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ORDINAL DEFINABILITY AND COMBINATORICS OF EQUIVALENCE RELATIONS

WILLIAM CHAN

Abstract. Assume ZF + AD
+ + V = L(P(R)). Let E be a Σ

1
1 equivalence relation coded in HOD. E has

an ordinal definable equivalence class without any ordinal definable elements if and only if HOD |= E is
unpinned.

ZF+ AD
+ + V = L(P(R)) proves E-class section uniformization when E is a Σ

1
1
equivalence relation

on R which is pinned in every transitive model of ZFC containing the real which codes E: Suppose R is a
relation on R such that each section Rx = {y : (x, y) ∈ R} is an E-class, then there is a function f : R → R

such that for all x ∈ R, R(x, f(x)).
ZF+ AD proves that R×κ is Jónsson whenever κ is an ordinal: For every function f : [R×κ]<ω

= → R×κ,
there is an A ⊆ R× κ with A in bijection with R× κ and f [[A]<ω

= ] 6= R× κ.

1. Introduction

The questions of concern here are problems of independent interests that appeared during the study of
the Jónsson property for nonwellorderable sets under the axiom of determinacy.

Let N ∈ ω ∪ {ω} and X be some set. Define [X ]N= = {x ∈ NX : (∀i, j < N)(i 6= j ⇒ x(i) 6= x(j))} and
[X ]<ω

= =
⋃

n∈ω[X ]n=. Let ≈ denote the relation of being in bijection. Define PN (X) = {Y ⊆ X : Y ≈ N}
and P<ω(X) =

⋃

n∈ω Pn(X).

An N -Jonsson function for X is a function f : [X ]N= → X so that for all Y ⊆ X with Y ≈ X , f [[Y ]N= ] = X .
A function f : [X ]<ω

= → X is a Jónsson function if and only if for all Y ⊆ X with Y ≈ X , f [[Y ]<ω
= ] = X . A

set X has the Jónsson property if and only if there are no Jónsson functions for X .
The classical study of the Jónsson property involved wellordered sets. For wellordered sets X , Jónsson

functions for X are formulated using P
N(X) rather than [X ]N= . Under AC, the following results are known:

[4] showed that every infinite set has an ω-Jónsson function. The existence of such a function is also where
Kunen’s proof of the Kunen’s inconsistency uses AC. The existence of a cardinal with the Jónsson property
implies 0♯ exists. Results of Erdős and Hajnal (see [3] and [4]) imply that under CH, 2ℵ0 is not Jónsson.
Hence R is not Jónsson under CH. On the other hand, real valued measurable cardinals are Jónsson (see
[3] Corollary 11.1). Solovay showed it is consistent relative to a measurable cardinal that 2ℵ0 is real valued
measurable. Hence it is consistent relative to a measurable cardinal that R is Jónsson.

Using the axiom of determinacy AD, [14] showed that ℵn is Jónsson for each n ∈ ω. [7] showed that every
cardinal κ < Θ is Jónsson under ZF + AD + V = L(R). In fact, Woodin showed that ZF + AD

+ can prove
every cardinal κ < Θ is Jónsson.

Under AD, there are sets which cannot be wellordered. Some important examples are quotients of ∆1
1

equivalence relations such as =, E0, E1, E2, and E3 (see Definition 2.15). Holshouser and Jackson (see [6]
and [5]) showed that R has the Jónsson property and there are no 2-Jónsson functions for R/E0 under AD.
[2] showed that under AD, there is a 3-Jónsson function for R/E0. Results from [2] seem to suggest that
R/E1, R/E2, and R/E3 do not have that Jónsson property, but no Jónsson functions for these quotients
have yet to be constructed.

For the ∆1
1 equivalence relations mentioned above, various dichotomy theorems assert the significance of

these equivalence relations in the degree structure of ∆1
1 equivalence relations under ∆1

1 reducibility. The
proofs of these dichotomy results give specific combinatorial structures to sets A such that E ≤∆1

1
E ↾ A,

when E is one of the ∆1
1 equivalence relations above. For example, if A ⊆ R is Σ1

1 and E0 ≤∆1
1
E0 ↾ A,

then A contains an E0-tree (a perfect tree with very specific symmetry conditions; see [2] Definition 5.2).

November 12, 2017. The author was supported by NSF grant DMS-1703708.

1

http://arxiv.org/abs/1711.04353v1


Similarly, if A ⊆ R is Σ1
1 and E2 ≤∆1

1
E2 ↾ A, then A contains an E2-tree (a perfect tree with certain

summability conditions; see [2] Fact 14.14).
The following describes the techniques from [2] for investigating the Jónsson property for R/E0: To study

functions f : [R/E0]2= → R/E0, one would like to lift f to a function F : R2 → R with the property that for
all (x1, x2) ∈ R2, [F (x1, x2)]E0 = f([x1]E0 , [x2]E0). Such a function F is called a lift of f . Then one tries
to produce an E0-tree on which the collapse of F misses elements of R/E0. On the other hand, using the
specific combinatorial structure of E0-trees, one can define a map F : R3 → R which is E0-invariant and
given any real x, there is a triple (x1, x2, x3) of E0-unrelated reals so that F (x1, x2, x3) E0 x. The collapse
of F would then be a 3-Jónsson map.

As described in the above example, the existence of lifts of functions from R/E → R/F , where E and
F are equivalence relations on R, seems to be useful in the study of functions on quotients. The existence
of a lift is an immediate consequence of uniformization. ADR has full uniformization. Moreover, a lift of a
function f : R/E → R/F requires only uniformization for relations whose sections are F -classes. Woodin
showed that countable section uniformization holds in AD

+. Thus lifts exist for functions into R/E0 under
AD

+. Moreover for showing that there are no 2-Jónsson functions for R/E0, it suffices to apply comeager
uniformization (which holds in just AD) to find a function F : C → R, where C ⊆ R2 is comeager, which
lifts f on C. Such a lift is adequate since the 2-Mycielski property for E0 shows that there is a set A such
that E0 ≤∆1

1
E0 ↾ A and {(x1, x2) ⊆ A2 : ¬(x1 E0 x2)} ⊆ C. This roughly implies that F lifts f on a

set whose quotient by E0 has cardinality R/E0. However, [2] showed that except for = which has the full
Mycielski property, a very limited amount of the Mycielski property holds for the other equivalence relations
of interest.

Motivated by this question of E-class section uniformization, Zapletal asked a related question: Does
every ordinal definable E2 equivalence class contain an ordinal definable real, under ZF + AD + V = L(R)? He
informed the author that the equivalence relation =+, defined on ωR as equality of range, has ordinal definable
classes with no ordinal definable elements and that this phenomenon can be viewed as a consequence of the
unpinnedness of =+. He asked then whether pinnedness can be used to characterize those ∆1

1 equivalence
relations with ordinal definable equivalence classes without any ordinal definable elements.

Under AD, every ordinal definable countable set of reals contains only ordinal definable elements. The
proof of this can be found within the proof of Woodin’s countable section enumeration under AD

+, which
states that for every relation R with countable sections there is a function that takes x to a wellordering of

the section Rx. The main idea is to consider the canonical wellordering of Rx in HOD
L[S,x,z]
S as z ranges over

a Turing cone of reals and S is some set of ordinals from an ∞-Borel code for R. (See [13] for the proof.)
This implies that under AD

+, every ordinal definable E class contains only ordinal definable elements if E
is an equivalence relation with all countable classes defined using only ordinal parameters. AD is important
for these questions since [10] showed that in a forcing extension of the constructible universe L, there is an
ordinal definable E0 equivalence class with no ordinal definable elements.

Section 2 will show roughly that in L(R) |= AD, if a Σ1
1 equivalence relation E has an OD equivalence

class without any OD elements, then HOD must think that E is unpinned:

Theorem 2.12 Assume ZF + AD
+ + V = L(P(R)). Let T be a set of ordinals. Let E be an equivalence

relation which is Σ1
1(s) for some s ∈ HODT and let A be an ODT E-class. If A has no ODT elements, then

HODT |= E is unpinned.

Models of ZF + AD
+ + V = L(P(R)) are considered natural models of AD+. If L(R) |= AD, then L(R)

satisfies this theory. Woodin, [1] Corollary 3.2, has shown that if ZF + AD
+ + V = L(P(R)) holds, then

either there is a set of ordinals J so that V = L(J,R) or else V |= ADR.

The proof of this theorem uses the idea of taking ultraproducts of HOD
L[S,z]
S (where the Turing degree of

z serves as the index and S is a set of ordinals) using Martin’s Turing cone measure. This technique appears
in Woodin’s proof that sets of reals have ∞-Borel codes in L(R) when L(R) |= AD as exposited in [15] Claim
1.6.

Theorem 2.13 (ZF + AD
+) Let E be a Σ1

1 equivalence relation defined in HODR, where R is some set.

2



Suppose HODR |= E is unpinned. Then there is an ODR E-class with no ODR elements.

These two results together give a very succient answer to Zapletal’s question in natural models of AD+:

Corollary 2.14 Assume ZF + AD
+ + V = L(P(R)). Let E be a Σ1

1 equivalence relation coded in HOD. E
has an OD E-class with no OD elements if and only if HOD |= E is unpinned.

Many important examples of pinned ∆1
1 equivalence relations include =, E0, E1, E2, smooth, hyperfinite,

and hypersmooth equivalence relations.
Using the previous theorem, one obtains E-class section uniformization for equivalence relations satisfying

some definable pinnedness condition. This is particular useful when the equivalence relations are provably
pinned:

Theorem 3.1 Assume ZF + AD
+ + V = L(P(R)). If E is a Σ1

1 equivalence relation which is pinned in
every transitive model of ZFC containing the real that codes E, then every relation R whose sections are all
E-classes can be uniformized.

As a consequence, every function f : R/E → R/F has a lift under AD
+ + V = L(P(R)) when F is =, E0,

E1, E2, smooth, hyperfinite, essentially countable, or hypersmooth.
Section 4.1 will study the Jónsson property of some nonwellorderable sets. Holshouser and Jackson have

shown that R× κ for any κ < Θ has the Jónsson property. They use that R and all ordinals κ < Θ have the
Jónsson property. A natural question would be whether R× κ is Jónsson for all ordinals κ. The proof that
R is Jónsson has a clear flavor of classical descriptive set theory since it uses comeagerness, continuity, the
Mycielski property, and fusions of perfect trees. The proof that ordinals κ < Θ is Jónsson have a somewhat
different flavor. A related question would be whether the Jónsson property for κ is relevant to showing R×κ
is Jónsson. Does there exists a more classical proof that R× κ is Jónsson? It will be shown that:

Theorem 4.15 (ZF + AD) For any ordinal κ, R× κ has the Jónsson property.

Whether or not κ is Jónsson does not appear in the proof of the above theorem. This result is proved
while investigating the Jónsson property for wellordered disjoint unions

⊔

α<κ R/Eα where each Eα is an
equivalence relation with all classes countable and R/Eα ≈ R. The techniques have a very classical flavor
using results about lengths of wellordered sequences of reals, additivity of the meager ideal, comeager uni-
formization, and fusions of perfect trees. There are also some discussions about the cardinality of

⊔

α<κ R/
Eα. However, it remains open whether

⊔

α<κ R/Eα has the Jónsson property.
This section concludes by producing a 6-Jónsson function for (R/E0) × κ for any κ < Θ under AD. This

shows that (R/E0) × κ for κ < Θ is not Jónsson under AD.
The author would like to thank Jared Holshouser, Stephen Jackson, Alexander Kechris, Connor Meehan,

and Itay Neeman for comments and discussions about the material in this paper. In particular, the author
would like to thank Jindřich Zapletal for informing the author of the main question.

2. Ordinal Definable Equivalence Classes

V will denote the universe of set theory in consideration. If M is a model of set theory and A is some
concept given by some formula, then AM will denote the relativization of that formula inside M . If a concept
A is unrelativized, then it is assumed to mean AV , although it may be written AV for emphasis. R will
denote ωω, the Baire space, consisting of functions from ω to ω with its usual metric. (Although it may
sometimes denote ω2, the Cantor space.) The elements of R will be called reals.

If X is a set, then ODX denotes the class of sets which are ordinal definable using X as a parameter.
HODX is the collection of sets which are hereditarily ordinal definable from X . HODX |= ZFC and has a
canonical global wellordering definable using X .

Fact 2.1. (Vopěnka) Suppose S is a set of ordinals. Let x ∈ R.
3



In L[S, x], let P denote the forcing of ODS subsets of R ordered by ⊆. Using the canonical S-definable
bijection of ODS subsets onto ON, let OS ∈ HODS be the forcing that results by transferring P onto ON
using this map.

Then there is a G ∈ L[S, x], which is OS-generic over HODS, so that L[S, x] = HODS [G] = HODS [x].

Proof. See [8] Theorem 15.46. �

Definition 2.2. Let X ⊆ R, S be a set of ordinals, and ϕ be a formula in the language of set theory. (S, ϕ)
is an ∞-Borel code for X if and only if for all x ∈ R, x ∈ X ⇔ L[S, x] |= ϕ(S, x).

Definition 2.3. ([17] Section 9.1) AD
+ consists of the following:

(1) DCR.
(2) Every A ⊆ R has an ∞-Borel code.
(3) For all λ < Θ, A ⊆ R, and continuous function π : ωλ→ R, π−1[A] is determined.

(λ is given the discrete topology. Θ is the supremum of the ordinals which are surjective images of R.
Games with moves from λ are defined the same way as the more familiar games on ω.)

Definition 2.4. ([18]) Let E be an equivalence relation on R. Let P be a forcing. Let τ be a P-name.
Let τleft, τright be the canonical P×P-names with the property that τleft and τright are evaluated according

to τ using the left and right P-generic filters, respectively, coming from a P× P-generic filter.
τ is an E-pinned name if and only if 1P×P 
P×P τleft E τright.
An E-pinned name τ is an E-trivial name if and only if there is some x ∈ R so that 1P 
P τ E x̌.
E is a pinned equivalence relation if and only if all E-pinned names are E-trivial.

Pinnedness is more accurately a property of a fixed definition for the equivalence relation E (which is to
be used to interpret E in generic extensions). This paper is concern only with Σ1

1 equivalence relations and
such equivalence relations are always defined as the projection of certains trees on ω × ω × ω.

Definition 2.5. Let ≤T denote the Turing reducibility relation on ωω. For x, y ∈ ωω, let x ≡T y if and only
if x ≤T y and y ≤T x. A Turing degree is a ≡T equivalence class. If x, y ∈ ωω, then define [x]≡T

≤T [y]≡T

if and only if x ≤T y.
Let D denote the set of Turing degrees. A Turing cone with base C ∈ D is the set {D ∈ D : C ≤T D}.

Define Martin’s measure U by: for A ∈ P(D), A ∈ U if and only if A contains a Turing cone.
Under AD, the Martin’s measure is a countably complete ultrafilter on D.

Definition 2.6. (ZF + AD) Let T be some set. Let H be a (usually proper class) function on D which is
definable using only T and ordinals as parameters and takes each X to some transitive class. Assume that
there is some (usually proper class) function R definable using only T and ordinals as parameters so that
for each X ∈ D, R(X) is a wellordering of H(X).

Let MT
H,R denote the collection of ODT functions on D taking each X ∈ D to an element in H(X). For

F,G ∈MT
H,R, let F ∼ G if and only if {X ∈ D : F (X) = G(X)} ∈ U .

Let MT
H,R denote the collection of equivalence classes of MT

H,R under ∼. Define [F ]∼ ∈ [G]∼ if and only

if {X ∈ D : F (X) ∈ G(X)} ∈ U .

Fact 2.7. (ZF + AD) MT
H,R is a T -definable class consisting of ODT elements. Using the T -definable

bijection of ODT and ON, MT
H,R is isomorphic to a class inside HODT . MT

H,R is well-founded; hence, it
can be considered as a transitive structure inside HODT .

The  Loś’s theorem holds for MT
H,R: Suppose F0, ..., Fk−1 ∈ MT

H,R and ϕ is a formula of {∈̇}, then

MT
H,R |= ϕ([F0]∼, ..., [Fk]∼) if and only {X ∈ D : H(X) |= ϕ(F0(X), ..., Fk−1(X))} ∈ U .

For each α < ω1, let cα : D → {α} be the constant function taking value α. The class [cα]∼ represents
the ordinal α in MT

H,R.

For each r ∈ R which is ODT and belongs to H(X) for a cone of X ∈ D, define the function cr : D → {∅, r}
by cr(X) = r if r ∈ H(X) and cr(X) = ∅ if otherwise. Then [cr]∼ represents r in MT

H,R.

Proof. MT
H,R is a structure in ODT since MT

H,R ⊆ ODT . Note the ∈ relation of MT
H,R is definable from T .

Using the the canonical bijection of ODT and ON, one can transfer MT
H,R and its ∈-relation onto ON. This

new isomorphic structure consists entirely of ordinals and hence elements of HODT .
4



Let F ∈ MT
H,R. Suppose [F ]∼ is not wellfounded. There is some set X ⊆ {[G]∼ : [G]∼ ∈ [F ]∼} without

an ∈MT
H,R -minimal element. Let L(0) be the ODT -least function G so that [G]∼ ∈ X . Suppose L(n) has

been defined. Let L(n + 1) be the ODT -least function G so that [G]∼ ∈ X and [G]∼ ∈ [L(n)]∼. Let
An = {x ∈ D : L(n + 1)(x) ∈ L(n)(x)}. Each An ∈ U . Since U is countably complete,

⋂

n∈ω An 6= ∅.

Let x ∈
⋂

n∈ω An. Then 〈L(n)(x) : n ∈ ω〉 is an ∈-decreasing sequence in V . Contradiction. MT
H,R is

well-founded. Using the Mostowski collapse, one may consider MT
H,R as a transitive structure inside of

HODT .
The proof of  Loś’s theorem is by induction on formula complexity: The result holds for the atomic for-

mulas by definition. Assume the result holds for ϕ and ψ, then the result holds for ¬ϕ and ϕ ∧ ψ by the
usual arguments. (Note the case involving ¬ requires that U is an ultrafilter.) Suppose the result has been
shown for ϕ. If MT

H,R |= (∃x)ϕ(x, [F0 ]∼, ..., [Fk−1]∼), then there exists some G ∈ MT
H,R so that MT

H,R |=
ϕ([G]∼, [F0]∼, ..., [Fk−1]∼). Using the induction hypothesis, {X ∈ D : H(X) |= (∃x)ϕ(x, F0(X), ..., Fk−1(X))} ∈
U . Suppose {X ∈ D : (∃x)ϕ(x, F0(X), ..., Fk−1(X))} ∈ U . Define G on D by letting G(X) be the R(X)-least
element z of H(X) such that H(X) |= ϕ(z, F0(X), ..., Fk−1(X)) if such an element exists and ∅ otherwise.
G is ODT and so belongs to MT

H,R. By the induction hypothesis, MT
H,R |= ϕ([G]∼, [F0]∼, ..., [Fk−1]∼).

Therefore, MT
H,R |= (∃x)ϕ(x, [F0 ]∼, ..., [Fk−1]∼). This completes the sketch of  Loś’s theorem.

Suppose [F ]∼ ∈ [cα]∼. Let A = {X ∈ D : F (X) ∈ α}. A ∈ U . Let Aβ = {X ∈ D : F (X) = β}.
A =

⋃

β<αAβ . Since U is countably complete and α is countable, there is some β < α so that Aβ ∈ U . Then

cβ ∼ F . This shows that [cα]∼ represents α in MT
H,R when α < ω1. �

Fact 2.8. (Woodin, [1] Theorem 3.4) Assume ZF + AD
+ + V = L(P(R)). Let T be a set of ordinals. A set

X ⊆ R which is ODT has an ∞-Borel code (S, ϕ) which is ODT .

Fact 2.9. (Woodin, [1] Theorem 2.18) Assume ZF + AD
+ + V = L(P(R)). Let T be a set of ordinals. There

is some set of ordinals X so that HODT = L[X]. (Note that X is ODT .)

In the case of L(R) and T = ∅, the set X can be taken to be Pω which is the direct limit indexed by n ∈ ω
of Vopěnka forcing on Rn. This follows from Woodins result that L(R) is a symmetric collapse extension of
its HOD. One can find an exposition of this result in [15].

Fact 2.10. (Woodin, [1] Section 2.2) Assuming ZF + AD
+,

∏

X∈D ON/U is wellfounded.

Assume AD
+, the wellfoundedness of MT

H,R can also be proved from Fact 2.10. For the question of

Zapletal, one will need to form an ultraproduct of the form MT
H,R so that all the reals of HOD belong to

this ultraproduct.

Fact 2.11. Assume ZF + AD
+ + V = L(P(R)). Let T be a set of ordinals. Let X be a set of ordinals as

given by Fact 2.9, so that HODT = L[X]. For each X ∈ D, let H(X) = HOD
L[X,X]
X

and R(X) be the

canonical wellordering of HOD
L[X,X]
X

. Then MX

H,R is wellfounded, MX

H,R ⊆ HODT , and RHODT ⊆ MT
R,H.

Proof. Note that X is ODT . Observe that for all X ∈ D, HODT = L[X] ⊆ HOD
L[X,X]
X

. So if r ∈ HODT , then

r ∈ HOD
L[X,X]
X

. The function cr is ODX and belongs to MX

H,R. This result now follows from Fact 2.7. �

Theorem 2.12. Assume ZF + AD
+ + V = L(P(R)). Let T be a set of ordinals. Let E be an equivalence

relation which is Σ1
1(s) for some s ∈ HODT and let A be an ODT E-class. If A has no ODT elements, then

HODT |= E is unpinned.

Proof. For simplicity, let T = ∅. By Fact 2.9, let X be a set of ordinals so that HOD = L[X]. By Fact 2.8,
A has an ∞-Borel code in HOD = L[X]. Modifying X by including an ordinal if necessary, one may as well
assume that there is some formula ϕ so that (X, ϕ) forms an ∞-Borel code for A.

Recall that E is Σ1
1(s) means there is some s-recursive tree T on ω × ω × ω so that x E y if and only if

L[s, x, y] |= T x,y is illfounded, where T x,y = {u : (x ↾ |u|, y ↾ |u|, u) ∈ T }. In this way, E is ∞-Borel with a
code that is a subset of ω.

Suppose y ≥T x for some x ∈ A. By Fact 2.1, there is some O
L[X,y]
X

-name τ ∈ HOD
L[X,y]
X

and some

O
L[X,y]
X

-generic over HOD
L[X,y]
X

filter G ∈ L[X, y] so that τ [G] = x and L[X, y] = HOD
L[X,y]
X

[G]. Since
5



V |= L[X, x] |= ϕ(X, x), L[X, y] |= L[X, x] |= ϕ(X, x). Since L[X, y] = HOD
L[X,y]
X

[G], one has HOD
L[X,y]
X

[G] |=

L[X, x] |= ϕ(X, x). There is some q ∈ O
L[X,y]
X

so that HOD
L[X,y]
X

|= q 
OX
L[X̌, τ ] |= ϕ(X̌, τ). Let qy and τy be

the HOD
L[X,y]
X

-least such q and τ with the above properties. In order to satisfy the technical requirement of

using the largest condition of the forcing in the definition of pinnedness, let Uy = {p ∈ O
L[X,y]
X

: p ≤
O

L[X,y]
X

qy},

≤Uy
=≤

O
L[X,y]
X

↾ Uy, and 1Uy
= qy. If y does not Turing compute any element of A, then one can just let Uy

and τy be ∅.

If x ≡T y, HOD
L[X,x]
X

= HOD
L[X,y]
X

and their canonical global wellorderings are the same. This shows

that Ux = Uy and τx = τy. If X ∈ D and x ∈ X , let HOD
L[X,X]
X

= HOD
L[X,x]
X

, UX = Ux, and τX = τx. For

X ∈ D, let H(X) = HOD
L[X,X]
X

and R(X) be the canonical global wellordering of HOD
L[X,X]
X

. For X ∈ D,
define ΦU(X) = UX and Φτ (X) = τX . Let M = MX

H,R. Note that ΦU,Φτ ∈ MX

H,R. Let U = [ΦU]∼ and

τ = [Φτ ]∼. Let cX be the constant function taking value X. Note that cX ∈ MX

H,R. Let X∞ = [cX]∼. As in

Fact 2.7, M will be identified as a transitive class in HODV . Thus U, τ , and X∞ belong to HODV .
By  Loś’s theorem, M is a model of ZFC, U is some forcing, τ is some U-name adding a real, X∞ is a set

of ordinals, and M |= 1U 
U L[X∞, τ ] |= ϕ(X∞, τ).
Claim 1:

M |= 1U×U 
U×U (∀x)(∀y)((L[X∞, x] |= ϕ(X∞, x) ∧ L[X∞, y] |= ϕ(X∞, y)) ⇒ x E y)

(Note that the ultraproduct moves X to X∞. However, E as a Σ1
1(s) equivalence relation has the real s

as its ∞-Borel code. The constant function cs taking value s belongs to MX

H,R. In M, [cs]∼ represents s.
That is, s is not moved by the ultraproduct. Hence it is appropriate to continue to denote E by E in M as
it is still the same Σ1

1 equivalence relation.)
To see the claim: Fix some z ∈ A. By  Loś’s theorem, it suffices to prove that for all r ≥T z:

HOD
L[X,r]
X

|= 1Ur×Ur

Ur×Ur

(∀x)(∀y)((L[X, x] |= ϕ(X, x) ∧ L[X, y] |= ϕ(X, y)) ⇒ x E y)

Fix some (p, q) ∈ Ur × Ur. Since L[X, r] |= AC and V |= AD, ωV
1 is inaccessible in HOD

L[X,r]
X

. Hence

Ur × Ur and its power set in HOD
L[X,r]
X

are countable in V . There exists G × H ∈ V which is Ur × Ur-

generic over HOD
L[X,r]
X

. Since G × H ∈ V , all sets of HOD
L[X,r]
X

[G × H ] belong to V . Let x and y be

reals of HOD
L[X,r]
X

[G × H ] so that HOD
L[X,r]
X

[G × H ] |= L[X, x] |= ϕ(X, x) ∧ L[X, y] |= ϕ(X, y). Then
V |= L[X, x] |= ϕ(X, x) ∧ L[X, y] |= ϕ(X, y). Since (X, ϕ) is an ∞-Borel code for A in V , x ∈ A and y ∈ A.

Since A is an E-class, x E y. By Mostowski absolutenss, HOD
L[X,r]
X

[G × H ] |= x E y. This shows that

HOD
L[X,r]
X

[G ×H ] satisfies the formula behind the above forcing relation. Since G ×H is generic, there is

some (p′, q′) ≤Ur×Ur
(p, q) so that in HOD

L[X,r]
X

, (p′, q′) forces that formula. Since (p, q) was arbitrary, this
establishes the claim.

Claim 2:

M |= 1U×U 
U×U (∀x)(∀y)((L[X∞, x] |= ϕ(X∞, x) ∧ x E y) ⇒ L[X∞, y] |= ϕ(X∞, y))

The proof essentially uses the same idea as Claim 1.
Now to show that U and τ witness that E is unpinned in HODV :
First to show that τ is an E-pinned name in HODV : Let G×H be any U×U-generic filter over HODV .

Since M ⊆ HODV , if G and H are generic over HODV , then G and H are generic over M. By the forcing
theorem, M[G] |= L[X∞, τ [G]] |= ϕ(X∞, τ [G]) and M[G] |= L[X∞, τ [H ]] |= ϕ(X∞, τ [H ]). By Claim 1,

M[G ×H ] |= τ [G] E τ [H ]. By Mostowski absoluteness, HODV [G ×H ] |= τ [G] E τ [H ]. Since G ×H was

arbitrary, HODV
X |= 1U×U 
U×U τleft E τright. This shows that τ is an E-pinned U-name in HODV .

Finally, to show that τ is not E-trivial: Suppose there is some x ∈ HODV so that HODV |= 1U 
U τ E x̌.

Let G ⊆ U be a U-generic over HODV filter. Then HODV [G] |= τ [G] E x. By Mostowski absoluteness,
M[G] |= τ [G] E x. G is also generic over M. By the forcing theorem, M[G] |= L[X∞, τ [G]] |= ϕ(X∞, τ [G]).

Since x ∈ HODV , Fact 2.11 and Fact 2.7 imply that [cx]∼ represents x in M. By Claim 2 applied in M[G×H ]
where H is any U-generic filter over M[G], M[G] |= L[X∞, x] |= ϕ(X∞, x). Thus M |= L[[cX]∼, [cx]∼] |=

ϕ([cX]∼, [cx]∼). By  Loś’s theorem, for a Turing cone of X ’s (such that x ∈ HOD
L[X,X]
X

), HOD
L[X,X]
X

|=
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L[X, x] |= ϕ(X, x). This implies V |= L[X, x] |= ϕ(X, x). V |= x ∈ A since (X, ϕ) is the ∞-Borel code for A
in V . This contradicts the assumption that A has no OD elements.

This completes the proof. �

Theorem 2.13. (ZF + AD) Let E be a Σ1
1 equivalence relation defined in HODR, where R is some set.

Suppose HODR |= E is unpinned. Then there is an ODR E-class with no ODR elements.

Proof. Since HODR |= E is unpinned, there exists some forcing P ∈ HODR and P-name σ ∈ HODR so that
within HODR, P and σ witness that E is not pinned.

Inside HODR (which models AC), let N be an elementary substructure of some large enough rank initial
segment of HODR with the property that (1) N contains the code for E, (2) R ⊆ N , (3) P, σ ∈ N , and (4)
N has cardinality |R|. Let M be the Mostowski collapse of N . Let Q and τ be the image of P and σ under
the Mostowski collapse map. As E is Σ1

1, the code for E is a tree on ω × ω × ω whose projection is E. So a
code for E is merely a subset of ω. Hence the Mostowski collapse map does not move the code for E. Note

that |M |V = |RHODV
R |V = ℵ0 since AD holds. Hence there are generics for Q over M that lie in V .

Suppose G and H are two generic filters for Q over M which belong to V . Since M [G] and M [H ] are
countable in V , one can construct a generic filter J ∈ V so that G × J and H × J are generic filters for
Q×Q. By elementarity, M |= τ is E-pinned. Thus M [G× J ] |= τ [G] E τ [J ] and M [H × J ] |= τ [H ] E τ [J ].
By Mostowski absoluteness, τ [G] E τ [J ] and τ [H ] E τ [J ] holds in V . Since E is an equivalence relation,
τ [G] E τ [H ]. This shows that whenever G and H are Q-generic filters over M that belong to V (but may
not be mutually generic), τ [G] E τ [H ].
M |= τ is not E-trivial by elementarity. Since RHODR ⊆ M , for any G ⊆ Q which is Q-generic over M

and any x ∈ RHODR , M [G] |= ¬(τ [G] E x). By absoluteness, if G ∈ V , then ¬(τ [G] E x).
In V , let A be the set of x ∈ R so that there exists some G ⊆ Q which is Q-generic over M and x E τ [G].

Since Q, τ ∈ M and M ∈ HODR, A is ODR. By the discussion of the above two paragraphs, A is a single
E-class and has no elements of ODR.

Note that the only consequence of AD that is used is that there is no uncountable wellordered set of
reals. �

The following answers the question of Zapletal.

Corollary 2.14. Assume ZF + AD
+ + V = L(P(R)). Let E be a Σ1

1 equivalence relation coded in HOD. E
has an OD E-class with no OD elements if and only if HOD |= E is unpinned.

The rest of this section will give some examples.

Definition 2.15. The following are some important ∆1
1 equivalence relations.

Let = denote the identity equivalence relation on R.
Let =+ denote the Friedman-Stanley jump of = which is defined on ωR by x =+ y if and only if {x(n) :

n ∈ ω} = {y(n) : n ∈ ω}. (=+ is equality of range.)
Let E0 be the equivalence relation on R (or ω2) defined by x E0 y if and only if (∃k)(∀n ≥ k)(x(n) = y(n)).
Let E1 be the equivalence relation on ωR defined by x E1 y if and only (∃k)(∀n ≥ k)(x(n) = y(n)).
Let E2 be the equivalence relation on ω2 defined by x E2 y if and only if

∑

{ 1
n

: n ∈ x△y} < ∞, where
△ denotes the symmetric difference operation.

Fact 2.16. The equivalence relations =, E0, E1, and E2 are pinned ∆1
1 equivalence relations. Every ∆1

1

equivalence relation with countable classes is pinned. Every smooth, hyperfinite, essentially countable, or
hypersmooth equivalence relation is pinned.

The equivalence relation =+ is unpinned.

Proof. See [11] Chapter 11.
The Solovay product lemma states: Let P and Q be two forcings. Suppose G×H is P× Q-generic over

V . Then V [G] ∩ V [H ] = V .
From the Solovay product lemma, it follows that =, E0, and E1 are pinned equivalence relations.
If E ≤∆1

1
F and F is pinned, then E is also pinned. This implies that smooth, hyperfinite, and hyper-

smooth equivalence relations are pinned.
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[11] Theorem 17.1.3 (iii) states that ∆1
1 equivalence relations with all classes Σ0

3 are pinned. This implies
that E2 and every ∆1

1 equivalence relation with countable classes are pinned. Therefore, essentially countable
equivalence relations are pinned.

Let Q = Coll(ω,R). Let τ be the name for the generic surjection of ω onto R. Q and τ witness that =+

is unpinned since if τ was forced to be =+ related to a ground model element, then R would be countable
in the ground model. �

Example 2.17. The proof above that =+ is unpinned can be used to produce an OD =+-class with no OD
elements assuming (P(R))HOD is countable.

Let Q = Coll(ω,R) and τ be the generic surjection of ω onto R as defined inside of HOD. (Note that τ is
an =+-pinned name.) By the assumption, there exists Q-generics over HOD in V . Let A be the collection
of x ∈ ωR such that there exist some G ⊆ Q which is Q-generic over HOD and x =+ τ [G]. A is an OD =+

equivalence class. A cannot contain any OD elements for otherwise HOD would think RHOD is countable.

3. Equivalence Class Section Uniformization and Lifting

Theorem 3.1. Assume ZF + AD
+ + V = L(P(R)). Let T be a set of ordinals. Let E be a Σ1

1 equivalence
relation coded in HODT . Suppose E is pinned in HODT,x for all x ∈ R. Let R ⊆ R× R be ODT and have
the property that for all x ∈ R, Rx = {y : R(x, y)} is an E-class. Then there is a function F : R → R which
is ODT and uniformizes R: that is, for all x ∈ R, R(x, F (x)).

If E is a Σ1
1 equivalence relation which is pinned in every transitive model of ZFC containing the real that

codes E, then every relation R whose sections are E-classes can be uniformized. (For example, E could be
any of the pinned equivalence relations from Fact 2.16.)

Proof. Under these assumptions , for each x ∈ R, Rx is an ODT,x E-class. Since HODT,x |= E is unpinned,
Theorem 2.12 implies that Rx must have an ODT,x element. For each x ∈ R, let F (x) be the least element of
HODT,x under the canonical global wellordering of HODT,x which belongs to Rx. F is an ODT uniformization
of R.

For the second statement, under AD+, any such relation R has an ∞-Borel code (S, ϕ). By modifying S
if necessary, one may assume that HODS contains a code for E as a Σ1

1 set. By the hypothesis, E is pinned
in every HODS,x, where x ∈ R. The second statement follows from the first statement. �

[18] has shown that if E is a ∆1
1 equivalence relation coded in some transitive model M and N is some

transitive model with M ⊆ N , then E is pinned in M if and only if E is pinned in N . Therefore, in the
first statement of Theorem 3.1, it suffices just to have HODT |= E is pinned, when E is a ∆1

1 equivalence
relation.

However [18] also shows that, in general, pinnedness for Σ1
1 equivalence relation is not absolute by pro-

ducing a pinned Σ1
1 equivalence relation in L which is unpinned in a forcing extension of L. However, in

the present situation, one is concerned with models of the form HODV
T and HODV

T,x where V is a model of
determinacy. Possible more can be said in such settings. This suggests the following question.

Question 3.2. In the first statement of Theorem 3.1, can the condition that E is pinned in HODT,x for all
x ∈ R be replace by just E is pinned in HODT when E is a Σ1

1 equivalence relation coded in HODT ?

Regardless, most natural examples are ∆1
1. Moreover, for most of the natural examples, pinnedness is

provable in ZFC.

Definition 3.3. Let E be an equivalence relation on some set X . Let F be an equivalence relation on some
set Y . Let n ∈ ω. Let f : (X/E)n → (Y/F ) be some function. A function F : Xn → Y is a lift of f if and
only if for all x0, ..., xn−1 ∈ X , [F (x0, ..., xn−1)]F = f([x0]E , ..., [xn−1]E).

Corollary 3.4. Assume ZF + AD
+ + V = L(P(R)). Suppose E is an equivalence relation on R. Suppose F

is a Σ1
1 equivalence relation on R which is pinned in every transitive models of ZFC containing the real that

codes F . For all n ∈ ω, every function f : (R/E)n → (R/F ) has a lift.
In particular, this lifting property holds when F is E0, E1, E2, smooth, hyperfinite, essentially countable,

or hypersmooth.
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Proof. Define the relation R(x0, ..., xn−1, y) if and only if y ∈ f([x0]E , ..., [xn−1]E). For each (x0, ..., xn−1) ∈
Rn, R(x0,...,xn−1) = f([x0]E , ..., [xn−1]E), which is an F -class. By assumption, F is pinned in every model of
ZFC containing the real that codes F . Theorem 3.1 implies that R has a uniformizing function G. G is a lift
of f . �

Example 3.5. Under ZF + ADR, every relation can be uniformized. Hence, E-class section uniformization
and lifting for E holds for every equivalence relation E on R. However ZF + AD

+ is not able to prove E-class
section uniformization when E is an unpinned equivalence relation. The following is an example.

Assume ZF + AD + V = L(R).
Define R(x, y) if and only if y is not ODx. R has no uniformizing function: Suppose f : R → R uniformized

R. Since V = L(R), every set of reals is ordinal definable from some real. Thus f is ODz for some z ∈ R.
Hence f(z) is ODz . However, R(z, f(z)) implies that f(z) is not ODz. Contradiction.

Define S(x, y) if and only if {yn : n ∈ ω} = RHODx , where yn ∈ R denotes the nth section of y under some
coding of pairs of integers by integers. If S(x, y), then y /∈ ODx for otherwise RHODx would be countable in
HODx. Since S ⊆ R and R has no uniformization, S also has no uniformization.

Every instance of F -class section uniformization gives a lift of a function from f : R → (R/F ). Therefore,
failure of F -class section uniformization is a failure of lifting for F . However, the more interesting instance of
the lifting property involving function of the form f : (R/F ) → (R/F ). This suggest the following question
which may yield more information on the relationship between lifting and F -class section uniformization.

Question 3.6. Under ZF + AD + V = L(R), is there some function f : (ωR/ =+) → (ωR/ =+) which does
not have a lift?

4. Jónsson Property

Definition 4.1. Let X be a set and n ∈ ω. Let E be an equivalance relation on X . Let [X ]nE =
{(x0, ..., xn−1) ∈ nX : (∀i < n)(∀j < n)(i 6= j ⇒ ¬(xi E xj))}. Let [X ]<ω

E =
⋃

n∈ω[X ]nE.
A set X has the Jónsson property if and only if for all functions f : [X ]<ω

= → X , there is some Y ⊆ X
with Y ≈ X and f [[Y ]<ω

= ] 6= X . (The symbol ≈ is the relation of being in bijection.)
For n < ω, an n-Jónsson function for X is a map f : [X ]n= → X so that for all Y ⊆ X with Y ≈ X ,

f [[X ]n=] = X .

Fact 4.2. Under ZF + AD,
([5] and [6]) R has the Jónsson property.
([2]) There is a 3-Jónsson function for R/E0. Hence R/E0 does not have the Jónsson property.

For the rest of this section, R will refer to ω2, the set of infinite binary sequences.

Definition 4.3. A nonempty subset p of <ω2 is a tree if and only if for all s ∈ p and t ⊆ s, t ∈ p. A tree p
is a perfect tree if and only if for all s ∈ p, there is a t ⊇ s so that t̂ 0, t̂ 1 ∈ p.

Let S be the set of all perfect trees. Let ≤S=⊆.
Let p ∈ S. A node s ∈ p is a split node if and only if ŝ 0, ŝ 1 ∈ p. A node s ∈ p is a split of p if and only

if s ↾ (|s| − 1) is a split node of p. For n ∈ ω, s is an n-split of p if and only if s is a ⊆-minimal element of p
with exactly n-many proper initial segments which are split nodes of p.

Let splitn(p) denote the set of n-splits of p. Note that |splitn(p)| = 2n and split0(p) = {∅}.
If p, q ∈ S, define p ≤n

S
q if and only if p ≤S q and splitn(p) = splitn(q).

If p ∈ S and s ∈ p, then define ps = {t ∈ p : t ⊆ s ∨ s ⊆ t}.
Let p ∈ S. Let Λ be defined as follows:

(i) Λ(p, ∅) = ∅.
(ii) Suppose Λ(p, s) has been defined for all s ∈ n2. Fix an s ∈ n2 and i ∈ 2. Let t ⊇ Λ(p, s) be the minimal
split node of p extending Λ(p, s). Let Λ(p, ŝ i) = t̂ i.

Let Ξ(p, s) = pΛ(p,s).

Fact 4.4. A fusion sequence is a sequence 〈pn : n ∈ ω〉 in S so that for all n ∈ ω, pn+1 ≤n
S
pn. Let

pω =
⋂

n∈ω pn. Then pω ∈ S and is called the fusion of the above fusion sequence.
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Fact 4.5. Suppose p ∈ S. Let 〈rn : n ∈ ω〉 be a sequence of positive integers. Let 〈fn : n ∈ ω〉 be a sequence
such that for all n ∈ ω, fn : [[p]]rn= → ωR is a continuous function. Then there is some q ≤S p and z ∈ R so
that for all m,n ∈ ω and y ∈ fn[[[q]]rn= ], z 6= y(m).

Proof. Let B : ω → ω × ω be a surjection with the property that the inverse image of any (e, g) is infinite.
Objects 〈zn : n ∈ ω〉 and 〈qn : n ∈ ω〉 will be built with the following properties.

(I) For each n ∈ ω, zn ∈ <ω2 and zn ( zn+1. For each n ∈ ω, qn ∈ S, qn ≤S p, and qn+1 ≤n
S
qn.

(II) For each n ∈ ω, suppose B(n) = (e, g). Then for each sequence (σ1, ..., σre) of pairwise distinct strings
in n2, there is some τ ∈ <ω2 so that for all y with

y ∈ fe[[Ξ(qn+1, σ1)] × ...× [Ξ(qn+1, σre)]]

y(g) ∈ Nτ and zn+1 and τ are incompatible.
Suppose these objects can be constructed. Then 〈qn : n ∈ ω〉 forms a fusion sequence. By Fact 4.4,

q =
⋂

n∈ω qn is a perfect tree. Let z =
⋃

n∈ω zn. Let e, g ∈ ω. Suppose (x1, ..., xre) ∈ [[q]]re= . By the
assumption on B, there is some n large enough so that B(n) = (e, g) and there are pairwise distinct strings
σ1, ..., σre ∈ n2 with Λ(q, σ1) ⊂ x1, ..., Λ(q, σre) ⊂ xre . Then by (II), zn+1 is not an initial segment of y(g).
Hence y(g) 6= z.

It remains to construct these objects.
Let z0 = ∅ and q0 = p.
Suppose qn and zn have been constructed. Suppose that B(n) = (e, g). Enumerate all the re-tuples of

distincts strings in n2 as (σ0
1 , ..., σ

0
re

), ..., (σM
1 , ..., σM

re
) for some M ∈ ω.

Let s0 = qn. Let ℓ0 = zn. Suppose sk and ℓk have been defined for some fixed k ≤M . For each 1 ≤ i ≤ re,
let ci = σk

i ˆ̄0. Let di =
⋃

n<ω Λ(rk, ci ↾ n). By the continuity of fe on [[p]]re= , there is some N > n so that
for all

y ∈ fe[[Ξ(sk, c1 ↾ N)] × ...× [Ξ(sk, cre ↾ N)]],

fe(d1, ..., dre)(g) ↾ |ℓk + 1| ⊆ y(g). Define ℓk+1 = ℓk (̂1 − fe(d1, ..., dre)(g)(|ℓk|)), that is ℓk+1 extends ℓk by
one using the opposite of the value of fe(d1, ..., dre)(g)(|ℓk|). Let sk+1 ≤n

S
sk be such that for all σ ∈ n2, if

σ = σk
i for some 1 ≤ i ≤ re, then Ξ(sk+1, σ) = Ξ(sk, ci ↾ N) and if σ is otherwise, then Ξ(sk+1, σ) = Ξ(sk, σ).

Finally, let qn+1 = sM+1 and zn+1 = ℓM+1. This completes the construction. �

Fact 4.6. Let δ be an ordinal. Let 〈Aα : α < δ〉 be a sequence of meager subsets of R. Define a prewellordering
on

⋃

α<δ Aα by x � y if and only if the least ordinal ξ such that x ∈ Aξ is less or equal to the least ordinal
ξ such that y ∈ Aξ. Assume that � as a subset of R× R has the Baire property. Then

⋃

α<δ Aα is meager.
(ZF + AD) Every wellordered union of meager sets is meager.

Proof. See [12]. The second statement follows from the fact that every subset of R×R has the Baire property
under AD. �

Fact 4.7. (Mycielski) Suppose 〈Cn : n ∈ ω〉 is a sequence so that each Cn is a comeager subset of Rn. Then
there is a perfect tree p so that for all n ∈ ω, [[p]]n= ⊆ Cn.

Fact 4.8. (ZF + AD) (Comeager uniformization) Let R ⊆ R × R be a relation. Then there is a comeager
set C ⊆ R and a function f : C → R so that for all x ∈ C, R(x, f(x)).

Fact 4.9. (ZF + AD) Let E be an equivalence relation on R with all classes countable and R/E ≈ R. Let p
be perfect tree. Then [p]/E ≈ R.

Proof. Note that [p]/E injects into R/E by inclusion. Composing with the bijection then shows that [p]/E
injects into R. Let Φ : R/E → R be a bijection. Since E has only countable classes and countable unions
of countable sets are countable under AD, [p]/E is an uncountable set. Hence Φ[[p]/E] is an uncountable
subset of R. By the perfect set property, there is some perfect tree q so that [q] ⊆ Φ[[p]/E]. Φ−1 injects [q]
into [p]/E. Hence R injects into [p]/E. By Cantor-Schröder-Bernstein, [p]/E ≈ R. �

Fact 4.10. (ZF + AD) Let A ⊆ R. Let � be a prewellordering on A. For each x ∈ A, let [x]� = {y : x �
y ∧ y � x}. If for all x ∈ A, [x]� is countable, then A is countable.
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Proof. If A is not countable, then by the perfect set property, there is some perfect tree p so that [p] ⊆ A.
Using the notation from Definition 4.3, define x ⊑ y if and only if

⋃

n∈ω Λ(p, x ↾ n) �
⋃

n∈ω Λ(p, y ↾ n).
Then ⊑ is a prewellordering on R so that for each x ∈ R, [x]⊑ is countable. Let β be the length of ⊑. For
each α < β, let Aα be the prewellordering class of ⊑ with rank α.

⋃

α<β Aα = R and each Aα is countable

(and hence meager). This is not possible by Fact 4.6. �

Question 4.11. (Holshouser-Jackson) (ZF + AD) Let κ be an ordinal. Let 〈Eα : α < κ〉 be a sequence of
equivalence relations on R with all classes countable so that R/Eα ≈ R. Does the disjoint union

⊔

α<κ R/Eα

have the Jónsson property?

Note that one is not given a sequence of bijections 〈Φα : α < κ〉 witnessing R/Eα ≈ R. With such a
sequence of bijections, one can construct a bijection witnessing

⊔

α<κ R/Eα ≈ R× κ. In this case, Theorem
4.15 below would imply

⊔

α<κ R/Eα has the Jónsson property. The following is an interesting question.

Question 4.12. (Holshouser-Jackson) (ZF + AD) Let κ be an ordinal. Let 〈Eα : α < κ〉 be a sequence of
equivalence relations on R with all classes countable so that R/Eα ≈ R. Is

⊔

α<κ R/Eα ≈ R× κ?

The following theorem gives some information concerning the Jónsson property.

Theorem 4.13. (ZF + AD) Let κ be an ordinal. Let 〈Eα : α < κ〉 be a sequence of equivalence relation on
R with all classes countable. Let f : [

⊔

α<κ R/Eα]<ω
= →

⊔

α<κ R/Eα. Then there is some perfect tree p so
that f [[

⊔

α<κ[p]/Eα]<ω
= ] 6=

⊔

α<κ R/Eα.

Proof. Let E be the equivalence relation on R×κ defined by: (x, α) E (y, β) if and only if α = β and x Eα y.
Then

⊔

α<κ R/Eα is in bijection with the quotient (R × κ)/E. In the following f will be considered as a
function taking values in (R× κ)/E.

Let X be the collection of surjections σ : {1, ..., n} → {1, ...,m} where 1 ≤ m ≤ n are integers. For all
σ ∈ X , let n(σ) = n and m(σ) = m, i.e. n(σ) and m(σ) indicate the domain and range of σ, respectively.

For each σ ∈ X , define Aσ ⊆ Rm(σ) × R by

(x1, ..., xm(σ), y) ∈ Aσ ⇔ (∃α1)...(∃αn(σ))(∃β)([(y, β)]E = f([(xσ(1), α1)]E , ..., [(xσ(n(σ)), αn(σ))]E))

In the following, fix a wellordering of n(σ)-tuples of ordinals. For each (x1, ..., xm(σ)), the elements of
Aσ

(x1,...,xm(σ))
can be prewellordered as follows: y0 ⊑ y1 if and only if the least (α1, ..., αn(σ)) such that there

exists (a unique) β with
(y1, β) ∈ f([(xσ(1), α1)]E , ..., [(xσ(n(σ)), αn(σ))]E)

is less than or equal to the least (α1, ..., αn(σ)) such that there exists (a unique) β with

(y2, β) ∈ f([(xσ(1), α1)]E , ..., [(xσ(n(σ)), αn(σ))]E).

Let y ∈ Aσ
(x1,...,xm(σ))

. Let (α1, ..., αn(σ)) be the least n(σ)-tuple of ordinals such that for some (unique)

β, (y, β) ∈ f([(xσ(1), α1)]E , ..., [(xσ(n(σ)), αn(σ))]E). Then [y]⊑ ⊆ π1[f([(xσ(1), α1)]E , ..., [(xσ(n(σ)), αn(σ))]E)],
where π1 : R× κ→ R is the projection onto the first coordinate. Note f([(xσ(1), α1), ..., [(xσ(n(σ)) , αn(σ))]E)
is contained inside of R × {β} for some β. Since Eβ is an equivalence relation with countable classes,
π1[f([(xσ(1), α1), ..., [(xσ(n(σ)), αn(σ))]E)] is countable. It has been shown that each ⊑-prewellordering class
is countable. By Fact 4.10, Aσ

(x1,...,xm(σ))
is countable for all (x1, ..., xm(σ)).

Fix σ ∈ X . Let Rσ ⊆ Rm(σ) × ωR be defined by (x, h) ∈ Rσ if and only if h : ω → Aσ
x is a surjection. For

all x ∈ Rσ(m), Rσ
x 6= ∅ since Aσ

x is countable. By comeager uniformization (Fact 4.8), there is some comeager
set Cσ ⊆ Rm(σ) and some function Hσ : Cσ → ωR so that Rσ(x,Hσ(x)) for all x ∈ Cσ. Using AD, one may
assume that Hσ is continuous on Cσ by choosing a smaller comeager set if necessary.

By the results of Mycielski, Fact 4.7, there is some perfect tree p so that [[p]]m(σ)
= ⊆ Cσ for all σ ∈ X .

Note that for all σ ∈ X , Hσ ↾ [[p]]m(σ)
= is a continuous function with the property that for all x ∈ [[p]]m(σ)

= ,
Hσ(x) ∈ ωR enumerates Aσ

x . By Fact 4.5, there is some q ≤S p and some z ∈ R so that for all σ ∈ X , j ∈ ω,
and (x1, ..., xm(σ)) ∈ [[q]]m(σ)

= , Hσ(x)(j) 6= z.
Now suppose (r1, α1), ..., (rn, αn) ∈ [q] × κ are such that ([(r1, α1)]E , ..., [(rn, αn)]E) ∈ [

⊔

α<κ[q]/Eα]n=.
There is some m ≤ n, (x1, ..., xm) ∈ [[q]]m= , and surjection σ : {1, ..., n} → {1, ...,m} so that (r1, ..., rn) =
(xσ(1), ..., xσ(n)). Then z /∈ Aσ

(x1,...,xm) implies that (z, β) /∈ f([(r1, α1)]E , ..., [(rn, αn)]E) for all β < κ.

This shows that f [[
⊔

α<κ[q]/Eα]<ω
= ] 6=

⊔

α<κ R/Eα. �
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Let p be the perfect tree given by Theorem 4.13. Assume that each R/Eα ≈ R. By Fact 4.9, each
[p]/Eα

∼= R. If
⊔

α<κ[p]/Eα ≈
⊔

α<κ R/Eα, then Theorem 4.13 would imply
⊔

α<κ R/Eα has the Jónsson
property. This suggests the following natural question.

Question 4.14. (ZF + AD) Let κ be an ordinal. Let 〈Eα : α < κ〉 be a sequence of equivalence relations on R

with all classes countable and R/Eα ≈ R for each α < κ. Let p be a perfect tree. Is
⊔

α<κ R/Eα ≈
⊔

α<κ[p]/
Eα?

When all the Eα’s are the identity equivalence relation, =, then one can exhibit the desired bijection.
This gives the following result.

Theorem 4.15. (ZF + AD) For any ordinal κ, R× κ has the Jónsson property.

Proof. Let 〈Eα : α < ω〉 be a sequence where each Eα is the identity equivalence relation, =, on R.
Note that

⊔

α<κ R/Eα ≈ R × κ. Apply Theorem 4.13 to this sequence. For any perfect tree p,
⊔

α<κ[p]/
Eα ≈

⊔

α<κ[p] ≈ R× κ. �

Many of the results above are trivial if the sequence 〈Eα : α < κ〉 is accompanied by a sequence 〈Φα :
α < κ〉 where each Φα : R/Eα → R is a bijection. A natural question would be to construct an example
〈Eα : α < κ〉 such that for each α < κ, R/Eα ≈ R but there does not exists a sequence 〈Φα : α < κ〉 which
uniformly witnesses these bijections exist. Also, is the condition that each Eα be an equivalence relation
with all classes countable necessary in Question 4.12 and 4.14? The following example of Holshouser-Jackson
answers these questions.

Example 4.16. Fix some recursive coding of binary relations on ω by reals. Let WO denote the collection
of reals that code wellorderings on ω. For α < ω1, let WOα denote the reals coding wellorderings of
ordertype α. For α < ω1, let Eα be the equivalence relation on R defined by x Eα y if and only if
(x = y) ∨ (x /∈ WOα ∧ y /∈ WOα). For each α < ω1, Eα is ∆1

1 bireducible to =. Hence R ≈ R/Eα.
For each α < ω1, if x ∈ WOα, identify [x]Eα

= {x} with x. For each α < ω1, R \ WOα is a single Eα

equivalence class. Identify it with α. Under this identification, one has a bijection of
⊔

α<ω1
R/Eα with

WO ⊔ ω1 ≈ R ⊔ ω1.
R ⊔ ω1 is not in bijection with R × ω1: Suppose Φ : R ⊔ ω1 → R × ω1 is a bijection. π1[Φ[ω1]] can

be wellordered using Φ and the wellordering on ω1. (π1 : R × ω1 → R is the projection onto the first
coordinate.) Under AD, there is no uncountable sequence of distinct reals; hence, π1[Φ[ω1]] is countable. Let
r ∈ R such that r /∈ π1[Φ[ω1]]. Φ−1[{r} × ω1] ⊆ R. But Φ−1[{r} × ω1] can be wellordered. This would give
an uncountable sequence of distinct reals in R. Contradiction.

As mentioned above, if 〈Eα : α < ω1〉 was accompanied by a sequence of bijections 〈Φα : α < ω1〉, then
one can construction a bijection between

⊔

α<ω1
R/Eα and R× ω1. Thus, there cannot be such a sequence

of bijections under AD.
Note that Eα has exactly one uncountable class. This example shows Question 4.12 has a negative answer

without the condition that each Eα has all countable classes.
Let p be a perfect tree such that [p] ⊆ R \ WO. Then

⊔

α<ω1
[p]/Eα ≈ ω1. ω1 is not in bijection with

⊔

α<ω1
R/Eα ≈ R ⊔ ω1. Hence Question 4.14 has a negative answer if all the equivalence relations do not

have all classes countable.

If all the equivalence relations in 〈Eα : α < κ〉 have all classes countable and R ≈ R/Eα, then
⊔

α<κ R/Eα

contains a subset which is in bijection with R ⊔ ω1 but itself is not in bijection with R ⊔ ω1.

Fact 4.17. (ZF + AD) Let κ be an uncountable ordinal. Let 〈Eα : α < κ〉 be a sequence of equivalence
relations on R so that for each α < κ, Eα has all classes countable and R ≈ R/Eα. Then R ⊔ κ injects into
⊔

α<κ R/Eα, but R ⊔ κ is not in bijection with
⊔

α<κ R/Eα.

Proof. Let 0̄ : ω → {0}, be the constant 0 function. For each α < κ, identify [0̄]Eα
with α. Let Φ : R → (R/

E0) \ [0̄]E0 be a bijection. Identify Φ(r) with r. Using this identification, there is a subset of
⊔

α<κ R/Eα

which is in bijection with R ⊔ κ.
Suppose there is a bijection Φ : R ⊔ κ →

⊔

α<κ R/Eα.
⋃

α<κ Φ(α) can be prewellordered by x ⊑ y if
and only if the least α such that x ∈ Φ(α) is less than or equal to the least α such that y ∈ Φ(α). Each
⊑-class is countable. Fact 4.10 implies that

⋃

α<κ Φ(α) is countable. Let r ∈ R with r /∈
⋃

α<κ Φ(α). Let

X = {[r]Eα
: α < κ}. Φ−1[X ] is an uncountable sequence of distinct reals in R. Contradiction. �
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[16] Theorem 2 shows that under ZF + DC + ADR, the only uncountable cardinals below R × ω1 are ω1,
R, R ⊔ ω1, and R× ω1. Thus under these assumptions, if

⊔

α<ω1
R/Eα is not in bijection with R× ω1, then

⊔

α<ω1
R/Eα cannot inject into R × ω1. Moreover, [16] Theorem 2 shows that under ZF + DC + ADR, the

only uncountable cardinals below [ω1]ω are ω1, R, R⊔ ω1, R× ω1, and [ω1]ω. An interesting question would
be to compare the cardinality of [ω1]ω and

⊔

α<ω1
R/Eα when each Eα is an equivalence relation with all

classes countable.

Fact 4.18. (ZF + AD) Let 〈Eα : α < ω1〉 be a sequence of equivalence relations on R such that each Eα has
all classes Π0

1. There is no injection of [ω1]ω into
⊔

α<ω1
R/Eα.

Proof. Recall that U is Martin’s cone measure on D, the set of Turing degrees. For each x ∈ D, let Λ(x)
denote the collection of countable x-admissible ordinals. For each x ∈ D, let Γ(x) ∈ [ω1]ω be the increasing
sequence of the first ω-many x-admissible ordinals.

Suppose Φ : [ω1]ω →
⊔

α<ω1
R/Eα is an injection.

A sequence of Turing degrees (xn : n ∈ ω) and a sequence (σn : n ∈ ω) in <ω2 will be constructed by
recursion with the property that for all n ∈ ω, |σn| = n, σn ⊂ σn+1, and whenever f ∈ [Λ(xn)]ω , there is
some r ∈ Φ(f) so that σn ⊂ r.

Let x0 = [0̄]T , where 0̄ is the constant 0 function. Let σ0 = ∅.
Suppose xn and σn have been defined with the desired properties. Let En+1

0 = {x ∈ D : (∃r ∈
Φ(Γ(x)))(σn 0̂ ⊆ r)} and En+1

1 = {x ∈ D : (∃r ∈ Φ(Γ(x)))(σn 1̂ ⊆ r)}. Note that the cone above xn
is contained in En+1

0 ∪ En+1
1 . Since U is an ultrafilter, there is some i ∈ 2 and xn+1 ≥T xn so that En+1

i

contains the cone above xn+1. Let σn+1 = σn î, for this i ∈ 2.
Let f ∈ [Λ(xn+1)]ω. A result of Jensen ([9]) shows that for every increasing ω-sequence of xn+1-admissible

ordinals f , there is some y ≥T xn+1 so that Γ(y) = f . Then y ∈ En+1
i . Hence there is some r ∈ Φ(Γ(y)) =

Φ(f) so that σn+1 ⊆ r.
Let r =

⋃

n∈ω σn. Let z be the join
⊕

n∈ω xn. Suppose f ∈ [Λ(z)]ω. For all n ∈ ω, there is some

rfn ∈ Φ(f) so that σn ⊆ rfn. Φ(f) is an Eα class for some α < ω so Φ(f) is Π0
1. Since r is the limit of

{rfn : n ∈ ω} ⊆ Φ(f), r ∈ Φ(f). It has been shown that for all f ∈ [Λ(z)]ω, Φ(f) ∈ {[r]Eα
: α < ω1} ≈ ω1.

Then Φ induces an injection of [Λ(z)]ω into ω1. This is impossible since such an injection would yield a
wellordering of R since R injects into [Λ(z)]ω. �

The above argument incorporates Martin’s proof of the partition relation ω1 → (ω1)ω2 . The following
result captures the essential idea of the above argument.

Fact 4.19. (ZF + AD) Let κ ∈ ON. Let 〈Eα : α < κ〉 be a sequence of equivalence relations on R . Let
Φ : [ω1]ω →

⊔

α<κ R/Eα. Let R ⊆ [ω1]ω × R be defined by R(f, x) ⇔ x ∈ Φ(f). If R has a uniformizing
function then Φ is not an injection.

Proof. Let Ψ be a uniformizing function for R.
For each n ∈ ω, let En

i = {x ∈ D : Ψ(Γ(x))(n) = i}. Since U is an ultrafilter, there is some an ∈ 2 such
that En

an
∈ U . Let xn ∈ D be such that the cone above xn lies inside of En

an
. Now suppose that f ∈ [Λ(xn)]ω.

A result of Jensen ([9]) states that for any such f , there is some y ≥T xn so that Γ(y) = f . As y ∈ En
an

,
Ψ(Γ(y))(n) = Ψ(f)(n) = an.

Let r ∈ R be such that for all n, r(n) = an. Let x =
⊕

xn. If f ∈ [Λ(x)]n, then Ψ(f) = r.
It has been shown that there is an uncountable set X ⊆ ω1 and some real r so that Ψ[[X ]ω] = {r}. By

definition of R, Φ[[X ]ω] ⊆ {[r]Eα
: α < κ}. The latter set is in bijection with κ. [X ]ω ≈ [ω1]ω. Therefore,

Φ induces an injection of [ω1]ω into the ordinal κ. As R injects into [ω1]ω, this would imply that one could
wellorder R. �

Note that in Fact 4.19, R only needs to be uniformized on a set of cardinality [ω1]ω. To see this, suppose
R is uniformized on Z ⊆ [ω1]ω of cardinality [ω1]ω. Let L : [ω1]ω → Z be a bijection. Let Φ′ = Φ ◦ L. The
relation R′ associated to Φ′ can be uniformized. Hence Φ′ is not injective by Fact 4.19. This implies Φ is
not injective.

The class of equivalence relations with Π0
1 classes is very restrictive. However, it does include equivalence

relations with all finite classes. However, in such cases, there is a more natural argument: Fix some linear
13



ordering < of R. For f ∈ [ω1]ω, let L(x) denote the <-least element of Φ(x) (which exists since Φ(x) is
finite). Now apply Fact 4.19.

Fact 4.20. (With Jackson.) Assume ZF + AD
+. Let κ ∈ ON and 〈Eα : α < κ〉 be a sequence of equivalence

relations on R such that each Eα has all classes countable and R/Eα ≈ R. Then there is no injection
Φ : [ω1]ω →

⊔

α<κR/Eα.

Proof. This is proved by verifying the uniformization condition of Fact 4.19. Note that if 〈Eα : α < κ〉 is a
sequence so that each Eα is an equivalence relation with all classes countable, then for any Φ, the associated
relation has all countable sections.

Woodin’s countable section uniformization states that every relation on R×R with countable section can
be uniformized under AD

+. In the present situation, the relations are on [ω1]ω × R. Some modification of
Woodin’s ideas can be used to show countable section uniformization holds for such relations under AD

+.
The main ideas of Woodin’s countable section uniformization on R can be found in [1] and [13]. The details
of this and other generalizations of countable section uniformization will appear elsewhere. �

Originally, Theorem 4.13 was proved under AD
+ using Woodin’s countable section uniformization. How-

ever, it was observed that for the purpose of the Jónsson property, one did not need total uniformization
provided by Woodin’s countable section uniformization but rather partial uniformization on a set of cardinal-
ity R (as by provided comeager uniformization) was adequate. As mentioned above, partial uniformization
on a set of cardinality [ω1]ω is adequate for the conclusion of Fact 4.19. This suggests the following:

Question 4.21. Using just AD, is it provable that for all relations R ⊆ [ω1]ω × R with countable sections,
there is some Z ⊆ [ω1]ω and Φ : Z → R such that |Z| = |[ω1]ω| and for all z ∈ Z, R(z,Φ(z))?

The rest of this section will show the failure of the Jónsson property for (R/E0) × κ where E0 is the
equivalence relation from Definition 2.15 and κ < Θ.

Fact 4.22. (ZF + AD) Suppose A ⊆ (R/E0) × κ and A ≈ R/E0, where κ is an ordinal. Let π1 : (R/
E0) × κ→ R/E0 be the projection onto the first coordinate. Then π1[A] ≈ R/E0.

Proof. Note that A injects into π1[A] × κ. Hence R/E0 injects into π1[A] × κ. Let f : R/E0 → π1[A] × κ
denote this injection. For each α < κ, let Aα = {x ∈ R : π2(f([x]E0)) = α}, where π2 : (R/E0) × κ → κ is
the projection onto the second coordinate. Then

⋃

α<κAα = R. By Fact 4.6, there must be some α < κ so
that Aα is nonmeager. Using the Baire property, Aα is comeager in some basic open set O. (Actually since
Aα is E0-invariant, it can be shown that Aα is comeager.) Hence Aα ⊇

⋂

n∈ωDn, where 〈Dn : n ∈ ω〉 is
a sequence of topologically dense open sets relative to O. One can build an E0-tree inside of Aα. (See [2]
Definition 5.2.) This implies that there is a continuous reduction of E0 into E0 ↾ Aα. Hence R/E0 injects
into Aα/E0. Using f , Aα/E0 injects into π1[A] × {α} ≈ π1[A]. It has been shown that R/E0 injects into
π1[A]. Thus π1[A] ≈ R/E0. �

Fact 4.23. Let κ < Θ. There is a 6-Jónsson function for (R/E0) × κ.
(R/E0) × κ is not Jónsson.

Proof. By Fact 4.2, let Φ : [R/E0]3= → R/E0 be a 3-Jónsson map for R/E0. Let Ψ : R → κ be a surjection.
Since = reduces into E0, there is an injection Γ : R → R/E0. Let Λ : [R/E0]3= → κ be defined by

Λ(x) =

{

0 (∀r ∈ R)(Φ(x) 6= Γ(r))

Ψ(r) Φ(x) = Γ(r)

Finally, let Υ : [(R/E0) × κ]6= → (R/E0) × κ be defined by

((x1, α1), (x2, α2), (x3, α3), (x4, α4), (x5, α5), (x6, α6)) 7→ (Φ(x1, x2, x3),Λ(x4, x5, x6))

Suppose B ⊆ (R/E0) × κ is in bijection with (R/E0) × κ. Let f : (R/E0) × κ → B be a bijection. Let
A = f [(R/E0) × {0}]. Then A ≈ R/E0. By Fact 4.22, π1[A] ≈ R/E0.

Supppose that (y, β) ∈ (R/E0) × κ. Suppose Ψ(r) = β. Since Φ is a 3-Jónsson map and π1[A] ≈ R/E0,
one can find ((x1, α1), (x2, α2), (x3, α3), (x4, α4), (x5, α5), (x6, α6)) ∈ [A]6= ⊆ [B]6= so that Φ(x1, x2, x3) = y
and Φ(x4, x5, x6) = Γ(r). Then Υ((x1, α1), (x2, α2), (x3, α3), (x4, α4), (x5, α5), (x6, α6)) = (y, β). Υ is a
6-Jónsson function for (R/E0) × κ. �
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Question 4.24. [2] showed that R/E0 has no 2-Jónsson map but has a 3-Jónsson map. What is the least
n so that (R/E0) × κ has a n-Jónsson map, where κ < Θ?

If κ is any ordinal, is (R/E0) × κ also not Jónsson?
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15. Itay Neeman and Jindřich Zapletal, Proper forcings and absoluteness in L(R), Comment. Math. Univ. Carolin. 39 (1998),

no. 2, 281–301. MR 1651950
16. W. Hugh Woodin, The cardinals below |[ω1]<ω1 |, Ann. Pure Appl. Logic 140 (2006), no. 1-3, 161–232. MR 2224057
17. , The axiom of determinacy, forcing axioms, and the nonstationary ideal, revised ed., De Gruyter Series in Logic

and its Applications, vol. 1, Walter de Gruyter GmbH & Co. KG, Berlin, 2010. MR 2723878
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