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Abstract

We prove the following result which is due to the third author.

Let n ≥ 1. If Π1
n determinacy and Π1

n+1 determinacy both hold true and

there is no Σ1
n+2-definable ω1-sequence of pairwise distinct reals, then M#

n

exists and is ω1-iterable. The proof yields that Π1
n+1 determinacy implies

that M#
n (x) exists and is ω1-iterable for all reals x.

A consequence is the Determinacy Transfer Theorem for arbitrary n ≥ 1,
namely the statement that Π1

n+1 determinacy implies a(n)(< ω2 −Π1
1) de-

terminacy.
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Preface

In 1953 David Gale and Frank M. Stewart developed a basic theory of infinite
games in [GS53]. For every set of reals, that means set of sequences of
natural numbers, A they considered a two-player game G(A) of length ω,
where player I and player II alternately play natural numbers. They defined
that player I wins the game G(A) if and only if the sequence of natural
numbers produced during a run of the game G(A) is contained in A and
otherwise player II wins. Moreover the game G(A) or the set A itself is called
determined if and only if one of the two players has a winning strategy, that
means a method by which they can win, no matter what their opponent
does, in the game described above.

Already in [GS53] the authors were able to prove that every open and every
closed set of reals is determined using ZFC. But furthermore they proved
that determinacy for all sets of reals contradicts the Axiom of Choice. This
leads to the natural question of what the picture looks like for definable
sets of reals which are more complicated than open and closed sets. After
some partial results by Philip Wolfe in [Wo55] and Morton Davis in [Da64],
Donald A. Martin was finally able to prove in [Ma75] from ZFC that every
Borel set of reals is determined.

In the meantime the development of so called Large Cardinal Axioms was
proceeding in Set Theory. In 1930 Stanis law Ulam first defined measurable
cardinals and at the beginning of the 1960’s H. Jerome Keisler [Kei62] and
Dana S. Scott [Sc61] found a way of making them more useful in Set Theory
by reformulating the statements using elementary embeddings.

About the same time, other set theorists were able to prove that Determi-
nacy Axioms imply regularity properties for sets of reals. More precisely
Banach and Mazur showed that under the Axiom of Determinacy (that
means every set of reals is determined), every set of reals has the Baire
property. Mycielski and Swierczkowski proved in [MySw64] that under the
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same hypothesis every set of reals is Lebesgue measurable. Furthermore
Davis showed in [Da64] that under this hypothesis every set of reals has
the perfect set property. Moreover all three results also hold if the De-
terminacy Axioms and regularity properties are only considered for sets of
reals in certain pointclasses. This shows that Determinacy Axioms have a
large influence on the structure of sets of reals and therefore have a lot of
applications in Set Theory.

In 1965 Robert M. Solovay was able to prove these regularity properties
for a specific pointclass, namely Σ1

2, assuming the existence of a measurable
cardinal instead of a Determinacy Axiom (see for example [So69] for the per-
fect set property). Then finally Donald A. Martin was able to prove a direct
connection between Large Cardinals and Determinacy Axioms: he showed
in 1970 that the existence of a measurable cardinal implies determinacy for
every analytic set of reals (see [Ma70]).

Eight years later Leo A. Harrington established that this result is in some
sense optimal. In [Ha78] he proved that determinacy for all analytic sets
implies that 0#, a countable active mouse which can be obtained from a mea-
surable cardinal, exists. Here a mouse is a fine structural, iterable model.
Together with Martin’s result mentioned above this yields that the two state-
ments are in fact equivalent.

This of course motivates the question of whether a similar result can be ob-
tained for larger sets of reals, so especially for determinacy in the projective
hierarchy. The right large cardinal notion to consider for these sets of reals
was introduced by the third author in 1984 and is nowadays called a Woodin
cardinal. Building on this, Donald A. Martin and John R. Steel were able
to prove in [MaSt89] almost twenty years after Martin’s result about ana-
lytic determinacy that, assuming the existence of n Woodin cardinals and
a measurable cardinal above them all, every Σ1

n+1-definable set of reals is
determined.

In the meantime the theory of mice was further developed. At the level of
strong cardinals it goes back to Ronald B. Jensen, Robert M. Solovay, Tony
Dodd and Ronald B. Jensen, and William J. Mitchell. Then it was further
extended to the level of Woodin cardinals by Donald A. Martin and John
R. Steel in [MaSt94] and William J. Mitchell and John R. Steel in [MS94],
where some errors were later repaired by John R. Steel, Martin Zeman, and
the second author in [SchStZe02]. Moreover Ronald B. Jensen developed
another approach to the theory of mice at the level of Woodin cardinals in
[Je97].

In 1995 Itay Neeman was able to improve the result from [MaSt89] in [Ne95].

He showed that the existence and ω1-iterability of M#
n , the minimal count-

able active mouse at the level of n Woodin cardinals, is enough to obtain
that every an(< ω2 − Π1

1)-definable set of reals is determined. Here “a” is
a quantifier which is defined by a game. Neeman’s result implies that if for

all reals x the premouse M#
n (x) exists and is ω1-iterable, then in particular
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every Σ1
n+1-definable set of reals is determined. For odd n this latter result

was previously known by the third author. The converse of this latter result
was announced by the third author in the 1980’s but a proof has never been
published. The goal of this paper is to finally provide a complete proof of
his result.

Overview

The purpose of this paper is to give a proof of the following theorem, which
connects inner models with Woodin cardinals and descriptive set theory at
projective levels in a direct level-wise way. This theorem is due to the third
author and announced for example in the addendum (§5) of [KW08] and
in Theorem 5.3 of [Sch10], but so far a proof of this result has never been
published.

Theorem 2.1. Let n ≥ 1 and assume Π1
n+1 determinacy holds. Then

M#
n (x) exists and is ω1-iterable for all x ∈ ωω.

The converse of Theorem 2.1 also holds true and is for odd n due to the
third author (unpublished) and for even n due to Itay Neeman (see [Ne95]).
From this we can obtain the following corollary, which is Theorem 1.10 in
[KW08] for odd n. We will present a proof of the Determinacy Transfer
Theorem for the even levels n as a corollary of Theorem 2.1 in Section 4.1,
using Theorem 2.5 in [Ne95] due to Itay Neeman.

Corollary 4.1 (Determinacy Transfer Theorem). Let n ≥ 1. Then Π1
n+1

determinacy is equivalent to a(n)(< ω2 −Π1
1) determinacy.

In fact we are going to prove the following theorem which will imply Theorem
2.1.

Theorem 3.14. Let n ≥ 1 and assume there is no Σ1
n+2-definable ω1-

sequence of pairwise distinct reals. Moreover assume that Π1
n determinacy

and Π1
n+1 determinacy hold. Then M#

n exists and is ω1-iterable.

This is a part of the following theorem.

Theorem 3.13. Let n ≥ 1 and assume there is no Σ1
n+2-definable ω1-

sequence of pairwise distinct reals. Then the following are equivalent.

(1) Π1
n determinacy and Π1

n+1 determinacy,

(2) for all x ∈ ωω, M#
n−1(x) exists and is ω1-iterable, and M#

n exists and is
ω1-iterable,

(3) M#
n exists and is ω1-iterable.

Here the direction (3) implies (1) follows from Theorem 2.14 in [Ne02] and
is due to the third author for odd n (unpublished) and due to Itay Neeman
for even n. Moreover the direction (2) implies (1) and the equivalence of
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(2) and (3) as proven in [Ne02] do not need the background hypothesis that
there is no Σ1

n+2-definable ω1-sequence of pairwise distinct reals.

Furthermore we get the following relativized version of Theorem 3.13.

Corollary 2.2. Let n ≥ 1. Then the following are equivalent.

(1) Π1
n+1 determinacy, and

(2) for all x ∈ ωω, M#
n (x) exists and is ω1-iterable.

This gives that Π1
n+1 determinacy is an optimal hypothesis for proving the

existence and ω1-iterability of M#
n (x) for all x ∈ ωω.

Remark. In contrast to the statement of Theorem 1.4 in [Ne02] it is open
whether Π1

n determinacy and Π1
n+1 determinacy alone imply the existence

of an ω1-iterable M#
n for n > 1 (see also Section 4.2). Whenever we are

citing [Ne02] in this paper we make no use of any consequence of this result
stated there.

Outline. This paper is organized as follows. In Section 1 we give a short
introduction to determinacy and inner model theory. In particular we state
some known results concerning the connection of determinacy for certain
sets of reals and the existence of mice with large cardinals.

In Section 2 we will construct a proper class inner model with n Woodin
cardinals from Π1

n determinacy and Π1
n+1 determinacy. For that purpose

we will prove in Lemma 2.3 from the same determinacy hypothesis that for
a cone of reals x the premouse Mn−1(x)|δx is a model of OD-determinacy,
where δx denotes the least Woodin cardinal in Mn−1(x). This generalizes a
theorem of Kechris and Solovay to the context of mice (see Theorem 3.1 in
[KS85]).

Afterwards we will prove in Section 3 that, assuming Π1
n+1 determinacy,

there is in fact an ω1-iterable model which has n Woodin cardinals. More
precisely, we will prove under this hypothesis that M#

n (x) exists and is ω1-
iterable for all reals x. The proof of this result divides into different steps.
In Sections 3.1 and 3.2 we will introduce the concept of n-suitable premice
and show that if n is odd, using the results in Section 2, such n-suitable
premice exist assuming Π1

n determinacy and Π1
n+1 determinacy. The rest of

Section 3 will also be divided into different cases depending if n is even or
odd.

In Section 3.4 we will show that Π1
n+1 determinacy already implies that

every Σ1
n+2-definable sequence of pairwise distinct reals is countable. The

proof of Theorem 2.1 is organized as a simultaneous induction for odd and
even levels n. We will show in Section 3.5 that the hypothesis that there is no
Σ1

2n+1-definable ω1-sequence of pairwise distinct reals in addition to Π1
2n−1

determinacy and Π1
2n determinacy suffices to prove that M#

2n−1 exists and
is ω1-iterable. This finishes the proof of Theorem 2.1 for the odd levels n of
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the inductive argument. In Section 3.6 we will finally prove the analogous
result for even n, that means we will show that if every Σ1

2n+2-definable

sequence of pairwise distinct reals is countable and Π1
2n determinacy and

Π1
2n+1 determinacy hold, then M#

2n exists and is ω1-iterable. The proof is
different for the odd and even levels of the projective hierarchy because of
the periodicity in terms of uniformization and correctness.

We close this paper with proving the Determinacy Transfer Theorem for even
n as an application of Theorem 2.1 and mentioning related open questions
in Section 4.

Finally we would like to thank the referee for carefully reading this paper
and making several helpful comments and suggestions.

1. Introduction

In this section we will introduce some relevant notions such as games and
mice and their basic properties. In particular we will summarize some known
results about the connection between large cardinals and the determinacy
of certain games. Then we will have a closer look at mice with finitely many

Woodin cardinals and introduce the premouse M#
n .

1.1. Games and Determinacy. Throughout this paper we will consider
games in the sense of [GS53] if not specified otherwise. We will always
identifiy ω2, ωω, and R with each other, so that we can define Gale-Stewart
games as follows.

Definition 1.1 (Gale, Stewart). Let A ⊆ R. By G(A) we denote the fol-
lowing game.

I i0 i2 . . .
II i1 i3 . . .

for in ∈ {0, 1} and n ∈ ω.

We say player I wins the game G(A) iff (in)n<ω ∈ A. Otherwise we say
player II wins.

Definition 1.2. Let A ⊆ R. We say G(A) (or the set A itself) is deter-
mined iff one of the players has a winning strategy in the game G(A) (in
the obvious sense).

Some famous results concerning the question which sets of reals are deter-
mined are the following. The first three theorems can be proven in ZFC.

Theorem 1.3 (Gale, Stewart in [GS53]). Let A ⊂ R be open or closed and
assume the Axiom of Choice. Then G(A) is determined.

Theorem 1.4 (Gale, Stewart in [GS53]). Assuming the Axiom of Choice
there is a set of reals which is not determined.

Theorem 1.5 (Martin in [Ma75]). Let A ⊂ R be a Borel set and assume
the Axiom of Choice. Then G(A) is determined.
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To prove stronger forms of determinacy we need to assume for example large
cardinal axioms.

Theorem 1.6 (Martin in [Ma70]). Assume ZFC and that there is a mea-
surable cardinal. Let A ⊆ R be an analytic, i.e. Σ1

1-definable, set. Then
G(A) is determined.

Determinacy in the projective hierarchy can be obtained from finitely many
Woodin cardinals which were introduced by the third author in 1984 and
are defined as follows.

Definition 1.7. Let κ < δ be cardinals and A ⊆ δ. Then κ is called A-
reflecting in δ iff for every λ < δ there exists a transitive model of set theory
M and an elementary embedding π : V →M with critical point κ, such that
π(κ) > λ and

π(A) ∩ λ = A ∩ λ.

Definition 1.8. A cardinal δ is called a Woodin cardinal iff for all A ⊆ δ
there is a cardinal κ < δ which is A-reflecting in δ.

Theorem 1.9 (Martin, Steel in [MaSt89]). Let n ≥ 1. Assume ZFC and
that there are n Woodin cardinals with a measurable cardinal above them all.
Then every Σ1

n+1-definable set of reals is determined.

See for example Chapter 13 in [Sch14] or Section 5 in [Ne10] for modern
write-ups of the proof of Theorem 1.9.

The existence of infinitely many Woodin cardinals with a measurable cardi-
nal above them all yields a much stronger form of determinacy as shown in
the following theorem due to the third author.

Theorem 1.10 ([KW10]). Assume ZFC and that there are ω Woodin car-
dinals with a measurable cardinal above them all. Then every set of reals in
L(R) is determined.

The goal of this paper is to prove results in the converse direction. That
means we want to obtain large cardinal strength from determinacy axioms.
This is done using inner model theoretic concepts which we start to introduce
in the next section.

1.2. Inner Model Theory. The most important concept in inner model
theory is a mouse. Therefore we briefly review the definition of mice in this
section and mention some relevant properties without proving them. The
reader who is interested in a more detailed introduction to mice is referred
to Section 2 of [St10].

We assume that the reader is familiar with some fine structure theory as
expounded for example in [MS94] or [SchZe10].

In general the models we are interested in are of the form L[ ~E] for some

coherent sequence of extenders ~E. This notion goes back to Ronald B.
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Jensen and William J. Mitchell and is made more precise in the following
definition.

Definition 1.11. We say M is a potential premouse iff

M = (J
~E
η ,∈, ~E � η,Eη)

for some fine extender sequence ~E and some ordinal η. We say that such a
potential premouse M is active iff Eη 6= ∅.
Moreover if κ ≤ η, we write

M |κ = (J
~E
κ ,∈, ~E � κ,Eκ).

Here fine extender sequence is in the sense of Definition 2.4 in [St10]. This
definition of a fine extender sequence goes back to Section 1 in [MS94] and
[SchStZe02].

Definition 1.12. Let M be a potential premouse. Then we say M is a
premouse iff every proper initial segment of M is ω-sound.

We informally say that a mouse is an iterable premouse, but since there
are several different notions of iterability we try to avoid to use the word
“mouse” in formal context, especially if it is not obvious what sort of iterabil-
ity is meant. Nevertheless whenever it is not specified otherwise “iterable”
in this paper always means “ω1-iterable” as defined below and therefore a
“mouse” will be an ω1-iterable premouse.

Definition 1.13. We say a premouse M is ω1-iterable iff player II has a
winning strategy in the iteration game Gω(M,ω1) as described in Section 3.1
of [St10].

The iteration trees which are considered in Section 3 in [St10] are called
normal iteration trees.

Whenever not specified otherwise we will assume throughout this paper
that all iteration trees are normal to simplify the notation. Since normal
iteration trees do not suffice to prove for example the Dodd-Jensen Lemma
(see Section 4.2 in [St10]) it is necessary to consider stacks of normal trees.
See Definition 4.4 in [St10] for a formal definition of iterability for stacks of
normal trees.

All arguments to follow easily generalize to countable stacks of normal trees
of length < ω1 instead of just normal trees of length < ω1. The reason for
this is that the iterability we will prove in this paper for different kinds of
premice will in fact always be obtained from the sort of iterability for the
model Kc which is proven in Chapter 9 in [St96].

Throughout this paper we will use the notation from [St10] for iteration
trees.
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1.3. Mice with Finitely Many Woodin Cardinals. We first fix some

notation and give a short background on the mouse M#
n . In this paper we

always assume M#
n to be ω1-iterable if not specified otherwise.

The premice we are going to consider in this paper will mostly have the
following form.

Definition 1.14. Let n ≥ 1. A premouse M is called n-small iff for every
critical point κ of an extender on the M -sequence

M |κ 2 “there are n Woodin cardinals”.

Moreover we say that a premouse M is 0-small iff M is an initial segment
of Gödel’s constructible universe L.

Moreover ω-small premice are defined analogously.

Definition 1.15. Let n ≥ 1 and x ∈ ωω. Then M#
n (x) denotes the unique

countable, sound, ω1-iterable x-premouse which is not n-small, but all of
whose proper initial segments are n-small, if it exists and is unique.

Definition 1.16. Let n ≥ 1, x ∈ ωω and assume that M#
n (x) exists. Then

Mn(x) is the unique x-premouse which is obtained from M#
n (x) by iterating

its top measure out of the universe.

Remark. We denote M#
n (0) and Mn(0) by M#

n and Mn for n ≥ 0.

Remark. We say thatM#
0 (x) = x# for all x ∈ ωω, where x# denotes the least

active ω1-iterable premouse if it exists. Moreover we say that M0(x) = L[x]
is Gödel’s constructible universe above x.

The two correctness facts due to the third author about the premouseM#
n (x)

which are stated in the following lemma are going to be useful later, because

they help transferring projective statements from M#
n (x) to V or the other

way around.

Lemma 1.17. Let n ≥ 0 and assume that M#
n (x) exists and is ω1-iterable

for all x ∈ ωω. Let ϕ be a Σ1
n+2-formula.

(1) Assume n is even and let x ∈ ωω. Then we have for every real a in

M#
n (x),

ϕ(a) ↔ M#
n (x) � ϕ(a).

That means M#
n (x) is Σ1

n+2-correct in V .
(2) Assume n is odd, so in particular n ≥ 1, and let x ∈ ωω. Then we have

for every real a in M#
n (x),

ϕ(a) ↔ 
M
#
n (x)

Col(ω,δ0) ϕ(a),

where δ0 denotes the least Woodin cardinal in M#
n (x). Furthermore we

have that M#
n (x) is Σ1

n+1-correct in V .
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For notational simplicity we sometimes just write a for the standard name

ǎ for a real a in M#
n (x).

Proof of Lemma 1.17. For n = 0 this lemma holds by Shoenfield’s Abso-
luteness Theorem (see for example Theorem 13.15 in [Ka03]) applied to the

model we obtain by iterating the top measure of the active premouse M#
0 (x)

and its images until we obtain a model of height ≥ ωV1 , because this model

has the same reals as M#
0 (x).

We simultaneously prove that (1) and (2) hold for all n ≥ 1 inductively.
In fact we are proving a more general statement: We will show inductively
that both (1) and (2) hold for all n-iterable x-premice for all reals x in
the sense of Definition 1.1 in [Ne95] which have n Woodin cardinals which

are countable in V instead of the concrete x-premouse M#
n (x) as in the

statement of Lemma 1.17. Therefore notice that we could replace the z-

premouse M#
n (z) in the following argument by any z-premouse N which is

n-iterable and has n Woodin cardinals which are countable in V .

Proof of (2): We start with proving (2) in the statement of Lemma 1.17
for n, assuming inductively that (1) and (2) hold for all m < n. For the
downward implication assume that n is odd and let ϕ be a Σ1

n+2-formula

such that ϕ(a) holds in V for a parameter a ∈ M#
n (z) ∩ ωω for a z ∈ ωω.

That means

ϕ(a) ≡ ∃x∀y ψ(x, y, a)

for a Σ1
n-formula ψ(x, y, a). Now fix a real x̄ in V such that

V � ∀y ψ(x̄, y, a).

We aim to show that


M
#
n (z)

Col(ω,δ0) ϕ(a),

where δ0 denotes the least Woodin cardinal in M#
n (z).

We first use Corollary 1.8 in [Ne95] to make x̄ generic over an iterate M∗

of M#
n (z) for the collapse of the image of the bottom Woodin cardinal δ0

in M#
n (z). That means there is an iteration tree T on the n-iterable z-

premouse M#
n (z) of limit length and a non-dropping branch b through T

such that if

i : M#
n (z)→M∗

denotes the corresponding iteration embedding we have that M∗ is (n− 1)-
iterable and if g is Col(ω, i(δ0))-generic over M∗, then x̄ ∈M∗[g].

We have that M∗[g] can be construed as an (z⊕ x̄)-premouse satisfying the
inductive hypothesis and if we construe M∗[g] as an (z ⊕ x̄)-premouse we

have that in fact M∗[g] = M#
n−1(z ⊕ x̄) (see for example [SchSt09] for the

fine structural details). Therefore we have inductively that the premouse
M∗[g] is Σ1

n-correct in V (in fact it is even Σ1
n+1-correct in V , but this is
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not necessary here) and using downwards absoluteness for the Π1
n+1-formula

“∀yψ(x̄, y, a)” it follows that

M∗[g] � ∀y ψ(x̄, y, a),

because x̄, a ∈ M∗[g]. Since the forcing Col(ω, i(δ0)) is homogeneous, we
have that


M
∗

Col(ω,i(δ0)) ∃x∀y ψ(x, y, a),

and by elementarity of the iteration embedding i : M#
n (z) → M∗ it follows

that


M
#
n (z)

Col(ω,δ0) ∃x∀y ψ(x, y, a),

as desired.

For the upward implication of (2) in the statement of Lemma 1.17 let n
again be odd, let z be a real and assume that


M
#
n (z)

Col(ω,δ0) ϕ(a),

where as above ϕ(a) ≡ ∃x∀y ψ(x, y, a) is a Σ1
n+2-formula, ψ(x, y, a) is a Σ1

n-

formula and a is a real such that a ∈ M#
n (z). Let g be Col(ω, δ0)-generic

over M#
n (z) and pick a real x̄ such that

M#
n (z)[g] � ∀y ψ(x̄, y, a).

Since M#
n (z)|(δ+

0 )M
#
n (z) is countable in V , we can in fact pick the generic

g such that we have g ∈ V . Then we have that x̄ ∈ V . Similar as above

M#
n (z)[g] can be construed as a z∗-premouse for some real z∗ which satifies

the inductive hypothesis for n − 1, in fact we again have that M#
n (z)[g] =

M#
n−1(z∗) if M#

n (z)[g] is construed as a z∗-premouse. Since n − 1 is even
and we inductively assume that (1) in the statement of Lemma 1.17 holds
for all m < n, it follows from (1) applied to the Π1

n+1-formula “∀yψ(x̄, y, a)”

and the premouse M#
n (z)[g] that

V � ∀y ψ(x̄, y, a),

and therefore

V � ∃x∀y ψ(x, y, a),

as desired.

The fact that in this situation M#
n (z) is Σ1

n+1-correct in V also follows from
the inductive hypothesis, because n−1 is even and the inductive hypothesis

for n− 1 can be applied to the premouse M#
n (z).

Proof of (1): Now we turn to the proof of (1) in the statement of Lemma
1.17. Let n be even and assume inductively that (1) and (2) hold for all
m < n. We again start with the proof of the downward implication, that
means we want to prove that

M#
n (z) � ϕ(a),



12 SANDRA MÜLLER, RALF SCHINDLER, AND W. HUGH WOODIN

where as above ϕ is a Σ1
n+2-formula which holds in V for a ∈ M#

n (z) ∩ ωω
and z ∈ ωω. That means we again have

ϕ(a) ≡ ∃x∀y ψ(x, y, a)

for a Σ1
n-formula ψ(x, y, a). Since n is even, it follows from Moschovakis’ Sec-

ond Periodicity Theorem that the pointclass Π1
n+1(a) has the uniformization

property (see Theorem 6C.5 in [Mo09]), because Theorem 2.14 in [Ne02] (see
also Corollary 2.2) yields that Π1

n determinacy holds from the hypothesis

that M#
n−1(z) exists for all reals z. Consider the Π1

n+1(a)-definable set

{x | ∀y ψ(x, y, a)}.
The uniformization property yields the existence of a real x̄ such that we
have {x̄} ∈ Π1

n+1(a) and
V � ∀y ψ(x̄, y, a).

So let ρ be a Π1
n+1-formula such that

x = x̄↔ ρ(x, a)

for all x ∈ ωω. That means we have

V � ρ(x̄, a) ∧ ∀y ψ(x̄, y, a).

Now we use, as in the proof of (2) above, the n-iterability of M#
n (z) and

Corollary 1.8 in [Ne95] to make x̄ generic over an iterate M∗ of M#
n (z) for

the collapse of the image of the bottom Woodin cardinal δ0 in M#
n (z). As

in the proof of (2) this means that in fact there is an iteration embedding

i : M#
n (z)→M∗

such that M∗ is (n − 1)-iterable and if g ∈ V is Col(ω, i(δ0))-generic over

M∗ then x̄ ∈M∗[g]. Since a is a real in M#
n (z) we have that


M
∗[g]

Col(ω,δ̄)
ρ(x̄, a) ∧ ∀y ψ(x̄, y, a),

where δ̄ denotes the least Woodin cardinal inside M∗[g], by the inductive
hypothesis applied to the premouse M∗[g], construed as an (z⊕x̄)-premouse,
and the Π1

n+1-formula “ρ(x̄, a)∧∀y ψ(x̄, y, a)”, because n−1 is odd. As above
we have that M∗[g], construed as a (z⊕ x̄)-premouse, satisfies the inductive
hypothesis. Moreover we have as above that the inductive hypothesis applied
to the model M∗[g] and the Π1

n+1-formula “ρ(x, a)∧∀y ψ(x, y, a)” yields that
in fact for all x∗ ∈M∗[g]


M
∗[g]

Col(ω,δ̄)
ρ(x∗, a) ∧ ∀y ψ(x∗, y, a) iff V � ρ(x∗, a) ∧ ∀y ψ(x∗, y, a).

By the homogeneity of the forcing Col(ω, i(δ0)) this implies that the witness
x̄ for x with ρ(x, a) already exists in the ground model M∗, since a ∈M∗ and

x̄ is still the unique witness to the fact that the statement “
M
∗[g]

Col(ω,δ̄)
ρ(x̄, a)∧

∀y ψ(x̄, y, a)” holds true. Therefore it follows by downward absoluteness that

M∗ � ρ(x̄, a) ∧ ∀y ψ(x̄, y, a).
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This implies that in particular

M∗ � ∃x∀y ψ(x, y, a).

Using the elementarity of the iteration embedding we finally get that

M#
n (z) � ∃x∀y ψ(x, y, a).

For the proof of the upward implication in (1) let n again be even and

assume that M#
n (z) � ∃x∀y ψ(x, y, a) for z ∈ ωω and a fixed real a ∈M#

n (z).

Furthermore fix a real x̄ ∈M#
n (z) such that

M#
n (z) � ∀y ψ(x̄, y, a).

Then we obviously have that x̄ ∈ V . We want to show that V � ∀y ψ(x̄, y, a).
Assume not. That means

V � ∃y ¬ψ(x̄, y, a),

where “∃y ¬ψ(x̄, y, a)” is a Σ1
n+1-formula. Therefore the downward impli-

cation we already proved applied to the formula “∃y ¬ψ(x̄, y, a)” and the

parameters x̄, a ∈M#
n (z) yields that

M#
n (z) � ∃y ¬ψ(x̄, y, a),

which is a contradiction. �

The proof of Lemma 1.17 with Shoenfield absoluteness replaced by Σ1
1 ab-

soluteness immediately gives the following lemma.

Lemma 1.18. Let n ≥ 0 and let M be a countable x-premouse with n
Woodin cardinals for some x ∈ ωω such that M � ZFC− and M is ω1-
iterable. Let ϕ be a Σ1

n+1-formula.

(1) Assume n is even. Then we have for every real a in M ,

ϕ(a) ↔ M � ϕ(a).

That means M is Σ1
n+1-correct in V .

(2) Assume n is odd, so in particular n ≥ 1. Then we have for every real a
in M ,

ϕ(a) ↔ 
MCol(ω,δ0) ϕ(a),

where δ0 denotes the least Woodin cardinal in M . Furthermore we have
that M is Σ1

n-correct in V .

The following lemma shows that Lemma 1.17 (1) does not hold if n is odd.
Therefore the periodicity in the statement of Lemma 1.17 is necessary in-
deed.

Lemma 1.19. Let n ≥ 1 be odd and assume that M#
n (x) exists and is

ω1-iterable for all x ∈ ωω. Then M#
n (x) is not Σ1

n+2-correct in V .
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Proof sketch. Consider for example the following Σ1
n+2-formula ϕ, where

Π1
n+1-iterability is defined in Definition 1.6 in [St95] (see also Section 2.2 in

this paper for some results related to Π1
n+1-iterability).

ϕ(x) ≡ ∃N such that N is a countable x-premouse

which is Π1
n+1-iterable and not n-small.

The statement “N is Π1
n+1-iterable” is Π1

n+1-definable uniformly in any code

for N (see Lemma 1.7 in [St95]). Therefore ϕ is a Σ1
n+2-formula.

We have that ϕ(x) holds in V for all reals x as witnessed by the x-premouse

M#
n (x), because ω1-iterability implies Π1

n+1-iterability, since we assumed

that M#
n (x) exists for all x ∈ ωω (see Lemma 2.12 (2) which uses Lemma

2.2 in [St95]).

Assume toward a contradiction that ϕ(x) holds in M#
n (x) as witnessed by

some x-premouse N in M#
n (x) which is Π1

n+1-iterable and not n-small. Since
n is odd, Lemma 3.1 in [St95] implies that R ∩Mn(x) ⊆ R ∩N , which is a

contradiction as N ∈M#
n (x).

Therefore ϕ(x) cannot hold in M#
n (x) and thus M#

n (x) is not Σ1
n+2-correct

in V . �

See for example [St95] for further information on the premouse M#
n .

1.4. Mice and Determinacy. Some of the results mentioned in Section
1.1 can be improved using the existence of certain mice instead of large
cardinals in V as an hypothesis. In this section we will list results of that
form and mention some things known about the converse direction.

In the context of analytic determinacy Harrington was able to prove the
converse of Martin’s result from [Ma70] and therefore obtained the following
theorem.

Theorem 1.20 (Harrington in [Ha78], Martin in [Ma70]). The following
are equivalent over ZFC.

(i) The mouse 0# exists, and
(ii) every Π1

1-definable set of reals is determined.

In the projective hierarchy Neeman improved the result of [MaSt89] as fol-
lows. Here “a” denotes the game quantifier as also used in Section 3.5 later
(see Section 6D in [Mo09] for a definition and some basic facts about the
game quantifier “a”).

Theorem 1.21 (Neeman in [Ne02]). Let n ≥ 1 and assume that M#
n exists

and is ω1-iterable. Then every a(n)(< ω2−Π1
1)-definable set of reals is deter-

mined and thus in particular every Π1
n+1-definable set of reals is determined.

In this paper we will present a proof of the boldface version of a converse
direction of this theorem due to the third author which is only assuming
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that every Π1
n+1-definable set of reals is determined, see Corollary 2.2. The

lightface version of the analogous converse direction of Theorem 1.21 is still
open for n > 1 (see also Section 4.2). For n = 1 it is due to the third author,
who proved the following theorem (see Corollary 4.17 in [StW16]).

Theorem 1.22. The following are equivalent over ZFC.

(i) M#
1 exists and is ω1-iterable, and

(ii) every Π1
1-definable and every ∆1

2-definable set of reals is determined.

Here the implication (i) ⇒ (ii), which also follows from Theorem 2.14 in
[Ne02] (see Theorem 1.21 above), was first shown by the third author in
unpublished work.

At the level of infinitely many Woodin cardinals we have that the following
equivalence, which is also due to the third author, holds true (see Theorem
8.4 in [KW10]).

Theorem 1.23 ([KW10]). The following are equivalent over ZFC.

(i) M#
ω exists and is countably iterable, and

(ii) ADL(R) holds and R# exists.

Here we mean by “ADL(R) holds” that every set of reals in L(R) is deter-
mined.

2. A Model with Woodin Cardinals from Determinacy
Hypotheses

In this section we are going to construct a proper class model with n Woodin
cardinals from Π1

n determinacy together with Π1
n+1 determinacy, but the

model constructed in this section need not be iterable. We will treat it-
erability issues for models like the one constructed in this section later in
Section 3.

2.1. Introduction. The main goal of Sections 2 and 3 is to give a proof of
the following theorem due to the third author.

Theorem 2.1. Let n ≥ 1 and assume Π1
n+1 determinacy holds. Then

M#
n (x) exists and is ω1-iterable for all x ∈ ωω.

The converse of Theorem 2.1 also holds true. For odd n it is due to the third
author in never-published work and for even n it is due to Itay Neeman in
[Ne95]. This yields the following corollary, where the case n = 0 is due to
D. A. Martin (see [Ma70]) and L. Harrington (see [Ha78]).

Corollary 2.2. Let n ≥ 0. Then the following are equivalent.

(1) Π1
n+1 determinacy, and

(2) for all x ∈ ωω, M#
n (x) exists and is ω1-iterable.
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The proof of Theorem 2.1 is organized inductively. Thereby Harrington’s
result that analytic determinacy yields the existence of 0# (see [Ha78]) is
the base step of our induction. So we will assume throughout the proof
of Theorem 2.1 at the n’th level, that Theorem 2.1 holds true at the level
n− 1. In fact by Theorem 2.14 in [Ne02] we can assume during the proof at

the level n that the existence and ω1-iterability of M#
n−1(x) for all x ∈ ωω

is equivalent to Π1
n determinacy (see Corollary 2.2, for odd n this result is

due to the third author). We will use this in what follows without further
notice.

We first fix some notation we are going to use for the rest of this paper.

If M is a premouse let δM denote the least Woodin cardinal in M , if it exists.
For n ≥ 2 and x ∈ ωω let δx = δMn−1(x) denote the least Woodin cardinal
in Mn−1(x), whenever this does not lead to confusion. Moreover in case we
are considering L[x] = M0(x) and a confusion is not possible let δx denote
the least x-indiscernible in L[x].

Remark. Recall that a real x ∈ ωω is Turing reducible to a real y ∈ ωω
(write “x ≤T y”) iff x is recursive in y or equivalently iff there exists an
oracle Turing machine that computes x using y as an oracle. Moreover we
write x ≡T y iff x ≤T y and y ≤T x and say in this case that x and y are
Turing equivalent.

The following lemma generalizes a theorem of Kechris and Solovay (see The-
orem 3.1 in [KS85]) to the context of mice with finitely many Woodin car-
dinals. It is one key ingredient for building inner models with finitely many
Woodin cardinals from determinacy hypotheses and therefore in particular
for proving Theorem 2.1. The following two sections will be devoted to the
proof of this lemma.

Lemma 2.3. Let n ≥ 1. Assume that M#
n−1(x) exists and is ω1-iterable for

all x ∈ ωω and that all Σ1
n+1-definable sets of reals are determined. Then

there exists a real y0 such that for all reals x ≥T y0,

Mn−1(x)|δx � OD-determinacy.

The main difficulty in proving Lemma 2.3 in our context is the fact that for
n > 1 the premouse Mn−1(x)|δx has lots of total extenders on its sequence.
This is the main reason why we cannot generalize the proof of Theorem 3.1
in [KS85] straightforwardly. Therefore we need to prove some preliminary
lemmas concerning comparisons and L[E]-constructions in our context in the
following section. Some of this could have been avoided, if we would only
want to prove Lemma 2.3 for models like for example lower part models (see
Definition 3.21), which do not contain total extenders on their sequence.

2.2. Preliminaries. In this section we prove a few general lemmas about
(n − 1)-small premice which we are going to need for the proof of Lemma
2.3 and which are also going to be helpful later on.
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The following models, calledQ-structures, can serve as witnesses for iterabil-
ity by guiding an iteration strategy as in Definition 2.5. See also for example
the proof of Lemma 2.11 for an application of this iteration strategy.

Informally a Q-structure for a cofinal well-founded branch b through T is
the longest initial segment ofMTb at which δ(T ) is still seen to be a Woodin
cardinal. Such Q-structures are also introduced for example in Definition
6.11 in [St10].

Definition 2.4. Let N be an arbitrary premouse and let T be an iteration
tree on N of limit length.

(1) We say a premouse Q = Q(T ) is a Q-structure for T iff M(T ) E Q,
δ(T ) is a cutpoint of Q, Q is ω1-iterable above δ(T ),

Q � “δ(T ) is a Woodin cardinal”,

if Q 6=M(T ) and either
(i) over Q there exists an rΣn-definable set A ⊂ δ(T ) such that there

is no κ < δ(T ) such that κ is strong up to δ(T ) with respect to
A as being witnessed by extenders on the sequence of Q for some
n < ω, or

(ii) ρn(Q) < δ(T ) for some n < ω.
(2) Let b be a cofinal well-founded branch through T . Then we say a pre-

mouse Q = Q(b, T ) is a Q-structure for b in T iff Q = MTb |γ, where

γ ≤MTb ∩Ord is the least ordinal such that either

γ <MTb ∩Ord and MTb |(γ + 1) � “δ(T ) is not Woodin”,

or
γ =MTb ∩Ord and ρn(MTb ) < δ(T )

for some n < ω or over MTb there exists an rΣn-definable set A ⊂ δ(T )
such that there is no κ < δ(T ) such that κ is strong up to δ(T ) with
respect to A as being witnessed by extenders on the sequence of MTb for
some n < ω.
If no such ordinal γ ≤MTb ∩Ord exists, we let Q(b, T ) be undefined.

For the notion of an rΣn-definable set see for example §2 in [MS94].

Remark. We are also going to use the notion of a Π1
n-iterable Q-structure

Q(T ), meaning that Q(T ) is Π1
n-iterable above δ(T ), δ(T )-solid and that

Q(T ) satisfies all properties in (1) except for the ω1-iterability above δ(T ).
It will be clear from the context if we include ω1-iterability in the definition
of Q-structure or not. Here Π1

n-iterability is defined as in Definitions 1.4
and 1.6 in [St95] (see also the explanations before Lemma 2.12).

Remark. In Case (1)(i) in Definition 2.4 we have that in particular ρn(Q) ≤ δ
and if Q CM for a premouse M and if we let γ = Q ∩ Ord, then we have
that δ(T ) is not Woodin in JMγ+1. The same thing for M as above holds

true in Case (1)(ii) in Definition 2.4, because in this case δ(T ) is not even
a cardinal in JMγ+1.
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Remark. Let n ≥ 1 and assume that M#
n (x) exists and is ω1-iterable for

all reals x. Then any Q-structure Q for an iteration tree T on an n-small
premouse is unique by a comparison argument as the one we will see in the
proof of Lemma 2.11.

Definition 2.5. Let N be a premouse. Then a possibly partial iteration
strategy Σ for N is the Q-structure iteration strategy for N or we say that
Σ is guided by Q-structures, iff Σ is defined as follows. For a tree U on N
of limit length and a cofinal branch b through U we let

Σ(U) = b iff Q(U) exists and Q(b,U) = Q(U),

if such a branch b exists and is unique. If no such unique branch b through
U exists, we let Σ(U) be undefined.

Lemma 2.6. Let n ≥ 1 and assume that M#
n (x) exists and is ω1-iterable

for all reals x. Let N be an n-small premouse and let T be an iteration tree
on N . Then the branch b through T which satisfies Q(b, T ) = Q(T ) as in
the definition of the Q-structure iteration strategy Σ is in fact unique.

This lemma holds true because for two branches b and c through an iteration
tree T as above, we have that Q(b, T ) = Q(c, T ) implies that b = c by the
Branch Uniqueness Theorem (see Theorem 6.10 in [St10]). This is proven
in Corollary 6 in §6 of [Je97] (written by Martin Zeman).

Remark. Let n ≥ 1 and assume that M#
n (x) exists and is ω1-iterable for all

reals x. Let N be an n-small premouse and let T be an iteration tree on
N . Then the branch b through T which satisfies Q(b, T ) = Q(T ) as in the
definition of the Q-structure iteration strategy Σ is in fact cofinal.

The following notion will be important in what follows to ensure that Q-
structures exist.

Definition 2.7. Let M be a premouse and let δ be a cardinal in M or
δ = M ∩Ord. We say that δ is not definably Woodin over M iff there exists
an ordinal γ ≤M ∩Ord such that γ ≥ δ and either

(i) over JMγ there exists an rΣn-definable set A ⊂ δ such that there is no
κ < δ such that κ is strong up to δ with respect to A as witnessed by
extenders on the sequence of M for some n < ω, or

(ii) ρn(JMγ ) < δ for some n < ω.

For several iterability arguments to follow we need our premice to satisfy the
following property. By a fine structural argument this property is preserved
during an iteration and will therefore ensure that Q-structures exist in an
iteration of a premouse M satisfying this property.

Definition 2.8. Let M be a premouse. We say M has no definable Woodin
cardinals iff for all δ ≤ M ∩ Ord we have that δ is not definably Woodin
over M .
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Remark. Let M be a premouse which has no definable Woodin cardinals.
Note that M might still have Woodin cardinals. Consider for example the

premouse M#
1 , which by definition has a Woodin cardinal, but no definable

Woodin cardinals since ρω(M#
1 ) = ω.

In what follows we sometimes want to consider premice which are obtained

from M#
n “constructed on top” of a premouse N . The following definition

makes precise what we mean by that.

Definition 2.9. Let n ≥ 1 and assume that M#
n (x) exists for all reals x.

Let N be a countable x-premouse for some x ∈ ωω. Then we say M#
n (N) is

the smallest x-premouse M DN with

ρω(M) ≤ N ∩Ord

which is ω1-iterable above N ∩ Ord, sound above N ∩ Ord and such that
either M is not fully sound, or M is not n-small above N ∩Ord.

In the first case, i.e. if M is not fully sound, we sometimes say that the

construction of M#
n (N) breaks down.

Remark. We can define a premouse Mn(N) in a similar fashion, by iterating

the top extender of M = M#
n (N) out of the universe in the case that M is

not n-small above N ∩Ord. In the case that M is not fully sound, we just
let Mn(N) = M . So in particular Mn(N) is a proper class model in the first
case and a set in the latter case.

In what follows we will point out if M#
n (N) denotes the premouse con-

structed in the sense of Definition 2.9 or if it denotes the premouse M#
n (x)

in the usual sense, where x is for example a real coding the countable pre-
mouse N . Note that these two notions are different since extenders on the
N -sequence are included in the M#

n (N)-sequence if M#
n (N) is constructed

in the sense of Definition 2.9.

We will need the following notation.

Definition 2.10. (1) Let x, y ∈ ωω be such that x = (xn | n < ω) for
xn ∈ ω and y = (yn | n < ω) for yn ∈ ω. Then we let x ⊕ y =
(x0, y0, x1, y1, . . . ) ∈ ωω.

(2) Let M and N be countable premice. We say a real x codes M ⊕ N iff
x ≥T xM ⊕ xN for a real xM coding M and a real xN coding N .

The following lemma proves that under the right hypothesis comparison
works for certain ω1-iterable premice instead of (ω1 + 1)-iterable premice as
in the usual Comparison Lemma (see Theorem 3.11 in [St10]). Moreover the
proof of this lemma will use arguments that are explained here in full detail
and will show up in several different proofs throughout this paper again with
possibly less details given.

Recall that δx denotes the least Woodin cardinal in M#
n−1(x) for n ≥ 2.
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Lemma 2.11. Let n ≥ 1 and assume that M#
n−1(x) exists and is ω1-iterable

for all reals x. Let M and N be countable premice, such that M and N have
a common cutpoint δ. Assume that M and N both do not have definable
Woodin cardinals above δ and that every proper initial segment of M and N
is (n− 1)-small above δ.

(1) Let x be an arbitrary real and let n ≥ 2. Then H
M#
n−1(x)

δx
is closed under

the operation

a 7→M#
n−2(a)

and moreover this operation a 7→M#
n−2(a) for a ∈ HM#

n−1(x)

δx
is contained

in M#
n−1(x)|δx.

(2) Let x be a real coding M and assume that the premouse M is ω1-iterable
above δ. If Σ denotes the ω1-iteration strategy for M above δ, then for

every iteration tree T ∈ HM#
n−1(x)

δx
on M above δ of limit length, Σ(T ) ∈

M#
n−1(x)|δx and in fact the operation T 7→ Σ(T ) is in M#

n−1(x)|δx for
every such T .

(3) Let x be a real coding M ⊕ N and assume that the premice M and N
are both ω1-iterable above δ. Moreover assume that

M |δ = N |δ.
Then we can successfully coiterate M and N above δ inside the model

M#
n−1(x). That means there are iterates M∗ of M and N∗ of N above

δ such that we have

(a) M∗ EN∗ and the iteration from M to M∗ does not drop, or

(b) N∗ EM∗ and the iteration from N to N∗ does not drop.
In particular the coiteration is successful in V in the same sense.

(4) Let x be a real coding M ⊕ N and assume that the premice M and N
are both ω1-iterable above δ. Moreover assume that

M |δ = N |δ,
M and N are δ-sound, ρω(M) ≤ δ and ρω(N) ≤ δ. Then we have

M EN or N EM.

Remark. This lemma holds in particular for δ = ω. That means if we

assume that M#
n−1(x) exists and is ω1-iterable for all reals x and M and

N are ω1-iterable countable premice such that both do not have definable
Woodin cardinals and such that every proper initial segment of M and N
is (n − 1)-small, then we can successfully compare M and N as in Lemma
2.11 (3).

Proof of Lemma 2.11. Proof of (1): Let a ∈ H
M#
n−1(x)

δx
be arbitrary and

perform a fully backgrounded extender construction L[E](a)M
#
n−1(x)|κ in the

sense of [MS94] (with the smallness hypothesis weakened to allow ω-small
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premice in the construction) above a inside the model M#
n−1(x)|κ, where κ

denotes the critical point of the top measure of the active premouseM#
n−1(x).

Then we have that the premouse L[E](a)M
#
n−1(x)|κ has n − 1 Woodin car-

dinals by a generalization of Theorem 11.3 in [MS94]. So in particular it

follows that L[E](a)M
#
n−1(x)|κ is not (n − 2)-small. Moreover the premouse

L[E](a)M
#
n−1(x)|κ inherits the iterability from M#

n−1(x) and therefore we have
that

M#
n−2(a)C L[E](a)M

#
n−1(x)|κ.

In fact the operation a 7→ M#
n−2(a) for a ∈ H

M#
n−1(x)

δx
is contained in

M#
n−1(x)|δx, because M#

n−2(a) can be obtained from an L[E]-construction
above a.

Proof of (2) + (3) + (4): We prove (2),(3) and (4) simultaneously by an
inductive argument. For n = 1 there is nothing to show, because we defined
M to be 0-small iff M is an initial segment of Gödel’s constructible universe
L. That means if M and N are such that every proper initial segment
of M or N is 0-small above some common cutpoint δ as in the statement
of Lemma 2.11, then every iteration tree on M or N above δ is linear and
there is nothing to show for (2). Moreover we easily get that one is an initial
segment of the other since every proper initial segment of M or N is above
δ as an initial segment of L. Therefore (3) and (4) hold.

So let n ≥ 2 and assume that (2),(3) and (4) hold for n−2. We first want to
show that (2) holds for n− 1. Let us assume for notational simplicity that
δ = ω and let M be an ω1-iterable premouse, such that every proper initial
segment of M is (n − 1)-small and such that M has no definable Woodin

cardinals. Let x be a real coding the premouse M and assume that M#
n−1(x)

exists and is ω1-iterable. Further let Σ be the ω1-iteration strategy for M
and let T be an iteration tree on M in V of length λ + 1 for some limit
ordinal λ < ωV1 such that T is according to Σ and

T � λ ∈ HM#
n−1(x)

δx
.

By assumption the premouse M is ω1-iterable in V and has no definable
Woodin cardinals. Therefore Σ is the Q-structure iteration strategy (see
Definition 2.5) and there exists a Q-structure Q EMTλ for T � λ which is
ω1-iterable in V . We first want to show that such an ω1-iterable Q-structure
already exists in the model M#

n−1(x)|δx.

First consider the case

Q =M(T � λ),

where the latter denotes the common part model of T � λ. In this case

Q is also a Q-structure for T � λ inside the model M#
n−1(x)|δx for trivial

reasons, because the condition that Q needs to be ω1-iterable above δ(T �
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λ) =M(T � λ) ∩Ord is empty here and therefore Q can be isolated as the

Q-structure for T � λ in M#
n−1(x)|δx.

So we can assume now that

M(T � λ)CQ.

That means δ(T � λ) ∈ Q and therefore Q is by definition the longest initial
segment of MTλ in V such that

Q � “δ(T � λ) is Woodin”.

Every proper initial segment of MTλ is (n − 1)-small since the same holds
for M . Thus every proper initial segment of Q is (n − 1)-small. Together
with the fact that

Q � “δ(T � λ) is Woodin”,

this implies that every proper initial segment of Q in fact has to be (n− 2)-
small above δ(T � λ).

Now consider the premouse M#
n−2(M(T � λ)) in the sense of Definition 2.9,

which exists inside M#
n−1(x)|δx because of (1), since we have that T � λ ∈

H
M#
n−1(x)

δx
. Note that all proper initial segments of M#

n−2(M(T � λ)) are

(n− 2)-small above

δ(T � λ) =M(T � λ) ∩Ord,

regardless of whether the case that M#
n−2(M(T � λ)) is not fully sound or

the case that M#
n−2(M(T � λ)) is not (n − 2)-small above δ(T � λ) in the

definition of M#
n−2(M(T � λ)) (see Definition 2.9) holds. Moreover we have

by definition that

Q | δ(T � λ) =M(T � λ) = M#
n−2(M(T � λ)) | δ(T � λ).

Thus a coiteration of Q and M#
n−2(M(T � λ)) would take place above

δ(T � λ). Moreover M#
n−2(M(T � λ)) and Q are both δ(T � λ)-sound and

project to δ(T � λ), so in particular they both do not have definable Woodin
cardinals above δ(T � λ). This implies by the inductive hypothesis (4) that

the comparison of Q and M#
n−2(M(T � λ)) is successful in V , because all

proper initial segments of both Q and M#
n−2(M(T � λ)) are (n − 2)-small

above δ(T � λ). Moreover both sides do not move in the comparison as in
(4) and therefore we can distinguish two cases as follows.

Case 1. Assume that

M#
n−2(M(T � λ))CQ.

Then we have that

M#
n−2(M(T � λ)) � “δ(T � λ) is Woodin”,
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because we have by definition of the Q-structure Q (see Definition 2.4) that

Q � “δ(T � λ) is Woodin”.

Moreover our case assumption implies that M#
n−2(M(T � λ)) is fully sound.

That means we were able to construct the full premouse M#
n−2 on top of

M(T � λ) as in the sense of Definition 2.9. In this case M#
n−2(M(T � λ)) is

not (n−1)-small, because δ(T � λ) is a Woodin cardinal inM#
n−2(M(T � λ)).

But we argued earlier that every proper initial segment of Q is (n−1)-small,

which contradicts M#
n−2(M(T � λ))CQ.

Case 2. Assume that

QEM#
n−2(M(T � λ)).

This implies that Q is in M#
n−1(x)|δx and furthermore is ω1-iterable above

δ(T � λ) in M#
n−1(x)|δx since the same holds for M#

n−2(M(T � λ)) by part
(1) of this lemma.

So we showed that in both cases there exists an ω1-iterable Q-structure Q
for T � λ in M#

n−1(x)|δx. We now aim to show that the cofinal well-founded
branch through T in V which is given by the Q-structure iteration strategy
Σ, that means the branch b for which we have

Q(b, T � λ) = Q,

is also contained in M#
n−1(x)|δx.

Consider the statement

φ(T � λ,Q) ≡ “there is a cofinal branch b through T � λ such that

there is a Q∗ EMTb with Q∗ ∼= Q”.

This statement is Σ1
1-definable uniformly in codes for T � λ and Q and obvi-

ously true in V as witnessed by the branch b given by the ω1-iterability of the

premouse M . Since the iteration tree T � λ ∈ HM#
n−1(x)

δx
need not be count-

able in the model M#
n−1(x)|δx, we consider the model (M#

n−1(x)|δx)Col(ω,γ)

instead, where γ < δx is an ordinal such that

T � λ,Q ∈ (M#
n−1(x)|δx)Col(ω,γ)

are countable inside the model (M#
n−1(x)|δx)Col(ω,γ), where with the model

(M#
n−1(x)|δx)Col(ω,γ) we denote an arbitrary Col(ω, γ)-generic extension of

the model M#
n−1(x)|δx.

Then it follows by Σ1
1-absoluteness that the statement φ(T � λ,Q) holds in

(M#
n−1(x)|δx)Col(ω,γ) as witnessed by some branch b̄ and some model Q̄.
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Since by the argument above Q is a Q-structure for T in M#
n−1(x)|δx, we

have that Q = Q̄ and it follows that b̄ is the unique cofinal branch through
T with Q(b̄, T � λ) = Q by Lemma 2.6.

Since the branch b̄ is uniquely definable from T � λ and Q, and we have that

T � λ,Q ∈ M#
n−1(x)|δx, it follows by homogeneity of the forcing Col(ω, γ)

that actually b̄ ∈M#
n−1(x)|δx.

Thus we have that Σ(T ) = b̄ ∈ M#
n−1(x)|δx and our argument shows that

in fact the operation T 7→ Σ(T ) for iteration trees T ∈ HM#
n−1(x)

δx
on M of

limit length is in the model M#
n−1(x)|δx for the following reason. Let T be

an iteration tree on M of limit length such that T ∈ HM#
n−1(x)

δx
. Then we

showed in the first part of this proof that M#
n−1(x)|δx can find a Q-structure

Q for T . Now M#
n−1(x)|δx can compute Σ(T ) from T , because Σ(T ) is the

unique cofinal branch b through T such that Q(b, T ) = Q and we showed

that this branch b exists inside M#
n−1(x)|δx. Therefore we proved that (2)

holds.

To show (3) assume now in addition that N is an ω1-iterable premouse such
that every proper initial segment of N is (n−1)-small and N has no definable
Woodin cardinals. Moreover let x be a real coding M⊕N . We again assume
that δ = ω for notational simplicity.

By our hypothesis we have that M#
n−1(x) exists, so we work inside the model

M#
n−1(x). Moreover it follows from (2) that M and N are iterable inside

M#
n−1(x), particularly with respect to trees in H

M#
n−1(x)

ω2 , since M#
n−1(x) is

countable in V and thus

ω
M#
n−1(x)

2 < ωV1 .

In particular M and N are (ω1 + 1)-iterable in M#
n−1(x) and the coiteration

of M and N terminates successfully inside the model M#
n−1(x) by the usual

Comparison Lemma (see Theorem 3.11 in [St10]) applied inside M#
n−1(x).

This shows that (3) holds.

To prove (4) we assume that we moreover have that M and N are ω-sound
and that ρω(M) = ω and ρω(N) = ω. Then it follows as in Corollary 3.12
in [St10] that we have M EN or N EM . �

Remark. As in the previous lemma let n ≥ 1 and assume that M#
n−1(x)

exists and is ω1-iterable for all reals x. Then we can also successfully coit-
erate countable ω1-iterable premice M and N which agree up to a common
cutpoint δ and are (n− 1)-small above δ in the sense of Lemma 2.11 (3), if
we only assume that M and N both do not have Woodin cardinals, for the
following reason.

Let x be a real coding M ⊕ N . If M ∩ Ord and N ∩ Ord are both not
definably Woodin over M and N respectively, then this implies together
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with the assumption that M and N both do not have Woodin cardinals
that M and N both do not have definable Woodin cardinals and we can
apply Lemma 2.11. So assume now for example that M ∩ Ord is definably
Woodin over M . By the proof of Lemma 2.11 the coiteration of M and
N can only fail on the M -side because of the lack of a Q-structure for an

iteration tree T of limit length on M inside M#
n−1(x)|δx. But in this case

we must have that

M(T ) =MTλ ,
whereMTλ is the limit model for T which exists in V . This implies that the
coiteration on the M -side already finished because the M -side can no longer
be iterated and by the same argument for N we have that the coiteration
is successful, even if M ∩Ord and N ∩Ord are both definably Woodin over
M and N respectively.

In what follows we also want to consider premice which are not fully ω1-
iterable but only Π1

n-iterable for some n ∈ ω. This notion was defined by
John Steel in [St95] and he proved that for a premouse M the statement “M
is Π1

n-iterable” is Π1
n-definable uniformly in any code for M . See Definitions

1.4 and 1.6 in [St95] for a precise definition of Π1
n-iterability. He proves in

Lemma 2.2 in [St95] that for an (n− 1)-small premouse N which is ω-sound
and such that ρω(N) = ω, Π1

n-iterability is enough to perform the standard
comparison arguments with an (ω1 + 1)-iterable premouse which has the
same properties.

This implies that using Lemma 1.17 and Lemma 2.11 (2) the following ver-
sion of Lemma 2.2 proven in [St95] holds true for ω1-iterability (instead of
(ω1 + 1)-iterability as in [St95]).

Lemma 2.12. Let n ≥ 2 and assume that M#
n−1(x) exists and is ω1-iterable

for all reals x. Let M and N be countable premice which have a common
cutpoint δ such that M and N are (n − 1)-small above δ. Assume that M
and N are δ-sound and that ρω(M) ≤ δ and ρω(N) ≤ δ.
(1) Assume that M is ω1-iterable above δ. Let T be a normal iteration tree

on M above δ of length λ for some limit ordinal λ < ω1 and let b be
the unique cofinal well-founded branch through T such that Q(b, T ) is
ω1-iterable above δ(T ). Then b is the unique cofinal branch c through
T such that MTc is well-founded and, if n ≥ 3, Q(c, T ) is Π1

n−1-iterable
above δ(T ).

(2) Assume M is ω1-iterable above δ. Then M is Π1
n-iterable above δ.

(3) Assume M is ω1-iterable above δ and N is Π1
n-iterable above δ. Moreover

assume that

M |δ = N |δ.
Then we can successfully coiterate M and N above δ, that means we
have that

M EN or N EM.
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Proof. Apply Lemma 2.2 from [St95] inside the model M#
n−1(x), where x is

a real coding M ⊕ N . This immediately gives Lemma 2.12 using Lemma
2.11 (2), because we have that

ω
M#
n−1(x)

2 < ωV1

and therefore M is (ω1 + 1)-iterable inside M#
n−1(x) and by Lemma 1.17

we have that N is Π1
n-iterable inside the model M#

n−1(x) since M#
n−1(x) is

Σ1
n-correct in V . �

Remark. Similarly as for Lemma 2.11 this lemma also holds true in the
special case that δ = ω. More precisely in this case Lemma 2.12 (3) holds
true in the following sense. If M and N are ω-sound, ρω(M) = ω and
ρω(N) = ω, and if we assume ω1-iterability and Π1

n-iterability for M and N
respectively, then we have that

M EN or N EM.

In Section 3 we in fact need the following strengthening of Lemma 2.12
for odd n, which is proved in Lemma 3.3 in [St95]. That it holds for ω1-
iterability instead of (ω1 + 1)-iterability follows by the same argument as
the one we gave for Lemma 2.12 above. This lemma only holds for odd n
because of the periodicity in the projective hierarchy. For more details see
[St95].

Lemma 2.13. Let n ≥ 1 be odd and assume that M#
n−1(x) exists and is

ω1-iterable for all reals x. Let M and N be countable premice which agree
up to a common cutpoint δ such that M and N are δ-sound and such that
ρω(M) ≤ δ and ρω(N) ≤ δ. Assume that M is (n− 1)-small above δ and N
is not (n− 1)-small above δ. Moreover assume that M is Π1

n-iterable above
δ and that N is ω1-iterable above δ. Then we have that

M EN.

For the proof of Lemma 2.3 we need the following variant of Lemma 2.12
which is a straightforward consequence of the proof of Lemma 2.2 in [St95],
because the assumption that the premice M and N both do not have defin-
able Woodin cardinals yields that Q-structures exist in a coiteration of M
and N .

We say that an iteration tree U is a putative iteration tree if U satisfies
all properties of an iteration tree, but we allow the last model of U to be
ill-founded, in case U has a last model.

Lemma 2.14. Let n ≥ 2 and assume that M#
n−1(x) exists and is ω1-iterable

for all reals x. Let M and N be countable premice which have a common
cutpoint δ such that M and N are (n − 1)-small above δ and solid above
δ. Assume that M and N both do not have definable Woodin cardinals and
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assume in addition that M is ω1-iterable above δ and that N is Π1
n-iterable

above δ. Moreover assume that

M |δ = N |δ.
Then we can successfully coiterate M and N above δ as in Lemma 2.11
(3), that means here that there is an iteration tree T on M and a putative
iteration tree U on N of length λ+ 1 for some ordinal λ such that we have

MTλ EMUλ or MUλ EMTλ .
So in the first case MUλ need not be fully well-founded, but it is well-founded

up to MTλ ∩Ord. In the second case we have that MUλ is fully well-founded
and U is in fact an iteration tree.

As in the remark after the proof of Lemma 2.11 we get that the following
strengthening of Lemma 2.14 holds true, where we replace “no definable
Woodin cardinals” by “no Woodin cardinals”.

Corollary 2.15. Let n ≥ 2 and assume that M#
n−1(x) exists and is ω1-

iterable for all reals x. Let M and N be countable premice which have a
common cutpoint δ such that M and N are (n− 1)-small above δ and solid
above δ. Assume that M and N both do not have Woodin cardinals and
assume in addition that M is ω1-iterable above δ and that N is Π1

n-iterable
above δ. Moreover assume that

M |δ = N |δ.
Then we can successfully coiterate M and N above δ as in Lemma 2.11
(3), that means here that there is an iteration tree T on M and a putative
iteration tree U on N of length λ+ 1 for some ordinal λ such that we have

MTλ EMUλ or MUλ EMTλ .
So we again have that in the first case MUλ need not be fully well-founded,

but it is well-founded up to MTλ ∩Ord, and in the second case we have that

MUλ is fully well-founded and U is in fact an iteration tree.

Proof. To simplify the notation we again assume that δ = ω. As in the
remark after the proof of Lemma 2.11 we can just use Lemma 2.14 in the
case that M ∩Ord and N ∩Ord are both not definably Woodin over M and
N respectively, because in this case M and N in fact do not have definable
Woodin cardinals.

So assume for example that N ∩ Ord is definably Woodin over N . Let x
be a real coding M ⊕ N and consider the coiteration of M and N inside

M#
n−1(x). Let T and U be the resulting trees on M and N respectively.

Assume that the coiteration breaks down on the N -side, that means U is an
iteration tree of limit length λ such that there is no Q-structure Q(U) for U
in M#

n−1(x). Since N has no Woodin cardinals, this can only be the case if

M(U) =MUλ ,
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whereMUλ is the limit model for U which exists in V since N is Π1
n-iterable

in V . Therefore we have as in the remark after the proof of Lemma 2.11
that the coiteration on the N -side already finished.

If we assume that M ∩ Ord is definably Woodin over M it follows by the
same argument that the coiteration on the M -side already finished if it
breaks down, because M is ω1-iterable in V .

Therefore the coiteration of M and N is successful in the sense of Corollary
2.15 even if M ∩Ord or N ∩Ord or both of them are definably Woodin over
M or N respectively. �

We now aim to fix an order on OD-sets. Therefore we first introduce the
following notion.

Definition 2.16. Let x ∈ OD. Then we say (n, (α0, . . . , αn), ϕ) is the mini-
mal triple defining x iff (n, (α0, . . . , αn), ϕ) is the minimal triple according to
the lexicographical order on triples (using the lexicographical order on tuples
of ordinals of length n + 1 and the order on Gödel numbers for formulae)
such that

x = {z | Vα0 � ϕ(z, α1, . . . , αn)}.

Definition 2.17. Let x, y ∈ OD. Moreover let (n, (α0, . . . , αn), ϕ) and
(m, (β0, . . . , βm), ψ) be the minimal triples defining x and y respectively as
in Definition 2.16. Then we say x is less than y in the order on the OD-sets
and write

x <OD y,

iff (n, (α0, . . . , αn), ϕ) is smaller than (m, (β0, . . . , βm), ψ) in the lexicograph-
ical order on triples, that means iff either

(a) n < m, or
(b) n = m and (α0, . . . , αn) <lex (β0, . . . , βm), where <lex denotes the lexi-

cographical order on tuples of ordinals of length n+ 1, or
(c) (α0, . . . , αn) = (β0, . . . , βm) and pϕq < pψq, where pϕq and pψq denote

the Gödel numbers of the formulae ϕ and ψ respectively.

Fix the following notation for the rest of this paper.

Definition 2.18. Let x, y be reals, M an x-premouse which is a model of
ZFC and y ∈M .

(1) L[E](y)M denotes the resulting model of a fully backgrounded ex-
tender construction above the real y as in [MS94] performed inside
the model M , but with the smallness hypothesis weakened to allow
ω-small premice in the construction. 1

(2) We recursively say that a premouse N is an iterated L[E] in M iff
N = M or N is an iterated L[E] in L[E](z)M for some z ∈M with
z ≥T x.

1For more details about such a construction in a more general setting see also [St93].
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Using the order on OD-sets defined above we can prove the following lemma,
which will also be used in the proof of Lemma 2.3.

Lemma 2.19. Let n ≥ 2 and assume that M#
n−1(z) exists and is ω1-iterable

for all reals z. Let x ≤T y be reals and let M be an y-premouse which is an
iterated L[E] in Mn−1(x). Then

(a) M is (n− 1)-small, and
(b) the premice M and Mn−1(x) have the same sets of reals and the same

OD-sets of reals in the same order.

Proof. We start with some general remarks about the premice we consider.
The premouse M still has n− 1 Woodin cardinals and is ω1-iterable via an
iteration strategy which is induced by the ω1-iteration strategy for Mn−1(x)
by §11 and §12 in [MS94]. Therefore the premouse L[E](x)M , constructed
inside the model M as in Definition 2.18, also has n − 1 Woodin cardinals
and is ω1-iterable. The following claim proves part (a) of the lemma.

Claim 1. The y-premouse M is (n− 1)-small.

Proof. Assume toward a contradiction thatM is not (n−1)-small and letN#
y

be the shortest initial segment of M which is not (n−1)-small. That means

we choose N#
y EM such that it is not (n−1)-small, but every proper initial

segment of N#
y is (n− 1)-small. In particular N#

y is an active y-premouse,

so let F be the top extender of N#
y . Moreover let Ny be the model obtained

from N#
y by iterating the top extender F out of the universe working inside

the model Mn−1(x).

Now consider L[E](x)Ny and let N be the active x-premouse obtained by
adding F ∩L[E](x)Ny as a top extender to an initial segment of L[E](x)Ny ,
as in Section 2 in [FNS10] to ensure that N is a premouse. The main result

in [FNS10] yields that N is ω1-iterable in V , because M , N#
y and L[E](x)Ny

inherit the iterability from Mn−1(x) as in §11 and §12 in [MS94]. Moreover
N is not (n− 1)-small.

Let N#
x be the shortest initial segment of N which is not (n− 1)-small. By

Lemma 2.11 we can successfully compare the x-premice N#
x and M#

n−1(x),
because both premice are ω1-iterable in V and every proper initial segment of

one of them is (n− 1)-small. Therefore we have that in fact N#
x = M#

n−1(x)
and thus

R ∩N#
x = R ∩M#

n−1(x) = R ∩Mn−1(x).

But N#
x is by construction a countable premouse in Mn−1(x), this is a

contradiction. �

A simplified version of this argument shows that the x-premouse L[E](x)M

is (n− 1)-small.
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For the proof of (b), we now fix a real z which codes the x-premouse M#
n−1(x)

and work inside the model Mn−1(z) for a while.

We have that every proper initial segment of M#
n−1(x) is (n − 1)-small,

ρω(M#
n−1(x)) = ω, and M#

n−1(x) is ω-sound. Since

ω
M#
n−1(z)

2 < ωV1 ,

this yields that M#
n−1(x) is (ω1 + 1)-iterable inside M#

n−1(z) by Lemma 2.11
(2). So in particular, working inside Mn−1(z), the x-premouse Mn−1(x),

obtained from M#
n−1(x) by iterating the top measure out of the universe, is

(ω1 + 1)-iterable.

Let κ denote the least measurable cardinal in Mn−1(x). So in particular κ
is below the least measurable cardinal in M .

Claim 2. The x-premice Mn−1(x) and L[E](x)M agree below κ.

Proof. The y-premouse M is (ω1 + 1)-iterable inside Mn−1(z) via an itera-
tion strategy which is induced by the iteration strategy for Mn−1(x). Thus
the x-premouse L[E](x)M is (ω1 + 1)-iterable inside Mn−1(z) via the itera-
tion strategy inherited from M . In particular we can successfully compare
the x-premice Mn−1(x) and L[E](x)M inside the model Mn−1(z) using this
iteration strategy and they coiterate to the same premouse. This yields the
claim. �

Now we can finally show the following claim, which will finish the proof of
Lemma 2.19.

Claim 3. Mn−1(x) and M have the same sets of reals and the same OD-sets
of reals in the same order.

Proof. Claim 2 implies that

VMn−1(x)
κ ⊇ VM

κ ⊇ V L[E](x)M

κ = VMn−1(x)
κ ,

and therefore
VMn−1(x)
κ = VM

κ .

Thus we can consider Mn−1(x) and M as V
Mn−1(x)
κ -premice and, still work-

ing in Mn−1(z), we can successfully compare them by the same argument as
in the proof of Claim 2, using the iteration strategy for M which is induced

by the iteration strategy for Mn−1(x). The V
Mn−1(x)
κ -premice Mn−1(x) and

M coiterate to the same model W and hence they have the same sets of reals
and the same OD-sets of reals in the same order by the following argument.

Let A be an OD-set of reals in Mn−1(x) and let (n, (α0, . . . , αn), ϕ) be the
minimal triple defining A. As Mn−1(x) and M have the same sets of reals,
in particular A ∈M . Let i : Mn−1(x)→W and j : M →W be the iteration
embeddings. Then (n, (i(α0), . . . , i(αn)), ϕ) is by elementarity the minimal
triple defining A in W as Mn−1(x) and W agree about their Vκ. In particular
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A is an OD-set of reals in W . By elementarity of j, A is also an OD-set of
reals in M . Let (m, (β0, . . . , βm), ψ) be the minimal triple witnessing this.
Then, by elementarity of j again, (m, (j(β0), . . . , j(βm)), ψ) is the minimal
triple defining A in W . Hence, by minimality (n, (i(α0), . . . , i(αn)), ϕ) =
(m, (j(β0), . . . , j(βm)), ψ). This shows that M and Mn−1(x) have the same
OD-sets of reals and agree on the order on OD-sets defined in Definition
2.17. �

This proves Lemma 2.19. �

Motivated by this lemma we introduce the following notation.

Definition 2.20. For premice M and N we write M ∼ N iff M and N
have the same sets of reals and the same OD-sets of reals in the same order.

In the proof of Lemma 2.3 we will also need the following lemma.

Lemma 2.21. Let n ≥ 2 and assume that M#
n−1(z) exists and is ω1-iterable

for all reals z. Let x ≤T y be reals and let M be an y-premouse which is an
iterated L[E] in Mn−1(x). Let δ = δM denote the least Woodin cardinal in
M , let z ∈M be a real with z ≥T y, and let

(Mξ,Nξ | ξ ∈ Ord)

be the sequence of models obtained from a fully backgrounded extender con-
struction inside M above z as in Definition 2.18, such that

Mξ+1 = Cω(Nξ+1)

and let L[E](z) be the resulting model. Then we have for all ξ ≥ δ that

ρω(Mξ) ≥ δ,

and therefore

Mδ = L[E](z)|δ.

Proof. 2 Work in M . Assume not and let Nξ be the least model with ξ ≥ δ
such that ρω(Nξ) < δ. By construction (see Theorem 11.3 in [MS94]) we
have that δ is a Woodin cardinal in Nξ. An argument as in the proof of
Claim 1 in Lemma 2.19 shows that Nδ is (n − 1)-small, so in particular δ
cannot be a limit of Woodin cardinals in Nδ. Hence there is an η < δ such
that ρω(Nξ) < η and all Woodin cardinals below δ in Nδ are in fact below
η. Using the regularity of δ, let X be a fully elementary substructure of Nξ
such that η ⊂ X, |X| < δ and X ∩ δ ∈ δ.
Let X̄ be the Mostowski collapse of X and let σ : X̄ → Nξ be the uncollapse
map, i.e.

X̄
σ∼= X ≺ Nξ.

2The authors would like to thank John Steel for communicating this argument to them.
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Let δ̄ = X∩δ, i.e. σ(δ̄) = δ, and let P be the δ̄-core of X̄. Then P is δ̄-sound
and ρω(P) < δ̄ as ρω(X̄) < δ̄. Moreover δ̄ is Woodin in X̄ by elementarity
and thus Woodin in P.

As η < δ̄ < δ, we have that δ̄ cannot be Woodin in Nδ. Let P ′ ENδ be the
shortest initial segment of Nδ such that δ̄ ≤ P ′ ∩Ord and δ̄ is not definably
Woodin over P ′. Then P ′ is δ̄-sound and ρω(P ′) ≤ δ̄.
P and P ′ are both countably iterable in M , i.e. countable substructures of
P and P ′ are (ω1 +1)-iterable in M , by an argument similar to Lemma 2.11.
Therefore they can be successfully compared inside M and in fact P = P ′.
Thus the witness for the statement ρω(P) < δ̄ is an element of Nδ. But δ̄ is
a cardinal in P = P ′ ENδ, a contradiction. �

2.3. OD-Determinacy for an Initial Segment of Mn−1. Now we can
turn to the proof of Lemma 2.3, which is a generalization of Theorem 3.1 in
[KS85]. Recall

Lemma 2.3. Let n ≥ 1. Assume that M#
n−1(x) exists and is ω1-iterable for

all x ∈ ωω and that all Σ1
n+1-definable sets of reals are determined. Then

there exists a real y0 such that for all reals x ≥T y0,

Mn−1(x)|δx � OD-determinacy,

where δx denotes the least Woodin cardinal in Mn−1(x) if n > 1 and δx
denotes the least x-indiscernible in M0(x) = L[x] if n = 1.

Proof of Lemma 2.3. For n = 1 we have that Lemma 2.3 immediately fol-
lows from Theorem 3.1 in [KS85]. So assume that n > 1 and assume further
toward a contradiction that there is no such real y0 as in the statement of
Lemma 2.3.

Then there are cofinally (in the Turing degrees) many y ∈ ωω such that
there exists an M EMn−1(y)|δy with

M � ¬OD-determinacy.

We want to consider x-premice M for x ∈ ωω which have the following
properties:

(1) M � ZFC, M is countable, and we have that the following formula holds
true:

for all m < ω and for all (xk | k < m) and (Mk | k ≤ m) such that

xk ∈Mk ∩ ωω, xk+1 ≥T xk ≥T x,
M0 = M, Mk+1 = L[E](xk)

Mk
. We have

for all k + 1 ≤ m that Mk+1 ∼Mk,

Mk is (n− 1)-small, and

Mk does not have a Woodin cardinal,

where the relation “∼” is as defined in Definition 2.20,
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(2)

M � ¬OD-determinacy,

(3) for all ξ < M ∩Ord such that M |ξ satisfies property (1),

M |ξ � OD-determinacy,

and
(4) M is Π1

n-iterable.

If M is an x-premouse, then we have for every real y such that y ≥T x and
y ∈M , that

M � (1) ⇒ L[E](y)M � (1),

where L[E](y)M is as in Definition 2.18.

We first show that there exists a Turing cone of reals x such that there exists
an x-premouse M satisfying properties (1) - (4) as above.

Claim 1. For cofinally many x ∈ ωω, Mn−1(x)|δx satisfies properties (1)
and (2).

Proof. By assumption there are cofinally many x ∈ ωω such that

Mn−1(x)|δx � ¬OD-determinacy.

Pick such an x ∈ ωω. This already implies that property (2) holds true
for Mn−1(x)|δx. In addition Mn−1(x)|δx is obviously a countable ZFC
model without a Woodin cardinal. To show the formula in property (1), let
(xk | k < m) and (Mk | k ≤ m) be as in property (1) withM0 = Mn−1(x)|δx.

Moreover let M̂0 = Mn−1(x) and M̂k+1 = L[E](xk)
M̂k

. An inductive appli-
cation of Lemma 2.21 implies that for all k < m,

M̂k+1|δx = L[E](xk)
M̂k |δx = L[E](xk)

M̂k|δx = L[E](xk)
Mk

= Mk+1.

Moreover Lemma 2.19 yields that M̂k and thus Mk is (n− 1)-small and

M̂k ∼Mn−1(x) ∼ M̂k+1,

for all k + 1 ≤ m. Hence

Mn−1(x)|δx ∼ M̂k+1|δx = Mk+1.

Therefore the formula in property (1) holds true for M0 = Mn−1(x)|δx as
we also have that no Mk has a Woodin cardinal. �

By Claim 1 there are cofinally many x ∈ ωω such that there exists an
x-premouse M which satisfies properties (1) − (4) defined above. Such
x-premice M can be obtained by taking the smallest initial segment of
Mn−1(x)|δx which satisfies properties (1) and (2) defined above. Moreover
the set

A = {x ∈ ωω | there is an x-premouse M with (1)− (4)}
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is Σ1
n+1-definable and Turing invariant. So by Σ1

n+1 (Turing-)determinacy
there exists a cone of such reals x ∈ A, because the set A cannot be com-
pletely disjoint from a cone of reals since there are cofinally many reals x ∈ A
as argued above. Let v be a base of this cone and consider a real x ≥T v in
the cone.

Claim 2. Let M be an ω1-iterable x-premouse with properties (1) and (2)
and let N be an x-premouse satisfying properties (1)− (4). Then N cannot
win the comparison against M .

Proof. By Corollary 2.15 we can successfully coiterate the x-premice M and
N because they are both (n− 1)-small, solid and without Woodin cardinals
and moreover M is ω1-iterable and N is Π1

n-iterable. Let T and U be the
resulting trees of length λ+ 1 for some ordinal λ on M and N respectively,
in particular U might be a putative iteration tree.

Assume toward a contradiction that N wins the comparison against M and
consider the following two cases.

Case 1. We have MTλ CMUλ .

In this case MUλ need not be fully well-founded, but this will not affect

our argument to follow, because we have that MUλ is well-founded up to

MTλ ∩Ord. So there exists an ordinal α <MUλ ∩Ord such thatMUλ |α =MTλ
and we have by elementarity that

MTλ � ¬OD-determinacy,

since property (2) holds for M . Since α =MTλ ∩Ord it follows that

MUλ |α � ¬OD-determinacy.

Moreover we have that MUλ |α � (1), because we have by elementarity that

MTλ � (1). If there is no drop in the iteration fromN toMUλ , this contradicts
the minimality property (3) for N by elementarity. But even if there is a
drop on the main branch in U this statement is transferred along the branch
to N by the following argument.

Assume there is a drop at stage β + 1 on the main branch through U ,
that means M∗β+1 is a proper initial segment of Mγ for γ = predU (β + 1),
where M∗β+1 is the model to which the next extender Fβ from the Mβ

sequence is applied in the iteration as introduced in Section 3.1 in [St10].
Since there can only be finitely many drops along the main branch through
the iteration tree U , we can assume further without loss of generality that
this is the only drop along the main branch through U . (If there is more
than one drop on the main branch through U , we repeat the argument to
follow for the remaining drops.) Then by elementarity there is an ordinal
α′ <M∗β+1 ∩Ord <Mγ ∩Ord such that

M∗β+1|α′ � (1) + ¬OD-determinacy.
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But then also

Mγ |α′ � (1) + ¬OD-determinacy,

and therefore by elementarity there is an ordinal α′′ < N ∩Ord such that

N |α′′ � (1) + ¬OD-determinacy.

This now again contradicts the minimality property (3) for N .

Case 2. We have MTλ =MUλ , there is no drop on the main branch in the

iteration from M to MTλ , but there is a drop on the main branch in the

iteration from N to MUλ .

This immediately is a contradiction because it implies that we have MTλ �
ZFC, but at the same time ρω(MUλ ) <MUλ ∩Ord. �

So in the situation of the above claim, the premouse N is elementary em-
bedded into an ω1-iterable model and thus ω1-iterable itself. As a corollary
we obtain the following claim.

Claim 3. If there is an ω1-iterable x-premouse M with properties (1) and
(2), then every x-premouse N satisfying properties (1)−(4) is in fact already
ω1-iterable.

Since by Claim 1 there are cofinally many reals x such that the ω1-iterable
x-premouse Mn−1(x)|δx satisfies properties (1) and (2), Claim 3 yields that
the following claim holds true.

Claim 4. There are cofinally many reals x such that every x-premouse sat-
isfying properties (1)− (4) is in fact ω1-iterable.

Consider the game G which is a generalization of the Kechris-Solovay game
in [KS85] and defined as follows.

I x⊕ a
II y ⊕ b for x, a, y, b ∈ ωω.

The players I and II alternate playing natural numbers and the game lasts
ω steps. Say player I produces a real x ⊕ a and player II produces a real
y ⊕ b. Then player I wins G iff there exists an (x ⊕ y)-premouse M which
satisfies properties (1)− (4) and if AM denotes the least OD-set of reals in
M which is not determined, then a⊕ b ∈ AM .

This game is Σ1
n+1-definable and therefore determined. So say first player

I has a winning strategy τ for G. Recall that v denotes a base for a cone
of reals x such that there exists an x-premouse which satisfies properties
(1)− (4) and pick a real z∗ ≥T xτ ⊕ v, where xτ is a real coding the winning
strategy τ for player I, such that every z∗-premouse which satisfies properties
(1)− (4) is in fact ω1-iterable (using Claim 4).
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We now aim to construct a real z ≥T z∗ such that there is a z-premouse N
which satisfies properties (1)− (4), is ω1-iterable, and satisfies the following
additional property (3∗).

(3∗) For all reals y ∈ N such that y ≥T z there exists no ordinal ξ < N∩Ord
such that

L[E](y)N |ξ � (1) + ¬OD-determinacy.

Let M0 be an arbitrary z∗-premouse satisfying properties (1) − (4), which
is therefore ω1-iterable. Assume that if we let N = M0 and z = z∗, then
property (3∗) is not satisfied. So there is a real y ∈ M0 with y ≥T z∗

witnessing the failure of property (3∗) in M0. Let y0 ∈ M0 with y0 ≥T z∗
be a witness for that fact such that the ordinal ξ0 < L[E](y0)M

0 ∩Ord with

L[E](y0)M
0 |ξ0 � (1) + ¬OD-determinacy

is minimal. Let M1 = L[E](y0)M
0 |ξ0 and assume that

M1 2 (3∗),

because otherwise we could pick N = M1 and z = y0 and the construction
would be finished. Then as before there is a real y1 ∈ M1 with y1 ≥T y0

and a minimal ordinal ξ1 < L[E](y1)M
1 ∩Ord = M1 ∩Ord = ξ0 such that

L[E](y1)M
1 |ξ1 � (1) + ¬OD-determinacy.

This construction has to stop at a finite stage, because otherwise we have
that ξ0 > ξ1 > . . . is an infinite descending chain of ordinals. Therefore
there is a natural number n < ω such that

Mn = L[E](yn−1)M
n−1 |ξn−1,

and
Mn � (3∗).

Let z = yn−1 and N = Mn. Then we have that z ≥T z∗ and N is a
z-premouse which satisfies properties (1) and (3∗). Moreover by minimal-
ity of the ordinal ξn−1 we have that N satisfies property (3). From the
construction we also get that

N � ¬OD-determinacy.

Furthermore N inherits property (4) and the ω1-iterability from M0 since
it is obtained by performing multiple fully backgrounded extender construc-
tions inside the ω1-iterable premouse M0. Thus N and z are as desired.

Let AN denote the least non-determined OD-set of reals in N . We define a
strategy τ∗ for player I in the usual Gale-Stewart game G(AN ) with payoff
set AN played inside the model N as follows. Assume player II produces
the real b ∈ N . Then we consider the following run of the original game G
defined above:

Player II plays the real (z⊕ b)⊕ b and player I responds with the real x⊕ a
according to his winning strategy τ in G. Note that this run of the game G
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I x⊕ a = τ((z ⊕ b)⊕ b)
II (z ⊕ b)⊕ b

is in the model N . We define the strategy τ∗ such that in a run of the game
G(AN ) inside N according to τ∗ player I has to respond to the real b with
producing the real a.

I a = τ∗(b)
II b

Claim 5. τ∗ is a winning strategy for player I in the Gale-Stewart game
with payoff set AN played in N .

This claim implies that AN is determined in N , contradicting that AN was
assumed to be the least non-determined OD-set of reals in N .

Proof of Claim 5. Since τ is a winning strategy for player I in the original
game G, there exists an (x⊕ (z⊕ b))-premouse N ′ which satisfies properties
(1)− (4) such that

a⊕ b ∈ AN ′ ,
where AN ′ denotes the least non-determined OD-set of reals in N ′.

We want to show that
AN ′ = AN

in order to conclude that τ∗ is a winning strategy for player I in the Gale-
Stewart game with payoff set AN played in N .

Property (1) yields that

L[E](x⊕ (z ⊕ b))N ∼ N,
because x, z, b ∈ N and x⊕ (z⊕ b) ≥T z. Therefore L[E](x⊕ (z⊕ b))N is an
(x⊕ (z⊕ b))-premouse which satisfies property (2), because it has the same
sets of reals and the same OD-sets of reals as N and hence

L[E](x⊕ (z ⊕ b))N � ¬OD-determinacy.

Moreover L[E](x⊕ (z ⊕ b))N inherits property (1) from N .

Since L[E](x⊕ (z⊕ b))N is the result of a fully backgrounded extender con-
struction inside the ω1-iterable premouse N , it is ω1-iterable itself. There-
fore Claim 3 yields that in particular the (x⊕ (z ⊕ b))-premouse N ′ is also
ω1-iterable, because it was choosen such that it satisfies properties (1)− (4).

So we can coiterate L[E](x⊕ (z ⊕ b))N and N ′ by the remark after Lemma
2.11 since they are both (n−1)-small ω1-iterable (x⊕(z⊕b))-premice which
do not have Woodin cardinals. Thus by the minimality of N ′ from property
(3) and an argument analogous to the one we already gave in the proof of
Claim 3, we have that

L[E](x⊕ (z ⊕ b))N ≥∗ N ′,



38 SANDRA MÜLLER, RALF SCHINDLER, AND W. HUGH WOODIN

where ≤∗ denotes the usual mouse order3. Moreover we have minimality for
the premouse L[E](x⊕ (z ⊕ b))N in the sense of property (3∗) for N . This
yields again by an argument analogous to the one we already gave in the
proof of Claim 3 that

L[E](x⊕ (z ⊕ b))N ≤∗ N ′.

Therefore we have that in fact

L[E](x⊕ (z ⊕ b))N =∗ N ′,

and hence

L[E](x⊕ (z ⊕ b))N ∼ N ′.
Using L[E](x⊕ (z ⊕ b))N ∼ N it follows that

N ∼ N ′,
and thus AN = AN ′ . �

Now suppose player II has a winning strategy σ in the game G introduced
above and recall that v is a base of a cone of reals x such that there exists
an x-premouse which satisfies properties (1)− (4). As in the situation when
player I has a winning strategy, we pick a real z∗ ≥T xσ ⊕ v, where xσ is a
real coding the winning strategy σ for player II, such that every z∗-premouse
which satisfies properties (1) − (4) is already ω1-iterable (see Claims 1 and
3).

As in the argument for player I we can construct a real z ≥T z∗ such that
there exists a z-premouseN which satisfies properties (1)−(4), is ω1-iterable,
and satisfies the additional property (3∗). As before we let AN denote the
least non-determined OD-set in N , which exists because the z-premouse N
satisfies property (2).

Now we define a strategy σ∗ for player II in the usual Gale-Stewart game
G(AN ) with payoff set AN played inside N as follows. Assume that player
I produces a real a ∈ N in a run of the game G(AN ) inside the model N .
Then we consider the following run of the game G:

I (z ⊕ a)⊕ a
II y ⊕ b = σ((z ⊕ a)⊕ a)

Player I plays a real (z ⊕ a) ⊕ a and player II responds with a real y ⊕ b
according to his winning strategy σ in G. We define the strategy σ∗ such
that in a run of the game G(AN ) inside the model N according to σ∗ player
II has to respond to the real a with producing the real b.

3We say an ω1-iterable premouse M is smaller or equal in the mouse order than an ω1-
iterable premouse N and write “M ≤∗ N” iff M and N successfully coiterate to premice
M∗ and N∗ such that M∗EN∗ and there are no drops on the main branch in the iteration
from M to M∗. Moreover we say that N and M are equal in the mouse order and write
“M =∗ N” iff M ≤∗ N and N ≤∗ M.
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I a
II b = σ∗(a)

Claim 6. σ∗ is a winning strategy for player II in the Gale-Stewart game
with payoff set AN played in N .

This claim implies that AN is determined in N , again contradicting that
AN was assumed to be the least non-determined OD-set of reals in N .

Proof of Claim 6. We first want to show that the ((z ⊕ a) ⊕ y)-premouse
L[E]((z ⊕ a)⊕ y)N satifies properties (1)− (4).

First property (1) for N yields that

L[E]((z ⊕ a)⊕ y)N ∼ N,
because we have z, a, y ∈ N . Therefore L[E]((z⊕a)⊕ y)N is a ((z⊕a)⊕ y)-
premouse which satisfies property (2), because it has the same sets of reals
and the same OD-sets of reals as N and hence as before

L[E]((z ⊕ a)⊕ y)N � ¬OD-determinacy.

Moreover L[E]((z ⊕ a)⊕ y)N inherits condition (1) from N .

Since L[E]((z⊕a)⊕y)N is a fully backgrounded extender construction inside
the ω1-iterable mouse N it is ω1-iterable itself by §12 in [MS94]. Therefore
L[E]((z⊕ a)⊕ y)N satisfies properties (1), (2) and (4). By property (3∗) for
the z-premouse N we additionally have that L[E]((z⊕a)⊕y)N also satisfies
property (3).

Since σ is a winning strategy for player II in the original game G, we have
that if a, b, z and y are as above, then

a⊕ b /∈ AN ′ ,
for all ((z ⊕ a) ⊕ y)-premice N ′ satisfying properties (1) − (4), where AN ′
denotes the least non-determined OD-set of reals in N ′. Now let

N ′ = L[E]((z ⊕ a)⊕ y)N ,

so we have that in particular N ′ is a ((z ⊕ a) ⊕ y)-premouse and satisfies
properties (1)− (4) as above.

As in the previous case where we assumed that player I has a winning
strategy in G, we want to show that

AN ′ = AN

in order to conclude that σ∗ is a winning strategy for player II in the Gale-
Stewart game with payoff set AN played inside N , using that N ′ satisfies
properties (1)− (4) as argued above.

Using L[E]((z ⊕ a)⊕ y)N ∼ N it follows that

N ∼ N ′,
and thus AN = AN ′ , as desired. �
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This finishes the proof of Lemma 2.3. �

2.4. Applications. This section is devoted to two important corollaries of
Lemma 2.3 which are going to be used in Sections 2.5 and 3.6.

Corollary 2.22. Let n ≥ 1. Assume that M#
n−1(x) exists and is ω1-iterable

for all x ∈ ωω and that all Σ1
n+1-definable sets of reals are determined. Then

ω
Mn−1(x)
1 is measurable in HODMn−1(x)|δx ,

for a cone of reals x.

Proof. This follows from Lemma 2.3 with a generalized version of Solovay’s
theorem that, under the Axiom of Determinacy AD, ω1 is measurable. In
fact Solovay’s proof shows that OD-determinacy implies that ω1 is measur-
able in HOD. For the readers convenience, we will present a proof of this
result, following the proof of the classical result as in Theorem 12.18 (b) in
[Sch14] or Lemma 6.2.2 in [SchSt].

Lemma 2.3 yields that

Mn−1(x)|δx � OD-determinacy,

for a cone of reals x. Let x ∈ ωω be an arbitrary element of this cone and
let us work inside Mn−1(x)|δx for the rest of the proof. We aim to define

a < ω1-complete ultrafilter U inside HODMn−1(x)|δx on ω1
def
= ω

Mn−1(x)|δx
1 =

ω
Mn−1(x)
1 , witnessing that ω1 is measurable in HODMn−1(x)|δx .

Let n,m 7→ 〈n,m〉 be the Gödel pairing function for n,m < ω and recall
that

WO
def
= {x ∈ ωω | Rx is a well-ordering},

where we let (n,m) ∈ Rx iff x(〈n,m〉) = 1 for x ∈ ωω. For y ∈WO we write
||y|| for the order type of Ry and for x ∈ ωω we let

|x| = sup{||y|| | y ∈WO ∧ y ≡T x}.

Consider the set S = {|x| | x ∈ ωω} and let π : ω1 → S be an order
isomorphism. Now we define the filter U on ω1 as follows. For A ⊂ ω1 such
that A ∈ OD we let

A ∈ U iff {x ∈ ωω | |x| ∈ π ”A} contains a cone of reals.

Claim 1. U ∩HOD is a < ω
Mn−1(x)
1 -complete ultrafilter in HOD.

Proof. The set {x ∈ ωω | |x| ∈ π ”A} is Turing invariant. Therefore we have
that OD-Turing-determinacy implies that the set {x ∈ ωω | |x| ∈ π ”A} for
A ∈ OD either contains a cone of reals or is completely disjoint from a cone

of reals. Hence we have that U ∩HOD is an ultrafilter on ω1 = ω
Mn−1(x)
1 in

HOD. Moreover the following argument shows that this ultrafilter U ∩HOD

is < ω
Mn−1(x)
1 -complete in HOD.
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Let {Aα | α < γ} ⊂ U ∩ HOD be such that {Aα | α < γ} ∈ HOD for an

ordinal γ < ω
Mn−1(x)
1 . Then there is a sequence (aα | α < γ) of reals such

that for each α < γ, the real aα is a base for a cone of reals contained in

{x ∈ ωω | |x| ∈ π ”Aα}. Since γ < ω
Mn−1(x)
1 , we can fix a bijection f : ω → γ

in Mn−1(x). But then
⊕

n<ω af(n) is a base for a cone of reals contained in⋂
α<γ

{x ∈ ωω | |x| ∈ π ”Aα} = {x ∈ ωω | |x| ∈ π ”
⋂
α<γ

Aα}.

So we have that
⋂
α<γ Aα ∈ U ∩ HOD and thus the filter U ∩ HOD is

< ω
Mn−1(x)
1 -complete. �

Therefore U∩HOD witnesses that ω
Mn−1(x)
1 is measurable in HODMn−1(x)|δx .

�

In what follows we will prove that in the same situation as above ω
Mn−1(x)
2

is strongly inaccessible in HODMn−1(x)|δx , which is another consequence of
Lemma 2.3. This is going to be used later in Section 3.6.

In fact the following theorem holds true. It is due to the third author and a
consequence of the “Generation Theorems” in [KW10] (see Theorem 5.4 in
[KW10]).

Theorem 2.23. Let n ≥ 1. Assume that M#
n−1(x) exists and is ω1-iterable

for all x ∈ ωω and that all Σ1
n+1-definable sets of reals are determined. Then

for a cone of reals x,

ω
Mn−1(x)
2 is a Woodin cardinal in HODMn−1(x)|δx .

In order to make this paper more self-contained, we shall not use Theorem
2.23 here, though, and we will give a proof of the following theorem, which
is essentially due to Moschovakis, and will be used in Section 3.6. A version
of it can also be found in [KW10] (see Theorem 3.9 in [KW10]). The proof
shows in fact that OD-determinacy implies that ω2 is inaccessible in HOD.

Theorem 2.24. Let n ≥ 1. Assume that M#
n−1(x) exists and is ω1-iterable

for all x ∈ ωω and that all Σ1
n+1-definable sets of reals are determined. Then

for a cone of reals x,

ω
Mn−1(x)
2 is strongly inaccessible in HODMn−1(x)|δx .

Proof. Using Lemma 2.3 we have as above that there is a cone of reals x
such that

Mn−1(x)|δx � OD-determinacy.

Let x be an element of that cone.

Claim 1. We have that ω
Mn−1(x)
2 = (Θ0)Mn−1(x), where

Θ0 = sup{α | there exists an OD -surjection f : ωω → α}.
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Proof. Work inside the model Mn−1(x). Since CH holds in Mn−1(x), it
follows that Θ0 ≤ ω2. For the other inequality let α < ω2 be arbitrary.
Then there exists an ODx-surjection g : ωω → α because by definability
(using the definability results from [St95]) we have that

Mn−1(x)|ωMn−1(x)
2 ⊆ HODMn−1(x)

x .

This implies that there is an OD-surjection f : ωω × ωω → α by varying x
and thus it follows that α ≤ Θ0. �

Work inside the model Mn−1(x)|δx from now on and note that it is trivial
that Θ0 = ω2 is a regular cardinal in HOD. So we focus on proving that ω2

is a strong limit. For this purpose we fix an arbitrary ordinal α < ω2 and
prove that |P(α)HOD| < ω2.

Since α < ω2 = Θ0, we can fix a surjection f : ωω → α such that f ∈ OD.
This surjection f induces a prewellordering ≤f∈ OD on ωω if we let

x ≤f y iff f(x) ≤ f(y)

for x, y ∈ ωω. Now consider the pointclass Σ1
1(≤f ) which is defined as

follows. For a set of reals A (or analogously for a set A ⊂ (ωω)k for some
k < ω) we say A ∈ Σ1

1(≤f ) iff there is a Σ0-formula ϕ and a real z ∈ ωω
such that

A = {y ∈ ωω | ∃x ∈ ωω ϕ(y, x,≤f , ωω\ ≤f , z)}.
The pointclass Σ1

1(≤f ) is defined analogous without the parameter z. We
have that there exists a universal Σ1

1(≤f )-definable set U ⊆ ωω× ωω for the
pointclass Σ1

1(≤f ). So we have that for every Σ1
1(≤f )-definable set A there

exists a z ∈ ωω such that A = Uz = {x ∈ ωω | (z, x) ∈ U}. Now it suffices
to prove the following claim.

Claim 2. Let X ⊂ α with X ∈ OD be arbitrary. Then there exists a
Σ1

1(≤f )-definable set A ⊂ ωω such that X = f ”A.

Using Claim 2 we can define a surjection

g : ωω → P(α) ∩OD

such that g ∈ OD by letting g(z) = f ”Uz for z ∈ ωω. This yields that we
have |P(α)HOD| < ω2 as desired.

Therefore we are left with proving Claim 2 to finish the proof of Theorem
2.24. The proof of Claim 2 is mainly a special case of Moschovakis’ Coding
Lemma as in Theorem 3.2 in [KW10], so we will outline the proof in this
special case.

Proof of Claim 2. Let X ∈ P(α) ∩ OD be arbitrary. We aim to show that
there is a real z ∈ ωω such that X = f ”Uz. Let

B = {z ∈ ωω | f ”Uz ⊆ X}.
Moreover let αz for z ∈ B be the minimal ordinal β such that β ∈ X \f ”Uz,
if it exists. We aim to show that there exists a real z ∈ B such that αz does
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not exist. So assume toward a contradiction that the ordinal αz exists for
all z ∈ B.

Now consider the following game G of length ω, where player I and player
II alternate playing natural numbers such that in the end player I plays a
real x and player II plays a real y.

I x
II y

for x, y ∈ ωω.

We define that player I wins the game G iff

x ∈ B ∧ (y ∈ B → αx ≥ αy).

Note that we have B ∈ OD since f, U,X ∈ OD. Therefore the game G is
OD and thus determined by our hypothesis.

Assume first that player I has a winning strategy σ in G. For a real y let
(σ∗y)I denote player I’s moves in a run of the game G, where player II plays
y and player I responds according to his winning strategy σ. Then there
exists a real z0 such that

Uz0 =
⋃
{U(σ∗y)I | y ∈

ωω}

because the right hand side of this equation is Σ1
1(≤f )-definable by choice

of U . Since σ is a winning strategy for player I, we have that (σ ∗ y)I ∈ B
for all y ∈ ωω and thus it follows that z0 ∈ B. Moreover we have that
α(σ∗y)I ≤ αz0 for all y ∈ ωω by definition of z0.

Now we aim to construct a play z∗ for player II defeating the strategy σ.
Since f : ωω → α is a surjection we can choose a ∈ ωω such that f(a) = αz0 .
Moreover we let z∗ ∈ ωω be such that Uz∗ = Uz0 ∪ {a}. Then we have that

f ”Uz∗ = f ”Uz0 ∪ {f(a)} = f ”Uz0 ∪ {αz0} ⊂ X,
since z0 ∈ B. Hence z∗ ∈ B. Moreover we have that

αz∗ > αz0 ≥ α(σ∗y)I

for all y ∈ ωω. Therefore player II can defeat σ by playing the real z∗,
contradicting the fact that σ is a winning strategy for player I.

Assume now that player II has a winning strategy τ in the game G. Let

h0 : ωω × ωω → ωω

be a Σ1
1(≤f )-definable function such that for all y, z ∈ ωω,

Uh0(z,y) = Uz ∩ {x ∈ ωω | f(x) < f(y)}.

Choose h1 : ωω → ωω such that h1 is Σ1
1(≤f )-definable and

Uh1(z) =
⋃
{U(h0(z,y)∗τ)II ∩ {x ∈

ωω | f(x) = f(y)} | y ∈ ωω},

where the notion (h0(z, y) ∗ τ)II is defined analogous to the corresponding
notion for player I introduced above. By Kleene’s Recursion Theorem (see
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for example Theorem 3.1 in [KW10]) there exists a fixed point for h1 with
respect to the set U , that means there exists a real z∗ ∈ ωω such that we
have

Uz∗ = Uh1(z∗).

Now our first step is to prove that z∗ ∈ B. Assume toward a contradiction
that (f ”Uz∗) \X 6= ∅ and let γ0 ∈ (f ”Uz∗) \X be minimal. Moreover let
y0 ∈ Uz∗ be such that f(y0) = γ0. Then

γ0 ∈ f ”Uz∗ = f ”Uh1(z∗)

and by definition of the function h1 it follows that γ0 ∈ f ”U(h0(z∗,y0)∗τ)II .
Since γ0 was picked to be minimal in (f ”Uz∗) \X, we have h0(z∗, y0) ∈ B
because we have by definition that

Uh0(z∗,y0) = Uz∗ ∩ {x ∈ ωω | f(x) < f(y0)} = Uz∗ ∩ {x ∈ ωω | f(x) < γ0}

and thus f ”Uh0(z∗,y0) ⊆ X. Since τ is a winning strategy for player II, we
have that (h0(z∗, y0) ∗ τ)II ∈ B. Taken all together it follows that

γ0 ∈ f ”U(h0(z∗,y0)∗τ)II ⊆ X.

This contradicts the fact that γ0 ∈ (f ”Uz∗) \X.

Recall that we assumed toward a contradiction that the ordinal αz∗ exists.
Let a∗ ∈ ωω be such that

f(a∗) = αz∗

and note that such an a∗ exists since f : ωω → α is a surjection and αz∗ < α.
Then we have by definition of the function h0 that h0(z∗, a∗) ∈ B because
z∗ ∈ B. Moreover we have that αz∗ = αh0(z∗,a∗) holds by definition of αz∗

since f(a∗) = αz∗ . As τ is a winning strategy for player II in the game G,
we finally have that

α(h0(z∗,a∗)∗τ)II > αh0(z∗,a∗) = αz∗ ,

because h0(z∗, a∗) ∈ B. This contradicts the fact that

U(h0(z∗,a∗)∗τ)II ⊂ Uh1(z∗) = Uz∗ ,

by definition of αz∗ and α(h0(z∗,a∗)∗τ)II . Therefore the ordinal αz∗ does not
exist and thus we finally have that f ”Uz∗ = X, as desired. �

This finishes the proof of Theorem 2.24. �

2.5. A Proper Class Inner Model with n Woodin Cardinals. In this
section we are now able to apply the results from the previous sections to
show the existence of a proper class inner model with n Woodin cardinals
from determinacy for Π1

n- and Π1
n+1-definable sets (if we assume inductively

that Π1
n determinacy implies that M#

n−1(x) exists and is ω1-iterable for all
x ∈ ωω). This is done in the following theorem, which is a generalization of
Theorem 7.7 in [St96] using Lemma 2.3 and Corollary 2.22.
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Theorem 2.25. Let n ≥ 1. If M#
n−1(x) exists and is ω1-iterable for all

x ∈ ωω and all Σ1
n+1-definable sets of reals are determined, then there exists

a proper class inner model with n Woodin cardinals.

We are not claiming here that the model obtained in Theorem 2.25 is iterable
in any sense. We will show how to construct an ω1-iterable premouse with n
Woodin cardinals using this model in the next section, but for that we need
to assume slightly more determinacy (namely a consequence of determinacy
for all Σ1

n+1-definable sets of reals).

Proof. As before let δx denote the least Woodin cardinal in Mn−1(x) if n > 1
and let δx denote the least x-indiscernible in L[x] = M0(x) if n = 1. Then
we have that according to Lemma 2.3, there is a real x such that for all reals
y ≥T x,

Mn−1(y)|δy � OD-determinacy.

Fix such a real x.

In the case n = 1 we have that Theorem 2.25 immediately follows from
Theorem 7.7 in [St96], so assume n > 1.

Let (Kc)Mn−1(x)|δx denote the result of a robust-background-extender Kc-
construction in the sense of Chapter 1 in [Je03] performed inside the model
Mn−1(x)|δx. Then we distinguish three cases as follows.

Case 1. Assume that (Kc)Mn−1(x)|δx has no Woodin cardinals and is fully
iterable inside Mn−1(x)|δx via the iteration strategy Σ which is guided by
Q-structures as in Definition 2.5.

In this case we can isolate the core modelKMn−1(x)|δx below δx as in Theorem
1.1 in [JS13]. Then the core model KMn−1(x)|δx is absolute for all forcings of

size less than δx over Mn−1(x)|δx and moreover KMn−1(x)|δx satisfies weak
covering (building on work in [MSchSt97] and [MSch95]). That means we
have that Mn−1(x)|δx � “(α+)K = α+” for all singular cardinals α.

Let α = ℵMn−1(x)
ω . Then α is singular in Mn−1(x), so we have in particular

that

Mn−1(x)|δx � “(α+)K = α+”.

Moreover we have that α is a cutpoint of Mn−1(x). So let z ∈ ωω be generic
over Mn−1(x) for Col(ω, α). Then for y = x⊕ z we have that

Mn−1(x)[z] = Mn−1(y),

where we construe M#
n−1(x)[z] as a y-mouse and as a y-mouse M#

n−1(x)[z] is

sound and ρω(M#
n−1(x)[z]) = y (see [SchSt09] for the fine structural details).

Moreover we have that

Mn−1(y)|δy � OD-determinacy,
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since y ≥T x. This implies that

Mn−1(x)[z]|δy � OD-determinacy.

Now work in the model Mn−1(x)[z]|δy. Then we have that OD-determinacy
implies that ω1 is measurable in HOD as in Corollary 2.22.

Since K ⊆ HOD and we have that ω1 = (α+)K , it follows that ω1 =
(α+)HOD. But HOD � AC, so in particular in HOD all measurable car-
dinals are inaccessible. This is a contradiction.

Case 2. Assume that there is a Woodin cardinal in (Kc)Mn−1(x)|δx .

In this case we aim to show that there exists a proper class inner model with
n Woodin cardinals, which is obtained by performing a fully backgrounded
extender construction inside Mn−1(x) on top of the model

(Kc)Mn−1(x)|δx | δ,

where δ denotes the largest Woodin cardinal in (Kc)Mn−1(x)|δx .

We can assume without loss of generality that there is a largest Woodin
cardinal in the model (Kc)Mn−1(x)|δx if it has a Woodin cardinal, because if

there is no largest one, then (Kc)Mn−1(x)|δx already yields a proper class inner
model with n Woodin cardinals by iterating some large enough extender
out of the universe. By the same argument we can in fact assume that
(Kc)Mn−1(x)|δx is (n− 1)-small above δ.

Let

(Mξ,Nξ | ξ ∈ Ord)

be the sequence of models obtained from a fully backgrounded extender
construction above (Kc)Mn−1(x)|δx | δ inside Mn−1(x) as in Definition 2.18,
where

Mξ+1 = Cω(Nξ+1)

and let

L[E]((Kc)Mn−1(x)|δx | δ)Mn−1(x)

denote the resulting model.

Case 2.1. There is no ξ ∈ Ord such that δ is not definably Woodin over
the model Mξ+1.

In this case δ is a Woodin cardinal inside L[E]((Kc)Mn−1(x)|δx | δ)Mn−1(x) and
it follows by a generalization of Theorem 11.3 in [MS94] that we have that

L[E]((Kc)Mn−1(x)|δx | δ)Mn−1(x) is a proper class inner model with n Woodin
cardinals, as desired.

Case 2.2. There exists a ξ ∈ Ord such that δ is not definably Woodin over
the model Mξ+1.
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Let ξ be the minimal such ordinal. In this case the premouse Mξ+1 is
(n− 1)-small above δ (see the proof of Claim 1 in the proof of Lemma 2.19)
and we have that

Mξ+1 ∈Mn−1(x)|δx.
Consider the coiteration of Mξ+1 and (Kc)Mn−1(x)|δx inside Mn−1(x)|δx.

Claim 1. The coiteration of Mξ+1 and (Kc)Mn−1(x)|δx inside Mn−1(x)|δx
is successful.

Proof. First of all we have that the coiteration takes place above δ and the
premouse Mξ+1 is ω1-iterable above δ in V by construction (see [MS94]).
Therefore the proof of Lemma 2.11 (2) yields that in the model Mn−1(x)|δx
we have thatMξ+1 is iterable for iteration trees in H

Mn−1(x)
δx

which are above

δ, since Mξ+1 ∈Mn−1(x)|δx is (n− 1)-small above δ and ρω(Mξ+1) ≤ δ.
Moreover we have that (Kc)Mn−1(x)|δx is countably iterable above δ inside
Mn−1(x)|δx by [Je03] (building on the iterability proof in Chapter 9 in
[St96]).

Assume now toward a contradiction that the coiteration of (Kc)Mn−1(x)|δx

withMξ+1 inside Mn−1(x)|δx is not successful. Since as argued aboveMξ+1

is iterable above δ inside Mn−1(x)|δx and the coiteration takes place above

δ this means that the coiteration has to fail on the (Kc)Mn−1(x)|δx-side.

The premouse (Kc)Mn−1(x)|δx is assumed to be (n − 1)-small above δ and

therefore the fact that the coiteration of (Kc)Mn−1(x)|δx and Mξ+1 fails on

the (Kc)Mn−1(x)|δx-side, implies that there exists an iteration tree T on

(Kc)Mn−1(x)|δx of limit length such that there is no Q-structure Q(T ) for

T such that Q(T )EM#
n−2(M(T )) and hence

M#
n−2(M(T )) � “δ(T ) is Woodin”.

In particular we have that the premouse M#
n−2(M(T )) constructed in the

sense of Definition 2.9 is not (n − 2)-small above δ(T ) since otherwise it
would already provide a Q-structure Q(T ) for T which is (n − 2)-small
above δ(T ).

Let M̄ be the Mostowski collapse of a countable substructure of Mn−1(x)|δx
containing the iteration tree T . That means for a large enough natural
number m we let M̄,X and σ be such that

M̄
σ∼= X ≺Σm Mn−1(x)|δx,

where

σ : M̄ →Mn−1(x)|δx
denotes the uncollapse map such that we have a model K̄ in M̄ with
σ(K̄|γ) = (Kc)Mn−1(x)|δx |σ(γ) for every ordinal γ < M̄ ∩Ord, and we have
an iteration tree T̄ on K̄ in M̄ with σ(T̄ ) = T . Moreover we let δ̄ ∈ M̄ be
such that σ(δ̄) = δ.
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By the iterability proof of Chapter 9 in [St96] (in the version of [Je03])
applied inside the model Mn−1(x)|δx, there exists a cofinal well-founded
branch b through the iteration tree T̄ on K̄ above δ̄. Moreover we have that

M#
n−2(M(T̄ )) � “δ(T̄ ) is Woodin”

and M#
n−2(M(T̄ )) is not (n− 2)-small above δ(T̄ ).

Consider the coiteration of MT̄b with M#
n−2(M(T̄ )) and note that it takes

place above δ(T̄ ). Since M#
n−2(M(T̄ )) is ω1-iterable above δ(T̄ ) and MT̄b

is iterable above δ̄ < δ(T̄ ) by the iterability proof of Chapter 9 in [St96] (in
the version of [Je03]) applied inside Mn−1(x)|δx, the coiteration is successful

using Lemma 2.11 (2). We have thatMT̄b cannot lose the coiteration by the

following argument. If there is no drop along the branch b, thenMT̄b cannot
lose the coiteration, because then there is no definable Woodin cardinal in

MT̄b above δ̄ by elementarity, but at the same time we have that

M#
n−2(M(T̄ )) � “δ(T̄ ) > δ̄ is Woodin”.

If there is a drop along b, thenMT̄b also has to win the coiteration, because

we have that ρω(MT̄b ) < δ(T̄ ) and ρω(M#
n−2(M(T̄ ))) = δ(T̄ ).

That means there is an iterate R∗ of MT̄b and a non-dropping iterate M∗

of M#
n−2(M(T̄ )) such thatM∗ER∗. We have thatM∗ is not (n− 1)-small

above δ̄, because M#
n−2(M(T̄ )) is not (n−1)-small above δ̄ as argued above

and the iteration from M#
n−2(M(T̄ )) to M∗ is non-dropping. Therefore it

follows that R∗ is not (n−1)-small above δ̄ and thusMT̄b is not (n−1)-small
above δ̄. By the iterability proof of Chapter 9 in [St96] (in the version of

[Je03]) we can re-embed the model MT̄b into a model of the (Kc)Mn−1(x)|δx-

construction above (Kc)Mn−1(x)|δx | δ. This yields that (Kc)Mn−1(x)|δx is not
n-small, contradicting our assumption that it is (n− 1)-small above δ. �

From Claim 1 it now follows by universality of (Kc)Mn−1(x)|δx above δ (see

Theorem 4 in [Je03]) that the (Kc)Mn−1(x)|δx-side has to win the comparison.

That means there is an iterate K∗ of (Kc)Mn−1(x)|δx and an iterate N∗ of
Mξ+1 which is non-dropping on the main branch such that

N∗ EK∗.

But this is a contradiction, because we assumed that δ is not definably
Woodin over Mξ+1 and at the same time we have that

(Kc)Mn−1(x)|δx � “δ is a Woodin cardinal”.

This finishes the case that there is a Woodin cardinal in (Kc)Mn−1(x)|δx .



MICE FROM OPTIMAL DETERMINACY HYPOTHESES 49

Case 3. Assume that there is no Woodin cardinal in (Kc)Mn−1(x)|δx and

that the premouse (Kc)Mn−1(x)|δx is not fully iterable inside Mn−1(x)|δx via
the Q-structure iteration strategy Σ (see Definition 2.5).

The failure of the attempt to iterate (Kc)Mn−1(x)|δx via the Q-structure
iteration strategy Σ implies that there exists an iteration tree T of limit
length on (Kc)Mn−1(x)|δx in Mn−1(x)|δx such that there exists noQ-structure
for T inside the model Mn−1(x)|δx.

Let
(Mξ,Nξ | ξ ∈ Ord)

be the sequence of models obtained from a fully backgrounded extender
construction above M(T ) inside Mn−1(x) as in Definition 2.18, where

Mξ+1 = Cω(Nξ+1)

and let
L[E](M(T ))Mn−1(x)

denote the resulting model.

Case 3.1. There is no ξ ∈ Ord such that δ(T ) is not definably Woodin over
the model Mξ+1.

In this case δ(T ) is a Woodin cardinal inside L[E](M(T ))Mn−1(x) and it
follows as in Case 2.1 by a generalization of Theorem 11.3 in [MS94] that

L[E](M(T ))Mn−1(x) is a proper class inner model with n Woodin cardinals,
as desired.

Case 3.2. There exists a ξ ∈ Ord such that δ(T ) is not definably Woodin
over the model Mξ+1.

Let ξ be the minimal such ordinal. In this case the premouse Mξ+1 is
(n− 1)-small above δ(T ) and we have that

Mξ+1 ∈Mn−1(x)|δx.
But then Mξ+1 BM(T ) already provides a Q-structure for T inside the
model Mn−1(x)|δx because δ(T ) is not definably Woodin over Mξ+1. This
is a contradiction. �

Note that all results we proved in this section under a lightface determinacy
hypothesis relativize to all x ∈ ωω if we assume the analogous boldface
determinacy hypothesis. We just decided to present the results without
additional parameters to simplify the notation.

3. Proving Iterability

With Theorem 2.25 we found a candidate for Mn in the previous section,
but we still have to show its iterability. We will in fact not prove that this
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candidate is iterable, but we will use it to construct an ω1-iterable premouse

M#
n in the case that n is odd. (Note here already that we will give a different

argument if n is even.)

We do parts of this in a slightly more general context and therefore intro-
duce the concept of an n-suitable premouse in Section 3.1, which will be a
natural candidate for the premouse Mn|(δ+

0 )Mn , where δ0 denotes the least
Woodin cardinal in Mn. Using n-suitable premice we will show inductively

in Sections 3.5 and 3.6 that under a determinacy hypothesis M#
n exists and

is ω1-iterable.

In this section again all results we are going to prove under a lightface
determinacy hypothesis relativize to all x ∈ ωω under the analogous boldface
determinacy hypothesis.

3.1. Existence of n-suitable Premice. After introducing pre-n-suitable
premice and proving their existence from the results in the previous section,
we aim to show in this section that pre-(2n− 1)-suitable premice, which are
premice with one Woodin cardinal which satisfy certain fullness conditions,
also satisfy a weak form of iterability, namely short tree iterability. In fact
we are going to show a slightly stronger form of iterability which includes
that fullness properties are preserved during non-dropping iterations. This
will in particular enable us to perform certain comparison arguments for
(2n− 1)-small premice and will therefore help us to conclude ω1-iterability

for some candidate for M#
2n−1.

Recall that in what follows by “M#
n exists” we always mean that “M#

n exists
and is ω1-iterable”.

A lot of the results in this section only hold true for premice at the odd
levels of our argument, namely (2n− 1)-suitable premice. This results from
the periodicity in the projective hierarchy in terms of the uniformization
property (see Theorem 6C.5 in [Mo09]) and the periodicity in the correctness

of M#
n (see Lemmas 1.17 and 1.19). This behaviour forces us to give a

different proof for the even levels of our argument in Section 3.6.

We start by introducing pre-n-suitable and n-suitable premice. Our defini-
tion will generalize the notion of suitability from Definition 3.4 in [StW16]
to n > 1. For technical reasons our notion slightly differs from n-suitability
as defined in Definition 5.2 in [Sa13].

Definition 3.1. Let n ≥ 1 and assume that M#
n−1(x) exists for all x ∈ ωω.

Then we say a countable premouse N is pre-n-suitable iff there is an ordinal
δ < ωV1 such that

(1) N � “ ZFC−+ δ is the largest cardinal”,

N = Mn−1(N |δ) | (δ+)Mn−1(N |δ),

(2) Mn−1(N |δ) is a proper class model and

Mn−1(N |δ) � “δ is Woodin”,
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(3) for every γ < δ, Mn−1(N |γ) is a set, or

Mn−1(N |γ) 2 “γ is Woodin”,

and
(4) for every η < δ, Mn−1(N |δ) � “N |δ is η-iterable”.

Recall the definition of the premouse Mn−1(N |δ) from Definition 2.9. If N
is a pre-n-suitable premouse, we denote the unique ordinal δ from Definition
3.1 by δN , analogous to the notation fixed in Section 2.1.

Whenever we assume that some premouse N is pre-n-suitable for some n ≥
1, we in fact tacitly assume in addition that the premouse M#

n−1(x) exists

for all x ∈ ωω (or at least that the premouse M#
n−1(N |δ) exists).

Remark. Clearly, if it exists, Mn|(δ+)Mn is a pre-n-suitable premouse for
n ≥ 1, whenever δ denotes the least Woodin cardinal in Mn.

Remark. We have that for n ≥ 1, if N is a pre-n-suitable premouse, then N
is n-small.

We first show that the proper class inner model with n Woodin cardinals we
constructed in the proof of Theorem 2.25 yields a pre-n-suitable premouse,
if we cut it off at the successor of its least Woodin cardinal and minimize it.

Lemma 3.2. Let n ≥ 1. Assume that M#
n−1(x) exists for all x ∈ ωω and

that all Σ1
n+1-definable sets of reals are determined. Then there exists a

pre-n-suitable premouse.

Proof. Let W be the model constructed in Cases 2 and 3 in the proof of
Theorem 2.25. Cutting off at the successor of the bottom Woodin cardinal δ
yields a premouse N = W |(δ+)W which satisfies conditions (1) and (2) in the

definition of pre-n-suitability, in the case that the premouse (Kc)Mn−1(x)|δx

from the proof of Theorem 2.25 is (n − 1)-small above δ. Otherwise we

can easily consider an initial segment N of (Kc)Mn−1(x)|δx which satisfies
conditions (1) and (2). Let N ′ be the minimal initial segment of N which
satisfies conditions (1) and (2) and note that we then have that N ′ satisfies
condition (3).

This premouse N ′|δ′ is countably iterable inside Mn−1(x) by Corollary 2 in
[Je03] (using the iterability proof from Chapter 9 in [St96]), where x is a
real as in the proof of Theorem 2.25 such that the model W as above is
constructed inside the model Mn−1(x) and δ′ denotes the largest cardinal
in N ′. The Q-structures for iteration trees T on N ′|δ′ are (n − 1)-small
above the common part model and are therefore contained in the model
Mn−1(N ′|δ′) by arguments we already gave several times before. Thus it
follows that N ′|δ′ is η-iterable inside Mn−1(N ′|δ′) for all η < δ′. Therefore
we have that condition (4) holds as well for N ′. �

We can show that the following weak form of condensation holds for pre-n-
suitable premice.
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Lemma 3.3 (Weak Condensation Lemma). Let N be a pre-n-suitable pre-
mouse for some n ≥ 1 and let δN denote the largest cardinal in N . Let γ be
a large enough countable ordinal in V and let H be the Mostowski collapse

of Hull
Mn−1(N |δN )|γ
m ({δN}) for some large enough natural number m. Then

H CMn−1(N |δN ).

Proof. First consider X = Hull
Mn−1(N |δN )|γ
m (α∪{δN}) with X ∩δN = α and

let H ′ be the Mostowski collapse of X. Then H ′ is ω1-iterable in V above
α as Mn−1(N |δN ) is ω1-iterable in V above δN . Moreover condition (4)
in the definition of pre-n-suitability implies that N |δN is η-iterable inside
Mn−1(N |δN ) for every η < δN .

We want to show that H ′ CN |δN , so assume this is not the case. As H ′ ∈
Mn−1(N |δN ) this yields that there is a ξ < δN such that over N ||ξ there is
an rΣk-definable subset of α for some k < ω witnessing ρω(N ||ξ) ≤ α which
is not definable over H ′. Consider the coiteration of the premice H ′ and
N ||ξ inside Mn−1(N |δN ) which takes place above α and let T and U be the
corresponding iteration trees on H ′ and N ||ξ according to the Q-structure
iteration strategy. Assume towards a contradiction that the comparison does
not terminate successfully. AsN ||ξ is iterable insideMn−1(N |δN ) this means
that T is of limit length and there is no cofinal well-founded branch through
T according to the Q-structure iteration strategy. As H ′ is ω1-iterable in V ,
there is such a branch b in V . Moreover the N ||ξ-side provides Q-structures
for the H ′-side of the coiteration inside Mn−1(N |δN ). Hence the branch b
is in fact in Mn−1(N |δN ) and the coiteration terminates successfully. So
there are iterates H∗ of H ′ and N∗ of N ||ξ such that H∗ E N∗. In fact,
H ′ E N ||ξ C N |δN since the coiteration takes place above α, ρω(H ′) ≤ α,
ρω(N ||ξ) ≤ α, and both premice are sound above α.

Now let H be the Mostowski collapse of Hull
Mn−1(N |δN )|γ
m ({δN}). Then

H is equal to the Mostowski collapse of HullH
′

m ({δN}). Condition (4) in
the definition of pre-n-suitability suffices to prove the usual condensation
lemma (see for example Theorem 5.1 in [St10]) for proper initial segments
of N |δN , so in particular for H ′. Therefore it follows that H EH ′ CN |δN ,
as desired. �

Analogous to Definitions 3.6 and 3.9 in [StW16] we define a notion of short
tree iterability for pre-n-suitable premice. Informally a pre-n-suitable pre-
mouse is short tree iterable if it is iterable with respect to iteration trees for
which there are Q-structures (see Definition 2.4) which are not too compli-

cated. For this definition we again tacitly assume that M#
n−1(x) exists for

all reals x.

Definition 3.4. Let T be a normal iteration tree of length < ωV1 on a pre-
n-suitable premouse N for some n ≥ 1 which lives below δN . We say T is
short iff for all limit ordinals λ < lh(T ) the Q-structure Q(T � λ) exists, is
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(n− 1)-small above δ(T � λ) and we have that

Q(T � λ)EMTλ ,

and if T has limit length we in addition have that Q(T ) exists and

Q(T )EMn−1(M(T )).

Moreover we say T is maximal iff T is not short.

The premouse Mn−1(M(T )) in Definition 3.4 is defined as in Definition 2.9.

Definition 3.5. Let N be a pre-n-suitable premouse for some n ≥ 1. We
say N is short tree iterable iff whenever T is a short tree on N ,

(i) if T has a last model, then every putative4 iteration tree U extending
T such that lh(U) = lh(T ) + 1 has a well-founded last model, and

(ii) if T has limit length, then there exists a unique cofinal well-founded
branch b through T such that

Q(b, T ) = Q(T ).

Remark. At this point in contrast to the notion of short tree iterability for 1-
suitable premice in [StW16] we do not require the iterate of a pre-n-suitable
premouse via a short tree to be pre-n-suitable again. The reason for this is
that in the general case for n > 1 it is not obvious that this property holds
assuming only our notion of short tree iterability as defined above. We will
be able to prove later in Lemma 3.9 that this property in fact does hold
true.

Because of the periodicity in the projective hierarchy (see also [St95] for
the periodicity in the definition of Π1

n-iterability) the proof of the following
lemma only works for odd levels of suitability.

Lemma 3.6. Let n ≥ 0 and assume that M#
2n(x) exists for all x ∈ ωω. Let

N be a pre-(2n+ 1)-suitable premouse. Then the statement “N is short tree
iterable” as in Definition 3.5 is Π1

2n+2-definable uniformly in any code for
the countable premouse N .

4Recall that we say an iteration tree U is a putative iteration tree if U satisfies all properties
of an iteration tree, but we allow the last model of U to be ill-founded, in case U has a
last model.
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Proof. The statement “N is short tree iterable” can be phrased as follows.
We first consider trees of limit length.

∀T tree on N of limit length ∀ (Qλ | λ ≤ lh(T ) limit ordinal),

if for all limit ordinals λ ≤ lh(T ),

Qλ is Π1
2n+1-iterable above δ(T � λ), 2n-small above δ(T � λ),

solid above δ(T � λ) and a Q-structure for T � λ, and

if for all limit ordinals λ < lh(T ) we have Qλ EMTλ , then

∃b cofinal branch through T such that Qlh(T ) EMTb .

This statement is Π1
2n+2-definable uniformly in any code for N since Π1

2n+1-

iterability above δ(T � λ) for Qλ is Π1
2n+1-definable uniformly in any code

for Qλ. For trees of successor length we get a similar statement as follows.

∀T putative tree on N of successor length ∀ (Qλ | λ < lh(T ) limit ordinal),

if for all limit ordinals λ < lh(T ),

Qλ is Π1
2n+1-iterable above δ(T � λ), 2n-small above δ(T � λ),

solid above δ(T � λ) and a Q-structure for T � λ, and

if for all limit ordinals λ < lh(T ) we have Qλ EMTλ , then

the last model of T is well-founded.

As above this statement is also Π1
2n+2-definable uniformly in any code for

N . Moreover the conjunction of these two statements is equivalent to the
statement “N is short tree iterable”, because the relevant Q-structures Qλ
for limit ordinals λ ≤ lh(T ) are 2n-small above δ(T � λ) and thus Lemma
2.13 implies that for them it is enough to demand Π1

2n+1-iterability above
δ(T � λ) to identify them as a Q-structure for T � λ since we assumed that

M#
2n(x) exists for all x ∈ ωω. �

From this we can obtain the following corollary using Lemma 1.17.

Corollary 3.7. Let n ≥ 0 and assume that M#
2n(x) exists for all x ∈ ωω.

If N is a pre-(2n+ 1)-suitable premouse, then N is short tree iterable iff N

is short tree iterable inside the model M2n(N |δN )Col(ω,δN ), where δN again
denotes the largest cardinal in N .

Proof. Let N be an arbitrary pre-(2n + 1)-suitable premouse. By Lemma
3.6 we have that short tree iterability for N is a Π1

2n+2-definable statement
uniformly in any code for N . Therefore we have by Lemma 1.17 that N is
short tree iterable inside the model M2n(N |δN )Col(ω,δN ) iff N is short tree

iterable in V , because the model M2n(N |δN )Col(ω,δN ) is Σ1
2n+2-correct in

V . �

In what follows we aim to show that every pre-(2n + 1)-suitable premouse
N is short tree iterable. In fact we are going to show a stronger form of
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iterability for pre-(2n+ 1)-suitable premice, including for example fullness-
preservation for short trees. This means that for non-dropping short trees
T on N of length λ + 1 for some ordinal λ < ωV1 the resulting model of
the iteration MTλ is again pre-(2n + 1)-suitable. Here we mean by “non-
dropping” that the tree T does not drop on the main branch [0, λ]T . If this
property holds for a pre-(2n+ 1)-suitable premouse N we say that N has a
fullness preserving iteration strategy for short trees. Moreover we also want
to show some form of iterability including fullness-preservation for maximal
trees on N . Premice which satify all these kinds of iterability we will call
(2n+ 1)-suitable.

The exact form of iterability we are aiming for is introduced in the following
definition.

Definition 3.8. Assume that M#
n−1(x) exists for all x ∈ ωω and let N be a

pre-n-suitable premouse for some n ≥ 1. Then we say that the premouse N
is n-suitable iff

(i) N is short tree iterable and whenever T is a short tree on N of length
λ + 1 for some ordinal λ < ωV1 which is non-dropping on the main
branch [0, λ]T , then the final model MTλ is pre-n-suitable, and

(ii) whenever T is a maximal iteration tree on N of length λ for some
limit ordinal λ < ωV1 according to the Q-structure iteration strategy,
then there exists a cofinal well-founded branch b through T such that b
is non-dropping and the model MTb is pre-n-suitable. In fact we have
in this case that

MTb = Mn−1(M(T ))|(δ(T )+)Mn−1(M(T )).

Now we are ready to prove that every pre-(2n + 1)-suitable premouse is in
fact already (2n + 1)-suitable, using the iterability we build into condition
(4) of Definition 3.1 in form of the Weak Condensation Lemma (see Lemma
3.3).

Lemma 3.9. Let n ≥ 0 and assume that M#
2n(x) exists for all x ∈ ωω.

Let N be an arbitrary pre-(2n+ 1)-suitable premouse. Then N is (2n+ 1)-
suitable.

Proof. Let N be an arbitrary pre-(2n + 1)-suitable premouse and let W =
M2n(N |δN ) be a premouse in the sense of Definition 2.9, where δN as usual
denotes the largest cardinal in N . That means in particular that N =
W |(δ+

N )W .

We want to show that N is (2n + 1)-suitable. So we assume toward a
contradiction that this is not the case. Say this is witnessed by an iteration
tree T on N .

We want to reflect this statement down to a countable hull. Therefore let
m be a large enough natural number, let θ be a large enough ordinal such
that in particular

W |θ ≺Σm W
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and

W |θ � ZFC−,

where ZFC− denotes ZFC without the Power Set Axiom, and let

W̄
σ∼= HullW |θm ({δN}) ≺W |θ,

where W̄ is the Mostowski collapse of Hull
W |θ
m ({δN}) and

σ : W̄ → HullW |θm ({δN})

denotes the uncollapse map such that δN ∈ ran(σ) and σ(δ̄) = δN for some
ordinal δ̄ in W̄ . Then we have that W̄ is sound, ρm+1(W̄ ) = ω, and the
Weak Condensation Lemma 3.3 yields that

W̄ CW.

Case 1. T is short and witnesses that N is not short tree iterable.

For simplicity assume in this case that T has limit length since the other
case is easier. Then T witnesses that the following statement φ1(N) holds
in V .

φ1(N) ≡ ∃T tree on N of length λ for some limit ordinal λ < ωV1

∃ (Qγ | γ ≤ λ limit ordinal), such that for all limit ordinals γ ≤ λ,
Qγ is Π1

2n+1-iterable above δ(T � γ), 2n-small above δ(T � γ),

solid above δ(T � γ) and a Q-structure for T � γ, and

for all limit ordinals γ < λ we have Qγ EMTγ , but

there exists no cofinal branch b through T such that Qλ EMTb .

We have that φ1(N) is Σ1
2n+2-definable uniformly in any code for N as in

the proof of Lemma 3.6. See also the proof of Lemma 3.6 for the case that
T has successor length.

Case 2. T is a short tree on N of length λ + 1 for some ordinal λ < ωV1
which is non-dropping on the main branch such that the final modelMTλ is
not pre-(2n+ 1)-suitable.

Assume that

M2n(MTλ |δMTλ ) 2 “δMTλ
is Woodin”,

where δMTλ
denotes the largest cardinal in MTλ . This means that we have

δMTλ
= iT0λ(δN ), where iT0λ : N → MTλ denotes the iteration embedding,

which exists since the iteration tree T is assumed to be non-dropping on the
main branch.
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Then T witnesses that the following statement φ2(N) holds true in V .

φ2(N) ≡ ∃T tree on N of length λ+ 1 for some λ < ωV1 such that

T is non-dropping along [0, λ]T and

∀γ < lh(T ) limit ∃QEMTγ such that

Q is Π1
2n+1-iterable above δ(T � γ), 2n-small above δ(T � γ),

solid above δ(T � γ), and a Q-structure for T � γ, and

∃P BMTλ |δMTλ such that P is Π1
2n+1-iterable above iT0λ(δN ),

2n-small above iT0λ(δN ), iT0λ(δN )-sound, and

iT0λ(δN ) is not definably Woodin over P,

where δN as above denotes the largest cardinal in N . Recall Definition 2.7
for the notion of a definable Woodin cardinal.

We have that φ2(N) is Σ1
2n+2-definable uniformly in any code for N .

Case 3. T is a maximal tree on N of length λ for some limit ordinal λ < ωV1
such that there is no cofinal well-founded branch b through T or for every
such branch b the premouse MTb is not pre-(2n+ 1)-suitable.

As T is maximal, we have that every such branch b is non-dropping and in
the case that for every such branch b the premouseMTb is not pre-(2n+ 1)-
suitable, assume that we have

M2n(MTb |δMTb ) 2 “δMTb
is Woodin”,

where δMTb
denotes the largest cardinal in MTb . Then the iteration tree T

witnesses that the following statement φ3(N) holds true in V .

φ3(N) ≡ ∃T tree on N of length λ for some limit ordinal λ < ωV1 such that

∀γ < λ limit ∃QEMTγ such that

Q is Π1
2n+1-iterable above δ(T � γ), 2n-small above δ(T � γ),

solid above δ(T � γ), and a Q-structure for T � γ, and

∃P BM(T ) such that P is Π1
2n+1-iterable above δ(T ),

ρω(P) ≤ δ(T ),P is 2n-small above δ(T ), δ(T )-sound, and

P � “δ(T ) is the largest cardinal + δ(T ) is Woodin”,

and there is no branch b through T such that P EMTb .

We have that φ3(N) is Σ1
2n+2-definable uniformly in any code for N .

Now we consider all three cases together again and let

φ(N) = φ1(N) ∨ φ2(N) ∨ φ3(N).
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As argued in the individual cases the iteration tree T witnesses that φ(N)
holds in V (still assuming for simplicity that T has limit length if T is as in
Case 1).

Since φ is a Σ1
2n+2-definable statement and W = M2n(N |δN ), we have by

Lemma 1.17 that


WCol(ω,δN ) φ(N).

So since we picked m and θ large enough we have that

W̄ [g] � φ(N̄),

if we let N̄ ∈ W̄ be such that σ(N̄) = N and if g is Col(ω, δ̄)-generic over
W̄ . Let T̄ be a tree on N̄ in W̄ [g] witnessing that φ(N̄) holds. Since N̄ is
countable in W , we can pick g ∈W and then have that T̄ ∈W .

We have that W̄ [g] is Σ1
2n+1-correct in V using Lemma 1.18, because it is a

countable model with 2n Woodin cardinals. Since T̄ witnesses the statement
φ(N̄) in W̄ [g], it follows that T̄ also witnesses φ(N̄) in V , because φ(N̄) is
Σ1

2n+2-definable in any code for N̄ . The Q-structures for T̄ in W̄ [g] in

the statement φ(N̄) are Π1
2n+1-iterable above δ(T̄ � γ) and 2n-small above

δ(T̄ � γ) for limit ordinals γ < lh(T̄ ) (and also for γ = lh(T̄ ) if T̄ witnesses
that φ1(N̄) holds in W̄ [g]).

Since this amount of iterability suffices to witnessQ-structures using Lemma
2.13 and since as mentioned above W̄ [g] is Σ1

2n+1-correct in V , the Q-

structures for T̄ in W̄ [g] are also Q-structures for T̄ inside V . Since W =
M2n(N |δN ) is also Σ1

2n+1-correct in V using Lemma 1.17 and N̄ and T̄ are

countable in W , it follows that the Q-structures for T̄ in W̄ [g] (which are
Π1

2n+1-iterable above δ(T̄ � γ) for γ as above) are also Q-structures for T̄
inside W . Therefore the branches choosen in the tree T̄ on N̄ inside W̄ [g]
are the same branches as the Q-structure iteration strategy Σ as in Defini-
tion 2.5 would choose inside the model W when iterating the premouse W̄ .
That means if T ∗ is the tree on W̄ obtained by considering T̄ as a tree on
W̄ B N̄ , then the iteration strategy Σ picks the same branches for the tree
T ∗ as it does for the tree T̄ .

Now we again distinguish three cases as before.

Case 1. T̄ witnesses that φ1(N̄) holds in W̄ [g].

By the argument we gave above, T̄ is a short tree on N̄ in W .

Let b̄ denote the cofinal branch through T ∗ which exists inside W and is
defined as follows. We have that a branch through the iteration tree T ∗ can
be considered as a branch through T̄ , where the latter is a tree on N̄ , and
vice versa. Since by the Weak Condensation Lemma 3.3 we have that

N̄ = W̄ |(δ̄+)W̄ CW |ωW1 = M2n(N |δN )|ωM2n(N |δN )
1 = N |ωN1 ,
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there exists a cofinal well-founded branch b̄ ∈W through T̄ by property (4)
in the definition of pre-n-suitability (see Definition 3.1). We also consider
this branch b̄ as a branch through T ∗.
Assume first that there is a drop along the branch b̄. Then there exists a

Q-structure Q(T̄ )EMT̄
b̄

. Consider the statement

ψ(T̄ ,Q(T̄ )) ≡ “there is a cofinal branch b through T̄ such that

Q(T̄ )EMT̄b ”.

This statement ψ(T̄ ,Q(T̄ )) is Σ1
1-definable uniformly in any code for the

parameters T̄ and Q(T̄ ) and holds in the model W as witnessed by the
branch b̄. Now a Σ1

1-absoluteness argument as the one given in the proof
of Lemma 2.11 yields that this statement ψ(T̄ ,Q(T̄ )) also holds in W̄ [g],
which contradicts the fact that T̄ witnesses in W̄ [g] that N̄ is not short tree
iterable.

Therefore we can assume that b̄ does not drop.

Since T̄ witnesses that φ1(N̄) holds in W̄ [g], we have that there exists a
Q-structure Qλ for T̄ as in φ1(N̄). In particular Qλ is 2n-small above δ(T )
and Π1

2n+1-iterable above δ(T ) in W̄ [g].

Case 1.1. δ(T̄ ) = iT
∗

b̄
(δ̄).

Consider the comparison of Qλ with MT ∗
b̄

inside W .

This comparison takes place above iT
∗

b̄
(δ̄) = δ(T̄ ) and the premouse MT ∗

b̄

is (ω1 + 1)-iterable above iT
∗

b̄
(δ̄) in W using property (4) in Definition 3.1

because (ω1 +1)W < δN and T ∗ is an iteration tree on W̄ CW |ωW1 = N |ωN1
(using the Weak Condensation Lemma 3.3 again). Furthermore we have that
W̄ is 2n-small above δ̄ and therefore MT ∗

b̄
is 2n-small above iT

∗

b̄
(δ̄).

MoreoverQλ is Π1
2n+1-iterable above δ(T ) in W̄ [g] thus by Σ1

2n+1-correctness

also inside W . The statement φ1(N̄) yields that Qλ is 2n-small above iT
∗

b̄
(δ̄).

We have that W̄ C W is sound by construction and thus the non-dropping
iterate MT ∗

b̄
is sound above iT

∗

b̄
(δ̄). Moreover we have that ρω(MT ∗

b̄
) ≤

iT
∗

b̄
(δ̄) as ρω(MT ∗

b̄
) = ρω(W̄ ) = ω. In addition Qλ is also sound above

iT
∗

b̄
(δ̄) and we have that ρω(Qλ) ≤ δ(T̄ ) = iT

∗

b̄
(δ̄). Hence Lemma 2.2 in

[St95] (see the discussion before Lemma 2.12) implies that

Qλ CMT
∗

b̄ or MT ∗b̄ EQλ.

So we again distinguish two different cases.

Case 1.1.1. Qλ CMT
∗

b̄
.

By assumption δ̄ is a Woodin cardinal in W̄ , because N is pre-(2n + 1)-
suitable and thus δN is a Woodin cardinal in W . Therefore we have by
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elementarity that
MT ∗b̄ � “iT

∗

b̄ (δ̄) is Woodin”.

But since Qλ is a Q-structure for T , we have that δ(T ) = iT
∗

b̄
(δ̄) is not

definably Woodin over Qλ. This contradicts Qλ CMT
∗

b̄
.

Case 1.1.2. MT ∗
b̄
EQλ.

In this case we have that

Qλ ∩Ord < W̄ ∩Ord ≤MT ∗b̄ ∩Ord ≤ Qλ ∩Ord,

where the first inequality holds true since Qλ ∈ W̄ [g]. This contradiction
finishes Case 1.1.

Case 1.2. δ(T̄ ) < iT
∗

b̄
(δ̄).

In this case we have that

MT ∗b̄ � “δ(T̄ ) is not Woodin”,

because otherwise MT ∗
b̄

would not be (2n + 1)-small. This implies that

Qλ = Q(T̄ )CMT ∗
b̄

and therefore we have that

Q(T̄ )EMT̄b̄ .

Now we can again consider the statement

ψ(T̄ ,Q(T̄ )) ≡ “there is a cofinal branch b through T̄ such that

Q(T̄ )EMT̄b ”.

Again ψ(T̄ ,Q(T̄ )) holds in the model W as witnessed by the branch b̄.
By an absoluteness argument as above we have that it also holds in W̄ [g],
which contradicts the fact that T̄ witnesses in W̄ [g] that N̄ is not short tree
iterable.

Case 2. T̄ witnesses that φ2(N̄) holds in W̄ [g].

In this case T̄ is a tree of length λ̄+ 1 for some ordinal λ̄.

Since φ2(N̄) holds true in W̄ [g], there exists a model P̄DMT ∗
λ̄
|iT ∗

0λ̄
(δ̄), which

is 2n-small above iT
∗

0λ̄
(δ̄), sound above iT

∗

0λ̄
(δ̄) and Π1

2n+1-iterable above iT
∗

0λ̄
(δ̄)

in W̄ [g]. Moreover iT
∗

0λ̄
(δ̄) is not definably Woodin over P̄ and we have that

ρω(P̄) ≤ iT ∗
0λ̄

(δ̄).

Consider the comparison of P̄ withMT ∗
λ̄

inside the model W . The compari-

son takes place above iT
∗

0λ̄
(δ̄) and we have thatMT ∗

λ̄
is 2n-small above iT

∗

0λ̄
(δ̄)

because W is 2n-small above δN . The premouse MT ∗
λ̄

is (ω1 + 1)-iterable

above iT
∗

0λ̄
(δ̄) in W by the same argument we gave above in Case 1 using

property (4) in Definition 3.1. Therefore the coiteration is successful using
Lemma 2.2 in [St95] by the following argument.
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We have that P̄ is Π1
2n+1-iterable inside the model W̄ [g] and thus by Σ1

2n+1-

correctness also inside W . The statement φ2(N̄) yields that P̄ is also 2n-
small above iT

∗

0λ̄
(δ̄). We have that W̄ is sound by construction and thus the

non-dropping iterate MT ∗
λ̄

is sound above iT
∗

0λ̄
(δ̄). Moreover we have that

ρω(MT ∗
λ̄

) ≤ iT
∗

0λ̄
(δ̄). In addition P̄ is also sound above iT

∗

0λ̄
(δ̄) and we have

that ρω(P̄) ≤ iT
∗

0λ̄
(δ̄) because of φ2(N̄). Hence Lemma 2.2 in [St95] implies

that
P̄ CMT ∗λ̄ or MT ∗λ̄ E P̄.

So we consider two different cases.

Case 2.1. P̄ CMT ∗
λ̄
.

By assumption δ̄ is a Woodin cardinal in W̄ , because N is pre-(2n + 1)-
suitable and thus δN is a Woodin cardinal in W . Therefore we have by
elementarity that

MT ∗λ̄ � “iT
∗

0λ̄ (δ̄) is Woodin”.

Moreover we have by the statement φ2(N̄) that iT
∗

0λ̄
(δ̄) is not definably

Woodin over P̄. This is a contradiction to P̄ CMT ∗
λ̄
.

Case 2.2. MT ∗
λ̄
E P̄.

In this case we have that

P̄ ∩Ord < W̄ ∩Ord ≤MT ∗λ̄ ∩Ord ≤ P̄ ∩Ord,

where the first inequality holds since P̄ ∈ W̄ [g]. This is a contradiction.

Therefore we proved that

M2n(MTλ |δMTλ ) � “δMTλ
is Woodin”,

if T is as in Case 2 above, that means if T is a short iteration tree on N of
length λ+ 1 which is non-dropping on the main branch.

This shows that there is an ordinal δ < ωV1 such that properties (1) and (2)
in Definition 3.1 hold for the premouse MTλ . That property (3) holds for

MTλ follows from property (3) for the pre-(2n+1)-suitable premouse N by a
similar argument and property (4) follows from the corresponding property
for N as well. Thus MTλ is pre-(2n+ 1)-suitable, as desired.

Case 3. T̄ witnesses that φ3(N̄) holds in W̄ [g].

Let P̄ BM(T̄ ) witness that φ3(N̄) holds inside W̄ [g]. We have that inside
W there exists a cofinal well-founded branch b̄ through the iteration tree T ∗
by property (4) in the definition of pre-(2n + 1)-suitability for N as above
in Case 1.

Case 3.1. There is a drop along b̄.
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Then we have as in Case 1 that there exists a Q-structure Q(T̄ )EMT̄
b̄

for

T̄ . Consider the statement

ψ(T̄ ,Q(T̄ )) ≡ “there is a cofinal branch b through T̄ such that

Q(T̄ )EMT̄b ”.

This statement ψ(T̄ ,Q(T̄ )) is Σ1
1-definable from the parameters T̄ andQ(T̄ )

and holds in the model W as witnessed by the branch b̄. By an absoluteness
argument as above it follows that it also holds in W̄ [g], which contradicts
the fact that T̄ witnesses in W̄ [g] that φ3(N̄) holds.

Case 3.2. There is no drop along b̄.

Then we can consider the coiteration of P̄ and MT ∗
b̄

inside the model W .

We have that both premice are 2n-small above δ(T̄ ). Moreover this coiter-
ation takes place above δ(T̄ ) since we have that P̄ BM(T̄ ). Therefore the
coiteration is successful inside W using Lemma 2.2 in [St95] by the same
argument as the one we gave in Cases 1 and 2, because in W we have that
P̄ is Π1

2n+1-iterable above δ(T̄ ) and MT ∗
b̄

is (ω1 + 1)-iterable above δ(T̄ ) in

W using property (4) in Definition 3.1. That means we have that

MT ∗b̄ E P̄ or P̄ EMT ∗b̄ .

Case 3.2.1. MT ∗
b̄
E P̄.

In this case we have that

P̄ ∩Ord < W̄ ∩Ord ≤MT ∗b̄ ∩Ord ≤ P̄ ∩Ord,

where the first inequality holds true since P̄ ∈ W̄ [g]. This is a contradiction.

Case 3.2.2. P̄ EMT ∗
b̄
.

Then we have that in fact

P̄ EMT̄b̄ ,

because δ(T̄ ) is the largest cardinal in P̄. This contradicts φ3(N̄).

Therefore it follows for an iteration tree T as in Case 3 that there exists a
cofinal well-founded branch through T and if there exists a non-dropping
such branch b, then the premouse MTb is pre-(2n + 1)-suitable as in the
argument at the end of Case 2 above.

Now the argument we just gave for Case 3 shows that in this case we have
that in fact

MTb = M2n(M(T ))|(δ(T )+)M2n(M(T )).

�
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3.2. Correctness for n-suitable Premice. In the following lemmas we
prove some correctness results for suitable premice in the sense of Definition
3.8. We are stating these lemmas only for the levels (2n + 1) at which we
proved that there exists a (2n+ 1)-suitable premouse (see Lemma 3.9).

Lemma 3.10. Let n ≥ 0 and z ∈ ωω. Assume that M#
2n(x) exists for all

x ∈ ωω and let N be a (2n + 1)-suitable z-premouse. Let ϕ be an arbitrary
Σ1

2n+3-formula and let a ∈ N ∩ ωω be arbitrary. Then we have

ϕ(a) ↔ 
NCol(ω,δN ) ϕ(a),

where δN as usual denotes the largest cardinal in N .

Here we again write a for the standard name ǎ for a real a ∈ N .

Proof. Let n ≥ 0 and z ∈ ωω be arbitrary and let N be a (2n+ 1)-suitable
z-premouse. Let ϕ(a) be a Σ1

2n+3-formula for a parameter a ∈ N ∩ωω. That
means

ϕ(a) ≡ ∃x∀y ψ(x, y, a)

for a Σ1
2n+1-formula ψ(x, y, a). We first want to prove the downward impli-

cation, that means we want to prove that if ϕ(a) holds in V , then


NCol(ω,δN ) ϕ(a).

Let x∗ ∈ V be a witness for the fact that ϕ(a) holds in V . That means x∗

is a real such that

V � ∀y ψ(x∗, y, a).

Use Corollary 1.8 from [Ne95] to make the real x∗ generic over an iterate
of N for the collapse of the image of δN . Since N is (2n + 1)-suitable, we
have enough iterability to apply Corollary 1.8 from [Ne95], so there exists a
non-dropping iterate N∗ of N such that N∗ is 2n-iterable5 and whenever g
is Col(ω, δN∗)-generic over N∗, then x∗ ∈ N∗[g]. Moreover let i : N → N∗

denote the corresponding iteration embedding. Since N is (2n+ 1)-suitable
and the iteration from N to N∗ is non-dropping, we have that N∗ is pre-
(2n+ 1)-suitable.

Let g ∈ V be Col(ω, δN∗)-generic over N∗. Since we have that N∗ =

M2n(N∗|δN∗)|(δ+
N∗)

M2n(N∗|δN∗ ), it follows that g is also Col(ω, δN∗)-generic
over the proper class model M2n(N∗|δN∗). Moreover we can construe the
model M2n(N∗|δN∗)[g] as a y-premouse for some real y (in fact y = z⊕x∗, see
for example [SchSt09] for the fine structural details) which has 2n Woodin
cardinals. This yields by Lemma 1.17 that the premouse M2n(N∗|δN∗)[g] is
Σ1

2n+2-correct in V , because M2n(N∗|δN∗)[g] construed as a y-premouse is
ω1-iterable above δN∗ . Thus we have that

M2n(N∗|δN∗)[g] � ∀y ψ(x∗, y, a)

5see Definition 1.1 in [Ne95]
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as x∗ ∈ M2n(N∗|δN∗)[g]. This in fact can be obtained using only Σ1
2n+1-

correctness of M2n(N∗|δN∗)[g] and downward absoluteness.

Since the premice M2n(N∗|δN∗)[g] and N∗[g] agree on their reals it follows
that

N∗[g] � ∀y ψ(x∗, y, a).

By homogeneity of the forcing Col(ω, δN∗) we now obtain that


N
∗

Col(ω,δN∗ ) ∃x∀y ψ(x, y, a).

Since a is a real in N it follows by elementarity that


NCol(ω,δN ) ∃x∀y ψ(x, y, a),

as desired.

For the upward implication let ϕ(a) ≡ ∃x∀y ψ(x, y, a) again be a Σ1
2n+3-

formula for a real a in N and a Σ1
2n+1-formula ψ(x, y, a) and assume that

we have

NCol(ω,δN ) ∃x∀y ψ(x, y, a).

Let g be Col(ω, δN )-generic over the premouse M2n(N |δN ) and pick a real
x∗ ∈M2n(N |δN )[g] such that

M2n(N |δN )[g] � ∀y ψ(x∗, y, a).

Since M2n(N |δN )|(δ+
N )M2n(N |δN ) = N is countable in V , we can pick g ∈ V

and then get that x∗ ∈ V . As above we can consider M2n(N |δN )[g] as an
ω1-iterable y-premouse for some real y and therefore we have by Lemma
1.17 again that

M2n(N |δN )[g] ≺Σ1
2n+2

V.

Hence we have that
V � ∃x∀y ψ(x, y, a),

witnessed by the real x∗, because “∀y ψ(x∗, y, a)” is a Π1
2n+2-formula. �

Lemma 3.11. Let n ≥ 0 and assume that M#
2n(x) exists for all x ∈ ωω. Let

N be a (2n+ 1)-suitable z-premouse for some z ∈ ωω. Then N |δN is closed
under the operation

A 7→M#
2n(A).

Proof. It is enough to consider sets A of the form N |ξ for some ordinal
ξ < δN for the following reason. Let A ∈ N |δN be arbitrary. Then there
exists an ordinal ξ < δN such that A ∈ N |ξ. Assume first that the ordinal
ξ is not overlapped by an extender on the N -sequence, that means there is
no extender E on the N -sequence such that crit(E) ≤ ξ < lh(E). We will
consider the case that ξ is overlapped by an extender on the N -sequence
later. Moreover assume that we already proved that

M#
2n(N |ξ)CN |δN .

Then we also have that M#
2n(A) ∈ N |δN by the following argument. Con-

sider the model M2n(N |ξ). Let L[E](A)M2n(N |ξ) be as in Definition 2.18.
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Then add the top measure of the active premouse M#
2n(N |ξ) (intersected

with L[E](A)M2n(N |ξ)) to an initial segment of L[E](A)M2n(N |ξ) as described
in Section 2 of [FNS10]. The main result in [FNS10] yields that the model
we obtain from this construction is again ω1-iterable and not 2n-small.

Thus it follows that the ω1-iterable premouse M#
2n(A) exists inside N |δN

as M#
2n(N |ξ)CN |δN .

So let ξ < δN be an ordinal and assume as above first that ξ is not over-
lapped by an extender on the N -sequence. Then we consider the premouse

M#
2n(N |ξ), which exists in V by assumption and is not 2n-small above ξ

because ξ is countable in V . In this case we are left with showing that

M#
2n(N |ξ)CN |δN .

Let x be a real in V which codes the countable premice M#
2n(N |ξ) and N |δN .

Work inside the model M#
2n(x) and coiterate M#

2n(N |ξ) with N |δN . We have

that N |δN is short tree iterable inside M#
2n(x), because for a pre-(2n + 1)-

suitable premouse short tree iterability is a Π1
2n+2-definable statement by

Lemma 3.6 and the model M#
2n(x) is Σ1

2n+2-correct in V by Lemma 1.17. In
fact Lemma 1.17 implies that N has an iteration strategy which is fullness

preserving in the sense of Definition 3.8 inside the model M#
2n(x) by the

proof of Lemma 3.9.

Note that the coiteration takes place above N |ξ and that M#
2n(N |ξ) is ω1-

iterable aboveN |ξ in V by definition. Therefore Lemma 2.11 (2) implies that

the comparison inside M#
2n(x) cannot fail on this side of the coiteration. Say

that the coiteration yields an iteration tree T on M#
2n(N |ξ) and an iteration

tree U on N |δN .

We have that U is a short tree on N |δN , because the M#
2n(N |ξ)-side of the

coiteration provides Q-structures. So the coiteration terminates successfully

and there is an iterate M∗ of M#
2n(N |ξ) via T and an iterate R of N |δN via

U .

Claim 1. The M#
2n(N |ξ)-side cannot win the comparison against N |δN .

Proof. Assume toward a contradiction that the M#
2n(N |ξ)-side wins the com-

parison. That means there is no drop on the main branch on the N |δN -side
of the coiteration and

M∗ DR.

We can consider U as a tree on the premouse N B N |δN with final model
N∗ such that there is an ordinal δ∗ with

N∗|δ∗ = R.

Then U is a short tree of length λ+ 1 for some ordinal λ and as there is no
drop on the main branch on the N |δN -side of the coiteration, we have that

δ∗ = iU0λ(δN ),
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where iU0λ : N → N∗ denotes the corresponding iteration embedding. More-
over recall that N is (2n+1)-suitable and so U is obtained using the iteration
strategy for N which is fullness preserving for short trees which do not drop
on their main branch in the sense of Definition 3.8. Therefore we have that
M#

2n(N∗|δ∗) is not 2n-small above δ∗ and

M#
2n(N∗|δ∗) � “δ∗ is Woodin”.

We have for the other side of the coiteration that ρω(M∗) < δ∗, because

ρω(M#
2n(N |ξ)) ≤ ξ < δ∗. Let Q be the least initial segment of M∗ such that

δ∗ is not definably Woodin over Q. Recall that this means that QEM∗ is
such that

Q � “δ∗ is Woodin”,

but if Q = JM
∗

α for some α < M∗ ∩Ord then

JM
∗

α+1 � “δ∗ is not Woodin”,

and if Q = M∗ then ρω(Q) < δ∗ or there exists an m < ω and an rΣm-
definable set A ⊂ δ∗ such that there is no κ < δ∗ such that κ is strong up to
δ∗ with respect to A as witnessed by extenders on the sequence of Q. In the
latter case we have that in particular ρω(Q) ≤ δ∗. Moreover Q is 2n-small
above δ∗, because we have QEM∗ and

Q � “δ∗ is Woodin”.

Furthermore Q is ω1-iterable above δ∗.

By construction we have that the premouse M#
2n(N∗|δ∗) is ω1-iterable above

δ∗. Consider the coiteration of Q and M#
2n(N∗|δ∗) inside the model M#

2n(y),

where y is a real coding the countable premice Q and M#
2n(N∗|δ∗). Since

N∗|δ∗ = REM∗

this coiteration takes place above δ∗ ≥ δ(U). We have that ρω(Q) ≤ δ∗ and

ρω(M#
2n(N∗|δ∗)) ≤ δ∗.

Moreover Q and M#
2n(N∗|δ∗) are both sound above δ∗. Thus the comparison

is successful by Lemma 2.11 and we have that

QEM#
2n(N∗|δ∗) or M#

2n(N∗|δ∗)EQ.

The premouse M#
2n(N∗|δ∗) is not 2n-small above δ∗ because N∗ is pre-

(2n+ 1)-suitable. Since Q is 2n-small above δ∗ we have in fact that

QCM#
2n(N∗|δ∗).

But this implies by our choice of the premouse Q that δ∗ is not Woodin in

M#
2n(N∗|δ∗), which is a contradiction because by fullness preservation we

have that δ∗ is a Woodin cardinal in M#
2n(N∗|δ∗).

Therefore we have that theM#
2n(N |ξ)-side cannot win the comparison against

N |δN . �
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Claim 2. The M#
2n(N |ξ)-side does not move in the coiteration with N |δN .

Proof. Assume toward a contradiction that the M#
2n(N |ξ)-side moves in the

coiteration. As the coiteration takes place above ξ this means that it has to

drop on the M#
2n(N |ξ)-side. Then M∗DR and there is no drop on the main

branch on the N |δN -side of the coiteration, i.e. the M#
2n(N |ξ)-side wins the

comparison. This contradicts Claim 1. �

Claim 3. The N |δN -side does not move in the coiteration with M#
2n(N |ξ).

Proof. Assume toward a contradiction that the N |δN -side moves in this
coiteration. Since the coiteration takes place above ξ this means that there

is an ordinal γ > ξ with γ ≤M#
2n(N |ξ)∩Ord such that there is an extender

ENγ indexed at γ on the N -sequence which is used in the coiteration. In
particular γ is a cardinal in the iterate R of N |δN . By Claim 2 we have

M#
2n(N |ξ)ER, in particular γ is a cardinal in M#

2n(N |ξ). In fact, M#
2n(N |ξ)C

R by the following argument. If M#
2n(N |ξ) = R there must be a drop in the

iteration to R since otherwise we obtain a contradiction as in the proof of

Claim 1. But then R cannot be sound, contradicting the fact that M#
2n(N |ξ)

is sound. Hence, γ is a cardinal in both M#
2n(N |ξ) and R and M#

2n(N |ξ)CR.
This is a contradiction because

ρω(M#
2n(N |ξ)) ≤ ξ < γ.

Therefore the N |δN -side also does not move in the comparison. �

By Claims 1, 2 and 3 we finally have that

M#
2n(N |ξ)CN |δN .

We now have to consider the case that A ∈ N |ξ for an ordinal ξ < δN such
that ξ is overlapped by an extender E on the N -sequence. That means
there is an extender E on the N -sequence such that crit(E) ≤ ξ < lh(E).
Let E be the least such extender, that means the index of E is minimal
among all critical points of extenders on the N -sequence overlapping ξ. By
the definition of a “fine extender sequence” (see Definition 2.4 in [St10]) we
have that A ∈ Ult(N ;E) and that the ordinal ξ is no longer overlapped by an
extender on the Ult(N ;E)-sequence. Let M = Ult(N ;E) and consider the
premouse M |ξ, so we have in particular that A ∈M |ξ. The same argument
as above for N |ξ replaced by M |ξ proves that

M#
2n(M |ξ)CN |δN

and therefore we finally have that M#
2n(A) ∈ N |δN by repeating the argu-

ment we already gave at the beginning of this proof. �

From Lemma 3.11 we can obtain the following lemma as a corollary.
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Lemma 3.12. Let n ≥ 0 and z ∈ ωω. Assume that M#
2n(x) exists for all

x ∈ ωω and let N be a (2n + 1)-suitable z-premouse. Then N is Σ1
2n+2-

correct in V for real parameters in N and we write

N ≺Σ1
2n+2

V.

Proof. Let a be a real in N . By Lemma 3.11 we have that

M#
2n(a) ∈ N.

Moreover we have by Lemma 1.17 that M#
2n(a) is Σ1

2n+2-correct in V . There-

fore it follows that N is Σ1
2n+2-correct in V by the following inductive ar-

gument.

Shoenfield’s Absoluteness Theorem implies that M2n(N |δN ) is Σ1
2-correct

in V . Let k ≤ n and assume inductively that M2n(N |δN ) is Σ1
2k-correct in

V . Let ϕ(a) be a Σ1
2k+2-formula for a parameter a ∈ N ∩ ωω, i.e. ϕ(a) ≡

∃x∀y ψ(x, y, a) for a Σ1
2k-formula ψ(x, y, a). First assume that ϕ(a) holds in

V . As M#
2n(a) is Σ1

2k+2-correct in V , we have that ϕ(a) holds in M#
2n(a). Let

x ∈ M#
2n(a) be a real such that M#

2n(a) � ∀y ψ(x, y, a). Then in particular

V � ∀y ψ(x, y, a). As M#
2n(a) ∈ N we have that x ∈ M2n(N |δN ) and by

downwards absoluteness combined with the inductive hypothesis it follows
that M2n(N |δN ) � ∀y ψ(x, y, a) as this statement is true in V .

For the other direction assume that ϕ(a) is true in M2n(N |δN ) and let
x ∈ M2n(N |δN ) be a real such that M2n(N |δN ) � ∀y ψ(x, y, a). Let y ∈
M#

2n(a ⊕ x) ∩ ωω be arbitrary. Since M#
2n(a ⊕ x) ∩ ωω ⊂ M2n(N |δN ) ∩ ωω,

we have that M2n(N |δN ) � ψ(x, y, a). As ψ(x, y, a) is a Σ1
2k-formula, the

inductive hypothesis implies that V � ψ(x, y, a). Since M#
2n(a⊕x) is Σ1

2n+2-

correct in V , it follows that M#
2n(a⊕x) � ψ(x, y, a). But y ∈M#

2n(a⊕x)∩ωω
was arbitrary, so M#

2n(a ⊕ x) � ∃x∀y ψ(x, y, a). Therefore the fact that

M#
2n(a⊕ x) is Σ1

2k+2-correct in V implies V � ϕ(a).

This inductive argument shows that M2n(N |δN ) is Σ1
2n+2-correct in V . But

N and M2n(N |δN ) agree on their reals and hence N is Σ1
2n+2-correct in V ,

as desired. �

Note that we could have also proven Lemma 3.12 by an argument similar
to the one we gave in the proof of Lemma 3.10 but with additionally using
the uniformization property as in the proof of Lemma 1.17 (1).

3.3. Outline of the Proof. Our main goal for the rest of this paper is to
give a proof of the following theorem.

Theorem 3.13. Let n ≥ 0 and assume there is no Σ1
n+2-definable ω1-

sequence of pairwise distinct reals. Then the following are equivalent.

(1) Π1
n determinacy and Π1

n+1 determinacy,
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(2) for all x ∈ ωω, M#
n−1(x) exists and is ω1-iterable, and M#

n exists and is
ω1-iterable,

(3) M#
n exists and is ω1-iterable.

For n = 0 this is due to L. Harrington (see [Ha78]) and D. A. Martin (see
[Ma70]).

The results that (3) implies (2) and that (2) implies (1) for ω1-iterable

premice M#
n are due to the third author for odd n (unpublished) and due

to Neeman for even n > 0 (see Theorem 2.14 in [Ne02]), building on work of
Martin and Steel (see [MaSt89]). Moreover the results that (3) implies (2)
and that (2) implies (1) hold without the background hypothesis that every
Σ1
n+2-definable sequence of pairwise distinct reals is countable.

We will focus on the proof of the following theorem, which is the implication
“(1)⇒ (3)” in Theorem 3.13 and due to the third author.

Theorem 3.14. Let n ≥ 1 and assume there is no Σ1
n+2-definable ω1-

sequence of pairwise distinct reals. Moreover assume that Π1
n determinacy

and Π1
n+1 determinacy hold. Then M#

n exists and is ω1-iterable.

Remark. Let n ≥ 0. Then we say that there exists a Σ1
n+2-definable ω1-

sequence of pairwise distinct reals iff there exists a well-order ≤∗ of ordertype
ω1 for reals such that if we let X≤∗ = field(≤∗), that means if we have for
all y ∈ ωω that

y ∈ X≤∗ ⇔ ∃x (x ≤∗ y ∨ y ≤∗ x),

then there exists a Σ1
n+2-definable relation R such that we have for all

x, y ∈ ωω,
R(x, y) ⇔ x, y ∈ X≤∗ ∧ x ≤∗ y.

We will first show in Section 3.4 how boldface determinacy for a level Π1
n+1

of the projective hierarchy can be used to prove that every sequence of
pairwise distinct reals which is Σ1

n+2-definable is in fact countable.

This will enable us to conclude Theorem 2.1 from Theorem 3.14. The odd
levels in the inductive proof of Theorem 3.14 will finally be proven in Section
3.5 and the even levels in Section 3.6. As mentioned before the proof for the
odd and the even levels of the projective hierarchy will be different because
of the periodicity in the projective hierarchy in terms of uniformization and
correctness.

3.4. Making use of the Right Hypothesis. In this section we will pro-
vide one ingredient for the proof of Theorem 2.1. We will see that the results
from Sections 3.5 and 3.6 can actually be obtained from boldface determi-
nacy at the right level of the projective hierarchy. The following lemma
makes this precise. The result essentially goes back to Mansfield [Man75];
the proof we give is from [Ke78] (see also [Jec03, Theorem 25.39]).

Lemma 3.15. Let n ≥ 0. Then Π1
n+1 determinacy implies that every Σ1

n+2-
definable sequence of pairwise distinct reals is countable.
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Remark. In fact, instead of Π1
n+1 determinacy we could also just assume the

weaker hypothesis that Σ1
n+2 has the perfect set property. The proof only

uses this consequence of Π1
n+1 determinacy.

Proof of Lemma 3.15. Suppose there is a well-order ≤∗ of ordertype ω1 for
reals and a Σ1

n+2-definable relation R as in the remark after Theorem 3.14.
In what follows we identify reals with elements of 2ω and letX≤∗ = field(X).
By Π1

n+1 determinacy, Σ1
n+2 has the perfect set property (see [Ka03, 27.14]).

Therefore, since X≤∗ is uncountable, X≤∗ has a perfect subset P ⊆ X≤∗ .
Now it suffices to show the following claim.

Claim 1. Suppose P0 is a perfect set and f0 : P0 → P is a continuous
injection. Then there is a perfect set P1 ⊆ P0 and a continuous injection
f1 : P1 → P such that f1(x) <∗ f0(x) for all x ∈ P1.

Using this claim, we can define a sequence (Pn | n < ω) of perfect sets Pn
together with continuous injections fn : Pn → P such that for all n < ω,
Pn+1 ⊆ Pn and fn+1(x) <∗ fn(x) for all x ∈ Pn+1. Since 2ω is a compact
space, all Pn’s are closed, and intersections of finitely many of the Pn’s
are non-empty,

⋂
n<ω Pn is non-empty. But if we let x ∈

⋂
n<ω Pn, then

fn+1(x) <∗ fn(x) for all n < ω, a contradiction.

Proof of Claim 1. Let h : P0 → P and h∗ : P0 → P be two continuous bi-
jections such that h(x) 6= h∗(x) for all x ∈ P0. Such bijections can easily
be obtained by considering homeomorphisms g0 : P0 → 2ω and g : P → 2ω.
Then we can define h = g−1 ◦ g0 and h∗ = g−1 ◦ π ◦ g0, where π : 2ω → 2ω is
the homeomorphism flipping 0 and 1 in each coordinate.

Let

A = {x ∈ P0 | f0(x) >∗ h(x)}
and

A∗ = {x ∈ P0 | f0(x) >∗ h∗(x)}.

Subclaim 1. A or A∗ has a perfect subset.

Proof. Assume not. Then, since A and A∗ are Σ1
2n+2-definable, the perfect

set property implies that A∪A∗ is countable. Let O be the orbit of A∪A∗
under f0, h, and h∗, i.e. O is the smallest set Q such that A ∪A∗ ⊆ Q and
for all x ∈ Q, f0(x), f−1

0 (x), h(x), h−1(x), h∗(x), (h∗)−1(x) ∈ Q, whenever
these maps are defined on x.

Then O is countable, so we can let z be the <∗-minimal element in P \ O.
Let x, x∗ ∈ P0 be such that h(x) = z = h∗(x∗). Then x 6= x∗ and x, x∗ /∈ O.
This implies that f0(x) 6= f0(x∗) and f0(x), f0(x∗) /∈ O. By minimality of z,
we have z ≤∗ f0(x) and z ≤∗ f0(x∗). But since f0(x) 6= f0(x∗), this yields
that h(x) = z <∗ f0(x) or h∗(x) = z <∗ f0(x∗). This means, x ∈ A or
x ∈ A∗, contradicting the fact that x, x∗ /∈ O. �
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Suppose A has a perfect subset PA. Then P1 = PA ⊆ P0 and f1 = h � PA
are as desired. Analogously, suppose B has a perfect subset PB. Then
P1 = PB ⊆ P0 and f1 = h∗ � PB are as desired. �

�

3.5. M#
2n−1(x) from Boldface Π1

2n Determinacy. The goal of this sec-
tion is to prove Theorem 3.14 in the case that n is odd. The proof which
is presented in the following argument only works if n is odd because of
the periodicity in the projective hierarchy in terms of uniformization (see
Theorem 6C.5 in [Mo09]). The even levels in the statement of Theorem 3.14
have to be treated differently (see Section 3.6). So we are going to prove the
following theorem.

Theorem 3.16. Let n ≥ 1 and assume that every Π1
2n−1-definable set of

reals and every Π1
2n-definable set of reals is determined. Moreover assume

that there is no Σ1
2n+1-definable ω1-sequence of pairwise distinct reals. Then

the premouse M#
2n−1 exists and is ω1-iterable.

The proof of Theorem 3.16 uses the following Determinacy Transfer Theo-
rem, which is due to A. S. Kechris and the third author (see [KW08]). In
the version as stated below it follows from [KW08] using [Ne95] and that
Theorem 3.13 holds below 2n− 1 inductively.

Theorem 3.17 (Determinacy Transfer Theorem). Let n ≥ 1. Assume
determinacy for every Π1

2n−1- and every Π1
2n-definable set of reals. Then we

have determinacy for all a(2n−1)(< ω2 −Π1
1)-definable sets of reals.6

Proof. The lightface version of Theorem 1.10 in [KW08] (see p. 369 in
[KW08]) gives that for all n ≥ 1,

Det(a(2n−2)(< ω2 −Π1
1))→ [Det(∆1

2n)↔ Det(a(2n−1)(< ω2 −Π1
1))].

As in the addendum §5 in [KW08] we need to argue that Π1
2n−1 determinacy

implies a(2n−2)(< ω2 −Π1
1) determinacy to obtain that it implies the right-

hand side of the implication, i.e. “Det(∆1
2n)↔ Det(a(2n−1)(< ω2 −Π1

1))”.

Recall that we assume inductively that Theorem 3.13 holds for all m <

2n−1. Together with Lemma 3.15 this implies that the premouse M#
2n−2(x)

exists and is ω1-iterable for all x ∈ ωω from Π1
2n−1 determinacy. By Theorem

2.5 in [Ne95] this yields a(2n−2)(< ω2−Π1
1) determinacy. Therefore we have

that

Det(Π1
2n−1)→ [Det(∆1

2n)↔ Det(a(2n−1)(< ω2 −Π1
1))].

6See Section 6D in [Mo09] for a definition and some basic facts about the game quantifier

“a ”. We let “a(n) ” denote n successive applications of the game quantifier a. For the
definition of the difference hierarchy and in particular of the pointclass α − Π1

1 for an
ordinal α < ω1 see for example Section 31 in [Ka03].
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We have

Det(∆1
2n)↔ Det(Π1

2n)

by Theorem 5.1 in [KS85] which is due to Martin (see [Ma73]). So in
particular Π1

2n−1 determinacy and Π1
2n determinacy together imply that

a(2n−1)(< ω2 −Π1
1) determinacy holds. �

Martin proves in [Ma08] that under the assumption that x# exists for every
real x,

A ∈ a(< ω2 −Π1
1)

iff there is a formula φ such that for all x ∈ ωω

x ∈ A iff L[x] � φ[x, γ1, . . . , γk],

where γ1, . . . , γk are Silver indiscernibles for x. In the light of this result
(see also Definition 2.7 in [Ne02] for the general case) we can obtain the
following corollary of the Determinacy Transfer Theorem 3.17.

Corollary 3.18. Let n ≥ 1. Assume that Π1
2n−1 determinacy and Π1

2n

determinacy hold. Suppose Q is a set of reals such that there is an m < ω
and a formula φ such that for all x ∈ ωω

x ∈ Q iff M2n−2(x) � φ(x,E, γ1, . . . , γm),

where E is the extender sequence of M2n−2(x) and γ1, . . . , γm are the first
m indiscernibles of M2n−2(x). Then Q is determined.

This follows from the Determinacy Transfer Theorem 3.17 as the set Q
defined in Corollary 3.18 is a(2n−1)(< ω2 −Π1

1)-definable. Moreover note in
the statement of Corollary 3.18 that Π1

2n−1 determinacy inductively implies

that the premouse M#
2n−2(x) exists for every real x.

Now we are ready to prove Theorem 3.16.

Proof of Theorem 3.16. Let n ≥ 1. We assume inductively that Theorem
3.14 holds for 2n−2, that means we assume that Π1

2n−1 determinacy implies

that M#
2n−2(x) exists and is ω1-iterable for all reals x. These even levels will

be proven in Theorem 3.20. Recall that then our hypothesis implies by
Lemmas 3.2 and 3.9 that there exists a (2n− 1)-suitable premouse.

Let x ∈ ωω and consider the simultaneous comparison of all (2n−1)-suitable
premice N such that N is coded by a real yN ≤T x, using the iterability
stated in Definition 3.8. That means analogous to a usual comparison as in
Theorem 3.14 in [St10] we iterate away the least disagreement that exists
between any two of the models we are considering.

These premice successfully coiterate to a common model since they are all
(2n−1)-suitable and call this common iterate Nx. We could have performed
this simultaneous comparison inside an inner model of V of height ωV1 which

contains x and is closed under the operation a 7→ M#
2n−2(a) and therefore

the resulting premouse Nx is countable in V .
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Since Nx results from a successful comparison using iterability in the sense
of Definition 3.8, there either exists a (2n − 1)-suitable premouse N and
a non-dropping iteration from N to Nx via a short iteration tree or there
exists a maximal iteration tree T on a (2n− 1)-suitable premouse such that

Nx = M2n−2(M(T )) | (δ(T )+)M2n−2(M(T )).

Let δNx as usual denote the largest cardinal in Nx. Then we have that in the
first case Nx is a (2n − 1)-suitable premouse again by fullness preservation
and so in particular the model M2n−2(Nx|δNx) constructed in the sense of
Definition 2.9 is a well-defined proper class premouse with 2n − 1 Woodin
cardinals. In the second case we have by maximality of T that

M2n−2(Nx|δNx) � “δ(T ) is Woodin”,

with δNx = δ(T ), and M2n−2(Nx|δNx) is again a well-defined premouse with
2n− 1 Woodin cardinals.

For each formula φ and each m < ω let Qφm be the set of all x ∈ ωω such
that

M2n−2(Nx|δNx) � φ(E, γ1, . . . , γm),

where E is the extender sequence of M2n−2(Nx|δNx) and γ1, . . . , γm are
indiscernibles of M2n−2(Nx|δNx).

Claim 1. For all formulas φ and for all m < ω the set Qφm is determined.

Proof. We aim to reduce determinacy for the set Qφm to determinacy for a
set Q as in Corollary 3.18.

Recall that by Lemma 3.9 we have that a premouse N is (2n−1)-suitable iff
it is pre-(2n− 1)-suitable, that means iff it satisfies the following properties
for an ordinal δ0.

(1) N � “ ZFC−+ δ0 is the largest cardinal”,

N = M2n−2(N |δ0) | (δ+
0 )M2n−2(N |δ0),

and for every γ < δ0,

M2n−2(N |γ) | (γ+)M2n−2(N |γ) CN,

(2) M2n−2(N |δ0) is a proper class model and

M2n−2(N |δ0) � “δ0 is Woodin”,

(3) for every γ < δ0, M2n−2(N |γ) is a set, or

M2n−2(N |γ) 2 “γ is Woodin”,

and
(4) for every η < δ0, M2n−2(N |δ0) � “N |δ0 is η-iterable”.
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Formally the definition of pre-(2n− 1)-suitability requires that in the back-

ground universe the premouse M#
2n−2(z) exists for all z ∈ ωω. But for a

premouse N which is coded by a real yN ≤T x, the model M2n−2(x) can
compute if N is pre-(2n− 1)-suitable in V , i.e. if N satisfies properties (1) -
(4) above in V , by considering a fully backgrounded extender construction
as in Definition 2.18 above N |δ0, where δ0 denotes the largest cardinal in
N . Therefore we can make sense of these (2n − 1)-suitable premice inside
the model M2n−2(x). For the same reason the simultaneous comparison of
all such (2n − 1)-suitable premice which are coded by a real yN ≤T x as
introduced above can be carried out inside M2n−2(x) and therefore we have
that Nx ∈M2n−2(x).

Now consider the following formula ψφ, where φ as above is an arbitrary
formula.

ψφ(x,E, γ1, . . . , γm) ≡ “Write Nx for the result of the simultaneous

comparison of all (2n− 1)-suitable premice N

which are coded by a real yN ≤T x and

δNx for the largest cardinal in Nx, then

L[Ē](Nx|δNx) � φ(E∗, γ1, . . . , γm),

where E∗ denotes the extender sequence

of L[Ē](Nx|δNx),which in turn is computed from E

via a fully backgrounded extender construction

over Nx|δNx as in Definition 2.18.”

Now let E denote the extender sequence of the x-premouse M2n−2(x) and
let γ1, . . . , γm denote indiscernibles of the model L[M2n−2(x)|δ] = M2n−2(x),
where δ is the largest Woodin cardinal in M2n−2(x). Then we have in par-
ticular that γ1, . . . , γm are indiscernibles of the model L[Ē](Nx|δNx), con-
structed via a fully backgrounded extender construction inside M2n−2(x) as
defined in the formula ψφ(x,E, γ1, . . . , γm) above.

Therefore we have that

x ∈ Qφm ⇔M2n−2(x) � ψφ(x,E, γ1, . . . , γm),

because the premice L[Ē](Nx|δNx) as defined above and M2n−2(Nx|δNx) as

in the definition of the set Qφm coiterate to the same model.

Thus Corollary 3.18 implies that Qφm is determined for any formula φ and
any m < ω. �

The sets Qφm are Turing invariant, since the premouse Nx by definition only
depends on the Turing degree of x.
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Let ThM2n−2(Nx|δNx ) denote the theory of M2n−2(Nx|δNx) with indiscernibles
(computed in V ). That means

ThM2n−2(Nx|δNx ) = {φ |M2n−2(Nx|δNx) � φ(E, γ1, . . . , γm),

m < ω, φ formula},

where as above E denotes the extender sequence of M2n−2(Nx|δNx) and
γ1, . . . , γm are indiscernibles of M2n−2(Nx|δNx). Then we have that the
theory of M2n−2(Nx|δNx) stabilizes on a cone of reals x as in the following
claim.

Claim 2. There exists a real x0 ≥T x such that for all reals y ≥T x0,

ThM2n−2(Nx0 |δNx0 ) = ThM2n−2(Ny |δNy ).

Proof. By Claim 1 the set Qφm is determined and as argued above it is also

Turing invariant for all formulas φ and all m < ω. That means the set Qφm
either contains a cone of reals or is completely disjoint from a cone of reals.

For each formula φ and each natural number m let xφm ∈ ωω be such that

either y ∈ Qφm for all y ≥T xφm or else y /∈ Qφm for all y ≥T xφm. Let

x0 =
⊕
{xφm | φ formula,m < ω}.

Then we have by construction for all y ≥T x0 that

ThM2n−2(Nx0 |δNx0 ) = ThM2n−2(Ny |δNy ),

as desired. �

Let x0 ∈ ωω be as in Claim 2. We want to show that the unique theory
T = ThM2n−2(Nx|δNx ) of M2n−2(Nx|δNx) with indiscernibles as defined above

for x ≥T x0 in fact gives a candidate for the theory of the premouse M#
2n−1

in V to conclude that M#
2n−1 exists and is ω1-iterable in V . By coding a

formula φ by its unique Gödel number pφq we can code the theory T by a
real xT .

Fix a real z such that z ≥T x0 ⊕ xT . Moreover we can pick the real z such
that it in addition codes a (2n − 1)-suitable premouse by Lemmas 3.2 and
3.9.

Using the existence of the premouse M#
2n−2(x) in V for every real x, we can

as described below close under the operation

a 7→M#
2n−2(a)

to construct a transitive model Mz from z. Moreover we will define an order
of construction for elements of the model Mz along the way.

The fact that the model Mz will be closed under a 7→ M#
2n−2(a) directly

yields that Mz is Σ1
2n-correct (see Claim 4 below).

In the construction of the model Mz we aim to construct models by ex-
panding the usual definition of Gödels constructible universe L by adding
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additional elements at the successor steps of the construction. Therefore
recall the following definition which is used in the definition of Jensens J-
hierarchy for L (see §1 and §2 in [Je72]).

Definition 3.19. Let X be an arbitrary set. Then TC(X) denotes the
transitive closure of X and rud(X) denotes the closure of TC(X)∪{TC(X)}
under rudimentary functions (see for example Definition 1.1 in [SchZe10]
for the definition of a rudimentary function).

We construct a sequence of models (Wα | α ≤ ωV1 ) and in particular the
model Mz = WωV1

level-by-level in a construction of length ωV1 , starting

from z and taking unions at limit steps of the construction. So we let
W0 = {z}.
Successor steps: At a successor level α+1 of the construction we close the

previous model Wα under the operation a 7→M#
2n−2(a) before closing under

rudimentary functions. More precisely assume that we already constructed

Wα and let a ∈Wα be arbitrary. Then the a-premouse M#
2n−2(a) exists in V

because a is countable in V and we inductively assume that Theorem 3.13
holds for 2n− 2. LetM be a countable a-premouse in V with the following
properties.

(i) M is (2n− 1)-small, but not (2n− 2)-small,
(ii) all proper initial segments of M are (2n− 2)-small,

(iii) M is a-sound and ρω(M) = a, and
(iv) M is Π1

2n-iterable.

These properties uniquely determine the a-premouse M#
2n−2(a) in V . We

let Wα+1 be the model obtained by taking the closure under rudimentary
functions of Wα together with all such a-premiceM as above for all a ∈Wα,
i.e.

Wα+1 = rud(Wα ∪ {M | ∃a ∈Wα such that M is a countable

a-premouse satisfying (i)− (iv)}).

Order of construction: For an a-premouse Ma and a b-premouse Mb

satifying properties (i) − (iv) for a, b ∈ Wα, we say that Ma is defined
before Mb if a is defined before b in the order of construction for elements
of Wα, which exists inductively. For elements added by the closure under
rudimentary functions we define the order of construction as in the definition
of the order of construction for L.

Limit steps: At a limit step of the construction we let

Wλ =
⋃
α<λ

Wα

for all limit ordinals λ < ωV1 and we finally let

Mz = WωV1
=

⋃
α<ωV1

Wα.
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Order of construction: The order of construction at the limit steps is
defined as in the definition of the order of construction for L (see Lemma
5.26 in [Sch14]).

Now we get that Mz is a model of ZFC from the background hypothesis
that there is no Σ1

2n+1-definable ω1-sequence of pairwise distinct reals as in
the following claim.

Claim 3. Mz � ZFC.

Proof. Assume not. Then the power set axiom has to fail. So let γ be a
countable ordinal such that

P(γ) ∩Mz /∈Mz.

This yields that the set P(γ) ∩Mz has size ℵ1.

Let Wγ = Mz|γ be the γ-th level in the construction of Mz. Then we can fix
a real a in V which codes the countable set Wγ . That means a ∈ ωω codes
a set E ⊂ ω × ω such that there is an isomorphism π : (ω,E)→ (Wγ ,∈).

If it exists, we let Aξ for γ < ξ < ωV1 be the smallest subset of γ in

Mz|(ξ + 1) \ Mz|ξ

according to the order of construction. Moreover we let X be the set of all
ξ with γ < ξ < ωV1 such that Aξ exists. Then X is cofinal in ωV1 .

Finally we let aξ be a real coding the set Aξ relative to the code a for Wγ .
That means aξ ∈ ωω codes the real a together with some set a′ ⊂ ω such
that b ∈ a′ iff π(b) ∈ Aξ, where π is the isomorphism given by a as above.
For ξ ∈ X we have that Aξ ∈ P(γ)∩Mz and thus Aξ ⊆Wγ , so the canonical
code aξ for Aξ relative to a exists.

Now consider the following ωV1 -sequence of reals

A = (aξ ∈ ωω | ξ ∈ X).

We have that a real y codes an element of the model Mz|(ξ + 1) \ Mz|ξ for
some ξ < ωV1 iff there is a sequence of countable models (Wβ | β ≤ ξ + 1)
and an element Y ∈Wξ+1 such that

(1) W0 = {z},
(2) Wβ+1 is constructed from Wβ as described in the construction above for

all β ≤ ξ,
(3) Wλ =

⋃
β<λWβ for all limit ordinals λ ≤ ξ,

(4) y does not code an element of Wξ, and
(5) y codes Y .

This states that the real y codes an element of the model Mz|(ξ+ 1) \ Mz|ξ
as the construction of the levels of the model Mz is defined in a unique
way. Now we have to argue that this statement is definable enough for our
purposes.
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For the successor levels of the construction we have that the properties
(i)− (iv) as in the construction are Π1

2n-definable uniformly in any code for
the countable premouse M.

So this shows that the statement “aξ codes the smallest subset of γ in
Mz|(ξ + 1) \ Mz|ξ” is Σ1

2n+1-definable uniformly in a, z and any code for ξ
and γ.

Therefore the ω1-sequence A as defined above is Σ1
2n+1-definable uniformly

in a and z in the sense of the remark after the statement of Theorem 3.14.
Thus A contradicts the assumption that every Σ1

2n+1-definable sequence of
pairwise distinct reals is countable. �

Moreover we have the following claim.

Claim 4. The resulting model Mz has the following properties.

(1) Mz ∩Ord = ωV1 , z ∈Mz,
(2) Mz ≺Σ1

2n
V ,

(3) Mz is closed under the operation

a 7→M#
2n−2(a),

and moreover M#
2n−2(a) is ω1-iterable in Mz for all a ∈Mz.

Proof. Property (1) immediately follows from the construction.

Proof of (3), first part: Let a ∈ Mz be arbitrary. Then we have that
a ∈ Wα for some ordinal α < ωV1 . Recall that by our assumptions the ω1-

iterable a-premouse M#
2n−2(a) exists in V as a is countable in V . Moreover

it satisfies properties (i)− (iv) from the construction, i.e.

(i) M#
2n−2(a) is (2n− 1)-small, but not (2n− 2)-small,

(ii) all proper initial segments of M#
2n−2(a) are (2n− 2)-small,

(iii) M#
2n−2(a) is a-sound and ρω(M#

2n−2(a)) = a, and

(iv) M#
2n−2(a) is Π1

2n-iterable.

Therefore the a-premouse M = M#
2n−2(a), which is ω1-iterable in V , has

been added to the model Mz at some successor level of the construction and
thus Mz is closed under the operation a 7→M#

2n−2(a).

Proof of (2): The fact that the model Mz is closed under the operation

a 7→ M#
2n−2(a) immediately implies property (2), because the a-premouse

M#
2n−2(a) is Σ1

2n-correct in V by Lemma 1.17.

Proof of (3), second part: We now want to show that the a-premouseM
as above, which has been added to the model Mz at some successor level of
the construction, is ω1-iterable inside Mz via the iteration strategy Σ which
is guided by Q-structures (see Definition 2.5).
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Let T be an iteration tree of length λ on the a-premouse M for some limit
ordinal λ < ω1 in Mz such that T is according to the iteration strategy Σ.
Then T is guided by Q-structures which are (2n− 2)-small above δ(T � γ),
ω1-iterable above δ(T � γ) and thus also Π1

2n−1-iterable above δ(T � γ) in
Mz for all limit ordinals γ ≤ λ.

By (2) we have that Mz is Σ1
2n-correct in V for real parameters in Mz.

Therefore it follows that the Q-structures Q(T � γ) which are (2n−2)-small
above δ(T � γ) and guiding the iteration tree T in Mz are Π1

2n−1-iterable

above δ(T � γ) in V for all limit ordinals γ ≤ λ. Since M#
2n−2(x) exists

in V for all x ∈ ωω by our assumptions and in particular M#
2n−2(a) exists

in V , we have by Lemma 2.13 that these Q-structures also witness that T
is according to the Q-structure iteration strategy Σ in V . Therefore there
exists a unique cofinal well-founded branch b through T in V such that we
have Q(b, T ) = Q(T ). By an absoluteness argument as given several times
before (see for example the proof of Lemma 2.11), it follows that the unique
cofinal well-founded branch b through T in V for which Q(b, T ) = Q(T )
holds, is also contained in Mz since we have that T ,Q(T ) ∈Mz.

Therefore M = M#
2n−2(a) exists and is ω1-iterable in Mz via the iteration

strategy Σ. �

Now we aim to show that a Kc-construction in Mz reaches M#
2n−1, meaning

that the premouse (Kc)Mz is not (2n − 1)-small. Here and in what follows
we consider a Kc-construction in the sense of [MSch04] as this construction
does not assume any large cardinals in the background model.

Claim 5. (Kc)Mz is not (2n− 1)-small.

Proof. We work inside the model Mz and distinguish numerous different
cases. Moreover we assume toward a contradiction that (Kc)Mz is (2n− 1)-
small.

First we show the following subclaim.

Subclaim 1. Let δ be a cutpoint in (Kc)Mz . If (Kc)Mz does not have a
Woodin cardinal above δ, then (Kc)Mz is fully iterable above δ in Mz.

We allow δ = ω, i.e. the case that (Kc)Mz has no Woodin cardinals, in the
statement of Subclaim 1.

Proof of Subclaim 1. (Kc)Mz is iterated via the Q-structure iteration strat-
egy Σ (see Definition 2.5). That means for an iteration tree U of limit length
on (Kc)Mz we let

Σ(U) = b iff Q(b,U) = Q(U) and Q(U)EM#
2n−2(M(U)),

since (Kc)Mz is assumed to be (2n− 1)-small.

It is enough to show that (Kc)Mz is ω1-iterable above δ inside Mz, because
then an absoluteness argument as the one we gave in the proof of Lemma
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2.11 yields that (Kc)Mz is fully iterable above δ inside Mz as the iteration
strategy for (Kc)Mz is guided by Q-structures.

Assume toward a contradiction that (Kc)Mz is not ω1-iterable above δ in
Mz. Then there exists an iteration tree T on (Kc)Mz above δ of limit length
< ω1 inside Mz such that there exists no Q-structure Q(T ) for T with

Q(T )EM#
2n−2(M(T )) and hence

M#
2n−2(M(T )) � “δ(T ) is Woodin”.

The premouse M#
2n−2(M(T )), constructed in the sense of Definition 2.9,

exists in Mz and is not (2n − 2)-small above δ(T ), because otherwise it
would already provide a Q-structure for T .

Let M̄ be the Mostowski collapse of a countable substructure of Mz con-
taining the iteration tree T . That means we choose a large enough natural
number m and let M̄,X and σ be such that

M̄
σ∼= X ≺Σm Mz,

where

σ : M̄ →Mz

denotes the uncollapse map such that we have a model K̄ in M̄ with
σ(K̄|γ) = (Kc)Mz |σ(γ) for every ordinal γ < M̄ ∩ Ord, and we have an
iteration tree T̄ on K̄ above an ordinal δ̄ in M̄ with σ(T̄ ) = T and σ(δ̄) = δ.
Moreover we have that

M#
2n−2(M(T̄ )) � “δ(T̄ ) is Woodin”.

By the iterability proof of Chapter 9 in [St96] (adapted as in [MSch04])
applied inside Mz, there exists a cofinal well-founded branch b through the

iteration tree T̄ on K̄ in Mz such that we have a final model MT̄b .

Consider the coiteration of MT̄b with M#
2n−2(M(T̄ )) and note that it takes

place above δ(T̄ ). Since M#
2n−2(M(T̄ )) is ω1-iterable above δ(T̄ ) inside Mz

and MT̄b is iterable in Mz by the iterability proof of Chapter 9 in [St96]
(adapted as in [MSch04]) applied inside the model Mz, the coiteration is
successful using Lemma 2.11 inside Mz.

If there is no drop along the branch b, thenMT̄b cannot lose the coiteration,

because otherwise there exists a non-dropping iterate R∗ of MT̄b and an

iterateM∗ of M#
2n−2(M(T̄ )) such that R∗EM∗. But we have that there is

no Woodin cardinal in MT̄b above δ̄ by elementarity and at the same time
we have that δ̄ < δ(T̄ ) and

M#
2n−2(M(T̄ )) � “δ(T̄ ) is Woodin”.

If there is a drop along b, thenMT̄b also has to win the coiteration, because

we have ρω(MT̄b ) < δ(T̄ ) and ρω(M#
2n−2(M(T̄ ))) = δ(T̄ ).
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That means in both cases there is an iterate R∗ ofMT̄b and a non-dropping

iterate M∗ of M#
2n−2(M(T̄ )) such that M∗ ER∗. We have that M∗ is not

(2n−1)-small, because M#
2n−2(M(T̄ )) is not (2n−1)-small as argued above

and the iteration from M#
2n−2(M(T̄ )) to M∗ is non-dropping. Therefore it

follows that R∗ is not (2n−1)-small and thusMT̄b is not (2n−1)-small. By
the iterability proof of Chapter 9 in [St96] (adapted as in [MSch04]) applied

inside Mz we can re-embed the model MT̄b into a model of the (Kc)Mz -

construction. This yields that (Kc)Mz is not (2n − 1)-small, contradicting
our assumption that it is (2n− 1)-small. �

Now we distinguish the following cases.

Case 1. Assume that

(Kc)Mz � “there is a Woodin cardinal”.

Then we can assume that there is a largest Woodin cardinal in (Kc)Mz , be-
cause otherwise (Kc)Mz has infinitely many Woodin cardinals and is there-
fore not (2n − 1)-small. So let δ denote the largest Woodin cardinal in
(Kc)Mz .

Consider the premouseM = M#
2n−2((Kc)Mz |δ) in the sense of Definition 2.9

and note thatM exists inside Mz by Claim 4. Now try to coiterate (Kc)Mz

with M inside Mz.

Since the comparison takes place above δ and the premouse

M = M#
2n−2((Kc)Mz |δ)

is ω1-iterable above δ, the coiteration is successful, using Lemma 2.11 (2)
and Subclaim 1 since the iteration strategies for the premice (Kc)Mz and

M#
2n−2((Kc)Mz |δ) above δ are guided by Q-structures which are (2n − 2)-

small above δ(T ) for any iteration tree T of limit length (see proof of Claim
4).

So there is an iterate R of (Kc)Mz and an iterate M∗ of M such that the
coiteration terminates with REM∗ orM∗ER. By universality of the model
(Kc)Mz inside Mz (see Section 3 in [MSch04]) we have that M∗ E R and
that there is no drop on the M-side of the coiteration. This implies that

the premouse M = M#
2n−2((Kc)Mz |δ) in the sense of Definition 2.9 is not

(2n− 2)-small above δ, as otherwise we have thatM is not fully sound and
since M∗ ER this yields a contradiction because of soundness.

Therefore M is not (2n− 1)-small and thus M∗ is also not (2n− 1)-small.
That means R and thereby (Kc)Mz is not (2n−1)-small, which is the desired
contradiction.

This finishes the proof of Claim 5 in the case that there is a Woodin cardinal
in (Kc)Mz .
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Case 2. Assume that

(Kc)Mz 2 “there is a Woodin cardinal”.

Recall that by our choice of the real z, there exists a premouse N (coded by
the real z) in Mz which is (2n−1)-suitable in V and try to coiterate (Kc)Mz

with N inside Mz. We again iterate (Kc)Mz via the Q-structure iteration
strategy Σ as in Subclaim 1. So using Subclaim 1 the coiteration cannot fail
on the (Kc)Mz -side.

We have that the premouse N is (2n−1)-suitable in V . Since the statement
“N is pre-(2n − 1)-suitable” is Π1

2n-definable uniformly in any code for N ,
it follows that N is pre-(2n − 1)-suitable inside Mz, because Mz is closed

under the operation a 7→ M#
2n−2(a) and hence Σ1

2n-correct in V . Therefore
Lemma 3.9 implies that N is (2n−1)-suitable inside Mz. In particular N has
an iteration strategy which is fullness preserving for non-dropping iteration
trees.

So we have that the coiteration of (Kc)Mz with N is successful. Let T and
U be the resulting trees on (Kc)Mz and N of length λ+1 for some ordinal λ.
It follows that (Kc)Mz wins the comparison by universality of the premouse
(Kc)Mz inside Mz (see Section 3 in [MSch04]). Therefore we have that there
exists an iterate R = MTλ of (Kc)Mz and an iterate N∗ = MUλ of N such
that N∗ ER. Moreover there is no drop on the main branch on the N -side
of the coiteration.

Since N is (2n − 1)-suitable we have that M#
2n−2(N∗|δN∗) is a premouse

with 2n − 1 Woodin cardinals, which is ω1-iterable above δN∗ and not
(2n − 2)-small above δN∗ . So we can consider the coiteration of R with

M#
2n−2(N∗|δN∗). This coiteration is successful using Lemma 2.11 (2) be-

cause we have

N∗|δN∗ = R|δN∗
and R and M#

2n−2(N∗|δN∗) are both iterable above δN∗ , using Subclaim 1

for the iterate R of (Kc)Mz . If there is no drop on the main branch in T ,
then R = MTλ wins the comparison by universality of (Kc)Mz inside Mz

(again see Section 3 in [MSch04]). If there is a drop on the main branch in
T , then R also wins the comparison, because in this case we have that

ρω(R) < δN∗ and ρω(M#
2n−2(N∗|δN∗)) = δN∗ .

Therefore we have that there exists an iterate R∗ of R and an iterate M∗ of
M#

2n−2(N∗|δN∗) such that we have M∗ ER∗ in both cases and the iteration

from M#
2n−2(N∗|δN∗) to M∗ is non-dropping. Since M#

2n−2(N∗|δN∗) is not
(2n−1)-small, we have that M∗ and therefore R∗ is not (2n−1)-small. Thus
R is not (2n − 1)-small. But R is an iterate of (Kc)Mz and therefore this
implies that (Kc)Mz is not (2n− 1)-small, contradicting our assumption.

This finishes the proof of Claim 5. �
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Claim 5 now implies that M#
2n−1 exists in Mz as the minimal ω1-iterable

premouse which is not (2n− 1)-small.

Work inside the model Mz and let x ∈ Mz be a real which codes x0, the

theory T and the premouse (M#
2n−1)Mz . Let

N∗ = (M#
2n−1|(δ

+
0 )M

#
2n−1)Mz

denote the suitable initial segment of (M#
2n−1)Mz , where δ0 denotes the least

Woodin cardinal in (M#
2n−1)Mz . Then we have in particular that N∗ is a

(2n− 1)-suitable premouse (in Mz).

Recall that by Lemma 3.9 we have that N∗ is a (2n− 1)-suitable premouse
iff it is pre-(2n − 1)-suitable, that means iff it satisfies properties (1) − (4)
listed in the proof of Claim 1. Therefore the statement “N∗ is a (2n − 1)-
suitable premouse” is Π1

2n-definable uniformly in any code for N∗. Hence
by Σ1

2n-correctness of Mz in V it follows that N∗ is also a (2n− 1)-suitable
premouse in V .

Recall that Nx denotes the common iterate of all (2n − 1)-suitable pre-
mice N which are coded by a real yN recursive in x. Since Mz is Σ1

2n-
correct in V it follows that the premouse Nx is the same computed in Mz

or in V . This yields by correctness of Mz in V again that the premouse

M#
2n−2(Nx|δNx) is the same computed in Mz or in V by the following ar-

gument. The premouse (M#
2n−2(Nx|δNx))Mz is Π1

2n-iterable above δNx in

Mz and by Σ1
2n-correctness of Mz also in V . Therefore we can successfully

coiterate the premice (M#
2n−2(Nx|δNx))Mz and (M#

2n−2(Nx|δNx))V inside V
by Lemma 2.12 since the latter premouse is ω1-iterable in V above δNx and
the comparison takes place above δNx . It follows that in fact

(M#
2n−2(Nx|δNx))Mz = (M#

2n−2(Nx|δNx))V .

As mentioned before, we have that N∗ = (M#
2n−1|(δ

+
0 )M

#
2n−1)Mz is a (2n −

1)-suitable premouse in Mz and in V and since x codes the premouse

(M#
2n−1)Mz , the premouse N∗ is coded by a real recursive in x.

Consider the comparison of N∗ with Nx = (Nx)Mz inside an inner model of

Mz of height ωMz
1 which is closed under the operation a 7→ M#

2n−2(a). The

premouse (M#
2n−1)Mz is ω1-iterable in Mz and therefore it follows that N∗

is ω1-iterable in Mz. Thus arguments as in the proof of Lemma 2.11 yield
that Nx is in fact a non-dropping iterate of N∗, because N∗ is one of the
models giving rise to Nx.

The same argument shows that Nx does not move in the comparison with

(M#
2n−1)Mz . So in fact there is a non-dropping iterate M of (M#

2n−1)Mz

below (δ+
0 )(M#

2n−1)Mz such that NxEM . Since the iteration from (M#
2n−1)Mz

to M is fullness preserving in the sense of Definition 3.8 and it takes place
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below (δ+
0 )(M#

2n−1)Mz in Mz, we have that in fact

M = M#
2n−2(Nx|δNx),

because (M#
2n−1)Mz = M#

2n−2(N∗|δ0). Therefore we have thatM#
2n−2(Nx|δNx)

is a non-dropping iterate of M#
2n−2(N∗|δ0) and hence

ThM2n−2(Nx|δNx ) = ThM2n−2(N∗|δ0).

Recall that by Claim 2 we picked the real x0 such that ThM2n−2(Nx|δNx ) and
thus ThM2n−2(N∗|δ0) is constant for all x ≥T x0. This now implies that the

theory of (M#
2n−1)Mz is constant for all z ≥T x0 ⊕ xT , where xT is as above

a real coding the theory T .

Thus if we now work in V and let N = (M#
2n−1)Mz for z ≥T x0 ⊕ xT , then

we have

(M#
2n−1)Mz = N = (M#

2n−1)My

for all y ≥T x0 ⊕ xT . We aim to show that

(M#
2n−1)V = N,

so in particular that (M#
2n−1)V exists.

For this reason we inductively show that the premouse N is ω1-iterable in V
via the Q-structure iteration strategy Σ (see Definition 2.5). So assume that
T is an iteration tree via Σ of limit length < ω1 on N (in V ). So we have
that the branch b through the iteration tree T � λ is given by Q-structures,
i.e. Q(b, T � λ) = Q(T � λ), for every limit ordinal λ < lh(T ).

Pick z ∈ ωω with z ≥T x0⊕xT such that T ∈Mz and lh(T ) < ωMz
1 . Since T

is an iteration tree on N = (M#
2n−1)Mz according to the iteration strategy Σ

in V , we have that for all limit ordinals λ < lh(T ) the Q-structure Q(T � λ)
exists in V and is (2n − 1)-small above δ(T � λ). In fact Q(T � λ) is not
more complicated than the least active premouse which is not (2n−2)-small
above δ(T � λ). So in this case we have that Π1

2n-iterability for these Q-
structures is enough to determine a unique cofinal well-founded branch b
through T . Since Mz is Σ1

2n-correct in V it follows that T is also according
to the Q-structure iteration strategy Σ inside Mz. Moreover recall that

(M#
2n−1)Mz = N.

Therefore there exists a cofinal well-founded branch b through T in Mz.
As above this branch is determined by Q-structures Q(T � λ) which are
ω1-iterable above δ(T � λ) and therefore Π1

2n-iterable above δ(T � λ) in Mz

for all limit ordinals λ ≤ lh(T ). That means in particular that we have
Q(b, T ) = Q(T ). Moreover Q(T ) is also Π1

2n-iterable in V and therefore it
follows that b is the unique cofinal well-founded branch determined by these
Q-structures in V as well. So N is ω1-iterable in V via the Q-structure
iteration strategy Σ.
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Thus we now finally have that

V � “M#
2n−1 exists and is ω1-iterable”.

This finishes the proof of Theorem 3.16, i.e. Theorem 3.14 for odd n < ω. �

3.6. M#
2n(x) from Boldface Π1

2n+1 Determinacy. In this section we will
finish the proof of Theorem 2.1 by proving Theorem 3.20 which will yield
Theorem 3.14 and finally Theorem 2.1 for even levels n in the projective
hierarchy (using Lemma 3.15). Therefore together with the previous section
we will have Theorem 2.1 for arbitrary levels n.

Theorem 3.20. Let n ≥ 1 and assume that there is no Σ1
2n+2-definable ω1-

sequence of pairwise distinct reals. Moreover assume that Π1
2n determinacy

and Π1
2n+1 determinacy hold. Then M#

2n exists and is ω1-iterable.

Recall that Lemma 3.15 gives that Π1
2n+1 determinacy suffices to prove that

every Σ1
2n+2-definable sequence of pairwise distinct reals is countable.

In order to prove Theorem 3.20 we are considering slightly different premice
than before. The main advantage of these models is that they only contain
partial extenders on their extender sequence and therefore behave nicer in
some arguments to follow. The premice we want to consider are defined as
follows.

Definition 3.21. Let A be an arbitrary countable transitive swo’d 7 set.
With Lpn(A) we denote the unique model of height ωV1 called lower part
model above A which is given by the following construction of length ωV1 .
We start with N0 = A and construct countable A-premice along the way.
Assume that we already constructed Nα. Then we let Nα+1 be the model
theoretic union of all countable A-premice M DNα such that

(1) M is n-small above Nα ∩Ord,
(2) ρω(M) ≤ Nα ∩Ord,
(3) M is sound above Nα ∩Ord,
(4) Nα ∩Ord is a cutpoint of M , and
(5) M is ω1-iterable above Nα ∩Ord.

For the limit step let λ be a limit ordinal and assume that we already defined
Nα for all α < λ. Then we let Nλ be the model theoretic union of all
A-premice Nα for α < λ.

We finally let Lpn(A) = NωV1
.

A special case of this is Lpn(x) for x ∈ ωω.

Remark. We have that every lower part model as defined above does not
contain total extenders.

7i.e. self-wellordered as for example defined in Definition 3.1 in [SchT].
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We will state the following lemmas for lower part models constructed above
reals x instead of swo’d sets A as this will be our main application. But they
also hold (with the same proofs) if we replace x with a countable transitive
swo’d set A as in Definition 3.21.

Lemma 3.22. Let n ≥ 1 and assume that Π1
2n determinacy holds. Moreover

let x ∈ ωω be arbitrary. Then the lower part model above x, Lp2n−1(x), is
well-defined, that means Lp2n−1(x) is an x-premouse.

Proof. Recall that we assume inductively that Theorem 3.16 holds. That

means Π1
2n determinacy implies that M#

2n−1(x) exists for all x ∈ ωω. There-
fore we have by Lemma 2.11 that whenever M and M ′ are two x-premice
extending some x-premouse Nα (as in Definition 3.21) and satisfying prop-
erties (1)-(5) in Definition 3.21 for some x ∈ ωω, then we have that in fact
M EM ′ or M ′EM . Therefore Lp2n−1(x) is a well-defined x-premouse. �

Lemma 3.23. Let n ≥ 1 and assume that Π1
2n determinacy holds. Moreover

let x ∈ ωω be arbitrary. Let M denote the ωV1 -th iterate of M#
2n−1(x) by its

least measure and its images. Then

M |ωV1 = Lp2n−1(x).

Proof. Let x ∈ ωω and let (Nα | α ≤ ωV1 ) be the sequence of models from the
definition of Lp2n−1(x) (see Definition 3.21). We aim to show inductively
that

Nα EM

for all α < ωV1 , where M denotes the ωV1 -th iterate of M#
2n−1(x) by its least

measure and its images as in the statement of Lemma 3.23. Fix an α < ωV1
and assume inductively that

Nβ EM

for all β ≤ α. Let z be a real which codes the countable premice Nα+1 and

M#
2n−1(x).

Since M#
2n−1(x) is ω1-iterable in V and has no definable Woodin cardinals,

we have by Lemma 2.11 (2) that it is (ω1 + 1)-iterable inside the model
M2n−1(z). Therefore we have in particular that M is (ω1 +1)-iterable inside
M2n−1(z).

Recall that Nα+1 is by definition the model theoretic union of all countable
x-premice N DNα such that

(1) N is (2n− 1)-small above Nα ∩Ord,
(2) ρω(N) ≤ Nα ∩Ord,
(3) N is sound above Nα ∩Ord,
(4) Nα ∩Ord is a cutpoint of N , and
(5) N is ω1-iterable above Nα ∩Ord.

In particular Lemma 2.11 (2) implies that all these x-premice NDNα satisfy-
ing properties (1)−(5) are (ω1 +1)-iterable above Nα∩Ord inside the model
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M2n−1(z) since they have no definable Woodin cardinals above Nα∩Ord. In
particular Nα+1 is well-defined as in Lemma 3.22 and it follows that Nα+1

is (ω1 + 1)-iterable above Nα ∩Ord inside M2n−1(z).

Hence we can consider the comparison of the x-premice M and Nα+1 inside
the model M2n−1(z). This comparison is successful because by our inductive
hypothesis it takes place above Nα ∩Ord. Now we distinguish the following
cases.

Case 1. Both sides of the comparison move.

In this case both sides of the comparison have to drop since we have that
ρω(N) ≤ Nα ∩Ord for all x-premice N occurring in the definition of Nα+1,
Nα+1 ∩Ord < ωV1 and M only has partial extenders on its sequence below
ωV1 . This is a contradiction by the proof of the Comparison Lemma (see
Theorem 3.11 in [St10]), so only one side of the coiteration can move.

Case 2. Only the M -side of the comparison moves.

As above we have in this case that the M -side drops. So there is an iterate
M∗ of M such that Nα+1 is an initial segment of M∗. Let Eβ for some
ordinal β be the first extender used on the M -side in the coiteration of M
with Nα+1. In particular Eβ is an extender indexed on the M -sequence

above Nα ∩Ord and below ωV1 . Since Eβ has to be a partial extender, there
exists a (2n− 1)-small sound countable x-premouse N CM such that Eβ is
a total extender on the N -sequence and ρm(N) ≤ crit(Eβ) for some natural
number m. Moreover we have that N is ω1-iterable by the iterability of
M . Furthermore we have that crit(Eβ) is a cardinal in Nα+1, because the
extender Eβ is used in the coiteration and we have that

Nα+1 EM
∗.

Therefore the premouse N is contained in Nα+1 by the definition of a lower
part model. But this contradicts the assumption that Eβ was used in the
coiteration, because then we have that there is no disagreement between M
and Nα+1 at Eβ.

Case 3. Only the Nα+1-side of the comparison moves.

In this case there is an iterate N∗ of Nα+1 above Nα ∩ Ord such that the
iteration from Nα+1 to N∗ drops and we have that

M EN∗.

Recall that M denotes the ωV1 -th iterate of M#
2n−1(x) by its least measure

and its images and is therefore in particular not (2n − 1)-small above ωV1 .
But then the same holds for N∗ and thus it follows that Nα+1 is not (2n−1)-
small above Nα ∩Ord, which is a contradiction, because Nα+1 is the model
theoretic union of premice which are (2n− 1)-small above Nα ∩Ord.
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This proves that
Nα+1 EM

for all α < ωV1 and since Lp2n−1(x) ∩ Ord = NωV1
∩ Ord = ωV1 we finally

have that
Lp2n−1(x) = M |ωV1 .

�

Remark. Lemma 3.23 also implies that the lower part model Lp2n−1(x) is

closed under the operation a 7→M#
2n−2(a) by the proof of Lemma 2.11 (1) as

this holds for M |ωV1 , where M again denotes the ωV1 -th iterate of M#
2n−1(x)

by its least measure and its images.

Using this representation of lower part models we can also prove the following
lemma.

Lemma 3.24. Let n ≥ 1 and assume that Π1
2n determinacy holds. Let

x, y ∈ ωω be such that x ∈ Lp2n−1(y). Then we have that

Lp2n−1(x) ⊆ Lp2n−1(y)

and in fact Lp2n−1(x) is definable inside Lp2n−1(y) from the parameter x
plus possibly finitely many ordinal parameters. If in addition we have that
y ≤T x, then

Lp2n−1(x) = (Lp2n−1(x))Lp
2n−1(y).

Here (Lp2n−1(x))Lp
2n−1(y) denotes the model of height ωV1 which is con-

structed as in Definition 3.21, but with models M which are ω1-iterable
above Nα ∩Ord inside Lp2n−1(y) instead of inside V .

Proof. Let x, y ∈ ωω be such that x ∈ Lp2n−1(y). We first prove that

Lp2n−1(x) ⊆ Lp2n−1(y).

By Lemma 3.23 we have that Lp2n−1(x) = M(x)|ωV1 , where M(x) denotes

the ωV1 -th iterate of M#
2n−1(x) by its least measure and its images. Moreover

we have that Lp2n−1(y) = M(y)|ωV1 , where M(y) denotes the ωV1 -th iterate

of M#
2n−1(y) by its least measure and its images. Let M∗(y) denote the

result of iterating the top measure of M(y) out of the universe.

Let L[E](x)M
∗(y) be as in Definition 2.18. Moreover let M#

x denote the

model obtained from L[E](x)M
∗(y) by adding the top measure (intersected

with L[E](x)M
∗(y)) of the active premouse M(y) to an initial segment of

L[E](x)M
∗(y) as in Section 2 of [FNS10].

We can successfully compare the active x-premice M#
x and M(x) inside the

model M2n−1(z), where z is a real coding M#
2n−1(y) and M#

2n−1(x), by an
argument using Lemma 2.11 as in the proof of Lemma 2.19. Therefore it

follows that M#
x = M(x) and thus we have that in fact

L[E](x)M
∗(y)|ωV1 = M#

x |ωV1 = M(x)|ωV1 .
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Since L[E](x)M
∗(y) ⊆M∗(y) it follows that

Lp2n−1(x) = M(x)|ωV1 = L[E](x)M
∗(y)|ωV1 ⊆M∗(y)|ωV1 = Lp2n−1(y).

Now we prove that Lp2n−1(x) is definable inside Lp2n−1(y) from the param-
eter x plus possibly finitely many ordinal parameters. Let (Nα | α ≤ ωV1 ) be
the sequence of models from the definition of Lp2n−1(x) in V (see Definition

3.21) and let (N
Lp2n−1(y)
α | α ≤ ωV1 ) denote the corresponding sequence of

models from the definition of (Lp2n−1(x))Lp
2n−1(y). Let α < ωV1 be such

that Nα = N
Lp2n−1(y)
α and let N D Nα be an x-premouse which satisfies

properties (1) − (5) in Definition 3.21 in V . So in particular we have that
N ∈ Lp2n−1(x) and N is (2n−1)-small above Nα∩Ord. As argued above we
have that N ∈ Lp2n−1(y) and we first want to show that as N is ω1-iterable
above Nα ∩Ord in V it follows that N is ω1-iterable above Nα ∩Ord inside
Lp2n−1(y).

So assume that N is ω1-iterable above Nα ∩ Ord in V and recall that the
model Lp2n−1(y) is closed under the operation a 7→ M#

2n−2(a). Since N
is (2n − 1)-small above Nα ∩ Ord and has no definable Woodin cardinal
above Nα∩Ord, we have that for an iteration tree T on N of length < ω1 in
Lp2n−1(y) above Nα∩Ord the iteration strategy Σ is guided by Q-structures
which are (2n − 2)-small above δ(T � λ) for every limit ordinal λ ≤ lh(T ).
Therefore the Q-structures for T are contained in the model Lp2n−1(y) and
we have that N is ω1-iterable inside Lp2n−1(y) above Nα ∩Ord if we argue
as in the proof of Lemma 2.11 (2).

Assume now that Lp2n−1(x) 6= (Lp2n−1(x))Lp
2n−1(y), as otherwise the defin-

ability of Lp2n−1(x) inside Lp2n−1(y) is trivial. That means there is an ordi-

nal α < ωV1 such that Nα = N
Lp2n−1(y)
α and there exists a premouse N BNα

which satifies properties (1) − (5) in the definition of (Lp2n−1(x))Lp
2n−1(y),

so in particular N is ω1-iterable above Nα ∩Ord inside Lp2n−1(y), but N is
not ω1-iterable above Nα ∩Ord in V .

Recall the model M∗(y) from the first part of this proof. We have that

Lp2n−1(x) = L[E](x)M
∗(y)|ωV1 and N are both sufficiently iterable in M∗(y),

so we can consider the coiteration of Lp2n−1(x) and N inside M∗(y) and
distinguish the following cases.

Case 1. Both sides of the comparison move.

In this case both sides of the comparison have to drop since we have that
ρω(N) ≤ Nα∩Ord and Lp2n−1(x) only has partial extenders on its sequence.
As in Case 1 in the proof of Lemma 3.23 this yields a contradiction.

Case 2. Only the Lp2n−1(x)-side of the comparison moves.
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Then the Lp2n−1(x)-side drops and we have that there is an iterate M of
Lp2n−1(x) such that N EM . But this would imply that N is ω1-iterable in
V , contradicting our choice of N .

Case 3. Only the N -side of the comparison moves.

In this case there exists an iterate N∗ of N such that Lp2n−1(x)EN∗. In fact
the iteration from N to N∗ only uses measures of Mitchell order 0 as the it-
eration cannot leave any total measures behind. Since there are only finitely
many drops along the main branch of an iteration tree, this implies that the
whole iteration from N to N∗ can be defined over L[N ] from N and a finite

sequence of ordinals as the iteration is linear. As N C (Lp2n−1(x))Lp
2n−1(y)

we therefore get that Lp2n−1(x) is definable inside Lp2n−1(y) from the pa-
rameter x plus finitely many ordinal parameters.

Now we prove the final part of Lemma 3.24, so assume that we in addition
have that y ≤T x. By the argument we just gave,

Lp2n−1(x) ( (Lp2n−1(x))Lp
2n−1(y) ⊆ Lp2n−1(y).

This contradicts the following claim.

Claim 1. For reals x, y such that x ∈ Lp2n−1(y) and y ≤T x we have that

Lp2n−1(x) = Lp2n−1(y).

Proof. As x ∈ Lp2n−1(y) we have that x ∈ M(y) and thus x ∈ M#
2n−1(y),

because M(y) is obtained from M#
2n−1(y) by iterating its least measure and

its images.

As in the proof of Lemma 2.19 we can consider the premice L[E](x)M2n−1(y)

and L[E](y)L[E](x)M2n−1(y)
and if we let κ denote the least measurable cardi-

nal in M2n−1(y), then we get as in the proof of Lemma 2.19 that

VM2n−1(y)
κ = V L[E](x)M2n−1(y)

κ .

Another comparison argument as in Lemma 2.19 yields that V
M2n−1(x)
ν =

V
L[E](x)M2n−1(y)

ν , where ν denotes the minimum of the least measurable car-
dinal in M2n−1(x) and the least measurable cardinal in L[E](x)M2n−1(y).
Therefore

VM2n−1(y)
µ = V L[E](x)M2n−1(y)

µ = VM2n−1(x)
µ ,

where µ = min(κ, ν), i.e. µ is the minimum of the least measurable cardinal
in M2n−1(y) and the least measurable cardinal in M2n−1(x). In particular

we can consider M2n−1(x) and M2n−1(y) as V
M2n−1(x)
µ -premice and as such

they successfully coiterate to the same model (see again Lemma 2.19 for a
similar argument). This implies that Lp2n−1(x) = Lp2n−1(y) as they can be
obtained by iterating M2n−1(x) and M2n−1(y) via their least measure and
its images. �
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�

In general it need not be the case that Lp2n−1(x) = (Lp2n−1(x))Lp
2n−1(y) as

the following counterexample shows.

Lemma 3.25. Assume that Π1
2 determinacy holds. Then there exists a real

x and a premouse M such that M is ω1-iterable in Lp1(x), but M is not
ω1-iterable in V .

Proof sketch. Consider the premouse M1 and let δ denote the Woodin car-
dinal in M1. Force with the countable stationary tower (see [La04]) over M1

and let

j : M1 → N

be the corresponding generic elementary embedding with crit(j) = ωM1
1 and

j(ωM1
1 ) = δ. Moreover let M denote the shortest cutpoint initial segment8

of N such that M1 ∩ R ⊂ M and ρω(M) = ω. Then we can identify the
premouse M with a canonical real m coding M .

M1|δ thinks that all of its own initial segments are fully iterable, so that
N |j(δ) thinks that M is fully iterable. Moreover, a short argument shows
that N is short tree iterable in V , i.e. N is iterable in V according to
iteration trees T on N such that Q(T ) E L[M(T )]. This is proven using
the fact that M1 and thus N is a model of the statement “I am short tree
iterable” together with an absoluteness argument similar to the one given
for example in the proof of Lemma 3.9.

Now consider the coiteration of M1(m) and N (construed as an m-premouse)
in V and let T and U denote the resulting trees on M1(m) and N respec-
tively, where the cofinal branches at limit steps in U are given by the short
tree iteration strategy for N . So there exists an iterate M∗ of M1(m) and
a pseudo-normal-iterate (see Definition 3.13 in [StW16]) N∗ of N such that
M∗ = N∗. Here we either have that N∗ is the last model of U , or we have
that the iteration tree U is maximal and N∗ = L[M(U)]. Moreover there
is no drop on the main branch in T , which is leading from M1(m) to M∗,
and therefore the iteration embedding i : M1(m) → M∗ exists. As M is
fully iterable inside N |j(δ), M will also be fully iterable inside N∗, cut off
at its Woodin cardinal (to conclude this, we don’t need that there is a map
from N to N∗). Hence M is fully iterable inside M∗, cut off at its Woodin
cardinal, and then by elementarity it follows that M is ω1-iterable inside
M1(m) and thus

Lp1(m) � “M is ω1-iterable”.

But the premouse M is not ω1-iterable in V . �

We also have a version of Lemma 2.3 for lower part models Lp2n−1(x) as
follows.

8i.e. M CN and M ∩Ord is a cutpoint in N
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Lemma 3.26. Let n ≥ 1 and assume that Π1
2n determinacy and Π1

2n+1

determinacy hold. Then there exists a real x such that we have for all reals
y ≥T x that

Lp2n−1(y) � OD-determinacy.

Proof. Recall that we assume inductively that Π1
2n determinacy implies that

M#
2n−1(x) exists for all x ∈ ωω. Then Lemma 3.26 follows from Lemma 2.3

by the following argument. For x ∈ ωω we have that

M2n−1(x)|δx � OD-determinacy

implies that
M2n−1(x)|κ � OD-determinacy,

where κ is the least measurable cardinal in M2n−1(x), because whenever
a set of reals A is ordinal definable in M2n−1(x)|κ, then it is also ordinal
definable in M2n−1(x)|δx, since M2n−1(x)|κ and M2n−1(x)|δx have the same
sets of reals. This yields by elementarity that

M |ωV1 � OD-determinacy,

where M denotes the ωV1 -th iterate of M2n−1(x) by its least measure and
its images. By Lemma 3.23 we have that M |ωV1 = Lp2n−1(x), so it follows
that

Lp2n−1(x) � OD-determinacy.

�

This immediately yields that we have the following variant of Theorem 2.24.

Theorem 3.27. Let n ≥ 1 and assume that Π1
2n determinacy and Π1

2n+1

determinacy hold. Then there exists a real x such that we have for all reals
y ≥T x that

HODLp2n−1(y) � “ω
Lp2n−1(y)
2 is inaccessible”.

Now we can turn to the proof of Theorem 3.20, which is going to yield
Theorem 3.14 in the case that n is even.

Proof of Theorem 3.20. We start with constructing a ZFC model Mx of
height ωV1 for some x ∈ ωω such that Mx is Σ1

2n+2-correct in V for real

parameters in Mx and closed under the operation a 7→M#
2n−1(a). To prove

that this construction yields a model of ZFC, we are as before going to use
the hypothesis that there is no Σ1

2n+2-definable ω1-sequence of pairwise dis-
tinct reals. The construction will be similar to the construction we gave in
Section 3.5, but here we have to manually ensure that Mx is Σ1

2n+2-correct
in V .

Fix an arbitrary x ∈ ωω and construct a sequence of models (Wα | α ≤ ωV1 ).
So the model Mx = WωV1

is build level-by-level in a construction of length

ωV1 . We are starting from W0 = {x} and are taking unions at limit steps of
the construction. At an odd successor level α+1 we will close the model Wα
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under Skolem functions for Σ1
2n+2-formulas. At the same time we will use

the even successor levels α + 2 to ensure that Mx will be closed under the
operation a 7→ M#

2n−1(a). As before the order of construction for elements
of the model Mx can be defined along the way.

Before we are describing this construction in more detail, we fix a Π1
2n+1-

definable set U which is universal for the pointclass Π1
2n+1. Pick the set

U such that we have Upϕq_a = Aϕ,a for every Π1
2n+1-formula ϕ and every

a ∈ ωω, where pϕq denotes the Gödel number of the formula ϕ and

Aϕ,a = {x | ϕ(x, a)}.

Then the uniformization property (see Theorem 6C.5 in [Mo09]) yields that
there exists a Π1

2n+1-definable function F uniformizing the universal set U .
So we have for all z ∈ dom(F ) that

(z, F (z)) ∈ U,

where dom(F ) = {z | ∃y (z, y) ∈ U}.
Odd successor steps: For the odd successor steps of the construction
assume now that we already constructed the model Wα such that α + 1 is
odd and that there exists a Π1

2n+1-formula ϕ with a real parameter a from
Wα such that ∃xϕ(x, a) holds in V but not in the model Wα. In this case
we aim to add a real xϕ,a constructed as described below to Wα+1 such
that ϕ(xϕ,a, a) holds. This real will witness that ∃xϕ(x, a) holds true inside
Wα+1.

We aim to build these levels of Mx in a Σ1
2n+2-definable way, so we choose

reals xϕ,a carefully. Therefore we add F (z) for all z ∈ dom(F ) ∩Wα to the
current model Wα. We will see in Claims 1 and 2 that this procedure adds
reals xϕ,a as above in a Π1

2n+1-definable way to the model Mx.

So let ϕF be a Π1
2n+1-formula such that for all x, y ∈ ωω,

F (x) = y iff ϕF (x, y).

Then we let

Wα+1 = rud(Wα ∪ {y ∈ ωω | ∃x ∈Wα ∩ ωω ϕF (x, y)}).

Order of construction: We inductively define the order of construction
for elements of Wα+1 as follows. First we say for F (x) 6= F (x′) with x, x′ ∈
dom(F ) ∩ Wα that F (x) is constructed before F (x′) iff x is constructed
before x′ in the order of construction for elements of Wα where x and x′ are
the minimal (according to the order of construction in Wα) reals y and y′ in
dom(F )∩Wα such that F (y) = F (x) and F (y′) = F (x′). Then we define the
order of construction for elements added by the closure under rudimentary
functions as in the definition of the order of construction for L.

Even successor steps: At an even successor level α+2 of the construction

we close the previous model Wα+1 under the operation a 7→M#
2n−1(a) before

closing under rudimentary functions. Assume that we already constructed
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Wα+1 and let a ∈Wα+1 be arbitrary. The a-premouse M#
2n−1(a) exists in V

because we as usual inductively assume that Theorem 3.13 holds for 2n− 1.
As in the proof of Theorem 3.16 letM be a countable a-premouse in V with
the following properties.

(i) M is 2n-small, but not (2n− 1)-small,
(ii) all proper initial segments of M are (2n− 1)-small,

(iii) M is a-sound and ρω(M) = a, and
(iv) M is Π1

2n+1-iterable.

We have that these properties (i)− (iv) uniquely determine the a-premouse

M#
2n−1(a) in V and we add such a-premice M for all a ∈ Wα+1 to the

model Wα+2 before closing under rudimentary functions as in the usual
construction of L, i.e.

Wα+2 = rud(Wα+1 ∪ {M | ∃a ∈Wα+1 such that M is a countable

a-premouse satisfying (i)− (iv)}).

Order of construction: For an a-premouse Ma and a b-premouse Mb

satifying properties (i) − (iv) for a, b ∈ Wα+1, we say that Ma is defined
before Mb if a is defined before b in the order of construction for elements
of Wα+1, which exists inductively. For elements added by the closure under
rudimentary functions we define the order of construction as in the definition
of the order of construction for L.

Limit steps: Finally we let

Wλ =
⋃
α<λ

Wα

for limit ordinals λ < ωV1 and

Mx = WωV1
=

⋃
α<ωV1

Wα.

Order of construction: The order of construction at the limit steps is
defined as in the definition of the order of construction for L.

As in Section 3.5 we are now able to show that this model Mx satisfies
ZFC, using the background hypothesis that every Σ1

2n+2-definable sequence
of pairwise distinct reals is countable.

Claim 1. Mx � ZFC .

Proof. For the even successor levels of the construction we have that prop-
erties (i)− (iv) as in the construction are Π1

2n+1-definable uniformly in any
code for the countable premouse M.

For the odd successor levels recall that U is a Π1
2n+1-definable set and that

F is a Π1
2n+1-definable function uniformizing U .
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Therefore the argument given in the proof of Claim 3 in the proof of Theorem
3.16 yields a contradiction to the background hypothesis that every Σ1

2n+2-
definable sequence of pairwise distinct reals is countable. �

Moreover we can prove the following claim.

Claim 2. The model Mx as constructed above has the following properties.

(1) Mx ∩Ord = ωV1 ,
(2) x ∈Mx,
(3) Mx is Σ1

2n+2-correct in V for real parameters in Mx, that means we
have that

Mx ≺Σ1
2n+2

V,

(4) Mx is closed under the operation

a 7→M#
2n−1(a),

and moreover M#
2n−1(a) is ω1-iterable in Mx for all a ∈Mx.

Proof. Properties (1) and (2) immediately follow from the construction.

Proof of (3): The proof is organized as an induction on m < 2n + 1. We
have that Mx is Σ1

2-correct in V using Shoenfield’s Absoluteness Theorem
(see for example Theorem 13.15 in [Ka03]). We assume inductively that
Mx is Σ1

m-correct in V and prove that Mx is Σ1
m+1-correct in V . Since the

upward implication follows easily as in the proof of Lemma 1.17, we focus
on the proof of the downward implication.

So let ψ be a Σ1
m+1-formula and let a ∈Mx ∩ ωω be such that ψ(a) holds in

V . Say

ψ(a) ≡ ∃xϕ(x, a)

for a Π1
m-formula ϕ.

Let y = pϕq_a ∈ ωω. Then we have that y ∈ dom(F ) since ψ(a) holds in
V and m ≤ 2n + 1. Therefore ϕF (y, F (y)) holds and F (y) is added to the
model Mx at an odd successor level of the construction because we have that
y ∈ Mx. Recall that F (y) is choosen such that (y, F (y)) ∈ U , that means
we have that

F (y) ∈ Uy = Upϕq_a = {x | ϕ(x, a)},
by our choice of U . Now the inductive hypothesis implies that

Mx � ϕ(F (y), a)

and therefore it follows that Mx � ψ(a), as desired.

Property (4) now follows by the same argument as the one we gave in the
proof of property (3) in Claim 4 in the proof of Theorem 3.16. �

The following additional property of the model Mx is a key point in proving

that M#
2n exists and is ω1-iterable in V .
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Claim 3. For all x ∈ ωω in the cone of reals given in Theorem 3.27,

Mx � “M#
2n exists and is ω1-iterable.”

The proof of this claim is now different from the proof of the analogous
claim in the previous section. The reason for this is that at the even levels
we cannot assume that we have a 2n-suitable premouse to compare the
model Kc with (which at the odd levels was given by Lemmas 3.2 and 3.9).
This is why we have to give a different argument here.

Proof of Claim 3. Assume this is not the case. Let (Kc)Mx denote the model
resulting from a 2n-small robust-background-extender Kc-construction as in

[Je03] inside Mx. Since Mx is closed under the operation a 7→ M#
2n−1(a),

(Kc)Mx is fully iterable inside Mx by a generalization of Theorem 2.11 in
[St96] (see Corollary 3 in [Je03]). Therefore we can build the core model
KMx inside Mx by a generalization of Theorem 1.1 in [JS13] due to Jensen
and Steel. The core model KMx has to be 2n-small, because otherwise we
would have that

Mx � “There exists a model which is fully iterable and not 2n-small”.

This would already imply that M#
2n exists and is fully iterable inside Mx, so

in this case there is nothing left to show.

Subclaim 1. KMx is closed under the operation

a 7→M#
2n−1(a).

Proof. We start with considering sets of the form a = KMx |ξ where ξ <
KMx ∩ Ord is not overlapped by an extender on the KMx-sequence. That
means there is no extender E on the KMx-sequence such that crit(E) ≤ ξ <
lh(E). We aim to prove that in fact

M#
2n−1(KMx |ξ)CKMx .

We have that the premouse M#
2n−1(KMx |ξ) exists inside the model Mx since

we have that ξ < KMx ∩ Ord = Mx ∩ Ord and Mx is closed under the
operation

a 7→M#
2n−1(a)

by property (4) in Claim 2. Consider the coiteration of the premice KMx

and M#
2n−1(KMx |ξ) inside Mx. This coiteration takes place above ξ and

thus both premice are iterable enough such that the comparison is suc-

cessful by Lemma 2.11 since M#
2n−1(KMx |ξ) is ω1-iterable above ξ in Mx.

By universality of KMx inside Mx (by Theorem 1.1 in [JS13] and Lemma
3.5 in [St96] applied inside Mx), we have that there is an iterate M∗ of

M#
2n−1(KMx |ξ) and an iterate K∗ of KMx such that M∗ E K∗ and the it-

eration from M#
2n−1(KMx |ξ) to M∗ is non-dropping on the main branch.
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Since

ρω(M#
2n−1(KMx |ξ)) ≤ ξ

and since the coiteration takes place above ξ, we have that the iterate M∗

of M#
2n−1(KMx |ξ) is not sound, if any extender is used on this side of the

coiteration. Therefore it follows that in fact

M#
2n−1(KMx |ξ)CK∗.

Assume that the KMx-side moves in the coiteration, that means we have
that KMx 6= K∗. Let α be an ordinal such that Eα is the first extender
on the KMx-sequence which is used in the coiteration. Then we have that
α > ξ. We have in particular that α is a cardinal in K∗. But then since

we have that ρω(M#
2n−1(KMx |ξ)) ≤ ξ < α and M#

2n−1(KMx |ξ) C K∗, this
already implies that

α > M#
2n−1(KMx |ξ) ∩Ord .

Therefore there was no need to iterate KMx at all and we have that

M#
2n−1(KMx |ξ)CKMx .

Now let a ∈ KMx be arbitrary. Then there exists an ordinal ξ < KMx ∩Ord
such that a ∈ KMx |ξ and ξ is not overlapped by an extender on the KMx-
sequence. We just proved that

M#
2n−1(KMx |ξ)CKMx .

As we argued several times before, by considering L[E](a)M2n−1(KMx |ξ) as
in Definition 2.18 and adding the top extender of the active premouse

M#
2n−1(KMx |ξ) (intersected with L[E](a)M2n−1(KMx |ξ)) to an initial segment

of the model L[E](a)M2n−1(KMx |ξ) as described in Section 2 in [FNS10] we
obtain that

M#
2n−1(a) ∈ KMx ,

as desired. �

Using the Weak Covering Lemma from [JS13] (building on [MSchSt97] and
[MSch95]) we can pick a cardinal γ ∈Mx such that γ is singular in Mx and
γ+ is computed correctly by KMx inside Mx. That means we pick γ such
that we have

(γ+)K
Mx

= (γ+)Mx .

For later purposes we want to pick γ such that it additionally satisfies

cf(γ)Mx ≥ ωMx
1 .

Subclaim 2. There exists a real z ≥T x such that

(1) (γ+)Mx = ω
Lp2n−1(z)
2 , and

(2) KMx |(γ+)Mx ∈ Lp2n−1(z).
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Proof. We are going to produce the real z via a five step forcing using an
almost disjoint coding. For an introduction into this kind of forcing see for
example [FSS14] for a survey or [Sch00] where a similar argument is given.

We force over the ground model

Lp2n−1(x,KMx |(γ+)Mx).

We have that Lp2n−1(x,KMx |(γ+)Mx) is a definable subset of Mx because
we have by property (4) in Claim 2 that

M#
2n−1(x,KMx |(γ+)Mx) ∈Mx

and by Lemma 3.23 the lower part model Lp2n−1(x,KMx |(γ+)Mx) is ob-

tained by iterating the least measure of M#
2n−1(x,KMx |(γ+)Mx) and its im-

ages ωV1 times and cutting off at ωV1 .

This implies that in particular

cf(γ)Lp
2n−1(x,KMx |(γ+)Mx ) ≥ ωMx

1 .

Step 1: Write V0 = Lp2n−1(x,KMx |(γ+)Mx) for the ground model. We

start with a preparatory forcing that collapses everything below ωMx
1 to ω.

Afterwards we collapse γ to ωMx
1 .

So let G0 ∈ V be Col(ω,< ωMx
1 )-generic over V0 and let

V ′0 = V0[G0].

Moreover let G′0 ∈ V be Col(ωMx
1 , γ)-generic over V ′0 and let

V1 = V ′0 [G′0].

So we have that ωMx
1 = ωV11 and by our choice of γ, i.e. cf(γ)V0 ≥ ωMx

1 ,

we moreover have that (γ+)Mx = (γ+)K
Mx

= ωV12 . We write ω1 = ωV11 and

ω2 = ωV12 .

Furthermore let A′ be a set of ordinals coding G0 and G′0, such that if we
let A ⊂ (γ+)Mx be a code for

x⊕ (KMx |(γ+)Mx)⊕A′,
then we have that G0, G

′
0 ∈ Lp2n−1(A) and KMx |(γ+)Mx ∈ Lp2n−1(A).

We can in fact pick the set A such that we have V1 = Lp2n−1(A) by the
following argument: Recall that

Lp2n−1(A) = M(A)|ωV1 ,

where M(A) denotes the ωV1 -th iterate of M#
2n−1(A) by its least measure

and its images for a set A as above. Then we can consider G0 as being
generic over the model M(x,KMx |(γ+)Mx) and G′0 as being generic over the
model M(x,KMx |(γ+)Mx)[G0], where M(x,KMx |(γ+)Mx) denotes the ωV1 -

th iterate of M#
2n−1(x,KMx |(γ+)Mx) by its least measure and its images.

Since both forcings in Step 1 take place below (γ+)Mx < ωV1 , it follows as
in the proof of Theorem 2.25 that M(x,KMx |(γ+)Mx)[G0][G′0] = M(A) for
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a set A ⊂ (γ+)Mx coding x,KMx |(γ+)Mx , G0 and G′0 and thus we have that
V1 = M(A)|ωV1 for this set A, as desired.

Step 2: Before we can perform the first coding using almost disjoint subsets
of ω1 = ωV11 we have to “reshape” the interval between (γ+)Mx = ωV12 and
ω1 to ensure that the coding we will perform in Step 3 exists. Moreover we
have to make sure that the reshaping forcing itself does not collapse ω1 and
(γ+)Mx . We are going to show this by proving that the reshaping forcing is
< (γ+)Mx-distributive.

We are going to use the following notion of reshaping.

Definition 3.28. Let η be a cardinal and let X ⊂ η+. We say a function
f is (X, η+)-reshaping iff f : α → 2 for some α ≤ η+ and moreover for all
ξ ≤ α with ξ < η+ we have that

(i) L[X ∩ ξ, f � ξ] � |ξ| ≤ η, or
(ii) there is a model N and a Σk-elementary embedding

j : N → Lp2n−1(X)|η++

for some large enough k < ω such that
(a) crit(j) = ξ, j(ξ) = η+,
(b) ρk+1(N) ≤ ξ, N is sound above ξ, and
(c) definably over N there exists a surjection g : η � ξ.

For future purposes notice that if N is as in Clause (ii) above, then N /
Lp2n−1(X ∩ ξ).
Now we denote with P1 the forcing that adds an (A, (γ+)Mx)-reshaping

function for (γ+)Mx = ωV12 , defined inside our new ground model V1 =
Lp2n−1(A).

We let p ∈ P1 iff p is an (A, (γ+)Mx)-reshaping function with dom(p) <
(γ+)Mx and we order two conditions p and q in P1 by reverse inclusion, that
means we let p ≤P1 q iff q ⊆ p.
First notice that the forcing P1 is extendible, that means for every ordinal
α < (γ+)Mx the set Dα = {p ∈ P1 | dom(p) ≥ α} is open and dense in P1. In
fact, for each p ∈ P1 and every α < (γ+)Mx there is some q ≤P1 p such that
dom(q) ≥ α and L[A∩ξ, q � ξ] � |ξ| ≤ η for all ξ with dom(p) < ξ ≤ dom(q).

We now want to show that P1 is < (γ+)Mx-distributive. For that we fix a
condition p ∈ P1 and open dense sets (Dβ | β < ω1). We aim to find a
condition q ≤P1 p such that q ∈ Dβ for all β < ω1.

Consider, for some large enough fixed natural number k, transitive Σk-
elementary substructures of the model Lp2n−1(A) = V1. More precisely
we want to pick a continuous sequence

(Nα, πα, ξα | α ≤ ω1)

of transitive models Nα of size |ωV11 | together with Σk-elementary embed-
dings

πα : Nα → Lp2n−1(A)
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and an increasing sequence of ordinals ξα such that we have p ∈ N0, and for
all α ≤ ω1

(1) crit(πα) = ξα with πα(ξα) = (γ+)Mx ,
(2) for all ordinals α < ω1 we have that ρk+1(Nα) ≤ ξα and Nα is sound

above ξα, and
(3) {p} ∪ {Dβ | β < ω1} ⊂ ran(πα).

We can obtain Nα and πα for all α ≤ ω1 with these properties inductively
as follows. Let M0 be the (uncollapsed) Σk-hull of

γ ∪ {p} ∪ {Dβ | β < ω1}

taken inside Lp2n−1(A). Then let N0 be the Mostowski collapse of M0 and
let

π0 : N0 →M0 ≺Σk Lp
2n−1(A)

be the inverse of the embedding obtained from the Mostowski collapse with
critical point ξ0.

Now assume we already constructed (Nα, πα, ξα) and Mα for some α < ω1.
Then we let Mα+1 be the (uncollapsed) Σk-hull of

γ ∪ {p} ∪ {Dβ | β < ω1} ∪Mα ∪ {Mα}

taken inside Lp2n−1(A). Further let Nα+1 be the Mostowski collapse of
Mα+1 and let

πα+1 : Nα+1 →Mα+1 ≺Σk Lp
2n−1(A)

be the inverse of the embedding obtained from the Mostowski collapse with
critical point ξα+1. Note that we have ξα+1 > ξα.

Moreover if we assume that (Nα, πα, ξα) is already constructed for all α < λ
for some limit ordinal λ ≤ ω1, then we let

Mλ =
⋃
α<λ

Mα,

and we let Nλ be the Mostowski collapse of Mλ with inverse collapse em-
bedding

πλ : Nλ →Mλ,

with critical point crit(πλ) = ξλ.

Recall that we fixed open dense sets (Dβ | β < ω1). We are now going to
construct a sequence (pα | α ≤ ω1) of conditions such that pα+1 ≤P1 pα
and pα+1 ∈ Dα for all α < ω1. Moreover we are going to construct these
conditions such that we inductively maintain pα ∈ π−1

α (P1) ⊂ Nα.

We start with p0 = p ∈ N0. For the successor step suppose that we already
defined pα ∈ π−1

α (P1) ⊂ Nα for some α < ω1. Then we have that dom(pα) <
ξα and pα ∈ Nα+1 by the definition of the models and embeddings (Nα, πα |
α ≤ ω1). By extendibility of the forcing π−1

α+1(P1) and the density of the

set π−1
α+1(Dα) ⊆ Dα, there exists a condition pα+1 ≤P1 pα such that we
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have pα+1 ∈ π−1
α+1(P1) ⊂ Nα+1, pα+1 ∈ Dα and dom(pα+1) ≥ ξα since

π−1
α+1(P1) ⊆ P1.

For a limit ordinal λ ≤ ω1 we simply let pλ =
⋃
α<λ pα. We have that the

sequence (ξα | α < λ) of critical points of (πα | α < λ) is definable over
Nλ since for α < λ the model Nα is equal to the transitive collapse of a
Σk-elementary submodel of Nλ which is constructed inside Nλ exactly as it
was constructed inside Lp2n−1(A) above. Therefore we have that

cfNλ(ξλ) ≤ λ ≤ ω1 = ωV11

which implies that

Nλ � |ξλ| ≤ ωV11 .

As dom(pλ) = ξλ, this buys us that pλ is in fact a condition in the forcing
P1.

Now consider the function q = pω1 . Then q ∈ P1 and q ∈ Dβ for all β < ω1.

We have shown that the reshaping forcing P1 is < (γ+)Mx-distributive and
therefore does not collapse ω1 and (γ+)Mx = ω2.

So let G1 be P1-generic over V1 and let V2 = V1[G1]. The extendability of
the forcing P1 yields that

⋃
G1 is an (A, (γ+)Mx)-reshaping function with

domain (γ+)Mx . Let B′ be a subset of (γ+)Mx which codes the function⋃
G1, for example the subset of (γ+)Mx which has

⋃
G1 as its characteristic

function. Finally let B ⊂ (γ+)Mx be a code for A⊕B′.
As at the end of Step 1 we can pick this code B ⊂ (γ+)Mx such that the
model V2 is of the form Lp2n−1(B) by the following argument: Recall that

Lp2n−1(B) = M(B)|ωV1 ,

where as above M(B) denotes the ωV1 -th iterate of M#
2n−1(B) by its least

measure and its images. Therefore we can consider G1 as being generic over
M(A). This yields as in the argument at the end of Step 1 that we can pick
B such that V2 = M(B)|ωV1 because the “reshaping forcing” P1 takes place
below (γ+)Mx < ωV1 . Therefore we have that

V2 = Lp2n−1(B).

Step 3: Now we can perform the first coding using almost disjoint subsets
of ω1 = ωV21 = ωV11 . Since B is “reshaped” we can inductively construct a
sequence of almost disjoint subsets of ω1,

(Aξ | ξ < (γ+)Mx),

as follows. Let ξ < (γ+)Mx be such that we already constructed a sequence
(Aζ | ζ < ξ) of almost disjoint subsets of ω1.

Case 1. L[B ∩ ξ] � |ξ| ≤ ωV21 .
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Then we let Aξ be the least subset of ω1 in L[B ∩ ξ] which is almost disjoint
from any Aζ for ζ < ξ and which satisfies that

|ω1 \
⋃
ζ≤ξ

Aζ | = ℵ1.

Case 2. Otherwise.

Let N be the least initial segment of Lp2n−1(A ∩ ξ)Lp2n−1(B) such that
ρω(N) ≤ ξ, N is sound above ξ, ξ is the largest cardinal in N , and de-

finably over N there exists a surjection g : ωV21 � ξ. Now let Aξ be the

least subset of ωV21 which is definable over N , almost disjoint from any Aζ
for ζ < ξ and which satisfies that |ω1 \

⋃
ζ≤ξ Aζ | = ℵ1.

That the set Aξ is well-defined in this case follows from the fact that the set

B ⊂ (γ+)Mx is “reshaped” by the following argument. As B is “reshaped”
we have in Case 2 above that there exists a model N as in Definition 3.28
(ii). We have that NCLp2n−1(A∩ξ). In general it need not be the case that

Lp2n−1(A∩ξ)Lp2n−1(B) is equal to Lp2n−1(A∩ξ) (see Lemma 3.25), but as ξ

is the largest cardinal in N , it follows that in fact NCLp2n−1(A∩ξ)Lp2n−1(B).
Hence any N witnessing at ξ that B is “reshaped” is an initial segment of

Lp2n−1(A ∩ ξ)Lp2n−1(B), so that the set Aξ is indeed well-defined.

The sequence (Aξ | ξ < (γ+)Mx) is now definable in V2 = Lp2n−1(B).

Now let P2 be the forcing for coding B by a subset of ω1 using the almost
disjoint sets (Aξ | ξ < (γ+)Mx). That means a condition p ∈ P2 is a pair
(pl, pr) such that pl : α→ 2 for some α < ω1 and pr is a countable subset of
(γ+)Mx . We say p = (pl, pr) ≤P2 (ql, qr) = q iff ql ⊆ pl, qr ⊆ pr, and for all
ξ ∈ qr we have that if ξ ∈ B, then

{β ∈ dom(pl) \ dom(ql) | pl(β) = 1} ∩Aξ = ∅.

An easy argument shows that the (γ+)Mx-c.c. holds true for the forcing P2.
Moreover it is ω-closed and therefore no cardinals are collapsed.

Let G2 be P2-generic over V2 and let

C ′ =
⋃
p∈G2

{β ∈ dom(pl) | pl(β) = 1}.

Then C ′ ⊂ ω1 and we have that for all ξ < (γ+)Mx ,

ξ ∈ B iff |C ′ ∩Aξ| ≤ ℵ0.

Finally let V3 = V2[G2]. By the same argument as we gave at the end of
Step 2 we can obtain that

V3 = Lp2n−1(C)

for some set C ⊂ ω1 coding C ′ and the real x, as the model Lp2n−1(C)
can successfully decode the set B ⊂ (γ+)Mx by the following argument. We
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show inductively that for every ξ < (γ+)Mx , (Aζ | ζ < ξ) ∈ Lp2n−1(C) and
B ∩ ξ ∈ Lp2n−1(C). This yields that B ∈ Lp2n−1(C).

For the inductive step let ξ < (γ+)Mx be an ordinal and assume inductively
that we have

(Aζ | ζ < ξ) ∈ Lp2n−1(C).

Since for all ζ < ξ,

ζ ∈ B iff |C ′ ∩Aζ | ≤ ℵ0,

we have that B ∩ ξ ∈ Lp2n−1(C).

In Case 1, i.e. if L[B ∩ ξ] � |ξ| ≤ ωV21 , the set Aξ can easily be identified
inside Lp2n−1(C). In Case 2 let N be the least initial segment of Lp2n−1(A∩
ξ)Lp

2n−1(C) such that ρω(N) ≤ ξ, N is sound above ξ, ξ is the largest cardinal
in N , and definably over N there exists a surjection g : ω1 � ξ. Such an
N exists due to the fact that B is “reshaped”: there is even some N /
Lp2n−1(A ∩ ξ) such that ρω(N) ≤ ξ, N is sound above ξ, ξ is the largest
cardinal in N , and definably over N there exists a surjection g : ω1 � ξ; and

Lp2n−1(A ∩ ξ)Lp2n−1(C) ⊆ Lp2n−1(A ∩ ξ). Thus the least initial segment N

of Lp2n−1(A∩ ξ)Lp2n−1(C) with these properties exists and it will also be an
initial segment of Lp2n−1(A∩ ξ), and N will then also be an initial segment

of Lp2n−1(A ∩ ξ)Lp2n−1(B) (for the B as above) which was used to identify
Aξ. We have shown that in each case Aξ can be identified inside Lp2n−1(C).

As the identification of the next Aξ was according to a uniform procedure,
we get that in fact

(Aζ | ζ ≤ ξ) ∈ Lp2n−1(C).

Step 4: Before we can “code down to a real”, that means before we can find
a real z such that KMx |(γ+)Mx ∈ Lp2n−1(z), we have to perform another
“reshaping” similar to the one in Step 2. So let P3 be the forcing for adding
a (C,ω1)-reshaping function working in V3 as the new ground model, where

ω1 = ωV31 = ωV21 . That means we let p ∈ P3 iff p is a (C,ω1)-reshaping
function with dom(p) < ω1. The order of two conditions p and q in P3 is
again by reverse inclusion, that means p ≤P3 q iff q ⊆ p.
The forcing P3 is extendable and < ω1-distributive by the same arguments
as we gave in Step 2 since we have that V3 = Lp2n−1(C). Therefore P3 does
not collapse ω1.

Let G3 be P3-generic over V3 and let V4 = V3[G3]. We again have that
⋃
G3

is a (C,ω1)-reshaping function with domain ω1, because P3 is extendable.
Let D′ be a subset of ω1 which codes

⋃
G3, for example the subset of ω1

which has
⋃
G3 as its characteristic function. Finally let D ⊂ ω1 code

C ⊕D′.
By the same argument as the one we gave at the end of Step 2 we can obtain
that in fact

V4 = Lp2n−1(D).
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Step 5: Now we are ready to finally “code down to a real”. Since D is
“reshaped” we can consider a uniformly defined sequence

(Bξ | ξ < ω1)

of almost disjoint subsets of ω as in Step 3, where ω1 = ωV41 = ωV31 .

Now we let P4 be the forcing for coding D by a subset of ω using the almost
disjoint sets (Bξ | ξ < ω1). That means a condition p ∈ P4 is a pair (pl, pr)
such that pl : α→ 2 for some α < ω and pr is a finite subset of ω1. We say
p = (pl, pr) ≤P4 (ql, qr) = q iff ql ⊆ pl, qr ⊆ pr, and for all ξ ∈ qr we have
that if ξ ∈ D, then

{β ∈ dom(pl) \ dom(ql) | pl(β) = 1} ∩Bξ = ∅.

As in Step 3 above an easy argument shows that the forcing P4 has the c.c.c.
and therefore no cardinals are collapsed.

Finally let G4 be P4-generic over V4 and let

E′ =
⋃
p∈G4

{β ∈ dom(pl) | pl(β) = 1}.

Then E′ ⊂ ω and we have that for all ξ < ω1,

ξ ∈ D iff |E′ ∩Bξ| < ℵ0.

Let V5 = V4[G4] and finally let z be a real coding E′ and the real x. Analo-
gous to the arguments given at the end of Step 3 we can pick the real z ≥T x
such that we have

V5 = Lp2n−1(z)

and the model Lp2n−1(z) is able to successfully decode the set D and thereby
also the set A.

This ultimately yields that we have a real z ≥T x such that

(γ+)Mx = ω
Lp2n−1(z)
2

and

KMx |(γ+)Mx ∈ Lp2n−1(z).

�

Subclaim 3. KMx |(γ+)Mx is fully iterable inside Lp2n−1(z).

Proof. It is enough to show that the 2n-small premouse KMx |(γ+)Mx is
ω1-iterable inside Lp2n−1(z) because once we showed this, an absoluteness
argument, as for example similar to the one we already gave in the proof of
Lemma 3.9, yields that KMx |(γ+)Mx is in fact fully iterable inside Lp2n−1(z)
since the iteration strategy for KMx |(γ+)Mx is given by Q-structures Q(T )
for iteration trees T on KMx |(γ+)Mx which are (2n − 1)-small above δ(T )
and such Q-structures Q(T ) are contained in every lower part model at the
level 2n−1, as for example Lp2n−1(z), by definition of the lower part model.
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In a first step we show that there is a tree T such that p[T ] is a univer-
sal Π1

2n-set in Lp2n−1(x,KMx |(γ+)Mx) and moreover for every forcing P of
size at most (γ+)Mx in Lp2n−1(x,KMx |(γ+)Mx) and every P-generic G over
Lp2n−1(x,KMx |(γ+)Mx) we have that

Lp2n−1(x,KMx |(γ+)Mx)[G] � “p[T ] is a universal Π1
2n-set”.

Let ϕ be a Π1
2n-formula defining a universal Π1

2n-set, i.e. {y ∈ ωω | ϕ(y)} is
a universal Π1

2n-set. Then we let T ∈ Lp2n−1(x,KMx |(γ+)Mx) be a tree of
height ω searching for y,H,M, σ,Q and g such that

(1) y ∈ ωω,
(2) M is a countable (x,H)-premouse,
(3) σ : M → Lp2n−1(x,KMx |(γ+)Mx) is a sufficiently elementary embed-

ding,
(4) σ(H) = KMx |(γ+)Mx , and
(5) Q ∈M is a partial order of size at most H∩Ord inM and g is Q-generic

over M such that
M[g] � ϕ(y).

This tree T has the properties we claimed above by the following argu-
ment. The model Lp2n−1(x,KMx |(γ+)Mx) is closed under the operation

a 7→ M#
2n−2(a) and is therefore Σ1

2n-correct in V . The same holds for

the model Lp2n−1(x,KMx |(γ+)Mx)[G], where G is P-generic over the model
Lp2n−1(x,KMx |(γ+)Mx) for some forcing P of size at most (γ+)Mx in the
model Lp2n−1(x,KMx |(γ+)Mx). Moreover we have that if M, H, σ,Q and
g are as searched by the tree T , then the forcing Q ∈ M has size at most
H ∩ Ord in M and the embedding σ : M → Lp2n−1(x,KMx |(γ+)Mx) is
sufficiently elementary, so it follows that M[g] is Σ1

2n-correct in V . This
easily yields that p[T ] is a universal Π1

2n-set in Lp2n−1(x,KMx |(γ+)Mx)[G]
for every generic set G as above, in fact

p[T ] ∩ Lp2n−1(x,KMx |(γ+)Mx)[G] =

{y ∈ ωω | ϕ(y)} ∩ Lp2n−1(x,KMx |(γ+)Mx)[G].

In a second step we now define another tree U whose well-foundedness is
going to witness that KMx |(γ+)Mx is ω1-iterable. So we define the tree
U ∈ Lp2n−1(x,KMx |(γ+)Mx) such that U is searching for K̄, π, T ,N , σ and
a sequence (Qλ | λ ≤ lh(T ), λ limit) with the following properties.

(1) K̄ is a countable premouse,
(2) π : K̄ → KMx |(γ+)Mx is an elementary embedding,
(3) T is a countable putative9 iteration tree on K̄ such that for all limit

ordinals λ < lh(T ),

Qλ EMTλ ,
9Recall that we say that a tree T is a putative iteration tree if T satisfies all properties of
an iteration tree, but we allow the last model of T to be ill-founded, in case T has a last
model.
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(4) for all limit ordinals λ ≤ lh(T ), Qλ is a Π1
2n-iterable (above δ(T � λ))

Q-structure for T � λ and Qλ is (2n − 1)-small above δ(T � λ) (where
this Π1

2n-statement is witnessed using the tree T defined above),
(5) N is a countable model of ZFC− such that either

N � “T has a last ill-founded model”,

or else

N � “ lh(T ) is a limit ordinal and there is no cofinal branch b

through T such that Qlh(T ) EMTb ”,

and
(6) σ : N ∩Ord ↪→ ω1.

Here a code for the sequence (Qλ | λ ≤ lh(T ), λ limit) of Q-structures
satisfying property (4) can be read off from p[T ].

Recall that we have that the core model KMx is 2n-small and thereby fully
iterable in the model Mx via an iteration strategy which is guided by Q-
structures Q(T ) for iteration trees T on KMx of limit length which are
(2n− 1)-small above δ(T ). This implies that the premouse KMx |(γ+)Mx is
iterable inside the model Lp2n−1(x,KMx |(γ+)Mx) (which as argued earlier is
a definable subset of Mx) by an argument as in the proof of Lemma 2.11, be-
cause KMx |(γ+)Mx is a 2n-small premouse and the ω1-iterable Q-structures
Q(T ) for iteration trees T on KMx |(γ+)Mx in Lp2n−1(x,KMx |(γ+)Mx) are
contained in the model Lp2n−1(x,KMx |(γ+)Mx) as they are (2n − 1)-small
above δ(T ).

We aim to show that the tree U defined above is well-founded inside the
model Lp2n−1(x,KMx |(γ+)Mx). So assume toward a contradiction that U is
ill-founded in Lp2n−1(x,KMx |(γ+)Mx) and let K̄, π, T ,N , σ and (Qλ | λ ≤
lh(T ), λ limit) be as above satisfying properties (1)− (6) in the definition of
the tree U .

Assume that the iteration tree T has limit length since the other case is eas-
ier. Since as argued above the premouse KMx |(γ+)Mx is countably iterable
inside Lp2n−1(x,KMx |(γ+)Mx), we have that in Lp2n−1(x,KMx |(γ+)Mx)
there exists a cofinal well-founded branch b through the iteration tree T
on K̄ and ω1-iterable Q-structures Q(T � λ) for all limit ordinals λ ≤ lh(T )
such that we have Q(T ) = Q(b, T ) by an argument as in Case 1 in the proof
of Lemma 3.9. Moreover every Q-structure Q(T � λ) is (2n−1)-small above
δ(T � λ).

Since the model Lp2n−1(x,KMx |(γ+)Mx) is closed under the operation a 7→
M#

2n−2(a), the proofs of Lemmas 2.11 and 2.12 imply that we can successfully
compare Q(T � λ) and Qλ for all limit ordinals λ ≤ lh(T ). This implies
that in fact

Q(T � λ) = Qλ.
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Therefore it follows by an absoluteness argument as the one we already gave
in the proof of Lemma 2.11 that

N � “there exists a cofinal branch b through T such that

Qlh(T ) EMTb ”,

because we in particular have that Qlh(T ) = Q(b, T )EMTb .

Therefore the tree U is well-founded in the model Lp2n−1(x,KMx |(γ+)Mx)
and by absoluteness of well-foundedness this implies that the tree U is also
well-founded inside Lp2n−1(z).

We have by construction of the tree T that a code for the sequence (Qλ | λ ≤
lh(T ), λ limit) can still be read off from p[T ] in Lp2n−1(z) because the forcing
we performed over the ground model Lp2n−1(x,KMx |(γ+)Mx) to obtain the
real z has size at most (γ+)Mx in Lp2n−1(x,KMx |(γ+)Mx). Therefore the
well-foundedness of the tree U in Lp2n−1(z) implies that KMx |(γ+)Mx is
ω1-iterable in Lp2n−1(z). �

Following [MSch04], we now aim to make sense of

(Kc)Lp
2n−1(z).

The issue is that the definition of certified in the construction of the model
Kc in the sense of [MSch04] makes reference to some fixed class of ordinals
A such that V = L[A]. Therefore the model Kc constructed in this sense is
in general not contained in HOD, because whether an extender is certified in
the sense of Definition 1.6 in [MSch04] may depend on the choice of A. The
following claim is supposed to express the fact that we may choose A with
Lp2n−1(z) |= “V = L[A]” in such a way that the resulting Kc is a subclass
of HOD from the point of view of Lp2n−1(z).

Subclaim 4. (Kc)Lp
2n−1(z) ⊂ HODLp2n−1(z).

Proof. Let z′ ∈ Lp2n−1(z) be an arbitrary real with z ≤T z′. In particular,
Lp2n−1(z) = Lp2n−1(z′) by Lemma 3.24. Let us write Az′ = z′_Ez′ , where
Ez′ codes the extender sequence of Lp2n−1(z′). We may construe Az′ as a
set of ordinals in a canonical fashion.

Claim 1. Let z′ ∈ Lp2n−1(z) be a real with z ≤T z′. An extender E is
certified with respect to Az iff E is certified with respect to Az′, in the sense
of Definition 1.6 in [MSch04].

Proof. It follows from Lemma 3.24 that

Lp2n−1(z′) = (Lp2n−1(z′))Lp
2n−1(z)

and we even have that the set Az′ ∩ω
Lp2n−1(z)
1 may be easily computed from

Az ∩ ωLp
2n−1(z)

1 . Symmetrically, we have that the set Az ∩ ωLp
2n−1(z)

1 may

be easily computed from Az′ ∩ ω
Lp2n−1(z)
1 . Moreover the extender sequences
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of Lp2n−1(z) and Lp2n−1(z′) literally agree above ω
Lp2n−1(z)
1 . Therefore it

follows easily that an extender E is certified with respect to Az iff E is
certified with respect to Az′ . �

We have shown that inside Lp2n−1(z) there is a cone of reals z′ such that
the output of the Kc construction performed à la [MSch04] and using Az′ is
not sensitive to the particular choice of z′ from that cone. Hence if we let

(Kc)Lp
2n−1(z)

be this common output, then

(Kc)Lp
2n−1(z) ⊂ HODLp2n−1(z),

as desired. �

In what follows we will also need the following notion of iterability.

Definition 3.29. Let N be a countable premouse. Then we inductively
define an iteration strategy Λ for N as follows. Assume that T is a normal
iteration tree on N of limit length according to Λ such that there exists a
Q-structure Q DM(T ) for T which is fully iterable above δ(T ). Then we
define that Λ(T ) = b iff b is a cofinal branch through T such that either

(i) QEMTb , or

(ii) b does not drop (so in particular the iteration embedding iTb exists),

there exists an ordinal δ < N ∩Ord such that iTb (δ) = δ(T ) and

N � “δ is Woodin”,

and there exists a Q̃DN |δ such that

Q̃ � “δ is Woodin”,

but δ is not definably Woodin over Q̃ and if we lift the iteration tree
T to Q̃, call this iteration tree T ∗, then

iT
∗

b : Q̃ → Q.

Definition 3.30. Let N be a countable premouse. Then we say that N is
Q-structure iterable iff for every iteration tree T on N which is according
to the iteration strategy Λ from Definition 3.29 the following holds.

(i) If T has limit length and there exists a Q-structure Q DM(T ) for
T which is fully iterable above δ(T ), then there exists a cofinal well-
founded branch b through T such that Λ(T ) = b.

(ii) If T has a last model, then every putative iteration tree U extending T
such that lh(U) = lh(T ) + 1 has a well-founded last model.

The premouse

(Kc)Lp
2n−1(z)

is countably iterable in Lp2n−1(z) by the iterability proof of Chapter 9 in
[St96] adapted as in Section 2 in [MSch04].
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Subclaim 5. In Lp2n−1(z),

(Kc)Lp
2n−1(z) is Q-structure iterable.

Proof. Assume there exists an iteration tree T on (Kc)Lp
2n−1(z) which wit-

nesses that (Kc)Lp
2n−1(z) is not Q-structure iterable inside Lp2n−1(z). Since

the other case is easier assume that T has limit length. That means in par-
ticular that there exists a Q-structure Q(T ) DM(T ) for T which is fully
iterable above δ(T ), but there is no cofinal well-founded branch b through
T in Lp2n−1(z) such that Λ(T ) = b.

For some large enough natural number m let H be the Mostowski collapse

of Hull
Lp2n−1(z)
m such that H is sound and ρω(H) = ρm+1(H) = ω. Further-

more let

π : H → Lp2n−1(z)

be the uncollapse map such that T ,Q(T ) ∈ ran(π). Moreover let T̄ , Q̄ ∈ H
be such that π(T̄ ) = T , π(Q̄) = Q(T ), and let K̄ ⊂ H be such that

π(K̄|γ) = (Kc)Lp
2n−1(z)|π(γ) for any γ < H∩Ord. That means in particular

that T̄ is an iteration tree on K̄.

As argued above we have that (Kc)Lp
2n−1(z) is countably iterable in Lp2n−1(z).

Therefore there exists a cofinal well-founded branch b̄ through T̄ in Lp2n−1(z).

Now we consider two different cases.

Case 1. There is a drop along the branch b̄.

In this case there exists a Q-structure Q∗EMT̄
b̄

for T̄ . A standard compar-

ison argument shows that Q∗ = Q̄ and thus Q̄ EMT̄
b̄

is a Q-structure for

T̄ .

Now consider the statement

φ(T̄ , Q̄) ≡ “there is a cofinal branch b through T̄ such that

Q̄EMT̄b ”.

This statement φ(T̄ , Q̄) is Σ1
1-definable from the parameters T̄ and Q̄ and

holds in the model Lp2n−1(z) as witnessed by the branch b̄.

By Σ1
1-absoluteness the statement φ(T̄ , Q̄) also holds in the model HCol(ω,η)

as witnessed by some branch b, where η < H ∩Ord is a large enough ordinal
such that T̄ , Q̄ ∈ HCol(ω,η) are countable inside HCol(ω,η).

Since b is uniquely definable from T̄ and the Q-structure Q̄, and T̄ , Q̄ ∈ H,
we have by homogeneity of the forcing Col(ω, η) that actually b ∈ H. This
contradicts the fact that the iteration tree T witnesses that the premouse

(Kc)Lp
2n−1(z) is not Q-structure iterable inside Lp2n−1(z).

Case 2. There is no drop along the branch b̄.

In this case we consider two subcases as follows.
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Case 2.1. There is no Woodin cardinal δ̄ in K̄ such that iT̄
b̄

(δ̄) = δ(T̄ ).

In this case we have that δ(T̄ ) is not Woodin in MT̄
b̄

. Thus there exists an

initial segment Q∗ EMT̄
b̄

such that

Q∗ � “δ(T̄ ) is a Woodin cardinal”,

and definably over Q∗ there exists a witness for the fact that δ(T̄ ) is not

Woodin (in the sense of Definition 2.7). As (Kc)Lp
2n−1(z) is countably it-

erable in Lp2n−1(z) we can successfully coiterate the premice Q∗ and Q̄.
Therefore we have that in fact Q∗ = Q̄ and thus as in Case 1 it follows that
Q̄EMT̄

b̄
is a Q-structure for T̄ and we can derive a contradiction from that

as above.

Case 2.2. There is a Woodin cardinal δ̄ in K̄ such that iT̄
b̄

(δ̄) = δ(T̄ ).

Let δ = π(δ̄) be the corresponding Woodin cardinal in (Kc)Lp
2n−1(z). All

extenders appearing in the Kc-construction in the sense of [MSch04] satisfy
the axioms of the extender algebra by the definition of being certified (see
Definition 1.6 in [MSch04]), because certified extenders are countably com-
plete witnessed by an embedding which is Σ1+-elementary (see Definition
1.3 in [MSch04] for the definition of Σ1+-formulae). Therefore the real z is

generic over the model (Kc)Lp
2n−1(z) for the extender algebra at the Woodin

cardinal δ. In fact by the same argument the model Lp2n−1(z)|δ is generic

over (Kc)Lp
2n−1(z)|(δ + ω) for the δ-version of the extender algebra Qδ (see

the proof of Lemma 1.3 in [SchSt09] for a definition of the δ-version of the
extender algebra).

Therefore we can perform a maximal P-construction, which is defined as

in [SchSt09], inside Lp2n−1(z) over (Kc)Lp
2n−1(z)|(δ + ω) to obtain a model

P. We have that P � “δ is Woodin” by the definition of a maximal P-
construction.

Let P̄ be the corresponding result of a maximal P-construction in H over
K̄|(δ̄ + ω). Moreover let T ∗ be the iteration tree obtained by considering
the tree T̄ based on K̄|δ̄ as an iteration tree on P̄ B K̄|δ̄. Let

iT
∗

b̄ : P̄ →MT ∗b̄

denote the corresponding iteration embedding, where the branch through
T ∗ we consider is induced by the branch b̄ through T̄ we fixed above, so we
call them both b̄. Then we have that

iT
∗

b̄ (δ̄) = iT̄b̄ (δ̄) = δ(T̄ ).
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Case 2.2.1. We have that

P ∩Ord < Lp2n−1(z) ∩Ord .

Then we have in particular that P̄ ∩Ord < H ∩Ord and thus P̄ ∈ H.

Consider the coiteration ofMT ∗
b̄

with Q̄ inside Lp2n−1(z). By the definition

of a maximal P-construction (see [SchSt09]) we have that δ̄ is not definably
Woodin over P̄ since P̄∩Ord < H∩Ord. Since b̄ is non-dropping this implies
that iT

∗

b̄
(δ̄) is not definably Woodin over MT ∗

b̄
. Furthermore we have that

MT ∗b̄ � “iT
∗

b̄ (δ̄) is Woodin”.

Concerning the other side of the coiteration we also have that iT
∗

b̄
(δ̄) = δ(T̄ )

is a Woodin cardinal in Q̄ but it is not definably Woodin over Q̄.

Since the coiteration of MT ∗
b̄

with Q̄ takes place above iT
∗

b̄
(δ̄) = δ(T̄ ) we

have that it is successful inside Lp2n−1(z) using that MT ∗
b̄

inherits the re-

alization strategy for H above iT
∗

b̄
(δ̄) and it follows that in fact

MT ∗b̄ = Q̄.

Consider the statement

ψ(T ∗, Q̄) ≡ “there is a cofinal branch b through T ∗ such that

Q̄ =MT ∗b ”.

This statement ψ(T ∗, Q̄) is Σ1
1-definable from the parameters T ∗ and Q̄ and

holds in the model Lp2n−1(z) as witnessed by the branch b̄. We have that
T̄ , P̄ ∈ H and thus T ∗ ∈ H.

Therefore an absoluteness argument exactly as in Case 1 yields that ψ(T ∗, Q̄)

holds in HCol(ω,η), where η < H ∩ Ord is an ordinal such that T ∗, Q̄ ∈
HCol(ω,η) are countable inside the model HCol(ω,η). Thus it follows as before
that b̄ ∈ H, which contradicts the fact that T̄ witnesses in H that K̄ is not
Q-structure iterable.

Case 2.2.2. We have that

P ∩Ord = Lp2n−1(z) ∩Ord .

Then it follows that P̄ ∩ Ord = H ∩ Ord and Lemma 1.5 in [SchSt09]
applied to the maximal P-construction inside H yields that δ̄ is not definably
Woodin over P̄ since we have that ρω(H) = ω. As b̄ is non-dropping, this
implies that iT

∗

b̄
(δ̄) is not definably Woodin over MT ∗

b̄
.

So as in Case 2.2.1 we can successfully coiterateMT ∗
b̄

and Q̄ inside Lp2n−1(z)
and obtain again that

MT ∗b̄ = Q̄.
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Then it follows that

Q̄ ∩Ord < H ∩Ord = P̄ ∩Ord ≤MT ∗b̄ ∩Ord,

where the first inequality holds true since Q̄ ∈ H. This is a contradiction to
the fact that MT ∗

b̄
= Q̄.

This finishes the proof of Subclaim 5. �

Working in Lp2n−1(z) we consider the coiteration of KMx |ωLp
2n−1(z)

2 with

(Kc|ω2)Lp
2n−1(z). From what we proved so far it easily follows that this

coiteration is successful as shown in the next subclaim.

Subclaim 6. The coiteration of KMx |ωLp
2n−1(z)

2 with (Kc|ω2)Lp
2n−1(z) in

Lp2n−1(z) is successful.

Proof. Write W = Lp2n−1(z). Then we can successfully coiterate the pre-
miceKMx |ωW2 andKc|ωW2 inside the modelW sinceKMx |ωW2 = KMx |(γ+)Mx

is fully iterable in W by Subclaim 3 and Kc|ωW2 is Q-structure iterable in W
by Subclaim 5. In particular the KMx |ωW2 -side of the coiteration provides
Q-structures for the Kc|ωW2 -side and therefore the coiteration is success-
ful. �

In what follows we want to argue that the (Kc|ω2)Lp
2n−1(z)-side cannot lose

this coiteration. For that we want to use the following lemma, which we can
prove similar to Theorem 3.8 in [MSch04]. As the version we aim to use is
slightly stronger than what is shown in [MSch04], we will sketch a proof of
this lemma.

Lemma 3.31. Let κ ≥ ω2 be a regular cardinal such that κ is inaccessible
in Kc (constructed in the sense of [MSch04]). Then Kc|κ is universal with
respect to every premouse M with M∩Ord = κ to which it can be successfully
coiterated.

In [MSch04] the universality of the premouse Kc|κ is only proved with re-
spect to smaller premice, i.e. premice M such that M ∩Ord < κ, to which
Kc|κ can be successfully coiterated. As shown below, their argument can
easily be modified to yield Lemma 3.31.

Proof of Lemma 3.31. Let κ ≥ ω2 be a regular cardinal such that κ is inac-
cessible in Kc and write N = Kc|κ.

Analogous to the notation in [MSch04] we say that M iterates past N iff M
is a premouse with M ∩Ord = κ and there are iteration trees T on M and
U on N of length λ+ 1 arising from a successful comparsion such that there
is no drop along [0, λ]U and MUλ CMTλ or MUλ = MTλ and we in addition
have that there is a drop along [0, λ]T .

Assume toward a contradiction that there is a premouse M which iterates
past N and let T and U be iteration trees of length λ + 1 on M and N
respectively witnessing this. Let iU0λ : N → MUλ denote the corresponding
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iteration embedding on the N -side, which exists as there is no drop on the
main branch through U .

We distinguish the following cases.

Case 1. We have that for some ξ < κ,

iU0λ ”κ ⊂ κ and iTβλ(ξ) ≥ κ

for some ordinal β < λ such that the iteration embedding iTβλ is defined.

In this case we can derive a contradiction as in Section 3 in [MSch04] because
we can prove that the consequences of Lemma 3.5 in [MSch04] also hold in
this setting.

We assume that the reader is familiar with the argument for Lemma 3.5 in
[MSch04] and we use the notation from there. So we let

X ≺ Hκ+

be such that |X| < κ, X ∩ κ ∈ κ, {M,N, T ,U , β, ξ} ⊂ X, and X ∩ κ ∈
(0, κ)T ∩ (0, κ)U , as in this case λ = κ. We write α = X ∩ κ. Let

π : H̄ ∼= X ≺ Hκ+

be such that H̄ is transitive. Then we have that α = crit(π) and π(α) = κ.
Let T̄ , Ū ∈ H̄ be such that π(T̄ , Ū) = (T ,U).

As in the proof of Lemma 3.5 in [MSch04] we aim to show that P(α)∩N ⊂ H̄.

Exactly as in [MSch04] we get that

MTα ||(α+)M
T
α =MUα ||(α+)M

U
α .

The case assumption that iTβκ(ξ) ≥ κ for ordinals β, ξ < κ implies that there

are ordinals β̄, ξ̄ < α such that iT̄
β̄α

(ξ̄) ≥ α. As iT̄
β̄α
� α = iT

β̄α
� α and

MT̄α |α =MTα |α, this yields that P(α) ∩MTα = P(α) ∩MT̄α . Therefore we
have that

P(α) ∩MUα = P(α) ∩MTα = P(α) ∩MT̄α ∈ H̄.
Moreover we are assuming that iU0κ ”κ ⊂ κ and we have

iU0α � α = iŪ0α � α ∈ H̄.

Therefore we can again argue exactly as in the proof of Lemma 3.5 in
[MSch04] to get that P(α) ∩N ⊂ H̄. Following [MSch04] this now yields a
contradiction to the assumption that M iterates past N .

Case 2. We have that

iU0λ ”κ ⊂ κ and there are no ξ, β such that iTβλ(ξ) ≥ κ,
where ξ < κ and β < λ.

By assumption we have that κ is inaccessible in N . Assume first that M
has a largest cardinal η. In this case we have that there are no cardinals
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between the image of η under the iteration embedding and κ in MTλ but
there are cardinals between the image of η under the iteration embedding
and κ in MUλ . This contradicts the fact that T and U were obtained by a

successful comparison of M and N with MUλ EMTλ .

Now assume that M � ZFC. Then the case assumption implies that in
particular MTλ ∩ Ord ≤ κ. As we assumed that M iterates past N , this

implies that MTλ = MUλ and that there is a drop along [0, λ]T . But then

MTλ is not ω-sound, contradicting the soundness of MUλ .

Case 3. We have that for some ζ < κ,

iU0λ(ζ) ≥ κ and there are no ξ, β such that iTβλ(ξ) ≥ κ,
where ξ < κ and β < λ.

This again easily contradicts the assumption that M iterates past N .

Case 4. We have that for some ζ < κ and for some ξ < κ,

iU0λ(ζ) ≥ κ and iTβλ(ξ) ≥ κ

for some ordinal β < λ such that the iteration embedding iTβλ is defined.

In this case we have that λ = κ. For a reflection argument as in the proof
of the Comparison Lemma (see Theorem 3.11 in [St10]) let

X ≺ Hη

for some large enough ordinal η be such that |X| < κ, {M,N, T ,U} ⊂ X,
and ζ ∪ ξ ∪ β ⊂ X. Following the notation in the proof of Theorem 3.11 in
[St10] let

π : H ∼= X ≺ Hη

be such that H is transitive.

Then an argument as in the proof of Theorem 3.11 in [St10] yields that
there is an ordinal γ < κ such that the embeddings iTγκ and iUγκ agree. This

implies that there are extenders ETα used in T at stage α and EUα′ used in
U at stage α′ which are compatible. Again as in the proof of Theorem 3.11
in [St10] this yields a contradiction.

This finishes the proof of Lemma 3.31. �

Now we can use Lemma 3.31 to prove the following subclaim.

Subclaim 7. ω
Lp2n−1(z)
2 is a successor cardinal in (Kc)Lp

2n−1(z).

Proof. Work in W = Lp2n−1(z) and assume that this does not hold. That
means we are assuming that ωW2 is inaccessible in (Kc)W .

As above consider the successful coiteration ofKMx |ωW2 with (Kc)W |ωW2 and
let T and U be the resulting trees on KMx |ωW2 and (Kc)W |ωW2 respectively
of length λ+ 1 for some ordinal λ. Since we assume that ωW2 is inaccessible
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in (Kc)W , it follows by Lemma 3.31 that (Kc)W |ωW2 is universal in W for
the coiteration with premice of height ≤ ωW2 . Therefore the (Kc)W |ωW2 -side
has to win the comparison. That means we have thatMTλ EMUλ and there

is no drop on the main branch through MTλ . In particular the iteration
embedding

iT0λ : KMx |ωW2 →MTλ
exists. Now we distinguish the following cases.

Case 1. We have that
iT0λ ”ωW2 ⊂ ωW2 .

This means in particular that (γ+)K
Mx

= (γ+)Mx = ωW2 stays a successor

cardinal in the model MTλ . So say that we have (η+)M
T
λ = ωW2 for some

cardinal η < ωW2 in MTλ . In particular this means that there are no car-

dinals between η and ωW2 in MTλ . But by assumption we have that ωW2 is

inaccessible in (Kc)W and thus also inMUλ . In particular there are cardinals

between η and ωW2 inMUλ . This contradicts the fact thatMTλ andMUλ were

obtained by a successful comparison with MTλ EMUλ .

Case 2. We have that
iT0λ ”ωW2 6⊂ ωW2 .

In this case we distinguish two subcases as follows.

Case 2.1. We have that

sup iT0λ ”γ < ωW2 .

In this case we have that

(iT0λ(γ)+)M
T
λ = ωW2 ,

because we are also assuming that iT0λ ”ωW2 6⊂ ωW2 .

So in particular we again have that ωW2 is a successor cardinal in the model
MTλ and so there are no cardinals between iT0λ(γ) < ωW2 and ωW2 in MTλ .

From this we can derive the same contradiction as in Case 1, because ωW2 is
inaccessible in (Kc)W .

Case 2.2. We have that

∃η < ωW2 such that iT0λ(η) ≥ ωW2 .

Let α < λ be the least ordinal such that the iteration embedding iUαλ is
defined. That means the last drop on the main branch in U is at stage
α. Since KMx |ωW2 has height ωW2 we have by universality of (Kc)W |ωW2 in
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W (see Lemma 3.31) that the case assumption implies that there exists an
ordinal ν < ωW2 such that

iUαλ(ν) ≥ ωW2 .

Moreover in this case we have in fact λ = ωW2 .

Let X ≺ W |θ for some large ordinal θ be such that we have |X| < ωW2 ,
{KMx |ωW2 , (Kc)W |ωW2 , T ,U} ⊂ X, and η ∪ ν ∪ α ⊂ X. Moreover let H be
the Mostowski collapse of X and let π : H → W |θ be the uncollapse map.
Then a reflection argument as in the proof of the Comparison Lemma (see
Theorem 3.11 in [St10]) yields that there is an ordinal ξ < λ such that the
embeddings iTξλ and iUξλ agree. This implies that there are extenders ETβ
used in T at stage β and EUβ′ used in U at stage β′ which are compatible.

Again as in the proof of Theorem 3.11 in [St10] this yields a contradiction.

This finishes the proof of Subclaim 7. �

Recall that we have

HODLp2n−1(z) � “ω
Lp2n−1(z)
2 is inaccessible”

by Theorem 3.27 as z ≥T x. Since we have that

(Kc)Lp
2n−1(z) ⊂ HODLp2n−1(z)

by Subclaim 4, this contradicts Subclaim 7 and thereby finishes the proof
of Claim 3. �

Work in V now and let x ∈ ωω be arbitrary in the cone of reals from Theorem
3.27. Then by Claim 3 we have that

Mx � “(M#
2n)Mx is ω1-iterable”.

Hence
Mx � “(M#

2n)Mx is Π1
2n+2-iterable”.

Since Mx is Σ1
2n+2-correct in V we have that

V � “(M#
2n)Mx is Π1

2n+2-iterable”.

By Σ1
2n+2-correctness in V again we have for every real y ≥T x such that in

particular (M#
2n)Mx ∈My that

My � “(M#
2n)Mx is Π1

2n+2-iterable”.

Consider the comparison of the premice (M#
2n)Mx and (M#

2n)My inside the
model My. This comparison is successful by Lemma 2.12 for all reals y ≥T x
as above, since (M#

2n)My is ω1-iterable in My and (M#
2n)Mx is Π1

2n+2-iterable

inMy. Moreover both premice are ω-sound and we have that ρω((M#
2n)Mx) =

ρω((M#
2n)My) = ω. Thus the premice (M#

2n)Mx and (M#
2n)My are in fact

equal.

Therefore we have that all premice (M#
2n)Mx for x ∈ ωω in the cone of reals

from Theorem 3.27 are equal in V . Call this unique premouse M#
2n.
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We now finally show that this premouse M#
2n is ω1-iterable in V via the

Q-structure iteration strategy (see Definition 2.5). So let T be an iteration

tree on M#
2n in V of limit length < ωV1 according to the Q-structure iteration

strategy. Pick z ∈ ωω such that M#
2n and T are in Mz and lh(T ) < ωMz

1 .

Since Mz is Σ1
2n+2-correct in V we have that T is according to the Q-

structure iteration strategy in Mz, because Q(T � λ) is 2n-small above δ(T �
λ) for all limit ordinals λ < lh(T ) and therefore Π1

2n+1-iterability above
δ(T � λ) is enough for Q(T � λ) to determine a unique cofinal well-founded

branch b through T by Lemma 2.13. Moreover we have that (M#
2n)Mz = M#

2n
and therefore

Mz � “M#
2n is ω1-iterable”.

So in Mz there exists a cofinal well-founded branch b through T , which is
determined by Q-structures Q(T � λ) which are ω1-iterable above δ(T � λ)
and therefore also Π1

2n+1-iterable above δ(T � λ) in Mz for all limit ordinals
λ ≤ lh(T ). That means we in particular have that Q(b, T ) = Q(T ). Since
Mz is Σ1

2n+2-correct in V , it follows as above that b is also the unique cofinal
well-founded branch in V which is determined by the same Q-structures as
in Mz. Therefore

V � “M#
2n exists and is ω1-iterable”

and we finished the proof of Theorem 3.20. �

4. Conclusion

By the results proved in Sections 3.5 and 3.6 we have that the following the-
orem which is due to Itay Neeman and the third author and was announced
in Section 3.3 holds true.

Theorem 3.13. Let n ≥ 1 and assume there is no Σ1
n+2-definable ω1-

sequence of pairwise distinct reals. Then the following are equivalent.

(1) Π1
n determinacy and Π1

n+1 determinacy,

(2) for all x ∈ ωω, M#
n−1(x) exists and is ω1-iterable, and M#

n exists and is
ω1-iterable,

(3) M#
n exists and is ω1-iterable.

Proof. This follows from Theorems 3.16 and 3.20 together with Theorem
2.14 in [Ne02]. �

Moreover Theorems 3.16 and 3.20 together with Lemma 3.15 immediately
imply the following main theorem due to the third author.

Theorem 2.1. Let n ≥ 1 and assume Π1
n+1 determinacy holds. Then

M#
n (x) exists and is ω1-iterable for all x ∈ ωω.
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4.1. Applications. From these results we can now obtain a boldface ver-
sion of the Determinacy Transfer Theorem as in Theorem 3.17 for all projec-
tive levels Π1

n+1 of determinacy. The lightface version of the Determinacy

Transfer Theorem for even levels of projective determinacy Π1
2n (see Theo-

rem 3.17) is used in the proof of Theorem 3.16, and therefore in the proof
of Theorem 2.1 for odd levels n.

Corollary 4.1 (Determinacy Transfer Theorem). Let n ≥ 1. Then Π1
n+1

determinacy is equivalent to a(n)(< ω2 −Π1
1) determinacy.

Proof. By Theorem 1.10 in [KW08] we have for the even levels that

Det(Π1
2n)↔ Det(∆1

2n)↔ Det(a(2n−1)(< ω2 −Π1
1)).

Here the first equivalence is due to Martin (see [Ma73]) and proven in The-
orem 5.1 in [KS85]. The second equivalence due to Kechris and the third
author can be proven using purely descriptive set theoretic methods (see
Theorem 1.10 in [KW08]).

The results in this paper (using this version of the Determinacy Transfer
Theorem for even levels, see Theorem 3.17) together with results due to
Itay Neeman yield the Determinacy Transfer Theorem for all levels n as
follows.

By basic facts about the game quantifier “a” we have that

Det(a(n)(< ω2 −Π1
1))

implies Π1
n+1 determinacy.

For the other direction assume that Π1
n+1 determinacy holds. Then Theorem

2.1 yields that the premouse M#
n (x) exists and is ω1-iterable for all x ∈ ωω.

This implies that
Det(a(n)(< ω2 −Π1

1))

holds true by Theorem 2.5 in [Ne95]. �

4.2. Open problems. We close this paper with the following open prob-
lem, which is the lightface version of Theorem 2.1.

Conjecture. Let n > 1 and assume that Π1
n determinacy and Π1

n+1 deter-

minacy hold. Then M#
n exists and is ω1-iterable.

This conjecture holds true for n = 0 which is due to L. Harrington (see
[Ha78]) and for n = 1 which is due to the third author (see Corollary 4.17
in [StW16]), but it is open for n > 1.
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In A. S. Kechris, B. Löwe, and J. R. Steel, editors, Games, Scales
and Suslin Cardinals, The Cabal Seminar, Volume I. Cambridge
University Press, 2008.

[KS85] A. Kechris and R. Solovay. On the Relative Consistency Strength
of Determinacy Hypotheses. Transactions of the American Math-
ematical Society, 290(1), 1985.

[KW08] A. S. Kechris and W. H. Woodin. The Equivalence of partition
properties and determinacy. In A. S. Kechris, B. Löwe, and J. R.
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