, is the class
⋂

{Wr : r is a set}.

The mantle is transitive and contains all ordinals. We will show that the mantle
must be a model of ZFC.

Note 2.9. If a poset P is weakly homogeneous and G is (V,P)-generic, then the

mantle of V [G], MV [G], is the same as the class {x ∈ V :
P“x ∈ MV [Ġ]”} defined

in V (where Ġ is the canonical name for the generic filter). Hence we can let MV P

denote the mantle of a forcing extension of V by P.

Definition 2.10 (Fuchs-Hamkins-Reitz [4]). The generic mantle, denoted by gM,

is the class
⋂

{MV Col(θ)
: θ is an ordinal }.

Fact 2.11 ([4]). (1) gM is the intersection of all grounds of all forcing exten-
sions of V .

(2) gM is a transitive model of ZF containing all ordinals
(3) gM is a forcing invariant class: for every forcing extension V [G] of V , we

have gMV = gMV [G].
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3. Grounds and generic extensions

In this section, we discuss some basic properties of grounds and generic exten-
sions.

The following useful fact is well-known. See Lemma 15.43 in Jech [7] for the
proof.

Fact 3.1. Let M , N be transitive models of ZFC. If there is a poset P ∈ M and
an (M,P)-generic G with M ⊆ N ⊆ M [G], then there is a complete suborder
Q ⊆ ro(P)M in M and an (M,Q)-generic H such that M [H ] = N , and G is
(N, ro(P)M/H)-generic with M [G] = N [G], where ro(P)M is the completion of P
in M . In particular, M is a ground of N , and N is a ground of M [G].

We define the covering and the approximation properties, which are important
tools to investigate grounds and generic extensions.

Definition 3.2 (Hamkins [5]). Let M ⊆ V be a transitive model of ZFC containing
all ordinals. Let κ be an infinite cardinal.

(1) We say that M satisfies the κ-covering property for V if, for every set A of
ordinals with |A| < κ, there is a set B ∈ M of ordinals such that |B| < κ
and A ⊆ B.

(2) We say that M satisfies the κ-approximation property for V if, for every set
A of ordinals, if A ∩ x ∈ M for every set x ∈ M of ordinals with |x| < κ,
then A ∈ M .

Note 3.3. (1) M satisfies the κ-covering property for V if and only if, for every
set x ⊆ M with size < κ, there is y ∈ M such that x ⊆ y and |y| < κ.

(2) M satisfies the κ-approximation property for V if and only if, for every set
A ⊆ M , if A ∩ x ∈ M for every set x ∈ M with |x| < κ then A ∈ M .

The following fact is key to the definition of the grounds as in Fact 2.5. See
Laver [10] for a proof, and in Lemma 4.3, we will redo Laver’s proof for models of
ZFC−P.

Fact 3.4 (Hamkins). Let κ be an uncountable cardinal. For transitive models
M,N ⊆ V of ZFC containing all ordinals, suppose M and N satisfy the following
properties:

(1) M , N satisfy the κ-covering and the κ-approximation properties for V .
(2) P(κ)M = P(κ)N .
(3) (κ+)M = (κ+)N = κ+.

Then M = N .

The following is Lemma 13 in Hamkins [5] (and see also Mitchell [11]).
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Fact 3.5. Suppose M is a ground of V , and M [G] = V for some P ∈ M and

(M,P)-generic G. Let κ be an infinite cardinal. If |P|M < κ, then M satisfies the
κ-covering and the κ-approximation properties for V .

Lemma 3.6. Suppose M,N are grounds of V . Let P ∈ M ∩ N be a poset, G be
an (M,P)-generic, and H be an (N,P)-generic such that V = M [G] = N [H ]. If

λ = |P|M = |P|N and P(λ)M = P(λ)N , then M = N .

Proof. Let κ = λ+. Note that κ = (λ+)M = (λ+)N . Moreover ([κ]<κ)M = ([κ]<κ)N

because P(λ)M = P(λ)N .
In order to prove M = N , by Fact 3.4, it is sufficient to check that the conditions

(1)–(3) in Fact 3.4 hold for M and N . (1) follows from Fact 3.6, and (3) is clear.
For (2), we prove P(κ)M ⊆ P(κ)N . The converse direction follows from the same

argument. Fix A ∈ P(κ)M . By the κ-approximation property of N , it is sufficient
to see that A ∩ x ∈ M for every x ∈ ([κ]<κ)M , and this is immediate because
([κ]<κ)M = ([κ]<κ)N . �

Next we define a strong version of the covering property.

Definition 3.7. Let κ be an infinite cardinal, and M ⊆ V be a transitive model
of ZFC containing all ordinals. We say that M satisfies the κ-uniform covering
property1 for V if, for every ordinal α and every function f : α → ON , there is a
function F ∈ M such that dom(F ) = α, f(β) ∈ F (β) and |F (β)| < κ for all β < α.

Note 3.8. Suppose M satisfies the κ-uniform covering property for V .

(1) For every cardinal λ > κ, M satisfies the λ-uniform covering property for
V .

(2) If κ is regular, then M satisfies the κ-covering property for V .
(3) If κ is regular, then M also satisfies a slightly stronger property: for every

ordinal α and every function f : α → [M ]<κ, there is a function F ∈ M
such that dom(F ) = α, f(β) ⊆ F (β), and |F (β)| < κ for all β < α.

The following theorem of Bukovský is very useful. It shows that a model of ZFC
is a ground if and only if it has the uniform covering property.

Fact 3.9 (Bukovský [2]). Suppose M ⊆ V is a transitive model of ZFC contain-
ing all ordinals. Let κ be a regular uncountable cardinal. Then the following are
equivalent:

(1) M satisfies the κ-uniform covering property for V .
(2) There is a poset P ∈ M and an (M,P)-generic G such that P satisfies the

κ-c.c. in M , and M [G] = V .

1 In Friedman-Fuchino-Sakai [3], this property is referred as “M κ-globally coves V ”.
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See also Friedman-Fuchino-Sakai [3] and Schindler [13] for simple and modern
proofs of Bukovský’s theorem. Friedman-Fuchino-Sakai [3] gave a proof using an
infinitary logic, and Schindler [13] used an extender algebra.

4. The covering and the approximation properties of models of

ZFC−P

In this section, we discuss the covering and the approximation properties of
submodels of H(χ). These will be used in the next section.

First let us make the following note:

Note 4.1. We use the property that “every set can be coded by a set of ordinals”.
This is implied by ZF−P+ the well-ordering theorem, and, if χ is regular uncount-
able, then H(χ) satisfies the well-ordering theorem of course. Natural submodels
of H(χ) satisfy only ZFC−P. However, it is known that ZFC−P does not imply the
well-ordering theorem (Zarach [17]). So ZFC−P does not imply our required prop-
erty. Moreover the collection schemes do not follow from ZFC−P (Zarach [18]). To
avoid those difficulties, we identify the axiom of choice with the well-ordering the-
orem, and the replacement schemes with the collection schemes. Hence “a model
of ZFC−P” means “a model of ZF−P+the collection schemes+the well-ordering
theorem”.

Here we explicitly define the covering and the approximation properties of sub-
models of H(χ).

Definition 4.2. Let κ < χ be regular uncountable cardinals. Let M ⊆ H(χ) be a
transitive model of ZFC−P with χ ⊆ M .

(1) M satisfies the κ-covering property for H(χ) if for every set A of ordinals
with |A| < κ and A ⊆ χ (so A ∈ H(χ)), there is some set B ∈ M of ordinals
such that |B| < κ and A ⊆ B.

(2) M satisfies the κ-approximation property for H(χ) if for every bounded
subset A ⊆ χ (so A ∈ H(χ)), if A ∩ x ∈ M for every x ∈ M ∩ [χ]<κ, then
A ∈ M .

(3) M satisfies the κ-uniform covering property for H(χ) if for every α < χ
and f : α → χ (so f ∈ H(χ)), there is F ∈ M such that dom(F ) = α,
f(β) ∈ F (β), and |F (β)| < κ for all β < α.

The following is a variation of Fact 3.4.

Lemma 4.3. Let κ < χ be regular uncountable cardinals with κ+ < χ. Let M,N ⊆
H(χ) be transitive models of ZFC−P with χ ⊆ M ∩ N . If M and N satisfy the
κ-uniform covering and the κ-approximation properties for H(χ), and P(κ)∩M =
P(κ) ∩N , then M = N .
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Proof. We repeat the proof of Fact 3.4.
First note that (κ+)M = (κ+)N = κ+; this is immediate from the κ-uniform

covering property of M and N . Since P(κ) ∩ M = P(κ) ∩ N , we have that
P(α)∩M = P(α)∩N for every α < κ+, which we can verify as follows: For α < κ+,
we can take a set X ⊆ κ×κ such that X ∈ M and 〈κ,X〉 is isomorphic to α. There
is a unique isomorphism π from 〈κ,X〉 onto α. Since P(κ)∩M = P(κ)∩N , we have
X ∈ N , hence π is also in N . Using this π, we can check that P(α)∩M = P(α)∩N .
We also note that M and N satisfy the κ-covering property for H(χ).

Since both M and N are models of ZFC−P, every set in M and N can be coded
by a set of ordinals (see Note 4.1). Thus, in order to show M = N , it is sufficient
to show that, for every set A ⊆ χ, we have A ∈ M ⇐⇒ A ∈ N .

First we show that [χ]<κ ∩M = [χ]<κ ∩N . Fix A ∈ [χ]<κ ∩M . We see A ∈ N ,
and the converse follows from the same argument. By induction on i < κ, we take
〈xi, yi : i < κ〉 as follows:

(1) xi ∈ [χ]<κ ∩M and yi ∈ [χ]<κ ∩N .
(2) 〈xi : i < κ〉 and 〈yi : i < κ〉 are ⊆-increasing.
(3) A ⊆ xi ∪ yi ⊆ xi+1 ∩ yi+1.

Suppose 〈xj, yj : j < i〉 is defined. Let z =
⋃

j<i(xj ∪ yj). We have z ∈ [χ]<κ. By

the κ-covering property of M and N , we can find xi ∈ M ∩ [χ]<κ and yi ∈ N∩ [χ]<κ

with z ⊆ xi, yi.
Now let B =

⋃

i<κ xi =
⋃

i<κ yi. Next we check B ∈ M ∩N . To see B ∈ M , we
use the κ-approximation property of M . Thus take c ∈ M ∩ [χ]<κ. Since |c| < κ
and B =

⋃

i<κ xi, there must be k < κ with B ∩ c ⊆ xk. Then B ∩ c = xk ∩x ∈ M .
Hence B ∈ M by the approximation property of M . We also know that B ∈ N by
the same argument.

Let δ = ot(B) < κ+. Let π : B → δ be the transitive collapse map. We know
π ∈ M ∩N . Let D = π“A ∈ M ∩P(δ). Since P(δ)∩M = P(δ)∩N , we have that
D ∈ N . Then A = π−1“D ∈ N .

Now we have [χ]<κ ∩M = [χ]<κ ∩N . Finally we show that for every set A ⊆ χ,
we have A ∈ M ⇐⇒ A ∈ N . Take a set A ∈ M ∩P(χ). For every x ∈ [χ]<κ∩M ,
we have that A ∩ x is in M . On the other hand, since [χ]<κ ∩M = [χ]<κ ∩N , we
have that A ∩ x ∈ N for every x ∈ [χ]<κ. Then A ∈ N by the κ-approximation
property of N . The converse follows from the same argument. �

By Facts 3.5 and 3.9, ifM andH(χ) are models of ZFC, andM is a class ofH(χ),
then the uniform covering property of M implies the approximation property using
Bukovský’s theorem. However we do not know that Fact 3.9 is valid for models
of ZFC−P, so the implication is not clear for submodels of H(χ). Here, we give a
direct proof of the approximation property of submodels of H(χ) from the uniform
covering property.
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To do it, we make some observations about trees. For a tree T of height α and
β < α, let Tβ be the β-th level of T .

The following is a well-known theorem of Kurepa:

Fact 4.4 (Kurepa [8]). Let κ < λ be regular cardinals. For every tree T of height
λ, if |Tα| < κ for every α < λ, then T has a cofinal branch.

Lemma 4.5. Let κ < λ be regular cardinals. Let T be a tree of height λ. Suppose
that |Tα| < κ for every α < λ. Then T has fewer than κ many cofinal branches.

Proof. Suppose to the contrary that T has κ cofinal branches 〈Bi : i < κ〉. For
each i < j < κ, there is some α(i, j) < λ such that Bi ∩ Tα(i,j) 6= Bj ∩ Tα(i,j).
Put α = sup{α(i, j) : i < j < κ}. We have α < λ since κ < λ. Then, for every
i < j < κ, we know Bi ∩ Tα 6= Bj ∩ Tα. Thus Tα has cardinality at least κ, which
is a contradiction. �

Lemma 4.6. Let κ be a regular cardinal, and µ > κ an ordinal with cf(µ) > κ.
Let T be a tree of height µ. Suppose that |Tα| < κ for every α < µ. Let W ⊆ V
be a transitive model of ZFC containing all ordinals. If T ∈ W , then every cofinal
branch of T in V belongs to W .

Proof. Case 1: cf(µ)W = µ. We work in W . By Lemma 4.5, we have that T has
fewer than κ many cofinal branches. Let ν < κ and 〈Bi : i < ν〉 be an enumeration
of all cofinal branches of T .

In V , suppose to the contrary that there exists a cofinal branch B of T with
B /∈ W . For each i < ν, there is α(i) < µ such that Tα(i) ∩ B 6= Tα(i) ∩ Bi. Since
cf(µ)V > κ, we have that α = sup{α(i) + 1 : i < ν} < µ. Pick t ∈ B ∩ Tα. We
know t /∈ Bi for every i < ν. On the other hand, by Kurepa’s theorem (Fact 4.4)
applied to W , there is a cofinal branch B′ ∈ W with t ∈ B′. Then B′ = Bi for
some i < ν, but t ∈ Bi, which is a contradiction.

Case 2: cf(µ)W < µ. We work in W . Fix a cofinal set X ⊆ µ with order type
cf(µ)W , and consider the subtree T ∗ =

⋃

α∈X Tα of T . Then T ∗ is a tree of height
cf(µ)W , and |T ∗

α | < κ for every α < cf(µ). Moreover, if B∗ ⊆ T ∗ is a cofinal branch
of T ∗, then there is a unique cofinal branch B ⊆ T with B ∩ T ∗ = B∗. Now let
B ⊆ T be a cofinal branch of T with B ∈ V . Let B∗ = B ∩ T ∗. B∗ is a cofinal
branch of T ∗. By (1), we have that B∗ ∈ W , and there is a cofinal branch B′ ⊆ T
with B′ ∩ T ∗ = B∗. Then it is clear that B′ = B, hence B ∈ W . �

Now we prove the main result of this section.

Lemma 4.7. Let θ be a strong limit cardinal, and κ < θ be a regular uncountable
cardinal. Let χ = θ+, and suppose there is a transitive model W ⊆ V of ZFC such
that M = H(χ)W = H(χ) ∩W . If M satisfies the κ-uniform covering property for
H(χ), then M satisfies the κ+-approximation property for H(χ).
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Proof. First note the following:

(1) For every α with κ ≤ α < χ, α is regular in M if and only if α is regular in
V .

(2) In particular, if κ ≤ α < χ, then α is a cardinal in M if and only if α is a
cardinal in V .

(3) The set M ∩ <θ2 is in M .

(1) and (2) follow from the κ-uniform covering property of M . For (3), since θ is
strong limit, θ is also a strong limit cardinal in W ⊆ V . Thus W ∩ <θ2 (= (<θ2)W )
has cardinality θ. Hence we have

M ∩ <θ2 = W ∩ <θ2 ∈ H(χ) ∩W = M.

We prove the following by induction on α < χ: For every A ⊆ α, if A ∩ x ∈ M
for every x ∈ M ∩ [α]<κ+

, then A ∈ M .
Fix α < χ, A ⊆ α, and suppose A ∩ x ∈ M for every x ∈ M ∩ [α]<κ+

. By the
induction hypothesis, we have that A ∩ β ∈ M for every β < α.

It is clear in the case α < κ+. Thus suppose α ≥ κ+.

Case 1: α is not a cardinal. By the above remark (2), we have that α is not a

cardinal in M . Put λ = |α|M . Take a bijection π : λ → α with π ∈ M , and let
B = π−1“A ⊆ λ. It is easy to check that B ∩ x ∈ M for every x ∈ [λ]<κ ∩M . By
the induction hypothesis, we have B ∈ M . Then A = π“B ∈ M .

Case 2: α is a cardinal with cf(α) < κ+. Note that α ≤ θ by remark (2).
First we claim the following:

Claim 4.8. The set M ∩ [α]<κ+
is stationary in [α]<κ+

Proof. First note that we do not require that M ∩ [α]<κ+
∈ M .

To show the assertion, take a function f : [α]<ω → α. We will find x ∈ M∩[α]<κ+

which is closed under f and κ ⊆ x. There is a bijection π ∈ M from [α]<ω onto
α. Hence, by the κ-uniform covering property of M , there is F ∈ M such that
dom(F ) = [α]<ω, f(s) ∈ F (s) ⊆ α, and |F (s)| < κ. Since M is a model of ZFC−P,

we can find x ∈ M ∩ [α]<κ+
such that κ ⊆ x and F (s) ⊆ x for all s ∈ [x]<ω. Then

x is clearly closed under f . �[Claim]

By remark (3), we have that M ∩ {x ⊆ α : x is bounded in α} ∈ M . Fix µ ∈ χ
and a one-to one enumeration 〈Bi : i < µ〉 ∈ M of M ∩ {x ⊆ α : x is bounded
in α}. Fix X ⊆ α such that X ∈ M , |X| < κ+, and X is unbounded in α. We
have that A ∩ β ∈ M for every β < α. Thus, for each β ∈ X , there is a unique
i(β) < µ with A∩ β = Bi(β). We will see that the set {i(β) : β ∈ X} is in M , then
A =

⋃

{Bi(β) : β ∈ X} ∈ M , as required.
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Since M satisfies the κ-uniform covering property, M satisfies the κ+-covering
property. Thus we can find Y ∈ M ∩ [µ]<κ+

with {i(β) : β ∈ X} ⊆ Y .
By the claim above, we can find N ≺ H(χ) such that |N | < κ+, κ ⊆ N ,

sup(N ∩ α) = α, 〈Bi : i < µ〉, X, Y, A ∈ N , and N ∩ α ∈ M . Note that X, Y ⊆ N
since |X| , |Y | < κ+.

For every β ∈ X and i ∈ Y , we have that i = i(β) ⇐⇒ A ∩ β = Bi. By
the elementarity of N and X, Y ⊆ N , for every β ∈ X and i ∈ Y , we know that
i = i(β) ⇐⇒ A ∩ β ∩N = Bi ∩ (N ∩ α).

Since |N | < κ+ and N ∩ α ∈ M , we have N ∩ α ∈ M ∩ [α]<κ+
, hence A ∩ N =

A ∩ (N ∩ α) ∈ M . Thus, in M , for each β ∈ X , i(β) is definable as the unique
i ∈ Y with (A ∩N) ∩ β = Bi ∩ (N ∩ α). Hence we have 〈i(β) : β ∈ X〉 ∈ M , and
A =

⋃

β∈X Bi(β) ∈ M .

Case 3: α is a cardinal with cf(α) ≥ κ+. As in Case 2, we have that α ≤ θ.
Let f : α → 2 be the characteristic function of A. It is enough to see that

f ∈ M . Since A ∩ β ∈ M for every β < α, we have that f ↾ β ∈ M for every
β < α. Since α ≤ θ, the set <α2 ∩ M is in M by remark (3). Fix µ < χ and
a one-to-one enumeration 〈gi : i < µ〉 ∈ M of <α2 ∩ M . Define h : α → µ by
h(β) = i ⇐⇒ f ↾ β = gi. By the κ-uniform covering property of M , there
is H ∈ M with h(β) ∈ H(β) and |H(β)| < κ. We may assume that for every
i ∈ H(β), dom(gi) = β. Put T ′ = {gi : i ∈ H(β), β < α} ∈ M . We know that
f ↾ β ∈ T ′ for all β < α.

In M , let T be the set of all g ∈ T ′ such that g ↾ γ ∈ T ′ for every γ < dom(g).
Again, we have f ↾ β ∈ T for every β < α. Thus T is a tree of height α and for
every g ∈ T and γ < dom(g), we have g ↾ γ ∈ T . The β-th level of T is a subset of
{gi : i ∈ H(β)}. Since |H(β)| < κ, we have that |Tβ| < κ for every β < α. The set
B = {f ↾ β : β < α} is a cofinal branch of T . T is a tree in a transitive model W
of ZFC. Applying Lemma 4.6 to W and T , we have B ∈ W . Then B ∈ M since
M = H(χ)W , hence f ∈ M . �

We have the following as an immediate corollary of Lemma 4.7.

Corollary 4.9. Let W ⊆ V be a transitive model of ZFC containing all ordinals.
Let κ be a regular uncountable cardinal. If W satisfies the κ-uniform covering
property for V , then W satisfies the κ+-approximation property for V , and W is
definable in V with some parameters.

Proof. For each strong limit cardinal θ > κ, we have that H(θ+)W is of the form
W ∩H(θ+) and satisfies the κ+-approximation property for H(θ+) by Lemma 4.7.
Then it is clear that W satisfies the κ+-approximation property for V .

Let r = P(κ+) ∩ W . Now W is definable in V with parameters r and κ+ as
follows: x ∈ W if and only if there is a strong limit cardinal θ > κ and the unique
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transitive model M ⊆ H(θ+) of ZFC−P such that θ+ ⊆ M , M ∩ P(κ+) = r, M
satisfies the κ+-uniform covering and the κ+-approximation properties for H(θ+),
and x ∈ M . �

Note 4.10. (1) If W ⊆ V satisfies the uniform covering property for V , then
W is a ground by Bukovsky’s theorem, hence W is definable in V by Laver
and Woodin’s result. In this sense, the definablity of W satisfying the
uniform covering property is not a new result.

(2) On the other hand, in the proof of Corollary 4.9, it is not necessary that V
satisfies the replacement scheme for the formulas of the language {∈,W}.
So Corollary 4.9 shows that every W ⊆ V satisfying the uniform covering
property is definable, regardless of the replacement scheme for the formulas
of the language {∈,W}.

(3) The κ+-approximation property in the previous corollary cannot be strength-
ened to the κ-approximation property; suppose there exists a κ-Suslin tree
T , and let P be a κ-c.c. poset adding a cofinal branch of T . If G is (V,P)-
generic, then V satisfies the κ-uniform covering property for V [G], but a
cofinal branch of T witnesses that V does not satisfy the κ-approximation
property for V [G].

(4) On the other hand, if W ⊆ V satisfies the κ-uniform covering property for
V (hence V is a κ-c.c. forcing extension of W ) and there is no κ-Suslin
tree in W , then W satisfies the κ-approximation property for V (see Usuba
[15]).

5. The strong DDG

In this section, we prove that the strong DDG is a theorem of ZFC.

Proposition 5.1. The strong DDG holds.

Proof. Fix a set X . We will construct a ground W of V such that W ⊆ Wr for all
r ∈ X simultaneously as follows. Then W is a ground of each Wr by Fact 3.1.

For each r ∈ X , there is a poset Pr ∈ Wr and a (Wr,Pr)-generic Gr with
V = Wr[Gr]. Fix a regular uncountable κ such that |X| < κ and |Pr| < κ for every
r ∈ X . Then by Facts 3.5 and 3.9, each Wr satisfies the κ-uniform covering and
the κ-approximation properties for V .

Fix a strong limit cardinal θ > κ, and let χ = θ+. First we show that there
exists a transitive model M of ZFC−P such that χ ⊆ M ⊆ H(χ) and M satisfies
the κ++-uniform covering and the κ++-approximation properties for H(χ).

Let γ = χ<χ, and 〈fξ : ξ < γ〉 be an enumeration of <χχ. Now define h : χ×γ →
χ as follows: h(α, ξ) = fξ(α) if α ∈ dom(fξ), and h(α, ξ) = 0 otherwise.

Claim 5.2. There is a function H such that dom(H) = χ×γ, h(α, ξ) ∈ H(α, ξ) ⊆
χ, |H(α, ξ)| < κ+ for α < χ, ξ < γ, and H ∈

⋂

r∈X Wr.
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Proof. By induction on i < κ, we define Hi,r for r ∈ X as follows:

(1) Hi,r is a function with Hi,r ∈ Wr.
(2) dom(Hi,r) = χ × γ, h(α, ξ) ∈ Hi,r(α, ξ) ⊆ χ, and |Hi,r(α, ξ)| < κ for all

α < χ and ξ < γ.
(3) For all α < χ and ξ < γ,

⋃

j<i,s∈X,Hj,s(α, ξ) ⊆ Hi,r(α, ξ).

Let i < κ and suppose Hj,s was defined for all s ∈ X and j < i. Fix r ∈ X . To
define Hi,r. let H ′ be such that H ′(α, ξ) =

⋃

j<i,s∈X Hj,s(α, ξ) for all α < χ and

ξ < γ. Since |X| and i are less than κ, we have that |H ′(α, ξ)| < κ for all α < χ
and ξ < γ. Wr satisfies the κ-uniform covering property for V , hence we can find
Hi,r ∈ Wr such that H ′(α, ξ) ⊆ Hi,r(α, ξ) ⊆ χ and |Hi,r(α, ξ)| < κ for all α < χ
and ξ < γ. It is clear that h(α, ξ) ∈ Hi,r(α, ξ).

Finally, let H be such that H(α, ξ) =
⋃

i<κ Hi,r(α, ξ) for some (in fact all) r ∈ X .
Clearly h(α, ξ) ∈ H(α, ξ) and |H(α, ξ)| < κ+. We have to show that H ∈ Wr for
all r ∈ X .

Fix r ∈ X . Let E = {〈α, ξ, η〉 ∈ χ × γ × χ : η ∈ H(α, ξ)}. It is sufficient to
show that E ∈ Wr. To show that E ∈ Wr, we use the κ-approximation property
of Wr. So take a ∈ [χ × γ × χ]<κ ∩ Wr. We will see that a ∩ E ∈ Wr. Let
d = {〈α, ξ〉 ∈ χ × γ : ∃η (〈α, ξ, η〉 ∈ a ∩ E)}. We have |d| < κ. For each
〈α, ξ〉 ∈ d, the set {η < χ : 〈α, ξ, η〉 ∈ a ∩ E} ⊆ H(α, ξ) has cardinality < κ, thus
we can find i(α, ξ) < κ with {η < χ : 〈α, ξ, η〉 ∈ a ∩ E} ⊆ Hi(α,ξ),r(α, ξ). Put
i∗ = sup{i(α, ξ) : 〈α, ξ〉 ∈ d} < κ. We have {η < χ : 〈α, ξ, η〉 ∈ a∩E} ⊆ Hi∗,r(α, ξ)
for all 〈α, ξ〉 ∈ d. Then a ∩ E = {〈α, ξ, η〉 ∈ a : η ∈ Hi∗,r(α, ξ)} ∈ Wr. �[Claim]

Fix a bijection π : χ × γ × χ → γ with π ∈ L, and let A = π“H . Clearly
A ∈ Wr for all r ∈ X . Since A is a set of ordinals, we have that L[A] is a model
of ZFC, and H ∈ L[A]. Now let M = H(χ)L[A]. We know M = L[A] ∩ H(χ) and
χ ⊆ M ⊆ H(χ), and since A ∈ Wr for all r ∈ X , we have M ⊆

⋂

r∈X Wr.

Claim 5.3. M satisfies the κ+-uniform covering property for H(χ).

Proof. Take f : α → χ for some α < χ. Since 〈fξ : ξ < γ〉 is an enumeration of
<χχ, there is some ξ∗ < γ with f = fξ∗ . Now define the function F such that
dom(F ) = α and F (β) = H(β, ξ∗). By the choice of H , we have that f(β) =
fξ∗(β) ∈ H(β, ξ∗) = F (β) and |F (β)| < κ+. Moreover, since H ∈ L[A], we have
F ∈ L[A], and F ∈ H(χ)L[A] = M . �[Claim]

M is H(χ) ∩ L[A] and χ is the successor of the strong limit cardinal θ. So M
satisfies the κ++-approximation property for H(χ) by Lemma 4.7.

In summary, for each strong limit cardinal θ > κ, we can find a transitive model
M of ZFC−P such that θ+ ⊆ M ⊆ H(θ+), M ⊆

⋂

r∈Wr, and M satisfies the κ++-
uniform covering and the κ++-approximation properties for H(θ+). Note that, by
Lemma 4.3 (and Note 4.1), letting r = P(κ++)∩M , M is a unique transitive model

14



N of ZFC−P such that θ+ ⊆ N ⊆ H(θ+), r = P(κ++) ∩ N , and N satisfies the
κ++-uniform covering and the κ++-approximation properties for H(θ+).

For each p ⊆ P(κ++), let Ip be the class of all strong limit cardinals θ > κ such
that there exists a transitive model M of ZFC−P such that θ+ ⊆ M ⊆ H(θ+),
p = M ∩ P(κ++), M ⊆

⋂

r∈Wr, and M satisfies the κ++-uniform covering and
the κ++-approximation properties for H(θ+). By the pigeonhole argument, there
must be one set p∗ ⊆ P(κ++) such that Ip∗ forms a proper class. For each θ ∈ Ip∗,
fix a unique transitive model Mθ of ZFC−P such that θ+ ⊆ Mθ ⊆ H(θ+), Mθ ⊆
⋂

r∈X Wr, p
∗ = P(κ++) ∩Mθ, and Mθ satisfies the κ++-uniform covering and the

κ++-approximation properties for H(θ+). The sequence 〈Mθ : θ ∈ Ip∗〉 is coherent:
For θ < θ′ from Ip∗, we have Mθ = Mθ′ ∩ H(θ+). This can be verified as follows:
Since Mθ′ ∩ H(θ+) = {x ∈ Mθ′ : Mθ′ �“|trcl(x)| < θ+”} ∈ Mθ′ , it is easy to check
that Mθ′ ∩ H(θ+) is a transitive model of ZFC−P and satisfies the κ++-uniform
covering property for H(θ+). Then Mθ = Mθ′ ∩ H(θ+) by Lemma 4.3.

Finally let W =
⋃

{Mθ : θ ∈ Ip∗}. Note that W is definable in V .

Claim 5.4. W is a transitive model of ZFC containing all ordinals.

Proof. Transitivity is clear, and it is also clear that W contains all ordinals. To
show that W is a model of ZFC, by Fact 2.2, it is enough to see that N is closed
under the Gödel operations, N is almost universal, and N satisfies the axiom of
choice.

For every θ ∈ Ip∗ , M
θ is closed under the Gödel operations. Since W =

⋃

{Mθ :
θ ∈ Ip∗} and 〈Mθ : θ ∈ Ip∗〉 is coherent, we have that W is closed under the Gödel
operations. The almost universality of W is immediate from the coherency of
〈Mθ : θ ∈ Ip∗〉.

We know that W is a model of ZF. For the axiom of choice inW , for each x ∈ W ,
there is θ with x ∈ Mθ. Mθ is a model of ZFC−P, thus Mθ has a well-ordering
on x. This well-ordering belongs to W , hence M satisfies the axiom of choice as
well. �[Claim]

We know that W is a transitive model of ZFC containing all ordinals. Clearly
W ⊆

⋂

r∈X Wr. Moreover, W satisfies the κ++-uniform covering property for V .
Then W is a ground of V by Fact 3.9. This completes the proof. �

We know that the strong DDG is a theorem of ZFC. So the following fundamental
properties become theorems of ZFC as well. Recall that a bedrock is a minimal
ground, and a solid bedrock is a minimum ground ([12], [4]).

Corollary 5.5. (1) M is a transitive model of ZFC and gM = M.
(2) M is a forcing invariant class, that is, for every forcing extension V [G] of

V , we have M = MV [G].
(3) The following are equivalent:
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(a) Every forcing extension of V has only set many grounds.
(b) V has only set many grounds.
(c) M is a solid bedrock of all forcing extensions of V .
(d) M is a solid bedrock of V .
(e) M is a ground of V .
(f) V has a bedrock.

Proof. (1). In Fuchs-Hamkins-Reitz [4], it was shown that if the strong DDG holds
then M is a model of ZFC (Theorem 22 in [4]). Now we proved the strong DDG is
a theorem of ZFC, so M is a model of ZFC. By Corollary 51 in [4], we know that,
if the DDG holds in all forcing extensions of V , then gM is the same as M. Again,
since the strong DDG is a theorem of ZFC, the DDG holds in all forcing extensions
of V . Hence we have that gM = M.

(2) follows from (1) and Fact 2.11.
(3). (a) ⇒ (b) is trivial.
(b) ⇒ (c). If V has only set many grounds, then by the strong DDG, M is a

ground of V , hence is a solid bedrock of V . By (1), for every forcing extension
V [G], we have MV = gM ⊆ V ⊆ V [G], hence MV = gM is a ground of V [G], and,
by the definition of gM, MV is a solid bedrock of V [G].

(c) ⇒ (d) ⇒ (e) ⇒ (f) are also trivial.
(f) ⇒ (e). Suppose W ⊆ V is a bedrock. If M ( W , then there is a ground W ′

and x ∈ W with x /∈ W ′. By the DDG, W and W ′ have a common ground W . We
know W = W by the minimality of W , so x /∈ W . This is a contradiction. Hence
we have M = W is a ground of V .

(e) ⇒ (c). We see that M is a solid bedrock of all forcing extensions V [G] of
V . Since MV is a ground of V and V is a ground of V [G], we have that MV is a
ground of V [G]. If W ⊆ V [G] is a ground of V [G], then by the DDG in V [G], M
and W have a common ground W . W ⊆ M ⊆ V , hence W is a ground of V , so
M ⊆ W .

(c) ⇒ (a). For counting the grounds of V [G], we can take a poset Q ∈ M and
an (M,Q)-generic H such that V = M[H ]. Since M is a solid bedrock of V [G],
M ⊆ W ⊆ V [G] for every ground W of V [G]. Hence by Fact 3.1, every ground W
of V [G] is of the form W [H ′] for some H ′ ⊆ Q′ ⊆ ro(Q)M. This shows that V [G]

has only (2|ro(Q)M|)V [G] many grounds. �

The Ground Axiom is the assertion that V has no proper ground (Reitz [12]). If
M is a ground of V , then it is clear that M has no proper ground. Hence, if M is
a ground of V , then M is a natural model of ZFC+the Ground Axiom.
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6. Hyper-huge cardinals

In this section, we prove that if a hyper-huge cardinal exists, then V has only
set many grounds, so M is a ground of V . To do this, we prove the following
proposition which is interesting in its own right.

Proposition 6.1. Suppose κ is hyper-huge. Let W be a ground of V . Then there
is a poset P ∈ W and a (W,P)-generic G such that |P| < κ and V = W [G].

Proof. Fix a poset Q ∈ W and a (W,Q)-generic H such that V = W [H ].
Fix an arbitrary inaccessible cardinal λ > κ with Q, H ∈ Vλ. Since κ is hyper-

huge, we can find an elementary embedding j : V → N such that the critical point
κ, λ < j(κ), and N is closed under j(λ)-sequences. Let j(W ) =

⋃

α j(Wα). j(W )
is a transitive model of ZFC. Note that j(W )j(α) = j(Wα) for every α.

First we show that

Wj(λ) ⊆ j(Wλ) ⊆ Nj(λ) = Vj(λ).

The equality Nj(λ) = Vj(λ) follows from the closure property of N , and the inclusion
j(Wλ) ⊆ Nj(λ) follows from the elementarity of j. So the problem is the inclusion
Wj(λ) ⊆ j(Wλ). Since j(λ) is inaccessible, bothWj(λ) and j(Wλ) are models of ZFC.
Thus it is enough to check that if x ∈ Wj(λ) is a set of ordinals, then x ∈ j(Wλ).

We use a well-known argument using disjoint stationary subsets, which is due
to Solovay. In W , fix a pairwise disjoint sequence 〈Sα : α < j(λ)〉 such that Sα ⊆
j(λ) ∩ cof(ω)W and Sα is stationary in j(λ) in W . Since V = W [G] and |Q| <
λ < j(λ), each Sα is still stationary in j(λ) in V . Let j(〈Sα : α < j(λ)〉) =
〈S∗

α : α < j(j(λ))〉.

Claim 6.2. For every α < sup(j“j(λ)), α ∈ j“j(λ) if and only if S∗
α∩ sup(j“j(λ))

is stationary in sup(j“j(λ)) in j(W ).

Proof of Claim. First suppose α ∈ j“j(λ). Take β < j(λ) with α = j(β). We know
S∗
α = j(Sβ). We check that S∗

α ∩ sup(j“j(λ)) is stationary in sup(j“j(λ)) in j(W ).
To do this, take a club C ⊆ sup(j“j(λ)) with C ∈ j(W ). Because the critical point
of j is uncountable, we know that j“j(λ) is an ω-club in sup(j“j(λ)) in V , that is,
it is unbounded in sup(j“j(λ)) and, for every ξ ∈ lim(sup(j“j(λ))), if cf(ξ) = ω
in V then ξ ∈ j“j(λ). Hence we know that C ∩ j“j(λ) is an ω-club in V . Put
D = j−1“(C ∩ j“j(λ)). Again, since the critical point of j is uncountable, D is an
ω-club in j(λ). Sβ is stationary in j(λ) in V and cf(ξ) = ω for every ξ ∈ Sβ, so we
have that Sβ ∩D 6= ∅. Fix ξ ∈ Sβ ∩D. Then j(ξ) ∈ j(Sβ) ∩ C, so j(ξ) ∈ S∗

α ∩ C.
For the converse, suppose S∗

α∩sup(j“j(λ)) is stationary in j(W ). By the elemen-
tarity of j, N is a forcing extension of j(W ) via poset j(Q). We know |j(Q)| < j(λ).
Hence, if E ∈ j(W ) is stationary in j(λ) in j(W ), then E remains stationary in
j(λ) in N . This means that S∗

α ∩ sup(j“j(λ)) remains stationary in N . cf(ξ) = ω
for every ξ ∈ S∗

α and j“j(λ) is an ω-club, hence we have S∗
α ∩ j“j(λ) 6= ∅. Take
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j(ξ) ∈ S∗
α∩ j“j(λ). By the elementarity of j, there is some β < λ such that ξ ∈ Sβ.

Hence j(ξ) ∈ S∗
j(β)∩S∗

α, and then j(β) = α because the sequence 〈S∗
γ : γ < j(j(λ))〉

is pairwise disjoint. �[Claim]

By the claim, we have that

j“j(λ) = {α < sup(j“j(λ)) : S∗
α∩sup(j“j(λ)) is stationary in sup(j“j(λ)) in j(W )}.

Thus we have that j“j(λ) is definable in j(W ), and j“j(λ) ∈ j(W ). Now we see
that, if x ∈ Wj(λ) is a set of ordinals, then x ∈ j(Wλ). Clearly j(x) ∈ j(W ). Since
x ⊆ j(λ), we have that j“x = j(x) ∩ j“j(λ) ∈ j(W ). Because j“j(λ) ∈ j(W ), we
have that j ↾ j(λ) ∈ j(W ), thus x = j−1“(j“x) ∈ j(W ). Again, since x ⊆ j(λ), we
have x ∈ j(W )j(λ) = j(Wλ).

We know Wj(λ) ⊆ j(Wλ) ⊆ Nj(λ) = Vj(λ). V = W [H ], hence Vj(λ) = Wj(λ)[H ],
and Wj(λ) ⊆ j(Wλ) = Nj(λ) = Vj(λ) = Wj(λ)[H ]. By Fact 3.1, there is a poset Q′ ⊆
ro(Q) and a (j(Wλ),Q

′)-generic H ′ such that j(Wλ)[H
′] = Vj(λ) = Nj(λ). Since

|Q| < λ < j(κ), we have that |Q′| < j(κ). We may assume that Q′ ∈ j(Wλ)j(κ)
(= j(Wκ)). Therefore, N satisfies the following statement:

There exists a poset Q′ and a (j(Wλ),Q
′)-generic H such that Q′ ∈

j(Wκ) and j(Wλ)[H
′] = Nj(λ).

By the elementarity of j, the following holds in V :

There exists a poset Q′ and a (Wλ,P)-generic H
′ such that Q′ ∈ Wκ

and Wλ[H
′] = Vλ.

Thus, for every sufficiently large inaccessible cardinal λ, there exists a poset P

and a (Wλ,P)-generic G such that P ∈ Wκ and Wλ[G] = Vλ. Since κ is hyper-huge,
there are proper class many inaccessible cardinals. Hence there must be a poset
P ∈ Vκ and a filter G ⊆ P such that the collection

{λ : λ is inaccessible, G is (Wλ,P)-generic, and Wλ[G] = Vλ}

forms a proper class. Then it is clear that G is (W,P)-generic and W [G] = V . �

Now the following is immediate from Proposition 6.1:

Corollary 6.3. If κ is hyper-huge, then V has only set many grounds.

Proof. The assertion follows from Fact 3.5 and Proposition 6.1. For each ground
W of V , one can find a poset PW ∈ Vκ and a (W,P)-generic GW such that
W [GW ] = V . By Lemma 3.6, for two grounds W and W ′, if PW = PW ′, λ =

|PW |W = |PW ′|W
′

, and P(λ)W = P(λ)W
′

then W = W ′. Thus the assignment

W 7→ 〈PW , |P|W ,P(|P|W )W 〉 is an injection from the grounds to Vκ. This means
that V has only κ many grounds. �

By Corollary 5.5, Proposition 6.1, and Corollary 6.3, we have the following:

Corollary 6.4. Suppose κ is a hyper-huge cardinal. Then the following hold:
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(1) M is a solid bedrock of all forcing extensions of V .
(2) There is a poset P ∈ Mκ and a (M,P)-generic G with V = M[G].
(3) V has only < κ many grounds.

Proof. (1) and (2) are immediate from Proposition 6.1, Corollaries 5.5, and 6.3.
For (3), fix a poset P ∈ Mκ and a (M,P)-generic G with V = M[G]. By Fact

3.5, every ground W of V is of the form M[H ] for some H ⊆ Q ⊆ ro(P)M. Hence
there are only 2|ro(P)| (< κ) many grounds of V . �

As mentioned before, M is a model of ZFC+the Ground Axiom if M is a ground.
If κ is hyper-huge, then M is a ground of V and V is a small forcing extension
of V relative to κ. Then one can check κ remains hyper-huge in M as follows:
Suppose V = M[G] for some G ⊆ P ∈ M with |P| < κ. For a given λ ≥ κ, let
j : V → N be an elementary embedding with critical point κ and j(λ)N ⊆ N .
j ↾ M is an elementary embedding from M to MN . M satisfies the µ-covering and
the µ-approximation properties for V for some µ < κ by Fact 3.5. By the results
in Hamkins [5], we know that j ↾ M and MN are definable in M, and MN is closed
under j(λ)-sequences in M. λ was arbitrary, hence we have that κ is hyper-huge
in M. Thus M is a model of ZFC+the Ground Axiom+hyper-huge cardinal exists.

Proposition 6.1 also shows the destructibility phenomenon of hyper-huge cardi-
nals. Laver [9] proved that a supercompact cardinal κ can be indestructible for
< κ-directed closed forcings. In contrast to Laver’s theorem, Bagaria-Hamkins-
Tsaprounis-Usuba [1] showed that, if κ is extendible, then every non-trivial < κ-
closed forcing must destroy the extendability of κ. Now, by Proposition 6.1, we
know that any hyper-huge cardinals must be destroyed by any non-trivial non-small
forcings. The following is just a rephrasing of Proposition 6.1:

Corollary 6.5. Let κ be an infinite cardinal. Let P be a poset, and suppose for
every p ∈ P, the suborder {q ∈ P : q ≤ p} is not forcing equivalent to a poset of
size < κ. Then P forces that “κ is not hyper-huge”.

7. Some consequences of main theorems

In this section, we discuss some consequences of our main theorems.
The generic HOD, gHOD, is the intersection of HOD of all forcing extensions of

V (Fuchs-Hamkins-Reitz [4]). gHOD is definable as the class
⋂

{HODV Col(α)

: α is
an ordinal}.

Proposition 7.1. HODM is a subclass of gHOD. If M is a ground of V then
HODM coincides with gHOD.

Proof. First note that, by Corollary 5.5, we know that gM = M, hence HODgM =
HODM.
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We show that HODM = HODgM ⊆ gHOD. Take an arbitrary generic extension
V [G] of V . It is enough to show that HODgM ⊆ HODV [G]. Since gM is a parameter

free definable class in V [G], we have that gMα ∈ ODV [G] for every α. This means
that HODM = HODgM ⊆ HODV [G].

Next suppose M is a ground of V . Put V = M[G] for some G ⊆ P ∈ M.

Then we can find an ordinal θ greater than
∣

∣2|P|
∣

∣

M
, an (M,Col(θ))-generic H , and

a (V,Col(θ))-generic H ′ such that V [H ′] = M[H ], where Col(θ) is a standard
forcing adding a surjection from ω onto θ. Col(θ) is weakly homogeneous, so we

have that HODV Col(θ)

= HODM[H] ⊆ HODM. gHOD ⊆ HODV Col(θ)

, thus we have

gHOD ⊆ HODV Col(θ)

⊆ HODM. �

Note 7.2. If a hyper-huge cardinal exists, then M is a ground of V by Corollary
6.4. Combining this observation with Proposition 7.1, we have that, if a hyper-huge
cardinal exists, then HODM must coincide with gHOD.

Note 7.3. We also note that HODM ( gHOD is possible. We use the following
fact:

Fact 7.4 (Fuchs-Hamkins-Reitz [4]). There is a class forcing extension V [G] in

which V = MV [G] = gMV [G] = gHODV [G].

Starting with a model HODV ( V , take a class forcing extension V [G] in which

V = MV [G] = gHODV [G]. Then HODMV [G]

= HODV ( V = gHODV [G].

The following gives some restrictions on V [G] in the above fact.

Proposition 7.5. If V 6= M, then, for every outer transitive model W ⊇ V of
ZFC, if MW is a ground of W , then MW 6= V (so gMW 6= V ). In particular, if W
has a hyper-huge cardinal, then MW 6= V .

Proof. Take an outer model W ⊇ V . By our assumption, MW is a solid bedrock
of W by Corollary 5.5. Since V 6= MV , we have that V has a proper ground M .
If V = MW , then M is a ground of MW , so M = MW = V by the minimality of
MW . This is a contradiction. �

Next we turn to the generic multiverse, which was first introduced inWoodin [16].
In [16], Woodin defined his generic multiverse as follows. For a given countable
transitive model M0 of ZFC, the generic multiverse of M0 is a collection F of
countable transitive models of ZFC such that:

(1) M0 ∈ F .
(2) If M ∈ F and W ⊆ M is a ground of M , then W ∈ F .
(3) If M ∈ F , P ∈ M is a poset, and G is (M,P)-generic, then M [G] ∈ F .
(4) F is a minimal collection satisfying (1)–(3).

Note that (4) is equivalent to the following (4’):
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(4’) For every M,N ∈ F , there are finitely many W0, . . . ,Wn ∈ F such that
W0 = M , Wn = N , and, for each i < n, Wi is a ground or a forcing
extension of Wi+1.

Note also that if M0 is fixed, then Woodin’s generic multiverse is unique for M0,
so it is the generic multiverse of M0.

On the other hand, Steel [14] gave a slightly different definition of the generic
multiverse. For a transitive set model M0 of ZFC, a generic multiverse of M0 is a
collection F of transitive models of ZFC such that:

(1) M0 ∈ F .
(2) If M ∈ F and W ⊆ M is a ground of M , then W ∈ F .
(3) If M ∈ F and P ∈ M is a poset, then there is an (M,P)-generic G with

M [G] ∈ F .
(4) If M,N ∈ F , then there is W ∈ F which is a common forcing extension of

M and N .

Unlike Woodin’s generic multiverse, Steel’s generic multiverse is not unique for M0;
it is possible that M0 has many Steel’s generic multiverses.

To treat Woodin’s and Steel’s generic multiverses simultaneously, we adopt the
following definition of generic multiverse, which is weaker than Woodin’s and Steel’s
definitions.

Definition 7.6. For a transitive set model M0 of ZFC, a generic multiverse of M0

is a collection F of transitive models of ZFC such that:

(1) M0 ∈ F .
(2) If M ∈ F and W ⊆ M is a ground of M , then W ∈ F .
(3) If M ∈ F and P ∈ M is a poset, then there is an (M,P)-generic G with

M [G] ∈ F .
(4) For every M,N ∈ F , there are finitely many W0, . . . ,Wn ∈ F such that

W0 = M , Wn = N , and, for each i < n, Wi is a ground or a forcing
extension of Wi+1.

Note that if M0 has a generic multiverse in our sense, then M0 must be countable
or M0 ∩ON = ω1. Our definition of generic multiverse is weak, so if F is a generic
multiverse in the sense of Woodin or Steel, then it also is in our sense.

Now fix a transitive model M0 of ZFC with M0 ∩ON ≤ ω1.

Lemma 7.7. If F is a generic multiverse of M0, then every two members of F
have a common ground.

Proof. TakeM,N ∈ F . By the definition ofF , there are finitely manyW0, . . . ,Wn ∈
F such that W0 = M , Wn = N , and, for each i < n, Wi is a ground or a forcing
extension of Wi+1. By induction on i < n, we show that W0 and Wi+1 have a
common ground. The case i = 0 is clear. Suppose W0 and Wi have a common
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ground W . If Wi is a ground of Wi+1, then W is a common ground of W0 and
Wi+1. Suppose Wi is a forcing extension of Wi+1. Then W and Wi+1 are grounds
of Wi. By the DDG of Wi, W and Wi+1 have a common ground W ′, which is a
common ground of W0 and Wi+1. �

This lemma shows that, in Definition 7.6, under the presence of (1)–(3), the
clause (4) can be replaced by “every two members of F have a common ground”.

Proposition 7.8. Let F be a generic multiverse of M0. Then F is just the collec-
tion

{M ∈ F : M is a forcing extension of some ground of M0}.

Moreover, for M,N ∈ F , if M ⊆ N , then M is a ground of N .

Proof. Let F ′ = {M ∈ F : M is a forcing extension of some ground of M0}. It is
clear that F ′ ⊆ F . If M ∈ F , then M and M0 have a common ground W ∈ F by
Lemma 7.7. Then M ∈ F ′ by the definition.

Next take M,N ∈ F with M ⊆ N . By Lemma 7.7 again, M and N have a
common ground W . Since N is a forcing extension of W and W ⊆ M ⊆ N , N is
a forcing extension of M by Fact 3.1. �

If M is a ground, then every ground is a forcing extension of M. Hence we have
the following simple view of a generic multiverse under this assumption:

Proposition 7.9. Suppose MM0 is a ground of M0. Then for every generic mul-
tiverse F of M0, the following hold:

(1) MM0 = MN for every N ∈ F .
(2) MM0 is the minimum member of F .
(3) Every member of F is a forcing extension of MM0.

Let F be a generic multiverse of M0. A sentence ϕ of set-theory is a multiverse
truth (on F) if every member of a generic multiverse F satisfies ϕ. Woodin [16]
showed that there is a computable translation ()∗ on sentences such that, for every
sentence ϕ, ϕ is a multiverse truth if and only if (ϕ)∗ holds in M0. By the DDG,
we have the following simple translation. The next proposition is immediate from
Propositions 7.8 and 7.9.

Proposition 7.10. Let F be a generic multiverse of M0, and ϕ a sentence of set
theory.

(1) ϕ is a multiverse truth if and only if, for every ground W of M0 and every
poset P ∈ W , P forces ϕ in W .

(2) If MM0 is a ground of M0, then ϕ is a multiverse truth if and only if, for
every poset P ∈ MM0, P forces ϕ in MM0.

We also have the following:
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Proposition 7.11. Let F be a generic multiverse of M0, and ϕ a sentence of set
theory. Then ϕ is a multiverse truth if and only if, for every poset P ∈ M0, P

forces “every ground satisfies ϕ” in M0.

Proof. By the definition of a generic multiverse, if ϕ is a multiverse truth then
every poset forces “every ground satisfies ϕ” in M0.

For the converse, suppose there is M ∈ F such that ϕ fails in M . By Lemma
7.7, M and M0 have a common ground N ∈ F . Since M is a forcing extension of
N , there is a poset P ∈ N which forces ¬ϕ in N . Fix a large θ > 2|P|. We can find
an (M0,Col(θ))-generic G with M0[G] ∈ F . In M0[G], there is an (N,P)-generic
H ∈ M0[G]. Then N ⊆ N [H ] ⊆ M0[G]. ϕ fails in N [H ]. Since N is a ground of
M0 and M0 is a ground of M0[G], N [H ] is a ground of M0[G]. This means that
Col(θ) forces that “there is a ground which does not satisfy ϕ” in M0. �

Note 7.12. If a hyper-huge cardinal exists, then M is a ground of V . Hence, if
a hyper-huge cardinal exists in M0, then the conclusions of Proposition 7.9 and of
(2) in Proposition 7.10 hold.

Finally we discuss the maximality principles, that were studied by Hamkins [6].
Let ϕ(x) be a formula of set theory with free variable x, and s a set. A sentence
ϕ(s) is forceable if there is a poset P which forces ϕ(s), and ϕ(s) is necessary if
every poset P forces ϕ(s). The Maximality principle, MP, is the assertion that,
every forceably necessary sentence is true in V , that is, for every sentence ϕ, if

∃P (
P “∀Q 
Q ϕ”),

then ϕ holds in V . MP(R) is the assertion that, for every formula ϕ(x) and r ∈ R,
if ϕ(r) is forceably necessary, then ϕ(r) holds in V . �MP(R) is the assertion that

MP(R) is necessary, that is, every poset P forces that MP(RV P

) holds.
Hamkins [6] showed that MP is equiconsistent with ZFC, and that MP(R) is

consistent relative to some large cardinal assumption which is weaker than a Mahlo
cardinal. Moreover, by the proofs in [6], MP and even MP(R) are consistent with
almost all large cardinals. Woodin proved that �MP(R) is consistent relative to
some large cardinal assumption. However, Woodin’s model is an extension of some
canonical model of ADR, and no strong large cardinals exist in the resulting model.
Hence it is natural to ask if �MP(R) is consistent with strong large cardinals, for
example, supercompact cardinals. Now we can show that our hyper-huge cardinal
is inconsistent with �MP(R).

Proposition 7.13. If �MP(R) holds, then M is not a ground of V . In particular,
if there exists a hyper-huge cardinal, then �MP(R) fails.

The proof is immediate from Corollary 5.5 and the following fact:
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Fact 7.14 (Hamkins [6]). Suppose �MP(R). Let M ⊆ V be a forcing invariant
parameter free definable transitive model of ZFC. Then, for every infinite ordinal
α, (α+)M is not a cardinal in V . In particular, if �MP(R) holds, then, for every
infinite ordinal α, (α+)M is not a cardinal in V .
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