
ar
X

iv
:1

90
5.

07
85

0v
2 

 [
m

at
h.

L
O

] 
 2

7 
Ja

n 
20

20

CODING IN THE AUTOMORPHISM GROUP OF A

COMPUTABLY CATEGORICAL STRUCTURE

DAN TURETSKY

Abstract. Using new techniques for controlling the categoricity spectrum of
a structure, we construct a structure with degree of categoricity but infinite
spectral dimension, answering a question of Bazhenov, Kalimullin and Ya-
maleev. Using the same techniques, we construct a computably categorical
structure of non-computable Scott rank.

1. Introduction

Isomorphism problems for computable structures are one of the main topics
in computable model theory. This is a broadly defined topic concerned with
the complexity of isomorphisms between isomorphic computable structures. Re-
cent work has focused on degrees of categoricity and of isomorphism [FKM10,
CFS13, AC16, CHT17, Fra17, BKY18], and lowness for categoricity and for iso-
morphism [AC16, FS14, Fra17, FT18, MS18]. We refer the reader to the text by
Ash and Knight [AK00] for background on computable model theory and com-
putable ordinals.

Given isomorphic computable structures A and B, the degree of isomorphism
between A and B is the least Turing degree d which can compute an isomorphism
between A and B, if such a degree exists. In this case, every isomorphism between
A and B computes d, so we can think of d as being coded into the isomorphism
problem of A and B.

A related notion is the degree of categoricity. Given a computable structure A,
the degree of categoricity of A is the least degree which computes an isomorphism
between any two computable presentations of A, if such a degree exists. Fokina,
Kalimullin and R. Miller introduced this notion and showed that every degree which
is d.c.e. in and above some 0(n) is the degree of categoricity of some computable
structure [FKM10]. Csima, Franklin and Shore extended this to every degree which
is d.c.e. in and above some 0(α+1) [CFS13]. Recently, Csima and Ng have announced
that every ∆0

2 degree is the degree of categoricity for some computable structure.
When building a structure to have degree of categoricity d, one must achieve two

goals: d must be able to compute an isomorphism between any two computable
presentations; and d must be the least degree which can do this. The natural way
to achieve the second goal is to build two presentations, A and B, such that every
isomorphism between A and B computes d. In other words, d is the degree of
isomorphism for the pair A,B. When there exists such a pair of presentations, we
say that d is the strong degree of categoricity of A.

The original constructions of degrees of categoricity actually constructed strong
degrees of categoricity. It is natural to wonder whether there is a degree which is the
degree of categoricity of some computable structure, but is not the strong degree
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of categoricity of any computable structure. This question remains open—so far,
every degree which is known to be the degree of categoricity of some computable
structure is also known to be the strong degree of categoricity of some computable
structure.

A simpler question is whether there exists a structureA with some degree of cate-
goricity d, but d is not a strong degree of categoricity for A. Bazhenov, Kalimullin
and Yamaleev [BKY18], and separately Csima and Stephenson [CS19], showed
that this can occur. They constructed a structure A with degree of categoricity
0′, but such that 0′ is not the degree of isomorphism for any two computable
presentations of A. In both the Bazhenov-Kalimullin-Yamaleev example and the
Csima-Stephenson example the structure is rigid, and there are three computable
presentations, A0,A1,A2, such that if f1 is the unique isomorphism between A0

and A1, and f2 is the unique isomorphism between A0 and A2, then f1⊕ f2 ≡T ∅′.
So 0′ is the degree of isomorphism for the triple A0,A1,A2, in the sense that it is
the least degree able to compute an isomorphism between any two elements of the
triple.

Bazhenov et al. observed that their methods can be generalized to produce, for
any n ∈ ω, a computable structure A such that 0′ is the degree of categoricity of A,
but 0′ is not the degree of isomorphism for any set of n presentations A0, . . . ,An−1.
For the examples constructed using these methods, there will always be a finite set
of presentations A0, . . . ,Ak−1 such that 0′ is the degree of isomorphism of this
set. They defined the term spectral dimension to describe this phenomenon: for
a computable structure A with degree of categoricity d, the spectral dimension
of A is the least cardinality of a set of presentations of A for which the degree of
isomorphism is d.1 They then asked whether a finite spectral dimension is necessary.
Is there a computable structure with a degree of categoricity d, but with infinite
spectral dimension? We show in Theorem 4 that there is such a structure, where
d = 0′′.

Changing gears slightly, a computable structure is computably categorical if it has
degree of categoricity 0—between any two computable copies, there is a computable
isomorphism. A computable structure A is relatively ∆0

α-categorical if for any (not
necessarily computable) copy B of A, there is a ∆0

α(B) isomorphism between B
and A. Observe that a relatively ∆0

1-categorical structure is computably categor-
ical. Goncharov [Gon77] showed that the converse fails. Downey, Kach, Lempp,
Lewis, Montalbán and Turetsky [DKL+15] showed that for every α < ωck

1 , there
is a computably categorical structure which is not relatively ∆0

α-categorical. They
used their techniques to show that the set of (indices for) computably categorical
structures is Π1

1-complete.
The structures built by Downey et al. are always relatively ∆0

β-categorical for

some β < ωck
1 . It is thus natural to ask whether there is a computably categorical

structure which is not relatively ∆0
α-categorical for any α < ωck

1 . This turns out to
relate to several other notions.

By the Spector-Gandy theorem, every Π1
1 formula ∀f θ(f, n) can be reinterpreted

as ∃f ∈ ∆1
1 θ

′(f, n), where θ′ is an arithmetic relation. As ∆1
1 =

⋃
α<ωck

1

∆0
α, this

implies that every Π1
1 set can be stratified into ωck

1 levels: if X is a Π1
1 set with

1The definition given here is a special case of Bazhenov et al.’s definition. They defined spectral
dimension for all computable structures, rather than just those with a degree of categoricity, using
the notion of categoricity spectrum.
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n ∈ X ⇐⇒ ∃f ∈ ∆1
1 θ(n, f), then

X =
⋃

α<ωck

1

{n : ∃f ∈ ∆0
α θ(f, n)}.

For a given Π1
1 set X , it can be enlightening to examine stratifications X =⋃

α<ωck

1

Xα, where each Xα is uniformly ∆0
α. While the argument above always

gives such a stratification, there is no known natural stratification for the set of
computably categorical structures.2 If every computably categorical structure were
relatively ∆0

α-categorical for some α < ωck
1 , this would give us such a stratification:

categorize computably categorical structures based on the α such that they are
relatively ∆0

α-categorical.
Let us briefly recall the notion of the Scott rank of a structure. For tuples ā, b̄ ∈ A

of the same length, define ā ≡0 b̄ if ā and b̄ satisfy the same atomic formulae in
A. For an ordinal α > 0, define ā ≡α b̄ if for every β < α and every c̄ ∈ A there
exist d̄0, d̄1 ∈ A such that āc̄ ≡β b̄d̄0 and ād̄1 ≡β b̄c̄. Define r(ā) to be the least α
such that for all b̄, ā ≡α b̄ implies ā and b̄ are in the same orbit. By a Σ1

1-bounding
argument, for a computable structure A, r(ā) will always exist and be an ordinal
at most ωck

1 . The Scott rank of A is defined to be supā∈A(r(ā) + 1).
The following is a synthesis of published results and folklore.

Proposition 1. For a computable structure A, the following are equivalent:

(1) A is relatively ∆1
1-categorical.

(2) For some α < ωck
1 , A is relatively ∆0

α-categorical.
(3) The Scott rank of A is a computable ordinal.
(4) The orbits of A are uniformly hyperarithmetic.

Proof. (2) ⇒ (1) is immediate. For the converse, fix a f a Σ1
1-generic permutation of

ω, and define B as the pullback of A along f , so that f : B → A is an isomorphism.
As f is Σ1

1-generic, ω
ck
1 (f) = ωck

1 [GM17]. As B 6T f , ω
ck
1 (B) = ωck

1 .
Since A is relatively ∆1

1-categorical, there is a g ∈ ∆1
1(B) with g : B → A.

So g ∈ ∆0
α(B) for some α < ωck

1 (B) = ωck
1 . By Ash’s proof of the characteriza-

tion of relatively ∆0
α-categoricity using Scott families [Ash87], A is relatively ∆0

α-
categorical. The key observation is that Ash’s proof does not use the full power of
∆0
α-categoricity, but just the existence of a ∆0

α(B) isomorphism, where B is defined
to be a sufficiently generic permutation of A.

(2) ⇔ (3) is by the standard Scott rank analysis and the characterization of
relatively ∆0

α-categoricity using Scott families (see Ash & Knight section 6.7 and
theorem 10.14 [AK00]).

(3) ⇒ (4) is by the standard Scott rank analysis, while (4) ⇒ (3) is by Σ1
1-

bounding. �

In Theorem 2, we construct a computably categorical structure which has non-
computable Scott rank, and thus a structure which is not relatively ∆1

1-categorical,
defeating the earlier potential stratification of the computably categorical struc-
tures.

With a simple modification, the computably categorical structure we create in
Theorem 2 can be turned into a structure of computable dimension 2. A computable
structure has computable dimension 2 if it has exactly two computable copies up

2We acknowledge that our criteria for naturalness is vague.
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to computable isomorphism. Prior constructions of such structures used a method
called the special component technique [Gon77, CGK99, HKS03]. When a struc-
ture of computable dimension 2 is built using this technique, the two computable
copies which are not computably isomorphic will be ∆0

3 isomorphic. In contrast, for
our structure of computable dimension 2, there is no hyperarithmetic isomorphism
between the two copies.

The proofs of Theorems 2 and 4 use similar techniques, although Theorem 4 is
the more complicated construction. We recommend the reader begin with Theo-
rem 2 as a warmup. Both constructions are based on an extension of the techniques
of Franklin and Turetsky for coding Π0

1-classes into the automorphism group of a
structure [FT], while also incorporating the methods of Downey et al. for construct-
ing computably categorical structures [DKL+15].

2. A computably categorical structure with high Scott rank

This section is devoted to the proof of the following theorem.

Theorem 2. There is a computably categorical structure with non-computable Scott
rank.

Fix T ⊂ ω<ω the tree of descending sequences through the Harrison ordering.
The only important properties of T are that it is computable and that the set of
extendible nodes in T is not hyperarithmetic.

Our structure will have U a unary relation, (Wσ)σ∈ω<ω all unary relations,
(Ei)i∈ω all binary relations, P a binary relation, f a unary function, and (Vn)n∈ω
all unary relations. Our structure’s universe will be

(
[ω]<ω ×ω<ω

)
⊔C, where C is

an infinite computable set.
The purpose of U is to distinguish C from the rest of the structure, so U(x) will

hold if and only if x ∈ C. P , the Ei and the Wσ will never hold with elements
of C, while the Vn will never hold with elements outside of C. The purpose of
C, f and Vn is to allow us to apply labels to elements of [ω]<ω × ω<ω in a c.e.
fashion. For each x ∈ C, f(x) 6∈ C, and for each x 6∈ C, f(x) = x. Also, for each
x ∈ C, there will be a unique n such that Vn(x) holds. For y 6∈ C, we will write
Sn(y) for “∃x ∈ C f(x) = y ∧ Vn(x)”. During our construction, there will be times
when we wish to declare Sn(y) for some n and y. When we do, we choose the first
element x ∈ C which has not yet been used and define Vn(x) and f(x) = y. We
simultaneously define ¬Vm(x) for all m 6= n. As there will be infinitely many times
we wish to make such a declaration, this will completely define the structure on
C. For simplicity of presentation, we may sometimes declare Sn(y) and then make
the same declaration again at a later stage. In this case, we do not mean to choose
a new x for this declaration; instead, the duplicate declaration should simply be
ignored.

For the remainder of the construction, we will not mention U , C, f or the
Vn. Instead, we will proceed as if our structure has universe [ω]<ω × ω<ω and our
language is (Wσ)σ∈ω<ω , (Ei)i∈ω, P , (Sn)n∈ω, and each Sn only needs to be declared
in a c.e. fashion rather than a computable fashion. Note that this does not affect
computable categoricity: if we can find a computable isomorphism g between two
presentations A0 and A1 of this new structure, we can extend to a computable
isomorphism between the corresponding versions of the old structure – for each
y ∈ A0, when we see an x with f(x) = y and Vn(x), we search for an x′ with
f(x′) = g(y) and Vn(x

′), and then define g(x) = x′.
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With the exception of the Sn, we can give a complete description of our structure
immediately. For (F, τ), (G, ρ) ∈ [ω]<ω × ω<ω:

• Wσ((F, τ)) holds iff σ = τ .
• Ei((F, τ), (G, ρ)) holds iff τ = ρ and F△G = {i}.
• P ((F, τ), (G, ρ)) holds iff ρ = τ̂i for some i, and one of the following holds:

– i 6∈ F and |G| is even; or
– i ∈ F and |G| is odd.

We think of [ω]<ω as an affine space acted on by
⊕

i<ω Z/2, where F + ei = F△i.
Then Ei(F,G) ⇐⇒ F + ei = G. Alternatively, we can think of [ω]<ω as the
vertices of an infinite dimensional cube, where there is an edge between F and G
iff |F△G| = 1. If F△G = {i}, we color the edge between F and G with color i,
and this is represented by the relation Ei. In either case, we assign a copy of this
structure to every string in ω<ω, and the various Wσ let us easily identify which
copy a given element belongs to.

Claim 2.1. The automorphisms of ([ω]<ω, (Ei)i∈ω) are precisely the maps of the
form g(F ) = F△H for some fixed H ∈ [ω]<ω.

Proof. To see that such a map is an automorphism, observe that

Ei(F,G) ⇐⇒ F△G = {i}

⇐⇒ F△G△∅ = {i}

⇐⇒ F△G△(H△H) = {i}

⇐⇒ (F△H)△(G△H) = {i}

⇐⇒ Ei(g(F ), g(G)).

Conversely, suppose g is an automorphism. LetH = g(∅). We prove by induction
on |F | that g(F ) = F△H . The case |F | = 0 is immediate. For |F | > 0, fix i ∈ F ,
and let G = F − {i}. Then Ei(F,G), so Ei(g(F ), g(G)), and thus

g(F )△g(G) = {i}

g(F ) = g(G)△{i}

g(F ) = (G△H)△{i}

g(F ) = (G△{i})△H

g(F ) = F△H. �

Interpreting [ω]<ω as an affine space, it partitions into two hyperplanes perpen-
dicular to ei: {F : i 6∈ F} is one, and {F : i ∈ F} is the other. Under the cube
interpretation, these are the two infinite components that result if all the edges
with color i are deleted. If we are examining the copy of the structure assigned to
τ ∈ ω<ω, we have associated these two sets with a partition of the copy assigned
to τ̂i: the former set is associated, via P , with the elements of even cardinality,
while the latter set is associated with the elements of odd cardinality.

During the course of our construction, we will build an arithmetic tree Q ⊆ ω<ω

which will be arithmetically isomorphic to T . For σ ∈ Q, Sn((F, σ)) will hold for
every n and every F ∈ [ω]<ω. For σ 6∈ Q, there will be an n such that Sn((F, σ))
holds iff F = ∅. The purpose of this setup is the following.
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Claim 2.2. The automorphisms of A which send (∅, σ) to ({i}, σ) are Muchnik
equivalent to [σ̂i] ∩ [Q]. More generally, the automorphisms of A which send
(∅, σ) to (F, σ) are Muchnik equivalent to the join

⊕
i∈F ([σ̂i] ∩ [Q]).

In particular, such an automorphism exists iff the appropriate set is nonempty.

Proof. Suppose g is an automorphism of A sending (∅, σ) to (F, σ), and i ∈ F .
We construct, effectively in g, a sequence σ0 ⊂ σ1 ⊂ σ2 ⊂ . . . with σ0 = σ̂i
and maintaining the inductive assumption that g((∅, σj)) 6= (∅, σj). By our earlier
discussion about the Sn and their relationship to Q, it will follow that each σj ∈ Q.

Note that P ((∅, σ), (∅, σ̂i)), but ¬P ((F, σ), (∅, σ̂i)). This shows that g((∅, σ̂i)) 6=
(∅, σ̂i). So σ0 = σ̂i satisfies the inductive assumption.

Now, suppose we have defined σj . Let G be such that g((∅, σj)) = (G, σj). By as-
sumption, G 6= ∅, so fix k ∈ G. As P ((∅, σj), (∅, σĵk)) but ¬P ((G, σj), (∅, σĵk)),
it must be that g((∅, σĵk)) 6= (∅, σĵk). So we let σj+1 = σĵk.

Conversely, fix (hi)i∈F with hi ∈ ([σ̂i] ∩ [Q]). We will construct, effectively
in (hi)i∈F , an automorphism g of A sending (∅, σ) to (F, σ). Define g((G, σ)) =
(G△F, σ) for all G ∈ [ω]<ω. For each τ which is not an initial segment of any hi,
we define g((G, τ)) = (G, τ). For τ extending σ and an initial segment of hi, fix
k such that τ̂k is an initial segment of hi. We define g((G, τ)) = (G△{k}, τ) for
all G ∈ [ω]<ω. For τ a proper initial segment of σ, our construction depends on
the parity of |F |. If |F | is even, we define g((G, τ)) = (G, τ) for all G ∈ [ω]<ω.
If |F | is odd, we fix the k such that τ̂k is an initial segment of σ and define
g((G, τ)) = (G△{k}, τ) for all G ∈ [ω]<ω.

As g((G, τ)) = (G, τ) for any τ which is not an initial segment of any hi, and
thus for any τ 6∈ Q, we see that g respects all the Sn. As g((G, τ)) = (G△Hτ , τ)
for some Hτ , for every τ , we see that g respects all the Ei and Wτ . Finally, |Hτ̂k|
is odd precisely if k ∈ Hτ , and so g respects P . Thus g is an automorphism. �

Claim 2.3. A has non-computable Scott rank.

Proof. It suffices to show that the orbits of A are not uniformly hyperarithmetic.
Note that σ ∈ Q is extendible to a path in [Q] precisely if there is an i such that
(∅, σ) and ({i}, σ) are in the same orbit. Thus if the orbits of A were uniformly
hyperarithmetic, the set of extendible nodes in Q would be hyperarithmetic. But Q
is arithmetically isomorphic to T , the descending sequences through the Harrison
order, and the set of extendible nodes of T is not hyperarithmetic. �

In fact, one can make a similar argument to show that the orbit of (∅, 〈〉) is not
hyperarithmetic, and thus the Scott rank of A is ωck

1 + 1.3

Construction. Fix (Mi)i∈ω a listing of all partial computable structures in our
language.

We will perform a Π0
2 priority construction on a tree of strategies. We have

strategies of type Nπ for π ∈ T , which are responsible for choosing the image
of π in Q and ensuring that the Sn are as described at this string. We also have
strategies of typeMi for i ∈ ω, which are responsible for constructing a computable
isomorphism between A and Mi when A ∼= Mi. Finally, we have a global strategy
G which is responsible for ensuring that the Sn are as described for those σ ∈ ω<ω

not chosen by an Nπ-strategy.

3And even further, A has Scott complexity Π
ω
ck
1

+2
.
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Each Nπ-strategy will choose at most one string σ to be the target for π. If τ
is an Nπ-strategy which chooses σ as the image of π, we say that τ has chosen σ.
No string σ will be chosen by more than one strategy, and it will be the case that
if σ ∈ s<s has not been chosen by the beginning of stage s, then it will never be
chosen, and thus will not be in Q.

We arrange the Nπ and Mi in some priority ordering of order type ω, such
that for π0 ⊂ π1 ∈ T , Nπ0

occurs before Nπ1
in the ordering, and such that N〈〉

occurs first in the ordering. The set of possible outcomes for an Mi-strategy is
{k,∞k : k ∈ ω} ∪ {∞∞}. We call the outcomes of the form ∞k for k ∈ ω ∪ {∞}
the infinite outcomes. Each Nπ-strategy will have only a single outcome: outcome.
We construct a priority tree of these strategies.

Strategy for G. At the end of stage s, for every σ ∈ s<s not yet chosen by any
strategy, we declare S0((∅, σ)).

Growing a string σ. At a stage s, a strategy may declare that σ is growing. When
this happens, we let n be largest such that we have already declared Sn((∅, σ)) (or
n = −1 if there is no such n). We declare Sk((∅, σ)) for 0 6 k < n + 2. We also
declare Sk((F, σ)) for every F ⊆ s and 0 6 k < n.

Strategy for N〈〉. This strategy is at the root of the priority tree and is visited at
every stage. It declares 〈〉 to be the image of 〈〉. At every stage s, when this strategy
is visited, the string 〈〉 grows. This strategy always takes its unique outcome of
outcome.

Strategy for Nπ̂i. Suppose τ is a strategy on the priority tree for requirement
Nπ̂i. Then there is a unique ρ ⊂ τ which is a strategy for Nπ. It has declared
some unique string σ to be the image of π. Let s0 be the first stage at which τ is
visited. At this stage, we choose an m > s0 which has not yet been mentioned in
the construction and declare σ̂m to be the image of π̂i.

At any stage when τ is visited, σ̂m grows.
At every stage τ is visited, it takes its unique outcome of outcome.

An auxiliary definition. For every σ and s with σ ∈ (s− 1)<s−1, we define nσ(s)
to be the largest n such that we have declared Sn((∅, σ)) by the start of stage s.
By our action for G and the Nπ-strategies, nσ(s) is always defined.

Strategy for Mi. Suppose τ is a strategy on the priority tree for requirementMi.
Let Cτ be those strings σ which are chosen by some Nπ-strategy ρ with ρ ⊂ τ . It
will be the case that Cτ is fully determined by the first stage at which τ is visited.
We construct a partial computable function fτ : ω<ω → Mi. We will also define
sequences xτ (σ, s) for σ ∈ Cτ . If Mi

∼= A and τ is on the true path, we will use fτ
and these sequences to post hoc construct an isomorphism between A and Mi.

When τ is visited at stage s, let k0 be the number of times τ has previously
taken an infinite outcome, and let t < s be the last stage at which τ took an
infinite outcome (t = 0 if there is no such stage). Let k1 be the number of times
τ has previously taken outcome ∞∞. Let Bτ (s) consist of every string σ ∈ t<t

except for those which have been chosen by some Nπ-strategy ρ with ρ ⊇ τ̂k0 or
ρ ⊂ τ . For each σ ∈ Bτ (s), if fτ (σ) has not yet been defined, we search for s steps
for an element x ∈ Mi with Wσ(x) and Snσ(t+1)(x). If we find such an element,
we define fτ (σ) = x.

If there is at least one σ ∈ Bτ (s) for which at least one of the following fails,
then we finish our action for τ at stage s and take outcome k0:
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• fτ (σ) is defined;
• Mi |= Snσ(t+1)(fτ (σ)); and
• For every j with σ̂j ∈ Bτ (s), Mi |= P (fτ (σ), fτ (σ̂j)),

If the above holds for every σ ∈ Bτ (s), we will have an infinite outcome at stage
s, but it remains to determine which. First, let Dτ (s) consist of those strings σ ∈
Bτ (s) which have not been chosen by a strategy extending τ̂∞∞. For each σ ∈ Cτ ,
we let xτ (σ, s) be the oldest element x ofMi such thatMi |=Wσ(x)∧P (x, fτ (σ̂j))
for every σ̂j ∈ Dτ (s), if we see such an x at stage s, and we leave xτ (σ, s) undefined
if there is no such x.

If, for every σ ∈ Cτ , both xτ (σ, s) and xτ (σ, t) are defined, and xτ (σ, s) =
xτ (σ, t), then we take outcome ∞k1 . Otherwise, we take outcome ∞∞.

Running the construction. At stage s, we begin by visiting the strategy 〈〉. After
having visited a strategy τ at stage s with |τ | < s, we let k be the outcome taken
by τ at this stage. We next visit the strategy τ̂k. After having visited a strategy
τ with |τ | = s, we run the global strategy and then end the stage.

We put the lexicographic ordering on the tree of strategies, where we order the
outcomes of Mi strategies as ∞∞ < · · · < ∞2 < ∞1 < ∞0 < · · · < 2 < 1 < 0.
Observe that our construction has the property that if a strategy τ is visited, and
then at a later stage a strategy ρ which is lexicographically to the left of τ is visited,
τ can never again be visited.

The true path. We define the true path recursively, maintaining the inductive
hypothesis that every strategy on the true path is visited infinitely often. 〈〉 is on
the true path. If τ is on the true path and τ is an Nπ-strategy, then τ̂outcome is
on the true path.

If τ is on the true path and τ is an Mi-strategy, let α be the leftmost outcome
which τ takes infinitely often. Observe that this necessarily exists by our action for
τ . Then τ̂α is on the true path. We call α the true outcome of τ .

By the earlier observation, no strategy off the true path is visited infinitely often.
Observe that the true path is computable from ∅′′.

Verification. We begin by defining Q and an isomorphism ϕ : T → Q. For π ∈ T ,
let τ be the unique Nπ-strategy along the true path. We define ϕ(π) to be the string
which τ declared to be the image of π. As the true path is ∆0

3, ϕ is arithmetic. We
then define Q to be the image of T under ϕ. It is a straightforward induction to
show that Q is a tree and ϕ is an isomorphism.

Claim 2.4. If σ ∈ Q, then A |= Sn(F, σ) for every F ∈ [ω]<ω.
If σ 6∈ Q, then nσ = lims nσ(s) exists, and A |= Snσ

(F, σ) iff F = ∅.

Proof. If σ ∈ Q, then σ was selected by some Nπ-strategy τ along the true path.
As τ is visited infinitely often, our action for τ ensures that A |= Sn(F, σ) for every
F ∈ [ω]<ω.

If σ 6∈ Q, then either σ was never chosen by an Nπ-strategy, or it was chosen by
one off the true path. In the former case, nσ = 0, and we never declared S0((F, σ))
for any F 6= ∅. In the latter case, the strategy was only visited finitely often, so nσ
exists. By construction, we have not declared Snσ

((F, σ)) for any F 6= ∅. �

Next, we must show that A is computably categorical.
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Claim 2.5. Fix τ an Mi-strategy.
If τ is visited at stages s0 < s1, then Bτ (s0) ⊆ Bτ (s1).
Further, if there is no stage t ∈ [s0, s1) at which τ takes an infinite outcome,

then Bτ (s0) = Bτ (s1).

Proof. For i < 2, let ki be the number of times τ took an infinite outcome before
stage si, and let ti be the last stage before si at which τ took an infinite outcome
(ti = 0 if there is no such stage). By definition, if there were some σ ∈ Bτ (s0) −
Bτ (s1), then it would have to be the case that σ ∈ t<t00 (and so t0 > 0), σ was
selected by some strategy extending τ̂k1, and k0 6= k1. But no strategy extending
τ̂k1 is accessible before stage s0, and σ cannot be selected after stage t0, and
t0 < s0.

By definition, if there is σ ∈ Bτ (s1)−Bτ (s0) then either t1 > t0 or σ was selected
by a strategy extending τ̂k0 which does not extend τ̂k1, and thus k0 6= k1 (which
again implies t1 > t0). In either case, we see that there is some stage t ∈ [s0, s1) at
which τ took an infinite outcome. �

Claim 2.6. Fix τ the Mi-strategy along the true path. If τ ’s true outcome is some
k ∈ ω, then A 6∼= Mi.

Proof. Note that k is the number of times τ ever takes an infinite outcome. Let t
be the last stage at which τ takes an infinite outcome (or t = 0 if there is no such
stage). Let α be the infinite outcome taken at stage t, if there is one. Let s0 be the
first stage after t at which τ is visited. Then for every stage s > s0 at which τ is
visited, Bτ (s) = Bτ (s0).

Observe that for every σ ∈ Bτ (s0), and every s > s0, nσ(s) = nσ(s0). For if
σ ∈ t<t was not chosen by any strategy by stage t, then it will never be chosen,
and our action for G makes nσ(s) = 0 for every s > t. If instead σ is chosen by a
strategy by stage t, it must be a strategy which is incomparable with τ̂k by the
definition of Bτ (s0). Such a strategy can never be visited at or after stage s0, and
so nσ(s) will not change after s0.

For σ ∈ Bτ (s0), we write nσ for lims nσ(s) = nσ(s0). By construction, for every
σ ∈ Bτ (s0), and every F 6= ∅, A |= ¬Snσ

((F, σ)) ∧ ¬Snσ−1((F, σ)). There is some
σ ∈ Bτ (s0) which prevents τ from taking an infinite outcome after stage t. We
consider the various cases.

If fτ (σ) is never defined, then there is no x ∈ Mi with Wσ(x) and Snσ
(x). On

the other hand, A |=Wσ((∅, σ)) ∧ Snσ
((∅, σ)), so A 6∼= Mi.

If fτ (σ) is defined but Mi |= ¬Snσ
(fτ (σ)), then it must be that fτ (σ) was

already defined by stage t, and thus σ ∈ Bτ (t). For if not, then fτ (σ) was defined
at some stage s > s0, and by construction we would have Mi |= Snσ

(fτ (σ)). By
the fact that fτ (σ) is defined, we know that Mi |=Wσ(fτ (σ)). As Bτ (0) is empty,
we know that t > 0 and thus τ had infinite outcome at stage t.

Mi |= Snσ(t)(fτ (σ)) by the fact that τ had an infinite outcome at stage t. Since
nσ 6= nσ(t), σ must have been chosen by a strategy ρ which is visited in the interval
[t, s). By the fact that σ ∈ Bτ (t) ⊆ t<t, we know that ρ chose σ, and thus was
visited, at or before stage t. Since it is also visited at or after stage t, and τ has
infinite outcome α at stage t, ρ must be comparable with τ̂α. By definition of
Bτ (t), ρ 6⊆ τ . Thus ρ ⊇ τ̂α. So ρ is visited at stage t and at no stage after t.
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By our action for G, it follows that nσ = nσ(t) + 1. Further, the only element
y ∈ A with A |= Wσ(y) ∧ Snσ(t)(y) is (∅, σ), and A |= Snσ

((∅, σ)). So there is no
element y ∈ A with A |=Wσ(y) ∧ Snσ(t)(y) ∧ ¬Snσ

(y), and so A 6∼= Mi.
Finally, suppose there is σ̂j ∈ Bτ (s0) with fτ (σ), fτ (σ̂j) both defined, and

Mi |=Wσ(fτ (σ))∧Wσ̂j(fτ (σ̂j))∧Snσ
(fτ (σ))∧Snσ ̂j

(fτ (σ̂j))∧¬P (fτ (σ), fτ (σ̂j)).
As σ̂j ∈ Bτ (s0), nσ̂j = nσ̂j(s0). So (∅, σ) and (∅, σ̂j) are the only y0, y1 ∈ A
satisfying

A |=Wσ(y0) ∧Wσ̂j(y1) ∧ Snσ
(y0) ∧ Snσ̂j

(y1),

and A |= P ((∅, σ), (∅, σ̂j)). Thus A 6∼= Mi. �

Claim 2.7. Fix τ the Mi-strategy along the true path. If h : Mi
∼= A, then for all

σ 6∈ Q, h ◦ fτ (σ) = (∅, σ).

Proof. As Mi
∼= A, τ ’s true outcome must be an infinite outcome. Thus every

σ 6∈ Cτ is in the domain of fτ , and in particular every σ 6∈ Q is in the domain of
fτ .

Since τ takes infinite outcomes at infinitely many stages, for every σ 6∈ Q, Mi |=
Wσ(fτ (σ))∧Snσ

(fτ (σ)). For σ 6∈ Q, (∅, σ) is the only element of A satisfying both
Wσ and Snσ

, so for h to be an isomorphism, it must be that h ◦ fτ (σ) = (∅, σ). �

Claim 2.8. Fix τ the Mi-strategy along the true path. If τ ’s true outcome is ∞∞,
then A 6∼= Mi.

Proof. Let t0 < t1 < . . . be the stages at which τ takes an infinite outcome. Then
it must be that for some σ ∈ Cτ , lims xτ (σ, ts) does not exist. Fix such a σ.
Note that if s0 < s1 and xτ (σ, ts0 ), xτ (σ, ts1 ) are both defined but unequal, then
xτ (σ, ts0) < xτ (σ, ts1 ). This is because xτ (σ, ts1 ) is an x of the sort sought for
xτ (σ, ts0), and if it were older it would have been chosen at stage ts0 .

Let Dτ =
⋃
sDτ (ts). There is no x ∈ Mi such that Mi |= P (x, fτ (σ̂j)) for

every σ̂j ∈ Dτ – if there were, xτ (σ, ts) would converge to the least such. Observe
that Dτ ∩Q = ∅, for if a string is in Q, then it is selected by a strategy which is an
initial segment of τ or which extends τ̂∞∞, and these strings are excluded from
Dτ .

If there were an isomorphism h : Mi
∼= A, then h ◦ fτ (σ̂j) = (∅, σ̂j) for

every σ̂j 6∈ Q, and in particular every σ̂j ∈ Dτ , and P ((∅, σ), (∅, σ̂j)) for every
j. So x = h−1((∅, σ)) would satisfy Mi |= P (x, fτ (σ̂j)) for every σ̂j ∈ Dτ ,
contradicting the previous paragraph. �

Claim 2.9. If A ∼= Mi, then there is a computable isomorphism between A and
Mi.

Proof. Fix τ the Mi-strategy along the true path. Then τ ’s true outcome is ∞k for
some k ∈ ω, and so the domain of fτ is all strings σ ∈ ω<ω except those chosen by
some strategy ρ ⊂ τ , which is to say dom fτ = ω<ω −Cτ . Note that the domain of
fτ is thus a cofinite, upwards-closed set. By assumption, there is an isomorphism
h : Mi → A. We begin by non-uniformly extending fτ to all of ω<ω. We do so
recursively along Cτ .

For σ ∈ Cτ , assume fτ (σ̂j) is already defined for every j ∈ ω. Let t0 < t1 < . . .
be the stages at which τ has an infinite outcome. As τ ’s true outcome is ∞k,
x = lims xτ (σ, ts) exists. So for every σ̂j ∈ Dτ =

⋃
sDτ (ts), Mi |= P (x, fτ (σ̂j)).

Since Cτ is finite and τ̂∞∞ is visited only finitely many times, there are only
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finitely many j with σ̂j 6∈ Dτ . Let J = {j : Mi |= ¬P (x, fτ (σ̂j))}, and note
that J is finite. Informally, we let fτ (σ) = x△J . More precisely, if h(x) = (F, σ),
we let fτ (σ) = h−1((F△J, σ)).

Having extended fτ to a total computable function (albeit non-uniformly), let
Hσ be such that h(fτ (σ)) = (Hσ, σ), for each σ ∈ ω<ω.

Claim 2.9.1. For all σ and j, Mi |= P (fτ (σ), fτ (σ̂j)).

Proof. If σ 6∈ Cτ , then σ̂j 6∈ Cτ , and so fτ (σ), fτ (σ̂j) were defined by our action
for τ , and since τ ’s true outcome is an infinite outcome, Mi |= P (fτ (σ), fτ (σ̂j)).

If instead σ ∈ Cτ , then this is by construction. Consider the x = lims xτ (σ, ts)
and the set J used in the definition of fτ (σ). If j 6∈ J , then Mi |= P (x, fτ (σ̂j)).
So A |= P (h(x), (Hσ̂j , σ̂j)). By construction, h(x) = (Hσ△J, σ), and since
j 6∈ J , j ∈ Hσ iff j ∈ Hσ△J , so A |= P ((Hσ, σ), (Hσ̂j , σ̂j)), and thus Mi |=
P (fτ (σ), fτ (σ̂j)).

If instead j ∈ J , then Mi |= ¬P (x, fτ (σ̂j)). So A |= ¬P (h(x), (Hσ̂j , σ̂j)).
Since j ∈ J , A |= P ((Hσ, σ), (Hσ̂j , σ̂j)), and thus Mi |= P (fτ (σ), fτ (σ̂j)). �

It follows that for every σ and j, j ∈ Hσ iff |Hσ̂j | is odd.
We now define a computable isomorphism g : A → Mi. We begin by defining

g((∅, σ)) = fτ (σ) for every σ ∈ ω<ω. We then extend recursively. For each F ∈
[ω]<ω with |F | > 0, we search for G, j and y with F = G ∪ {j}, g((G, σ)) already
defined, and Mi |= Ej(g((G, σ)), y), and define g((F, σ)) = y for the first such
found.

To show that g is an isomorphism, we will show that h ◦ g is an automorphism
of A.

Claim 2.9.2. For each (F, σ) ∈ A, h ◦ g((F, σ)) = (F△Hσ, σ).

Proof. We argue by induction on |F |. The base case |F | = 0 is immediate.
For |F | > 0, there was some j ∈ F such that g((F, σ)) was defined based on

G = F − {j}. Then Mi |= Ej(g((G, σ)), g((F, σ))), and so

A |= Ej(h ◦ g((G, σ)), h ◦ g((F, σ))) =⇒ h ◦ g((G, σ))△h ◦ g((F, σ)) = {j}

=⇒ (G△Hσ)△h ◦ g((F, σ)) = {j}

=⇒ (F△{j})△Hσ△h ◦ g((F, σ)) = {j}

=⇒ h ◦ g((F, σ)) = F△Hσ. �

Claim 2.9.3. h ◦ g is an automorphism of A.

Proof. It follows from the previous claim that h ◦ g respects all the relations Ej .
As j ∈ Hσ iff |Hσ̂j | is odd, h ◦ g respects the P relation.
If σ ∈ Q, then Sn((F, σ)) for every F ∈ [ω]<ω and n ∈ ω, and so h ◦ g trivially

respects the Sn relations on elements of the form (F, σ).
If σ 6∈ Q, then by construction, Mi |=Wσ(fτ (σ))∧Snσ

(fτ (σ)). Further, (∅, σ) is
the only element of A satisfying this formula, so it must be that h ◦ fτ (σ) = (∅, σ).
Thus Hσ = ∅, and so h ◦ g fixes elements of the form (F, σ), and thus respects the
Sn relations on them. �

So h ◦ g is an automorphism of A, and thus g witnesses that A and Mi are
computably isomorphic. �
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This completes the proof of Theorem 2.

The computably categorical structure A constructed in the proof of Theorem 2
has the property that it is no longer computably categorical after a constant is added
naming (∅, 〈〉). For fix any i such that [i] ∩ [Q] 6= ∅. Then, as shown in claim 2.2,
(A, (∅, 〈〉)) ∼= (A, ({i}, 〈〉)), but computing an isomorphism requires computing a
path through Q, and Q has no hyperarithmetic paths.

Indeed, for any distinct i0, i1, there is no computable isomorphism between
(A, ({i0}, 〈〉)) and (A, ({i1}, 〈〉)). Thus (A, (∅, 〈〉)) has infinite computable dimen-
sion. A structure with this behavior was first constructed by Hirschfeldt, Khous-
sainov and Shore [HKS03].

Corollary 3. There is a structure B0 of computable dimension 2 with two com-
putable copies which are not hyperarithmetically isomorphic.

Proof. Let A be the structure from the proof of Theorem 2. Our structure B0 will
consist of A along with two new elements, aeven and aodd, and a new constant
symbol c. We make the following additional definitions:

• B0 |= P (aeven, (F, 〈〉)) precisely when |F | is even;
• B0 |= P (aodd, (F, 〈〉)) precisely when |F | is odd;
• B0 |= c = aeven;

and no other relations hold involving aeven or aodd.
Let B1 be defined identically to B0, excepting that B1 |= c = aodd. Let B̂ be

the structure obtained from B0 (equivalently, from B1) by removing the constant
symbol c from the language.

For any computable Ĉ ∼= B̂, if we nonuniformly remove the copies of aeven and
aodd, then we have a computable copy of A. As A is computably categorical, there
is a computable isomorphism f from this smaller structure to A, and this can be
extended to a computable isomorphism from Ĉ to B̂.

So for any C ∼= B0, the computable isomorphism from Ĉ to B̂ is either an iso-
morphism from C to B0 or from C to B1. However, any isomorphism from B0 to B1

must restrict to an automorphism of A sending (∅, 〈〉) to some (F, 〈〉) with |F | odd,
and by Claim 2.2 and choice of computable tree T , such an isomorphism must not
be hyperarithmetic. �

We are grateful to Rod Downey for asking whether our methods could address
the previous question.

3. A structure with degree of categoricity and infinite spectral

dimension

This section is devoted to the proof of the following theorem.

Theorem 4. There is a computable structure with degree of categoricity 0′′, but
with infinite spectral dimension.

We will first build a computable structure A and closed sets Q,R ⊆ ωω satisfying
all of the following:

• A is computably categorical.
• X = {i : [i] ∩Q 6= ∅} is infinite.
• For all i ∈ X , |[i]∩Q| = 1. We refer to the unique element of [i] ∩Q as fi.
• Y = {j : [j] ∩R 6= ∅} is infinite.
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• For all j ∈ Y , |[j]∩R| = 1. We refer to the unique element of [j]∩R as gj.
• Each fi and gj is ∆

0
3.

• For any i ∈ X and any j ∈ Y with i < j, fi + gj computes ∅′′.
• For any j0, . . . , jk ∈ Y and any i ∈ X with i > max{j0, . . . , jk}, fi ⊕ gj0 ⊕
· · · ⊕ gjk does not compute ∅′.

• There are elements {u0, u1} which comprise an orbit of A. Computing
an automorphism sending u0 to u1 exactly corresponds to computing an
element of Q (i.e. the tasks are Muchnik-equivalent).

• There are elements {vF : F ∈ [Y ]<ω} which comprise an orbit of A. Com-
puting an automorphism sending vF to vG (and fixing u0) exactly corre-

sponds to computing
⊕

j∈F△G

gj.

Before we proceed with the construction, we explain why this will suffice. Our
final structure will be (A, c, d), where c and d are constants naming u0 and v∅.
Suppose B is another computable presentation of (A, c, d). As A is computably
categorical, we may assume that B has the form (A, uℓ, vF ) for ℓ ∈ {0, 1}, F ∈

[Y ]<ω. Then, for any i ∈ X , fi⊕
⊕

j∈F

gj computes an isomorphism from (A, c, d) to

B, and in particular 0′′ does.
If B0, . . . ,Bn−1 are all computable presentations of (A, c, d), then we may assume

that Bk is of the form (A, uℓk , vFk
). Then, for any i ∈ X , fi⊕

⊕

j∈
⋃

k<n Fk

gj computes

isomorphisms between all of these structures, and if i is chosen sufficiently largely,
it does not compute ∅′.

On the other hand, suppose d can compute an isomorphism between any two
computable presentations of (A, c, d). Then it computes an isomorphism between
(A, c, d) and (A, u1, d), and thus must compute some fi ∈ Q. Fix j > i. Then d

must also compute an isomorphism between (A, c, d) and (A, c, {j}), and thus must
compute gj . Since fi + gj computes ∅′′, d > 0′′.

The structure. Our structure will have (WQ
σ )σ∈ω<ω , (WR

σ )σ∈ω<ω all unary re-
lations, (Ei)i∈ω all binary relations, P a binary relation, and (Sn)n∈ω all unary
relations. As in the previous construction, the Sn will only be declared in a c.e.
fashion. Our structure’s universe will be ([ω]<ω × ω<ω × {0, 1})⊔ {u0, u1}.

With the exception of the Sn, we can give a complete description of our structure
immediately. For (F, τ, a), (G, ρ, b) ∈ [ω]<ω × ω<ω × {0, 1}:

• WQ
σ ((F, τ, a)) holds iff σ = τ and a = 0.

• WR
σ ((F, τ, a)) holds iff σ = τ and a = 1.

• Ei((F, τ, a), (G, ρ, b)) holds iff τ = ρ, a = b and F△G = {i}.
• P ((F, τ, a), (G, ρ, b)) holds iff a = b, ρ = τ̂i for some i, and one of the
following holds:

– i 6∈ F and |G| is even; or
– i ∈ F and |G| is odd.

• For k < 2, P (uk, (F, 〈〉, 0)) holds iff k + |F | is even.
• No other relations involving u0 or u1 hold.

As before, we have the affine space [ω]<ω, but this time we have two copies of ω<ω,
and we have associated a copy of the space to each string in either copy. The WQ

σ

and WR
σ let us identify which copy a given element belongs to.
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As mentioned, during the course of the construction we will build closed sets
Q,R ⊆ ωω. Let T0, T1 ⊆ ω<ω be the minimal trees such that [T0] = Q, [T1] = R,
i.e. T0 = {σ ∈ ω<ω : [σ] ∩ Q 6= ∅}, and similarly for T1. For a < 2 and σ ∈ Ta,
Sn(F, σ, a) will hold for every n and every F ∈ [ω]<ω. For σ 6∈ Ta, there will be an
n such that Sn(F, σ, a) holds iff F = ∅. The purpose of this setup is the following.

Claim 4.1. The automorphisms of A which send (∅, σ, 1) to ({i}, σ, 1) are Muchnik
equivalent to [σ̂i]∩R. More generally, the automorphisms of A which send (∅, σ, 1)
to (F, σ, 1) are Muchnik equivalent to the join

⊕
i∈F ([σ̂i] ∩R).

The automorphisms which send u0 to u1 are Muchnik equivalent to Q.
In particular, such an automorphism exists iff the appropriate set is nonempty.

Proof. As the proof of claim 2.2. �

Let vF = (F, 〈〉, 1) for F ∈ [Y ]<ω. These, along with u0, u1, are the previously
promised elements.

Construction. Fix (Mi)i∈ω a listing of all partial computable structures in our
language. Fix also Z a set which is complete for Π0

2, and with the property that

any enumeration of Z computes Z. For example, Z = ∅′ ⊕ ∅′′. Fix a computable
predicate ϕ(n, s) such that n ∈ Z ⇐⇒ ∃∞s ϕ(n, s). For i < j, our intention is
that fi + gj is a “modulus for Σ0

2-ness”:

for n > j, ∃∞s ϕ(n, s) ⇐⇒ ∃s > (fi + gj)(n)ϕ(n, s).

This will ensure that fi + gj enumerates Z and thus computes Z.
Again, we perform a Π0

2 priority construction on a tree of strategies. We have
strategies of type Na

r , for a < 2 and r ∈ ω, which are mother strategies which begin
an fi or gi with i > r, depending on whether a = 0 or 1. We have strategies of
type Na

r,n for a < 2, r ∈ ω and n > 0, which are daughter strategies responsible for
defining fi(n) or gj(n) and ensuring that ∃∞s ϕ(n, s) ⇐⇒ ∃s > (fi+gj)(n)ϕ(n, s),
where either fi or gj is the path begun by the mother node. We have strategies of
type Ui,e, for i, e ∈ ω, which are responsible for ensuring that fi ⊕ g0 ⊕ · · · ⊕ gi−1

does not compute ∅′ via functional Φe. We have strategies of type Mi, for i ∈ ω,
which are responsible for constructing a computable isomorphism between A and
Mi when A ∼= Mi. Finally, we have a global strategy G which is responsible for
ensuring that the Sn are as described.

We arrange the Na
r , N

a
r,n, Ui,e and Mi in some priority ordering of type ω, such

that Na
r occurs in the ordering before any Na

r,n, and eachNa
r,n occurs before Na

r,n+1.
The set of possible outcomes for an Mi-strategy is again {k,∞k : k ∈ ω} ∪ {∞∞}.
Na
r -strategies have only a single outcome: outcome. The set of possible outcomes

for an Na
r,n-strategy is {k : k ∈ ω} ∪ {∞}. The set of possible outcomes for a

Ui,e-strategy is {0, 1}.
We will construct a priority tree of these strategies, but this tree will not be the

simplest tree, where each level is devoted to a given strategy type according to the
priority ordering. Instead, we will need to dynamically construct our tree during
the construction. We will say more about this later.

Auxiliary functions. During the construction, we will be defining various fi and
gj. Each will be begun by a mother node of some Na

r -type, and then will be
continued by nodes of Na

r,n-type but also by nodes of Ui,e-type. The Na
r,n-nodes

will inherit a string from an ancestor strategy which they will then extend, while
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the Ui,e-nodes may steal strings from descendant strategies. To track these strings,
we will define an auxiliary function σ.

For τ an Na
r -strategy, σ(τ) = 〈i〉 will be the beginning of the fi or gi that τ

creates. For τ an Na
r,n-strategy and β an outcome of τ , σ(τ, β) will be the string

which τ provides to strategies extending τ̂β.
Finally, for τ a Ui,e-strategy, if τ takes outcome 1, we will define σ(τ, θ) for each

θ ⊂ τ such that θ is a mother node beginning fi, or θ is a mother node beginning gj
with j < i. These will be the strings which Na

r,n-strategies extending τ̂1 inherit,
if they are daughters of such a θ.

Also, for τ an Na
r -strategy, we will define v(τ) = i for the i such that τ is

beginning fi or gi.
Finally, if a Ui,e-strategy τ steals strings from its descendants, we will define

ℓ(τ) to be the length of the longest stolen string. This will be used in building the
priority tree, later.

Choosing a pair. During the construction, pairs (σ, a) ∈ ω<ω × {0, 1} will be
chosen by strategies; we will say that τ chooses (σ, a) when it declares that (σ, a) is
growing (see below). This is similar to strategies choosing strings in the previous
construction. However, unlike the previous construction, a strategy may choose
more than one pair. Also, a pair may be chosen by a strategy and then later
chosen by another strategy. When this happens, the first strategy will never again
be visited, and so we may think of it as the pair being transferred from the first
strategy to the second. As in the previous strategy, if a pair (σ, a) with σ ∈ s<s has
not been chosen by any strategy by the start of stage s, it will never be chosen by
any strategy. Unlike the previous construction, the pairs (〈〉, a) are never chosen,
and so we will handle them explicitly in G.

Growing a pair. At a stage s, a strategy may declare that the pair (σ, a) is
growing. When this happens, we letm be largest such that we have already declared
Sm((∅, σ, a)) (or m = −1 if no such declarations have been made). We declare
Sk((∅, σ, a)) for 0 6 k < m+ 2. We also declare Sk((F, σ, a)) for every F ⊆ s and
0 6 k < m.

Strategy for G. Our action is much the same as the action for the global strategy
in Theorem 2. At the end of stage s, for every σ ∈ s<s and every a < 2, declare
S0((∅, σ)). Also, at the end of every stage, grow the pairs (〈〉, 0) and (〈〉, 1).

Strategy for Na
r . Suppose τ is an Na

r -strategy. At the first stage when τ is
visited, an i ∈ ω larger than any number previously mentioned in the construction
is chosen. τ makes the definitions σ(τ) = 〈i〉, v(τ) = i.

At every stage when τ is visited, grow the pair (〈i〉, a).
τ always takes the outcome outcome.

Strategy for Na
r,n. Suppose τ is an Na

r,n-strategy visited at stage s. Let θ be the
mother node for τ , i.e. the unique θ ⊂ τ which is an Na

r -strategy. Let ρ ⊂ τ be
largest such that one of the following holds:

• ρ = θ. In this case, let γ = σ(θ).
• ρ is an Na

r,n−1-strategy. In this case, let α be the outcome such that ρ̂α ⊆
τ , and let γ = σ(ρ, α).

• a = 0 and ρ is a Ui,e-strategy with i = v(θ). In this case, let γ = σ(ρ, θ).
• a = 1 and ρ is a Ui,e-strategy with i > v(θ). In this case, let γ = σ(ρ, θ).

We will argue in the verification that |γ| = n.
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Let k be the number of times τ has previously taken outcome ∞, and let t < s
be the last stage at which τ took outcome ∞ (or t = 0 if there is no such stage).
If there is a q ∈ [t, s) such that ϕ(n, q) holds, we will take outcome ∞ at stage s;
otherwise, we will take outcome k.

Regardless, let β be the outcome we are taking at stage s. If σ(τ, β) is not
already defined, we define σ(τ, β) = γ̂s. We grow the pair (σ(τ, β), a) and then
take outcome β.

Strategy for Ui,e. Suppose τ is a Ui,e-strategy visited at stage s. If there is no
θ ⊂ τ an N0

r -strategy with v(θ) = i, then τ never acts and simply takes outcome 0
at every stage.

Suppose instead there is such a θ. Let

Cτ = {θ} ∪ {ψ ⊂ τ : ψ is an N1
r -strategy with v(ψ) < i}.

By the recursion theorem, there is some xτ ∈ ω such that we can control the
enumeration of xτ into ∅′. We initially keep xτ out of ∅′.

At stage s, we check if there is a set {πψ, αψ : ψ ∈ Cτ} such that:

• Each πψ extends τ̂0 and is a daughter of ψ;
• Each αψ is an outcome of πψ ;
• σ(πψ , αψ) is defined for every ψ; and
• Φe,s(

⊕
ψ∈Cτ

σ(πψ , αψ);xτ )↓= 0.

If there is no such set, τ takes outcome 0.
If there is, we fix such a set {πψ, αψ : ψ ∈ Cτ}. We will henceforth always take

outcome 1, and we will always use this set. We enumerate xτ into ∅′ and define
σ(τ, ψ) = σ(πψ , αψ) for each ψ ∈ Cτ . We also define ℓ(τ) = max{|σ(τ, ψ)| : ψ ∈
Cτ}.

If τ is being visited at stage s after having fixed a set, we grow (σ(τ, θ), 0) and
(σ(τ, ψ), 1) for ψ ∈ Cτ − {θ}, and then take outcome 1.

Notation. For notational convenience, if τ is an Na
r -strategy, we define a(τ) = a.

Strategy for Mi. This is mostly as in the proof of Theorem 2, with the obvious
changes for pairs (σ, a) ∈ ω<ω × {0, 1} rather than strings σ ∈ ω<ω.
Cτ is defined to consist of those pairs (σ, a) such that there is a ρ ⊂ τ for which

one of the following holds:

• ρ is an Na
r -strategy and σ = σ(τ).

• ρ is an Na
r,n-strategy, ρ̂α ⊆ τ and σ = σ(ρ, α).

• ρ is a Ui,e-strategy with ρ̂1 ⊆ τ , and there is ψ ∈ Cρ with a = a(ψ) and
σ = σ(ρ, ψ).

It is important to note that this is finite and is completely determined by the first
stage at which τ is visited.

If t < s is the last stage at which τ took an infinite outcome and k0 is the
number of times τ has taken an infinite outcome, Bτ (s) consists of every pair
(σ, a) ∈ t<t×{0, 1} except for those in Cτ and those chosen by a strategy extending
τ̂k0.

Otherwise, this is as in the proof of Theorem 2.

Some auxiliary definitions. For a mother strategy ψ and a τ ⊃ ψ, we let n(τ, ψ)
be the largest n such that ψ has an Na

r,n-daughter strategy along τ , or n(τ, ψ) = 0
if there is no such n.
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Suppose ψ is an Na
r -strategy, and τ ⊃ ψ is a Ui,e-strategy with ψ ∈ Cτ . For

every n with n(τ, ψ) < n < |σ(τ, ψ)|, τ has defined fi(n) or gj(n) for the fi or gj
started by ψ. In this case, we say that τ blocks Na

r,n. Observe that a given τ can
only block finitely many Na

r,n.

Running the construction and the priority tree. As mentioned, our priority tree
will be constructed dynamically. Our reason for doing this is that a Ui,e-strategy
along the true path may define fi on some interval I. To maintain the desired
property of fi + gj, we must ensure that gj(x) is defined by N -strategies, for every
j > i with j < x and x ∈ I. So the appropriate N -strategies must occur on the
true path before the next U -strategy. Similar concerns about the definition of fi
apply. Also, if a Ui,e-strategy defines fi(n), then we cannot have an N -strategy
which seeks to define fi(n).

At stage s, we begin by visiting the strategy 〈〉. After having visited a strategy
τ at stage s with |τ | < s, we let α be the outcome taken by τ at this stage. We
next visit the strategy τ̂α. After having visited a strategy τ with |τ | = s, we run
the global strategy and end the stage.

The first time a given node on the priority tree is visited, we will determine what
type of strategy it is. This will determine what outcomes it has, and thus what
children it has on the priority tree. But we will not decide what type each of the
children is until they are visited.

Suppose we are visiting node τ for the first time. We make τ a ζ-strategy, where
ζ is least in the priority ordering subject to the following constraints:

• There can be no ρ ⊂ τ which is a ζ-strategy;
• τ cannot be an Na

r,n-strategy if there is a Ui,e-strategy ρ with ρ̂1 ⊆ τ and
ρ blocks Na

r,n.
• If there is a Ui,e-strategy ρ with ρ̂1 ⊆ τ , and ψ ⊂ ρ is a mother node,
then τ cannot be a Ui′,e′ -strategy if this would make n(τ, ψ) 6 ℓ(ρ).

We put the lexicographic ordering on the tree of strategies, where we order the
outcomes of Mi as ∞∞ < · · · < ∞2 < ∞1 < ∞0 < · · · < 2 < 1 < 0, we order
the outcomes of Na

r,n as ∞ < · · · < 2 < 1 < 0, and we order the outcomes of Ui,e
as 1 < 0. Observe that our construction has the property that if a strategy τ is
visited, and then at a later stage a strategy ρ which is lexicographically to the left
of τ is visited, τ can never again be visited.

The true path. We define the true path recursively, maintaining the inductive
hypothesis that every strategy on the true path is visited infinitely often. 〈〉 is on
the true path. If τ is on the true path, let α be the leftmost outcome which τ takes
infinitely often. By our actions for the various strategies, this necessarily exists.
Then τ̂α is on the true path. We call α the true outcome of τ .

We let TP denote the true path.
By our earlier observation, no strategy off the true path is visited infinitely often.

Observe that the TP is computable from 0′′.

Verification. We begin by showing that our dynamic construction did not omit
any strategies we did not intend to. We say that Na

r,n is blocked on the true path if
there is a Ui,e-strategy ρ with ρ̂1 ∈ TP and ρ blocks Na

r,n.

Claim 4.2. For every strategy type ζ which is not blocked on the true path, there
is a ζ-strategy on the true path.
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Proof. Towards a contradiction, let ζ be the least type in the priority ordering
which does not occur on the true path and is not blocked. Fix ρ on the true path
such that all types before ζ occur along ρ. If ζ is not of type Ui,e, then since ζ is
not blocked, the next strategy along the true path must be of type ζ.

If instead ζ is of type Ui,e, then since there is no ζ-strategy on the true path,
there can be no Ui′,e′ -strategy on the true path for any Ui′,e′ later in the priority
ordering than ζ. So no strategy along the true path extending ρ will have type
Ui′,e′ . So only finitely many Na

r,n are blocked. So for sufficiently long τ on the
true path, the relevant n(τ, ψ) will have grown sufficiently large that ζ is no longer
constrained from being chosen for the next strategy, contrary to our choice of ζ. �

Claim 4.3. If τ is an Na
r,n-strategy on the tree of strategies, then the γ defined in

the action for τ has length n.

Proof. By induction on n and our action for the Na
r,n-strategies, as well as our

priority ordering and the dynamic construction of the tree of strategies. �

Claim 4.4. If ψ is a mother node on the true path, then ψ has infinitely many
daughter nodes on the true path.

Proof. By our dynamic construction of the tree of strategies. Note that we are
not allowed to select a Ui,e-strategy until n(τ, ψ) > ℓ(ρ) for every mother node
ψ ⊂ ρ. �

Let X be the set of v(ψ), for ψ an N0
r -strategy along the true path. Let Y be the

set of v(ψ), for ψ an N1
r -strategy along the true path. For ψ an N0

r -strategy along
the true path with v(ψ) = i, define fi =

⋃
σ(τ, α), where the union ranges over

τ̂α ∈ TP with τ a daughter of ψ. Similarly, for ψ an N1
r -strategy along the true

path with v(ψ) = j, define gj =
⋃
σ(τ, α), where the union ranges over τ̂α ∈ TP

with τ a daughter of ψ. By the previous claim, these are elements of ωω. Further,
as TP is 0′′-computable, so are fi and gj, for i ∈ X , j ∈ Y .

Define T0 = {σ : ∃i ∈ X σ ⊂ fi} and T1 = {σ : ∃j ∈ Y σ ⊂ gj}. The argument
that the relationship of the Sn to T0 and T1 is as previously described is the same
as the corresponding argument in the proof of Theorem 2.

The argument that A is computably categorical is also as in the proof of Theo-
rem 2. The reader might worry that the possibility for a string σ to be chosen by
multiple strategies could cause trouble. However, note that the only way in which
σ can be chosen by multiple strategies is if it is chosen first by some strategy π, and
then later chosen by a Ui,e-strategy ρ with ρ̂0 ⊆ π. If τ is an Mi-strategy, then τ ’s
action does not depend on precisely which strategy has chosen σ—rather, it only
depends on which outcome of τ ’s is extended by the strategy that has chosen σ. If
τ is on the true path, and some strategy π extending τ̂α has chosen σ, then every
strategy which chooses σ extends τ̂α, and so τ is untroubled by this behavior.

It remains only to show that the fi and gj behave as we would like them to.

Claim 4.5. For i < j < n with i ∈ X and j ∈ Y , at most one of fi(n) and gj(n)
is defined by some Ui,e-strategy ρ with ρ̂1 along the true path.

Proof. Suppose fi(n) is defined before gj(n) on the true path, and some ρ a Ui,e-
strategy with ρ̂1 along the true path defines fi(n). Let ψ be the N1

r -strategy with
v(ψ) = j and ψ ∈ TP . It cannot be that ρ̂1 ⊆ ψ, because then ψ would have
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chosen j > n. So ψ ⊂ ρ, and thus a daughter N1
r,n-strategy is guaranteed to occur

on the true path by our dynamic construction of the tree of strategies.
The argument for the case where gj(n) is first defined is the same. �

To show that Z 6T fi + gj for each i < j, we need only show the following:

Claim 4.6. For all i < j < n with i ∈ X and j ∈ Y , if n 6∈ Z, then ¬∃s >
(fi + gj)(n)ϕ(n, s).

Proof. By the previous claim, without loss of generality fi(n) is defined by some
N0
r,n-strategy. Let τ be the strategy along the true path defining fi(n). Let s0

be largest such that ϕ(n, s0). Then τ has outcome k for some k ∈ ω, and it first
takes outcome k at some stage s1 > s0. So fi(n) is defined to be some s > s1, by
construction. �

Claim 4.7. For all e ∈ ω and i ∈ X, if j0 < j1 < . . . jk−1 are the elements of Y
less than i, then ∅′ 6= Φe(fi ⊕ gj0 ⊕ · · · ⊕ gjk−1

).

Proof. Fix τ the Ui,e-strategy along the true path. Since Na
r -strategies choose their

number large, i ∈ X implies there is a θ ∈ Cτ with a(θ) = 0, v(θ) = i. Similarly,
for each m < k there is a ψm ∈ Cτ with a(ψm) = 1, v(ψm) = jm.

If τ has true outcome 0, then xτ 6∈ ∅′, and

¬[Φe(fi ⊕ gj0 ⊕ · · · ⊕ gjk−1
;xτ )↓= 0],

as otherwise there would be some collection of sufficiently large πψ ⊇ τ̂0 and αψ for
ψ ∈ Cτ with πψ̂αψ along the true path such that Φe(

⊕
ψ∈Cτ

σ(πψ , αψ);xτ )↓= 0,
and τ would instead have true outcome 1.

If τ has true outcome 1, then xτ ∈ ∅′, fi ⊃ σ(τ, θ) and gjm ⊃ σ(τ, ψm) form < k,
and

Φe(σ(τ, θ) ⊕ σ(τ, ψ0)⊕ · · · ⊕ σ(τ, ψk−1);xτ )↓= 0

by construction. �

This completes the proof of Theorem 4.

4. Closing thoughts

In the construction for Theorem 2, given a computable tree T , we constructed a
computably categorical structure and a tree Q which is ∆0

3-isomorphic to T such
that [Q] was coded into the automorphism group of our structure in a particular
fashion. The reason for T and Q being ∆0

3-isomorphic rather than computably
isomorphic is because constructing the isomorphism requires the true path of the
construction, and the computable categoricity machinery we used requires a ∆0

3 true
path. If there were some way to avoid this obstacle and make T and Q computably
isomorphic (or even equal), then these methods would be applicable to a wide range
of questions. For example, we would immediately be able to conclude that lowness
for categoricity and lowness for isomorphism are the same.

Similarly, the reason 0′′ was chosen as the degree of categoricity in Theorem 4
was because we again required a ∆0

3 true path for the computable categoricity
machinery, and the true path was necessary to compute the various fi and gj. We
suspect that, using standard techniques, this could be changed to any Σ0

2 degree
strictly above 0′. We do not know, however, whether the same result could be
repeated with 0′.
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