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CONSTRUCTING SEQUENCES ONE STEP AT A TIME

HENRY TOWSNER

Abstract. We propose a new method for constructing Turing ideals
satisfying principles of reverse mathematics below the Chain-Antichain
Principle (CAC). Using this method, we are able to prove several new
separations in the presence of Weak König’s Lemma (WKL), including
showing that CAC ` WKL does not imply the thin set theorem for
pairs, and that the principle “the product of well-quasi-orders is a well-
quasi-order” is strictly between CAC and the Ascending/Descending
Sequences principle, even in the presence of WKL.

1. Introduction

Definition 1.1. A Turing ideal is a collection I of sets such that whenever
X P I and the set Y is computable from X, also Y P I, and whenever
X1, X2 P I, the join X1 ‘ X2 P I as well.

The principles we discuss here are usually formulated in the context of
reverse mathematics, but since that formulation will not be needed here, we
state them in terms of Turing ideals. (Those familiar with reverse math-
ematics [9] will recognize that our main concern is constructing ω-models
witnessing various separations.) We are interested in Turing ideals which
exhibit certain closure properties: ideals I so that whenever X P I encodes
an instance of problem a certain kind, I also contains some Y which is a
solution to that instance.

An important example is:

Definition 1.2. A Turing ideal I satisfies WKL (“Weak König’s Lemma”)
if whenever T P I encodes an infinite tree of t0, 1u sequences, there is an
infinite t0, 1u sequence Λ P I so that for every n, Λ æ n P T .

Definition 1.3. We say that a principle P implies Q if any Turing ideal
satisfying P also satisfies Q.

All our other principles concern weakenings or variants of Ramsey’s The-
orem for pairs. Recall that Ramsey’s Theorem for pairs says that whenever
c : rNs2 Ñ t0, 1u is a coloring of pairs, there is an infinite homogeneous set:
an infinite set S Ď N and an i so that whenever a, b P S, cpa, bq “ i
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Most of the weakenings we are interested in concern partial or total orders.
An ordering ă can be associated with a coloring by setting cpa, bq “ 1 iff
a ă b (where we assume a, b are ordered a ă b in the usual ordering on the
natural numbers).

Definition 1.4. A Turing ideal I satisfies CAC (“Chain-Antichain”) if
whenever ĺ is an I-computable partial ordering, there is an infinite sequence
Λ in I which is either ă-increasing, ă-decreasing, or an antichain in ă.

This is equivalent to restricting Ramsey’s Theorem for pairs to the special
case where one of the colors is transitive [4].

Definition 1.5. If c : rNs2 Ñ N is a coloring, we say a color i is transitive
if whenever a0 ă a1 ă a2 with cpa0, a1q “ cpa1, a2q “ i, also cpa0, a2q “ i.

A natural further restriction is to ask that ĺ be a linear ordering.

Definition 1.6. A Turing ideal I satisfies ADS (“Ascending/Descending
Sequences”) if whenever ă is an I-computable linear ordering, there is an
infinite sequence Λ in I which is either ă-increasing or ă-decreasing.

This is slightly stronger than requiring that both colors be transitive, but
is equivalent at the level of Turing ideals.

Definition 1.7. A Turing ideal I satisfies trRT2

k
(“transitive Ramsey’s

Theorem for pairs with k colors”) if whenever c : rNs2 Ñ r1, ks is a coloring
where all colors are transitive, there is an infinite set S and an i P r1, ks so
that whenever a, b P S, cpa, bq “ i.

The basic relationships between CAC, ADS, and trRT2

k
are set out in

[4].

Lemma 1.8 ([4]). A Turing ideal satisfies ADS iff it satisfies trRT2
2.

Furthermore, CAC implies trRT2

k
for any k, and trRT2

k`1
implies trRT2

k
.

Showing that these implications do not reverse is more difficult. Lerman,
Solomon, and Towsner constructed a Turing ideal satisfying ADS but not
CAC [5], and Patey showed that a similar method can construct a Turing
ideal satisfying trRT2

k
but not CAC [8]. (More precisely, Patey studies a

principle shown to be very similar in [6].) It is not known whether trRT2

k

implies trRT2

k`1
.

Dzhafarov, Goh, and Shore asked whether these separations remain in
the presence of WKL. As we will discuss in detail below, satisfying WKL
appears to conflict with the method used in [5], and a new approach to the
separation is required. Using this approach, we will show:

Theorem 1.9. There is a Turing ideal satisfying trRT2

k
for all k and WKL

but not CAC.

While considering this question, one naturally considers what else might
be a consequence of ADS together with WKL. In particular, one asks
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whether these principles might imply other consequences of Ramsey’s The-
orem for pairs which do not follow from CAC. For example:

Definition 1.10. A Turing ideal I satisfies TSp2q (“Thin Sets for Pairs”)
if whenever c : rNs2 Ñ N is I-computable function, there is an infinite set S

in I and a color i so that there is no x, y P S with cpx, yq “ i.

This thin set principle was introduced in [3] and further studied in [1, 7,
10].

Using a similar method, we are able to show:

Theorem 1.11. There is a Turing ideal satisfying CAC and WKL but not
TSp2q.

Hirschfeldt and Shore ask [4] whether the trRT2

k
hierarchy is strict.

Question 1.12. Does trRT2

k
imply trRT2

k`1
?

Normally adding more colors does not change the difficulty of satisfying
a Ramsey theoretic principle: one “merges” two of the colors into a single
color and then applies the Ramsey theoretic argument repeatedly. But this
fails with trRT2

k
because the merged color may not be transitive.

Asking how we should strengthen the statement to allow such a merger
of colors leads us to define:

Definition 1.13. A Turing ideal I satisfies ProdWQO (“Products of
WQOs are WQO”) if whenever c : rNs2 Ñ t0, 1, 2u and the colors 1 and
2 are transitive, there is an infinite set S and an i P t1, 2u so that whenever
a, b P S, cpa, bq ‰ i.

(The name will be justified below.) That is, we have a coloring with two
transitive colors and one color which need not be transitive where we can
always omit one of the transitive colors.

Lemma 1.14 ([2]). CAC implies ProdWQO.

Frittaion, Marcone, and Shafer pointed out that ProdWQO implies
ADS.

Lemma 1.15. ProdWQO implies trRT2

k
for any k, and so also ADS.

Proof. Let c : rNs2 Ñ r1, ks be a transitive coloring. For any pair i ‰ j in
r1, ks, define the coloring ci,j : rNs2 Ñ r0, 1, 2s given by

ci,jpa, bq “

$

&

%

1 if cpa, bq “ i

2 if cpa, bq “ j

0 otherwise

By ProdWQO applied to c1,2, we have an infinite set S omitting either
color 1 or color 2; without loss of generality, we assume S omits 1. Ap-
plying ProdWQO to c2,3 (more precisely, let π : N Ñ S be the unique
injective, order-preserving map, define c1

2,3pi, jq “ c2,3pπpiq, πpjqq, and apply
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ProdWQO to c1
2,3) restricted to the set S, we omit a second color. We

iterate this until only one color is remaining, at which point the set must be
homogeneous. �

Although we phrase it here in terms of transitive colorings, ProdWQO
is more naturally seen as the statement that a product of well-quasi-orders
is also well-quasi-ordered. Recall that a partial ordering ĺ is well-quasi-
ordered if whenever xa1, a2, . . .y is an infinite sequence, there exist i ă j

so that ai ĺ aj . An infinite sequence xa1, a2, . . .y is bad if it witnesses the
failure to be a well-quasi-order: whenever i ă j, ai ł aj .

The product ĺ“ĺ1 ˆ ĺ2 of two quasi-orderings is given by a ĺ b iff both
a ĺ1 b and a ĺ2 b. To say that the product of two well-quasi-orders is also
well-quasi-ordered is the same as saying that whenever we have a product
ĺ“ĺ1 ˆ ĺ2 and an infinite bad sequence in ĺ then we must have an infinite
bad sequence in either ĺ1 or in ĺ2. If we define a coloring

cpa, bq “

$

&

%

1 if a ĺ1 b

2 if a ĺ2 b

0 otherwise

then this is well-defined on an infinite bad sequence (because we cannot have
both a ĺ1 b and a ĺ2 b). The colors 1 and 2 are transitive while 0 need not
be. Finding a bad sequence in ĺi exactly means finding an infinite sequence
avoiding i, which is precisely what our formulation of ProdWQO says.

Our remaining results show that ProdWQO is properly intermediate
between ADS and CAC.

Theorem 1.16.

‚ There is a Turing ideal satisfying trRT2

k
for all k and WKL but

not ProdWQO.
‚ There is a Turing ideal satisfying ProdWQO and WKL but not

CAC.

Of course, either of these results implies Theorem 1.9.
Finally, we note that all these principles have a stable version.

Definition 1.17. A coloring of pairs c : rNs2 Ñ N is stable if for every a

there are i and j so that whenever j ď b, cpa, bq “ i.
SADS (respectively SCAC, STSp2q, SProdWQO, StrRT2

k
) is the

principle ADS (respectively CAC, TSp2q, ProdWQO, trRT2

k
) restricted

to stable instances.

In fact, all our results also apply to the stable versions of these principles;
that is, when we show that we fail to satisfy a principle, we always fail to
satisfy a stable instance.

The author is grateful to Frittaion, Marcone, and Shafer for pointing out
that ProdWQO is between ADS and CAC and raising the question of
where it fits. Some of the ideas leading to the work here were developed
in discussions with Kuyper, Lempp, Miller, and Soskova. Finally, Patey
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provided feedback and suggestions on a long strong of initial attempts at
this work, including pointing the author towards the crucial obstacles and
suggesting several ways that the results in this paper could be strengthened.

2. Separating STSp2q

In this section we construct a computable instance c of STSp2q and then
construct a Turing ideal I which has no solution to c, but does satisfy both
CAC and WKL.

Since this is the prototype for our other arguments, we take a moment to
outline the structure. The ideal I will be defined by recursively building a
sequence I1, I2, . . . of sets and taking I to be those things computable from
‘iďnIi for some n. Given X “ ‘iďnIi for some n, we will define the notion
of a requirement (computable) in X, and the notion of when a particular
instance c of STSp2q satisfies a given requirement in an oracle X. We will
then prove:

(1) if c satisfies all requirements in X then there is no X-computable
solution to c (Lemma 2.8),

(2) if c satisfies all requirements in X and ĺ is an X-computable partial
ordering then there is an infinite chain or antichain Λ so that c

satisfies all requirements in X ‘ Λ (Lemma 2.13),
(3) if c satisfies all requirements in X and U is an infinite X-computable

t0, 1u-branching tree then there is an infinite branch Λ so that c

satisfies all requirements in X ‘ Λ (Lemma 2.14), and
(4) there exists a computable stable c satisfying all requirements in H

(Lemma 2.16).

These four pieces give the desired result:

Theorem 2.1. There is a computable stable c : rNs2 Ñ N and a Turing
ideal I so that:

‚ if I P I is infinite then c æ rIs2 “ N,
‚ I satisfies CAC, and
‚ I satisfies WKL.

Proof. We take the c given by Lemma 2.16 and then use Lemma 2.13 and
Lemma 2.14 to recursively define the sets Ii so that c satisfies all require-
ments in ‘iďnIi, so that if ĺ is an ‘iďnIi-computable partial ordering the
there is some k so that Ik is an infinite chain or antichain, and so that if U

is an infinite ‘iďnIi-computable t0, 1u-branching tree then there is some k

so that Ik is an infinite branch of U . Then the Turing ideal consisting of all
sets computable from ‘iďnIi for some n will have the desired properties. �

2.1. Requirements.

Definition 2.2. Let c : rNs2 Ñ N be stable. For each i, A˚
i pcq consists of

those n so that, for cofinitely many m, cpn, mq “ i.
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Clearly the A˚
i pcq are disjoint; stability implies that they form a partition

of N.

Definition 2.3. A simple block statement in X is a set computable from an
oracle X of the form KXpb,~aq (with the groups of variables distinguished)
which is monotone in the second parameter—that is, KXpb,~a1q and ~a1 Ď ~a

implies KXpb,~aq.

The parameters are intended as follows:

‚ b is an auxiliary datum,
‚ ~a is a set of witnesses which might be in A˚

i pcq for some i.

Definition 2.4. A requirement R “ pT, tKσuσPT , tdσuσPT q is a finite, finitely
branching tree T , for each σ P T a simple block statement Kσ and a function
dσ : dompσq Ñ N, and so that Kxy is always true.

For any σ P T , any c : rNs2 Ñ N, and any oracle X, the positive re-
quirement component at σ is the formula ∆X

R;σpc, b0, . . . , b|σ|´1,~a0, . . . ,~a|σ|´1q

which holds if, for each i ă |σ|, KX
σæpi`1qppb0, . . . , biq,~aiq holds.

If σ P T is a leaf, ΘX
R;σpcq is the formula which holds if there exist

b0, . . . , b|σ|´1,~a0, . . . ,~a|σ|´1 so that:

‚ ~ai P A˚
dσpiqpcq,

‚ ∆X
R;σpc, b0, . . . , b|σ|´1,~a0, . . . ,~a|σ|´1q holds.

If σ P T is not a leaf, ΘX
R;σpcq is the formula which holds if there exist

b0, . . . , b|σ|´1,~a0, . . . ,~a|σ|´1 and a t so that:

‚ ~ai P A˚
dσpiqpcq,

‚ ∆X
R;σpc, b0, . . . , b|σ|´1,~a0, . . . ,~a|σ|´1q,

‚ there do not exist b,~a, and τ an immediate extension of σ in T so
that t ă ~a and ∆X

R;τ pc, b0, . . . , b|σ|´1, b,~a0, . . . ,~a|σ|´1,~aq.

We say c satisfies a requirement R “ pT, tKσuσPT , tdσuσPT q in X if there
is some σ P T so that ΘX

R;σpcq holds.

We will sometimes wish to work with requirements satisfying certain re-
strictions.

Definition 2.5. A requirement R “ pT, tKσuσPT , tdσuσPT q has range I if
for every σ P T , rngpdσq Ď I.

A requirement R “ pT, tKσuσPT , tdσuσPT q is transitive in color i if when-
ever τ Ĺ σ, j ă |τ |, dτ pjq “ i, and dσp|τ |q “ i, then dσpjq “ i.

While we mostly find it natural to work with trees of requirement, we
note that it does suffice to consider linear ones.

Definition 2.6. A requirement is linear if σ P T implies σ has the form
x0, 0, . . . , 0y.

Lemma 2.7. Suppose c satisfies every linear requirement in X with range
I which is transitive in every color in J Ď I where 0 P IzJ . Then c satisfies
every requirement in X with range I which is transitive in every color in J .
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Proof. Let R “ pT, tKσuσPT , tdσuσPT q be a requirement with range I which
is transitive in every color in J Ď I. We define a linear requirement whose
satisfaction ensures that we have satisfied R.

Let n “ |T | and fix a function π : T Ñ r0, nq so that σ Ď τ implies
πpσq ď πpτq. We let T 1 consist of sequence of the form x0, . . . , 0y with
length ă n and we associate the sequence in T 1 of length i with the natural
number i.

When j ă |σ|, we set dπpσqpπpσ æ jqq “ dσpjq, and dπpσqpjq “ 0 other-
wise. This ensures that T 1 will have the same range and satisfy the same
transitivity requirements, as needed.

The auxiliary data will have the form pri, biq where ri is either an ele-
ment of T or 0. pK 1qX

i pppr0, b0q, . . . , pri´1, bi´1qq,~a0, . . . ,~ai´1q holds if, let-
ting i1, . . . , ik ă i be those values such that rij

‰ 0:

‚ k ě 0 (i.e. there is at least one such i with rij
‰ 0),

‚ rij
is a sequence with |rij

| “ j,
‚ ri0

Ĺ ri1
Ĺ ¨ ¨ ¨ Ĺ rik

,
‚ if 0 ă j ă k then ij`1 “ πprij

q,

‚ KX
rik

ppbi0
, . . . , bik

q,~ai0
, . . . ,~aik

q,

‚ πprik
q ě i.

Suppose ΘX
R1;ipcq holds for some i. Let σ “ π´1piq, and let pr0, b0q, . . .,

pri´1, bi´1q, ~a0, . . ., ~ai´1 be the witnessing data. Let i1, . . . , ik ă i be the
witnesses; note that if πprik

q ą i then we would also satisfy ΘX
R1;i`1pcq, so

we may assume either i “ 0 (so σ “ xy) or σ “ rik
. So for any τ Ď σ, we

have τ “ ri|τ |
, so KX

τ ppbi0
, . . . , bi|τ |

q,~ai|τ |
q.

On the other hand, if there were some immediate extension σ of rik
, a

b, and a ~a so that ∆X
R;σpc, bi0

, . . . , bik
, b,~ai0

, . . . ,~aik
,~aq holds then pσ, bq,~a

would witness pK 1qX
i`1. So we have ΘX

R;rik
pcq. �

Lemma 2.8. Suppose c satisfies every requirement in X with range I which
is transitive in every color in J Ď I where 0 P IzJ . Then whenever B is an
X-computable (or even X-computably enumerable) infinite set, c æ rBs2 Ě I.

Proof. For each e and each i P I, we show that if We is infinite then there
is an x P We X A˚

i pcq; then since We is infinite, there must be a big enough
x P We with cpx, yq “ i.

We take T to contain a single branch of length 1, x0y. We take KX
x0ypb, xq

to hold if x P W X
e,b. We set dx0yp0q “ i. If ΘR;xypcq holds then there must

be some t so that there do not exist b and x ą t so that x P W X
e,b; but this

implies that We is finite. Otherwise ΘR;x0ypcq holds, in which case we find

b0, x0 so that x0 P W X
e,b0

and x0 P A˚
i pcq as needed. �

Before going on, we attempt to motivate our definition of a requirement.
Our discussion will be most meaningful to someone already familiar with the
construction in [5]. For purposes of this discussion, we consider a separation
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easier than any of the others considered in this paper: separating ADS from
D2

2; the latter is STSp2q restricted to the colors t0, 1u, where a solution must
omit one of these colors (and therefore be homogeneous in the other color).

We imagine that we are simultaneously constructing our instance c of D2
2

and our solution to some instance ă of ADS, and we wish to make a single
step of our construction, which means arranging progress towards either a

ă-increasing sequence Λ` so that ΦΛ`

e0
fails to compute a solution to c or a

ă-decreasing sequence Λ´ so that ΦΛ´

e1
fails to compute a solution to c. The

key idea of [5] was to look for both a ă-increasing sequence p with endpoint
p` and a ă-decreasing sequence q with endpoint q` so that:

‚ p` ĺ q`,
‚ there are two fresh elements a0, a1 so that Φp

e0
converges and equals

1 on both a0 and a1,
‚ there are two fresh elements b0, b1 so that Φq

e1
converges and equals

1 on both b0 and b1.

If this happens, we could restrain c so that we will have a0, b0 P A˚
0pcq and

a1, b1 P A˚
1pcq. Then, since p` ĺ q`, either there are infinitely many x with

p` ă x (and therefore p is a reasonable beginning of an increasing sequence),
or there are infinitely many x with x ă q` (and therefore q is a reasonable
beginning of a decreasing sequence). Crucially, if we fail to find such a pair

p, q, then one can arrange for either ΦΛ`

e0
or ΦΛ´

e1
to be finite.

The difficult point is that one needs to ensure b0 ‰ a1 and a0 ‰ b1 so that
we can place both of the needed restraints separately.

This is the source of the conflict when one attempts to strengthen the
separation by including solutions to WKL. One ends up working not with
a single attempt at building Λ` and Λ´, but with a finitely branching tree
of attempts. The problem is that even if one finds such pairs p, q in each
branch, there may be incompatibilities across different branches — a0 in one
branch may be b1 in another.

What one would prefer is to construct our witnesses in stages. First we
would look for a pair p0, q0 with p`

0 ă q`
0 and only the witnesses a0, b0.

Then we could look for extensions p0 Ď p1 and q0 Ď q1 with p`
1 ĺ q`

1 ,
and demand that the witnesses a1, b1 be above some threshold based on
the first stage (in particular, larger than maxta0, b0u). Such a construction
would be compatible with a finitely branching tree: we could wait for the
pairs p0, q0 to appear in every branch. The witnesses a0, b0 taken over all
branches would form a “block” which is all restrained in the same way (say,
all put into A˚

0pcq). Only then would we look for the extensions p1, q1 in all
branches, requiring that the witnesses a1, b1 all be larger than any element
of the 0 block.

The difficulty is that we need the following property: suppose we find our
witnesses p0, q0, but then are unable to extend to p1, q1. Then this must be

a situation in which we can succeed (presumably by forcing one of ΦΛ`

e0
, ΦΛ´

e1
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p1 q1

p1 q1

p2 q2

p2 q2

p2 q2 p1 q1

p2 q2 p2 q2 p1 q1

p2 q2

¨ ¨ ¨

Figure 1.

to be finite), even if a different choice of p0, q0 could have been extended to
a p1, q1.

Let us state this more explicitly, since it is the driving force behind our
definition above. When we wish to satisfy some requirement, we will proceed
in stages in which we look for auxiliary data (like p0, q0) and witnesses
(like a0, b0). When we find the data and witnesses, we may “restrain” the
witnesses (by placing them in some A˚

i pcq) and then begin looking for the
next stage of the construction. However:

‚ during each stage, all witnesses found at a given earlier stage must
be restrained the same way, and

‚ at each stage, failing to find the data and witnesses to the next stage
must be sufficient to ensure our requirement.

This is essentially what our definition of satisfaction of a requirement says.
In fact, the two-stage construction we alluded to two paragraphs ago fails:

having found the witnesses p0, q0, failing to find p1, q1 is not helpful. It could
be that, say, p`

0 will actually turn out to be quite large in ă, and no further
elements will appear above p`

0 , making the extension p1 impossible to find,
and also meaning that our inability to find it gives us no information about

how to restrain Λ` to make ΦΛ`

e0
finite.

In Figure 1 we lay out a multi-stage process which is substantially more
complicated (the version there involves as many as six consecutive steps)
For example, the next stage after finding p0, q0 is to look for either a pair
p1, q1

0 with p0 Ď p1, p`
1 ĺ pq1

0q`, p1 finds a witness a1, and q1
0 finds a new

witness b1
0, or a pair p1

0, q1 with q0 Ď q1, pp1
0q` ĺ q`

1 , q1 finds a witness b1,
and p1

0 finds a new witness a1
0.

2.2. Solving ADS. As a warm up to dealing with CAC (and a preview
of Lemma 3.5), we first show that we can solve instances of ADS while
preserving requirements.
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As in [5], it is convenient to restrict to a certain kind of linear ordering.

Definition 2.9. A linear ordering pN, ăq is stable-ish if there is a non-
empty initial segment V so that V has no maximum under ă and NzV has
no minimum under ă.

Lemma 2.10 ([5]). If pN, ăq is not stable-ish then there is an infinite mono-
tone ă-sequence computable from ă.

Note that there is no requirement that the set V be computable from ă.

Lemma 2.11. Suppose c satisfies every requirement in X and ă is a stable-
ish X-computable linear ordering. Then there is a monotone sequence Λ so
that c satisfies every requirement in X ‘ Λ.

Proof. Let V witness that ă is stable-ish. When p is a monotone sequence,
we write p` for the final element of p.

We will force with conditions, which are pairs pp, qq where p is a ă-
increasing sequence in ă, q is a ă-decreasing sequence in ă, p` P V , and
q` R V . (This of course implies that p` ă q`. Note that being a condition
is generally not X-computable, since V need not be X-computable.) We say
a condition pp1, q1q extends pp, qq if p Ď p1 and q Ď q1. We say pp, qq forces
R on the increasing side if whenever Λ is an infinite, ă-increasing sequence
with p Ď Λ and Λ Ď V , c satisfies R in X ‘ Λ. Similarly, we say pp, qq forces
R on the decreasing side if whenever Λ is an infinite, ă-decreasing sequence
with q Ď Λ and Λ Ď V , c satisfies R in X ‘ Λ.

It suffices to show:

p˚q Suppose R` and R´ are requirements and pp, qq is a
condition. Then there is a condition pp1, q1q extending pp, qq
which either forces R` on the increasing side or R´ on the
decreasing side.

For suppose we have shown this. Then we fix a list of requirements R`
i , R´

i so
that for any pair of requirements R`, R´, there is an i with R`

i “ R`, R´
i “

R´. We construct a sequence pxy, xyq “ pp0, q0q, pp1, q1q, . . . with ppi`1, qi`1q
extends ppi, qiq, pp2i`1, q2i`1q either forces R`

i on the increasing side or R´
i

on the decreasing side, p2i has length ě i, and q2i has length ě i. Let
Λ` “

Ť

pi and Λ´ “
Ť

qi. If c does not satisfy every requirement in X ‘Λ`

then there is some R` which it fails to satisfy, and therefore for each R´

there was an i with R`
i “ R`, R´

i “ R´, and therefore since pp2i`1, q2i`1q
must not have forced R` on the increasing side, pp2i`1, q2i`1q forced R´ on
the decreasing side, and therefore Λ´ satisfies every requirement in X ‘ Λ´.

We now show p˚q. Let a condition pp, qq and requirements R`, R´ be
given. Let R` “ pT `, tLσuσPT ` , td`

σ uσPT ` q and R´ “ pT ´, tMτ uτPT ´ , td´
τ uτPT ´q

be given. We will describe a requirement R “ pT, tKυuυPT , tdυuυPT q.
For bookkeeping reasons, it is convenient to assume that for any σ P T `,

d`
σ p|σ| ´ 1q “ 0; this is easily arranged: if σ P T ` violates this, modify R`

as follows: insert a child σ"x0y so Lσ"x0y always holds, and wait for this
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dummy node to set d`
σ"x0y “ d`

σ Y tp|σ|, 0qu, then take all children σ"γ and

move them to σ"x0y"γ. Symmetrically, we make the same assumption for
R´.

A split pair is a pair pp1, q1q so that p Ď p1, q Ď q1, and pp1q` “ pq1q`.
Note that a split pair need not be a condition, but being a split pair is X-
computable. Crucially, when pp1, q1q is a split pair, one of pp, q1q and pp1, qq
must be a condition (depending on whether the common endpoint belongs
to V ).

Let r “ maxt|τ | | τ P T ´u. Each node υ P T will describe a situation
involving a sequence of split pairs

ppr, qrq, ppr´1, qr´1q, . . . , pp1, q1q, pp0, q0q

with the endpoints in order, so that p`
r “ q`

r ă p`
r´1 “ q`

r´1 ă ¨ ¨ ¨ p`
1 “ q`

1 .
More formally: to each non-empty υ P T , we associate, for each j ď r,

sequences συ
j P T ` and τυ

j P T ´. We require that if one of these sequences

is empty then the other is as well (in which case the corresponding split pair
is understood to be an empty sequence).

The expectation (encoded below in the definition of KX
υ ) is that pj is a

witness to συ
j and qj is a witness to τυ

j . We will also require that |τυ
j | P t0, ju

for each j.
Suppose we have a sequence of split pairs like this and suppose that

p`
j`1 P V but q`

j R V . (Taken literally there may not be such a j, but if we

correctly handle the case where the p`
j`1 or q`

j do not exist because pj`1 or

qj is the empty sequence, we will be able to ensure there is such a j.) We
can look for a split pair of extensions: pj`1 Ď p˚ and qj Ď q˚ with p`

˚ “ q`
˚ ,

p˚ witnessing an extension of συ
j`1 and q˚ witnessing an extension of τυ

j . If
we cannot find one of these then one of pj`1 or qj is the desired extension
to our condition.

If we do find such a split pair p˚, q˚, we would have a new sequence of
split pairs

ppr, qrq, . . . , ppj`2, qj`2q, pp˚, q˚q, ppj´1, qj´1q, . . . , pp1, q1q, pp0, q0q.

In this new sequence, we no longer have a split pair indexed by j, but q˚

now witnesses a branch of length j ` 1.
This will be the way we extend nodes: for each node υ P T , we will have

one child for each j, σ˚, τ˚ where σ˚ extends συ
j`1 and τ˚ extends τυ

j .
Following this rule, we can see that branches in T must be finite Let

s “ maxt|σ| | σ P T `u and assign to each υ the sequence of numbers

ps ´ |συ
r |, s ´ |συ

r´1|, . . . , s ´ |συ
1 |q.

(We ignore |συ
0 | since this value is always 0.) An extension of υ increments

some |συ
j`1| by 1 and resets |συ

j | to 0. In particular, the associated sequence
of numbers always decreases in the lexicographic ordering, so each branch
of T must terminate.
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Note that when we extend a split pair in this construction, we extend
pj`1 and qj and discard qj`1 and pj. In particular, the only time sequences
pj, qj1 share a block of witnesses is that each pj and qj share their final block

of witnesses. This does not cause any problems1 because we have required
that d`

συ
j

p|συ
j | ´ 1q “ 0 “ d´

τυ
j

p|τυ
j | ´ 1q, so the two requirements agree on

what to do with the shared block. Other than that, each block of witnesses
is associated with at most one of the sequences pj or qj , and so dυ should
just copy the corresponding value of d`

συ
j

or d´
τυ

j
.

More precisely, for each υ and each j we will have functions πυ
j : dompσυ

j q Ñ
dompυq and ρυ

j : dompτυ
j q Ñ dompυq. πυ

j piq will tell us at which stage in
the construction of υ the sequence pj was extended to get length i ` 1, and
τυ

j piq will tell us at which stage the sequence qj was extended to get length
i ` 1.

We can now gather up the data we need for each υ P T . To each υ P T

we associate:

‚ for each j ď r, sequences συ
j P T ` and τυ

j P T ´ such that:

– |τυ
j | P t0, ju and

– |συ
j | “ 0 if and only if |τυ

j | “ 0,

‚ functions πυ
j : dompσυ

j q Ñ dompυq and ρυ
j : dompτυ

j q Ñ dompυq such
that:

– if πυ
j piq “ ρυ

j1pi1q then j “ j1, i “ |συ
j | ´ 1, adn i1 “ |τυ

j | ´ 1,

– if πυ
j piq “ πυ

j1pi1q then j “ j1 and i “ i1,

– if ρυ
j piq “ ρυ

j1pi1q then j “ j1 and i “ i1.

The base case is σ
xy
j “ τ

xy
j “ xy for all j ď r and therefore συ

j “ τυ
j are

the empty function.
Suppose we have defined these values for υ P T . Then whenever j0 ă r,

σ˚ P T ` is an immediate extension of συ
j0`1, and τ˚ P T ´ is an immediate

extension of τυ
j0

, there is a node υ1 “ υ"xpj0, σ˚, τ˚qy P T with:

‚ for j R tj0, j0 ` 1u, συ1

j “ συ
j , τυ1

j “ τυ
j , πυ1

j “ πυ
j , and ρυ1

j “ ρυ
j ,

‚ συ1

j0
“ τυ1

j0
“ xy,

‚ πυ1

j0
and ρυ1

j0
are the empty function,

‚ συ1

j0`1 “ σ˚ and πυ1

j0`1 “ πυ
j0`1 Y tp|σ˚| ´ 1, |υ1| ´ 1qu,

‚ τυ1

j0`1 “ τ˚ and ρυ1

j0`1 “ ρυ
j0

Y tp|τ˚| ´ 1, |υ1| ´ 1qu.

Note the definition of πυ1

j0`1 and ρυ1

j0`1: these are noting that |υ|1 ´ 1 is the

stage at which we extended συ1

j0`1 and τυ1

j0`1.
The definition forces us to take:

‚ dυpπυ
j piqq “ d`

συ
j

piq, and

‚ dυpρυ
j piqq “ d´

τυ
j

piq.

1Here we are using the fact that we do not have any transitivity restrictions, so there
is no intereference between blocks of witnesses as long as they are distinct.
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The almost disjointness of the ranges of the various functions πυ
j and ρυ

j

ensures that we can satisfy this obligation. This may not fully define dυ,
and we may take other values arbitrarily (these correspond to blocks of
witnesses no longer in use, and which are therefore irrelevant).

We next need to specify the block statements KX
υ ppb0, . . . , b|υ|´1q,~aq. Each

datum bi will have the form pei, pi, fi, qiq, where pi and qi are the split pair
found at stage i, and ei, fi are additional data needed to witness the corre-
sponding requirements Lσ and Mτ .

When υ “ xy, there is nothing to specify, so assume υ “ υ"

´ xj0, σ˚, τ˚y.

Then KX
υ needs to verify that pp|υ|´1, q|υ|´1q are a split pair, positioned cor-

rectly relative to our other split pairs, extending the appropriate sequences
built at previous stages, and witnessing Lσ˚ and Mτ˚ .

When we have the sequence of data pb0, . . . , b|υ|´1q, we need to extract the
subsequences corresponding to pi and qi. Define ê “ peπυ

j0

p0q, . . . , eπυ
j0

p|σ˚|´

1qq and f̂ “ pfρυ
j0

p0q, . . . , fρυ
j0

p|τ˚| ´ 1qq. Then we define KX
υ ppb0, . . . , b|υ| ´

1q,~aq to hold if:

‚ pp|υ|´1, q|υ|´1q is a split pair,

‚ for each j ă j0 such that τυ
j ‰ xy, p`

|υ|´1
ă q`

ρυ
j

p|τυ
j

|´1q,

‚ for each j P pj0, rs such that τυ
j ‰ xy, q`

ρυ
j

p|τυ
j

|´1q ă p`
|υ|´1

,

‚ if |συ
j0

| ą 1 then pπυ
j0

p|συ
j0

| ´ 2q Ď p|υ|´1,

‚ if |συ
j0

| “ 1 then p Ď p|υ|´1,

‚ if |τυ
j0

| ą 1 then qρυ
j0

p|τυ
j0

| ´ 2q Ď q|υ|´1,

‚ if |τυ
j0

| “ 1 then q Ď q|υ|´1,

‚ L
X‘p|υ|´1

σ˚ pê, âq,

‚ M
X‘q|υ|´1

τ˚ pf̂ , âq.

The second and third requirements ensure that our split pairs are ordered
correctly. The fourth through seventh ensure that we are extending the
sequences from the previous stage which we promised to exend. The final
two ensure that we have actually found the promised witnesses to Lσ˚ and
Mσ˚ .

In particular, the sequence of split pairs we discussed above is given by
taking ppπυ

j
p|συ

j
|´1q, qπυ

j
p|συ

j
|´1qq to be the j’th split pair. We chose chosen

KX
υ so that ∆X

R;υpc, b0, . . . , b|υ|´1,~a0, . . . ,~a|υ|´1q implies that, for each j ď r

we have

∆
X‘pπυ

j
p|συ

j
|´1q

R`;συ
j

pc, eπυ
j

p0q, . . . , eπυ
j

p|συ
j

|´1q,~a0, . . . ,~a|συ
j

|´1q

and

∆
X‘qρυ

j
p|τυ

j
|´1q

R´;τυ
j

pc, fρυ
j

p0q, . . . , fρυ
j

p|τυ
j

|´1q,~a0, . . . ,~a|τυ
j

|´1q.
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So suppose that c satisfies R in X. What remains is to show that we have
the suitable extension of the original split pair pp, qq. Since c satisfies R, we
may choose an υ so that ΘX

R;υpcq holds.

If there is any j so that συ
j and τυ

j are both leaves then, since ppπυ
j p|συ

j |´1q, qρυ
j p|τυ

j |´1qq

is a split pair, one of ppπυ
j

p|συ
j

|´1q, qq or pp, qρυ
j

p|τυ
j

|´1qq is a condition. Suppose

ppπυ
j p|συ

j |´1q, qq is a condition; then this condition forces T ` on the increasing

side since Θ
X‘pπυ

j
p|συ

j
|´1q

T `;συ
j

pcq holds for the leaf συ
j . Similarly, if pp, qρυ

j
p|τυ

j
|´1qq

is a condition then this condition forces T ´ on the decreasing side.
If υ is a leaf, we claim there must be such a j. Suppose there is no such

j. Since υ is a leaf, for each j ă r, we must have at least one of συ
j`1 or

τυ
j is a leaf—otherwise we would have an extension corresponding to some

j, σ˚, τ˚. τυ
r is always a leaf (because r “ maxt|τ | | τ P T `u), so if συ

r is a
leaf, we are done. If not, τυ

r´1 must be a leaf. Again, if συ
r´1 is a leaf, we

are done; otherwise τυ
r´1 must be a leaf. Continuing in this way, since there

is no desired j, we conclude that τυ
0 must be a leaf. But τυ

0 “ xy, so if this
is a leaf then T ´ is a trivial requirement and pp, qq already satisfies T ´ on
the decreasing side.

Suppose υ is not a leaf. If there is any j ď r such that |τυ
j | ą 0 and

q`
ρυ

j
p|τυ

j
|´1q R V , take the largest such j and let q̂ “ qρυ

j p|τυ
j |´1q. Otherwise, let

q̂ “ q and j “ 0. If τυ
j is a leaf then pp, q̂q is a condition such that θ

X‘q̂`

T ´;τυ
j

pcq

holds, so we are done. So assume τυ
j is not a leaf. If |συ

j`1| ą 0 then let

p̂ “ pπυ
j`1

p|συ
j`1

|´1q, otherwise let p̂ “ p. Observe that p̂` P V : if p̂ ‰ p then

p̂` “ q`
ρυ

j`1
p|τυ

j`1
|´1q which, by maximality of j, belongs to V . So if συ

j`1 is a

leaf then pp̂, qq is an extension by a similar argument.
So consider the case where neither συ

j`1 nor τυ
j are leaves. Then pp̂, q̂q is an

extension of pp, qq, and we claim it forces either T ` on the increasing side or
T ´ on the decreasing side. Suppose not, so there are Λ` and Λ´ witnessing

this failure: ∆X‘Λ`

R`;συ
j`1

and ∆X‘Λ´

R´;τυ
j

hold but ΘX‘Λ`

R`;συ
j`1

and ΘX‘Λ´

R´;τυ
j

do not.

Then there must be finite p˚, q˚ so that p̂ Ď p˚ Ă Λ` and q̂ Ď q˚ Ă Λ´ are

large enough to witness L
X‘p˚

R`;σ˚
and M

X‘q˚

R´;τ˚
for some σ˚ and τ˚.

We need to fix p˚ and q˚ so they share a common endpoint: choose some
s P V so that, for each j1 ą j, p`

πυ
j1 p|συ

j1 |´1q ă s (such an s exists since, for each

such j1, p`
πυ

j1 p|συ
j1 |´1q P V ). Then pp˚"xsy, q˚"xsyq is a split pair witnessing

KX
R;υ"xj,σ˚,τ˚y.

�

Before going on, we note some general features of our constructions il-
lustrated by this argument. Say we have some requirements R` and R´,
and we are attempting to produce a requirement R so that whenever some

ΘX
R;υpcq holds, we have either a sequence p so that some ΘX‘p

R`;σ
pcq holds or
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some sequence q so that some ΘX‘q

R´;τ
pcq holds. (In the proof above, p and q

were chains, but later they will be antichains or other kinds of sequences.)
When ∆X

R;υpc, b0, . . . , b|υ|´1,~a0, . . . ,~a|υ|´1q holds, the bi must encode the
description of a list of sequences p1, . . . , pr` and sequences q1, . . . , qr´ which

are candidates to be the needed witnesses, so that ∆
X‘pj

R`;συ
j

pc, ¨ ¨ ¨ q and ∆
X‘qj

R´;συ
j

pc, ¨ ¨ ¨ q

will hold (with witnesses encoded suitably in the bi). We will call these the
“witnessing sequences”.

Consider some witnessing sequence pj. This sequence must have been
constructed in |συ

j | segments, with each segment corresponding to some stage

of υ: that is, there should be a function πυ
j : r0, |συ

j |q Ñ r0, |υ|q so that when

∆X
R;υpc, b0, . . . , b|υ|´1,~a0, . . . ,~a|υ|´1q holds, this implies that

∆
X‘pj

R`;συ
j

pc, e0, . . . , e|συ
j

|´1,~a1
0, . . . ,~a1

|συ
j

|´1q

holds where each ej is encoded in bπυ
j

p|συ
j

|´1q and each ~a1
j Ď πjp|συ

j | ´ 1q.

We can make a crucial observation about the stages at which our wit-
nessing sequences get extended. Suppose that υ1 is some immediate suc-
cessor of υ, and that there is a witnessing sequence pj1 at stage υ1 with

πυ1

j1 p|συ1

j1 | ´ 1q “ |υ|—that is, at stage υ there was a witnessing sequence pj

and pj1 is a proper immediate extension of it, so υ was one of the stages at
which pj1 was constructed. Then we must have had dυpπυ

j piqq “ dσυ
j

piq for

all i ă |συ
j |. When this happens, we say pj is active at υ. Otherwise we say

pj is inactive, and is therefore not eligible to be extended at stage υ.
This basic structure, of active and inactive witnessing sequences con-

structed in stages and the functions π (and the parallel functions ρ) which
correspond stages of υ with stages of σ or τ , will appear in all our arguments.

2.3. Solving CAC. It is convenient to restrict ourselves to partial orderings
which are refinements of the usual ordering on ă; the following lemma shows
that this restriction is harmless for our purposes.

Lemma 2.12. Suppose I is a Turing ideal and whenever ĺ is a partial
ordering in I so that a ă b implies b ł a, I contains either an infinite chain
or an infinite chain in ĺ. Then I contains an infinite chain or antichain
for every partial ordering.

Proof. Let ĺ be an arbitrary partial ordering in I. Define a ĺ1 b if a ď b and
a ĺ b. Then I contains either a chain or an antichain for ĺ1; if I contains
a chain then it is also a chain in ĺ. Suppose n1 ă n2 ă ¨ ¨ ¨ is an infinite
antichain in I. For a ď b, define a ĺ˚ b if nb ĺ na. Then ĺ˚ is a partial
ordering with a chain or an antichain in I, which is also a chain or antichain
for ĺ. �

Lemma 2.13. Suppose c satisfies every requirement in X and ĺ is a partial
ordering so that a ă b implies b ł a. Then there is an infinite Λ which is
either a chain or an antichain so that c satisfies every requirement in X ‘Λ.
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Proof. We force with conditions which are triples pp, q, Sq so that:

‚ p is a chain,
‚ q is an antichain,
‚ S is an infinite X-computable set, p ă S, q ă S, if a P p, b P q, and

c P S then a ă c and b ć c.

A condition pp1, q1, S1q extends pp, q, Sq if p Ď p1, q Ď q1, pp1zpq Ď S, pq1zqq Ď
S, and S1 Ď S. We say pp, q, Sq forces R on the chain side if whenever Λ is
an infinite chain extending p with Λzp Ď S, c satisfies R in X ‘ Λ. Similarly,
we say pp, q, Sq forces R on the antichain side if whenever Λ is an infinite
antichain extending q with Λzq Ď S, c satisfies R in X ‘ Λ.

For any x P S, let Sąx “ ty P S | x ă yu and SKx “ ty P S | x ă y, x ć yu,
so SzpSąx Y SKxq is finite. Then either pp"xxy, q, Sąxq or pp, q"xxy, SKxq is
a condition. In particular, we may always extend at least one of p and q by
one element. Furthermore, if there do not exist at least one x which can be
added to the p side and at least one which can be added to the q side then
ĺ has an X-computable chain or antichain: say there is no x which can be
added to the q side, so for every x P S, SKx is finite. Then we can greedily
add elements from S to p and obtain an infinite chain.

So it suffices to show:

(˚) Suppose R` and R´ are requirements and pp, q, Sq is
a condition. Then there is a condition pp1, q1, S1q extending
pp, q, Sq which either forces R` on the chain side or R´ on
the antichain side.

For suppose we have shown this. Then we fix a list of requirements R`
i , R´

i so
that for any pair of requirements R`, R´, there is an i with R`

i “ R`, R´
i “

R´. We construct a sequence pxy, xyq “ pp0, q0, S0q, pp1, q1, S1q, . . . with
ppi`1, qi`1, Si`1q extends ppi, qi, Siq, pp2i`1, q2i`1, S2i`1q either forces R`

i on
the chain side or R´

i on the antichain side, p2i has length ě i, and q2i has
length ě i. Let Λ` “

Ť

pi and Λ´ “
Ť

qi. If c does not satisfy every
requirement in X ‘ Λ` then there is some R` which it fails to satisfy, and
therefore for each R´ there was an i with R`

i “ R`, R´
i “ R´, and there-

fore since pp2i`1, q2i`1q must not have forced R` on the chain, pp2i`1, q2i`1q
forced R´ on the antichain, and therefore Λ´ satisfies every requirement in
X ‘ Λ´.

So it suffices to show (˚). Let R` “ pT, tLσuσPT `, td`
σ uσPT `q and R´ “

pT ´, tMτ uτPT ´ , td´
τ uτPT ´ q. Let D “ maxt|σ| | σ P T `u and E “ maxt|τ | |

τ P T ´u. We will describe a requirement R “ pT, tKυuυPT , tdυuυPT q.
We attempt to outline the construction before the proof. With CAC, we

only have the benefit of transitivity for one side of our construction. The
analog of a split pair is a supported antichain; this is a tuple pp0, . . . , pm, q1q
where q1 is an antichain built in m segments, q1 “ q"

0 q"

1 ¨ ¨ ¨" qm, and each
pi is a chain with ppiq` ă x for each x P qi. (In this discussion, we always
assume that all chains and antichains we discuss are contained in S.)
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Then any x is incomparable to every element of the chain q1, or above
some x in some qi, and therefore above the chain pi. One can think of a split
pair as the case where only the last “support”, pm, needs to be retained.

We will be able to extend q1 with a new segment while leaving the pi

intact, as long as we can find a suitable pm`1 to support the new segment.
Extending a pi, however, will break the antichain q; instead, the extension
of pi will have to involve using the extension to support a new antichain.
This leads to some difficult bookkeeping to keep track of all the supported
antichains we need, which we will discuss in detail later.

The need to retain the support pi when we extend q complicates our con-
struction: it means that pi and qi cannot share the same block of witnesses,
because when q extends, the restraint on qi’s block of witnesses can change,
so qi cannot be competing with pi for how to restrain this block of witnesses.
So we will need a mechanism to find antichains q1 above chains p1 so that
the witnesses to p1 are in a different block from the witnesses to q1.

We can illustrate our approach to this by looking at the simplest case
for CAC: we have two requirements of length 1, say R` and R´. For
simplicity, let us say T ` and T ´ each consist of a single non-empty node
with simple block statements K` and K´. The larger bookkeeping issues
do not interfere.

The corresponding tree T has a single immediate descendent of xy, say
x1y. KX

x1y will demand that we find a block of witnesses ~a and an antichain q1

witnessing KX
´ such that, for every x P q1, we have a chain p1 with x “ pp1q`

witnessing KX
` , with all witnesses coming from the block ~a.

Suppose we cannot find such a q1 and such a family of p1—that is, suppose
ΘX

T ;xypcq holds. If there is a t so that every antichain p1 witnessing KX
` has

pp1q` ď t then, by forcing with pp, q, S X pt, 8qq, we have forced R` on

the chain side (by ensuring that ΘX‘Λ
T `;xypcq will hold). On the other hand,

if antichains witnessing KX
` appear unboundedly, we can take S1 Ď S to

consist of those x such that there exists an antichian p1 witnessing KX
` with

pp1q` “ x, and by forcing with pp, q, S1q, we have forced R´ on the antichain
side.

At the stage x1y, q1 is active and the p1 are (potentially) inactive—that is,
dxyp0q “ d´

xyp0q.

x1y will also have one immediate descendent, x1, 1y. KX
x1,1y will look for

single chain from our family, p1, and a new antichain q˚ such that, for every
x P q˚, pp1q` ă x. Suppose we cannot find such a q˚, so ΘX

T ;x1ypcq holds. If
Ş

xPq1 SKx is infinite then we can extend to pp, q1,
Ş

xPq1 SKxq and have forced

T ´ on the antichain side by satisfying ΘX‘q1

T ´;x1ypcq. If there are only finitely

many such elements, then there must be some infinite set S1 Ď S and a
single one of our chains, p1, such that, for every x P S1, pp1q` ă x. In this
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case we can extend to pp, q, S1q and have forced T ´ on the antichain side by

ensuring that ΘX‘Λ
T ´;xypcq will hold.

x1, 1y is a leaf. We make p1 and q˚ both active, which we can do since
their witnesses come from different blocks. If ΘX

T ;x1,1ypcq holds then one of

SKpp1q` and S
ąpp1q` is infinite, so either pp1, q, S

ąpp1q` q or pp, q˚, SKpp1q` q is
the extension we want.

We note that there are two distinct attempts to find an antichain; these
form a key part of our construction, so we give them names. The first
attempt, when we construct an antichain q1 out of endpoints of chains, we
call a trial antichain. The second attempt, when we find q˚ above some
chain p1, will be our strategy for finding supported antichains.

In our full construction, we will have to use this trial antichain construc-
tion many times: every time we need to extend a supported antichain, we
will need to first (attempt to) construct a trial antichain. If the construc-
tion of the trial antichain fails, we will find the witnesses we need. If the
construction succeeds, we will then be able to look for a suitable segment of
a supported antichain.

Now we turn to organizing the many partnered antichains we will need
to keep track of. Let r “ maxt|σ| | σ P T `u and s “ maxt|τ | | τ P T `u.
Each supported antichain has ď s segments, and each segment is supported
by a chain of length ď r. Our goal is to work towards a supported antichain
of length s, each of whose segments is supported by a chain of length r: in
this case all our chains and our antichain must witness leaves of T ` or T ´,
respectively, and therefore one of them will suffice to extend pp, q, Sq by.

The difficulty is keeping track of the chains and antichains so that we
can make sure we make progress. (For instance, it is possible to loop if we
extend chains carelessly.) For every function ω : r0, sq Ñ p0, rs, we will have
an antichain qω corresponding to ω—that is, our goal is to arrange for qω to
have segments with the specified support. In particular, when qω has length
i, we will not extend qω unless there is a suitable chain of length ωpiq ´ 1
which we expect will support the next segment of qω.

Dually, we will have a collections of chains. Our chains will be indexed
by partial functions. For each s1 P r0, sq, let us write s1 for the set r0, sqzts1u.
Then let G be the set of functions γ such that, for some sγ P r0, sq, γ :
sγ Ñ p0, rs. Then, for each γ P G, we will keep track of a chain pγ . The
chain pγ will only ever support the segment sγ of an antichain, and it will
only support antichains qω such that ω æ sγ “ γ. (For example, suppose
s “ r “ 2, and consider γ : p0, 2q Ñ p0, 2q with γp1q “ 2. Then when
we construct pγ to have length 1, it must be because pγ is supporting the
first segment of qtp0,1q,p1,2qu. Later, we might succeed in extending pγ to
have length 2, at which point it must be supporting the first segment of
qtp0,2q,p1,2qu.)

For each node υ P T , we will have:

‚ for each γ, a συ
γ P T `,
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‚ a monotone function πυ
γ : dompσυ

γ q Ñ dompυq.

We say that ω is relevant at υ if, for each i ă |τυ
ω |, |συ

ωæi
| ď ωpiq. When

ω is not relevant, it means that one of the γ’s needed to support ω has
“outgrown” ω—that is, grown taller than ωpiq—and therefore we can no
longer support ω.

For each node υ and each ω relevant at υ, we will keep track of:

‚ a τυ
ω P T ´, and

‚ a monotone function ρυ
ω : dompτυ

ω q Ñ dompυq.

We require that the ranges of the πυ
γ , ρυ

ω be pairwise disjoint. We will always

have dυpπυ
γ piqq “ d`

συ
γ

piq and dυpρυ
ωpiqq “ d´

τυ
ω

piq.

In order to be able to extend a supported antichain, we must have the
right matchup between a relevant antichain and a chain: that is, we need a
relevant ω and a γ such that |τυ

ω | “ sγ , ω æ sγ “ γ, and |συ
γ | “ ωpsγq ´ 1.

When this happens, we say ω is active at υ.
For each ω which is active at υ, we also have:

‚ a τ̂υ
ω P T ´, and

‚ a ρ̂υ
ω : dompτυ

ω q Ñ dompυq

representing a trial antichain. We require that the ranges of the ρ̂υ
ω be

pairwise disjoint and be disjoint from the ranges of all πυ
ω and ρυ

ω. Of course
we set dυpρ̂υ

ωpiqq “ d´
τ̂υ

ω
piq.

This is the full information we need to associate with a node υ. For the
base case, we define:

‚ for each γ, σ
xy
γ “ xy and π

xy
γ is the empty function,

‚ for each ω, τ
xy
ω “ xy and ρ

xy
ω is the empty function.

This means that ω is active exactly when ωp0q “ 1. For all such ω, we
define:

‚ τ̂
xy
ω “ xy and ρ̂

xy
ω is the empty function.

Given a node υ, we describe the children of υ. These children come in
two types—the version where we extend a trial antichain and the version
where we match up a supported antichain with a partnered chain.

For each active ω0 and each immediate extension τ of τ̂υ
ω0

in T ´, there is
an extension υ1 “ υ"xp0, ω0, τqy with:

‚ for each γ, συ1

γ “ συ
γ and πυ1

γ “ πυ
γ ,

‚ for each ω, τυ1

ω “ τυ
ω and ρυ1

ω “ ρυ
ω,

‚ τ̂υ1

ω0
“ τ and ρ̂υ

ω0
“ tp|τ | ´ 1, |υ1| ´ 1qu,

‚ for each active ω ‰ ω0, τ̂υ1

ω “ τ̂υ
ω and ρ̂υ1

ω “ ρ̂υ
ω.

For each active ω0, let γ0 “ ω0 æ |τυ
ω0

|. For each immediate extension σ

of συ
γ0

, each immediate extension τ of τυ
ω0

, and each j0 ă |τ̂υ
ω0

|, there is an

extension υ1 “ υ"xp1, ω0, σ, τ, j0qy with:

‚ συ1

γ0
“ σ and πυ1

γ0
“ πυ

γ Y tp|σ| ´ 1, ρ̂υ
ω0

pj0qqu,

‚ for each γ ‰ γ0, συ1

γ “ συ
γ and πυ1

γ “ πυ
γ ,
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‚ τυ1

ω0
“ τ and ρυ1

ω0
“ ρυ

ω0
Y tp|τ | ´ 1, |υ1| ´ 1qu,

‚ for each ω ‰ ω0 which is still relevant at υ1, τυ1

ω “ τυ
ω and ρυ1

ω “ ρυ
ω,

‚ for each ω active at υ1, τ̂υ1

ω “ xy and ρ̂υ1

ω is the empty function.

To see that this tree is finite, observe that a branch can only have finitely
many extensions of the second kind in a row—there are only finitely many
choices for ω0, and each extension of the second kind extends one of the τ̂υ

ω0
,

which can happen at most s times. Each extension of the first kind extends
one of the τυ

ω0
, which can also happen at most s times.

We next need to define the block statements KX
υ ppb0, . . . , b|υ|´1q,~aq. For

υ “ xy this is trivial. Otherwise, let ℓ “ |υ| ´ 1.
Suppose υ is a node of the first kind, υ “ υ"

´ xp0, ω0, τqy. Let γ0 “ ω0 æ

|τυ
ω0

|. The auxiliary datum bℓ has the form pkℓ, p0
ℓ , e0

ℓ , . . . , p
kℓ

ℓ , e
kℓ

ℓ , qℓ, fℓq.
If ω0p|τυ

ω0
|q “ 1 then let p1 “ p; otherwise, let p1 “ pπυ

γ0
p|συ

γ0
|´1q. If

|τ | “ 1, let q1 “ q. Otherwise let q1 “ qρ̂υ
ω0

p|τ̂υ
ω0

|´1q. Then we define

KX
υ ppb0, . . . , b|υ|´1q,~aq to hold if:

‚ for each k ď kℓ, p1 Ď pk
ℓ and ppk

ℓ zp1q Ď S,

‚ for each k ď kℓ, pk
ℓ is a chain and some σk

ℓ immediately extending

συ
γ0

so that L
X‘pk

ℓ

σk
ℓ

ppeπυ
γ0

p0q, . . . , eπυ
γ0

p|συ
γ0

|´1qq, ek
ℓ q, âq holds,

‚ q1 Ď qℓ,
‚ for each x P qℓzq1, there is a k ď kℓ so that ppk

ℓ q` “ x (and therefore
pqℓzq1q Ď S),

‚ qℓ is an antichain so that MX‘qℓ
τ ppfρ̂υ

ω0
p0q, . . . , fρ̂υ

ω0
p|τ̂υ

ω0
|´1q, fℓq,~aq holds.

Suppose we have a node of the second kind, υ “ υ"

´ xp1, ω0, σ, τ, j0qy and
let ℓ “ |υ| ´ 1. The auxiliary datum bℓ has the form ppℓ, eℓ, qℓ, fℓq. If
|τ | “ 1, let q1 “ q. If |τ | ą 1, let q1 “ qρ

υ0
ω0

p|τ
υ0
ω0

|´1q. Then we define

KX
υ ppb0, . . . , b|υ|´1q,~aq to hold if:

‚ there is a k ď kρ̂
υ0
ω0

pj0q with pℓ “ pk
ρ̂

υ0
ω0

, eℓ “ ek
ρρ

υ0
ω0

pj0q
, and σ “ σk

ρ̂
υ0
ω0

pj0q
,

‚ q1 Ď qℓ,
‚ pqℓzq1q Ď S,
‚ for each x P pqℓzq1q, ppℓq

` ă x,
‚ MX‘qℓ

τ ppfρυ
ω0

p0q, . . . , fρυ
ω0

p|τυ
ω0

|´1q, fℓq,~aq holds.

These choices are made so that whenever ∆X
R;υpc, b0, . . . , b|υ´|,~a0,~a|υ´|q

holds, we have:

‚ for each γ, ∆
X‘pπυ

γ p|συ
γ |´1q

R`;συ
γ

pc, eπυ
γ p0q, . . . , eπυ

γ p|συ
γ |´1q,~aπυ

γ p0q, . . . ,~aπυ
γ p|συ

γ |´1qq

holds,

‚ for each ω, ∆
X‘qρυ

ωp|τυ
ω |´1q

R´;τυ
ω

pc, fρυ
ωp0q, . . . , fρυ

ωp|τυ
ω |´1q,~aρυ

ωp0q, . . . ,~aρυ
ωp|τυ

ω |´1qq

holds,

‚ for each active ω, ∆
X‘qρ̂υ

ωp|τ̂υ
ω |´1q

R´;τ̂υ
ω

pc, fρ̂υ
ωp0q, . . . , fρ̂υ

ωp|τ̂υ
ω |´1q,~a

1
0, . . . ,~a1

|τ̂υ
ω |´1q

for some ~a1
i Ď ~aρ̂υ

ωpiq,



CONSTRUCTING SEQUENCES ONE STEP AT A TIME 21

‚ for each active ω, each j ă |τ̂υ
ω |, and each k ď kρ̂υ

ωpjq,

∆
X‘pk

ρ̂υ
ωpjq

R`;σk
ρ̂υ

ωpjq

pc, eπυ
γ p0q, . . . , eπυ

γ p|συ
γ |´1q, ek

ρ̂υ
ωpjq,~aπυ

γ p0q, . . . ,~aπυ
γ p|συ

γ |´1q,~aρ̂υ
ωpjqq

holds.

Now suppose that there is some υ P T so that ΘX
R;υpcq holds. We must

find the needed extension of pp, q, Sq.
First, suppose there is some γ so that συ

γ and S
ąppυ

πυ
γ p|συ

γ |´1q
q` is infinite.

Then ppπυ
γ p|συ

γ |´1q, q, S
ąppυ

πυ
γ p|συ

γ |´1q
q` q witnesses R` on the chain side since

Θ
X‘pπυ

γ p|συ
γ |´1q

R`;συ
γ

pcq must hold.

Similarly, if there is an ω so that τυ
ω is a leaf and

Ş

xPqρυ
ω

p|τυ
ω |´1q SKx is infi-

nite then pp, qρυ
ω

p|τυ
ω | ´ 1q,

Ş

xPqρυ
ω

p|τυ
ω |´1q SKxq witnesses R´ on the antichain

side since Θ
X‘qρυ

ω
p|τυ

ω |´1q

R´;τυ
ω

pcq holds.

So suppose that there is no such γ and no such ω. We argue that some ω

must be active.
First, consider any ω such that τυ

ω is a leaf. Then
Ş

xPqρυ
ω

p|τυ
ω |´1q SKx

is not infinite, so for cofinitely many x, there is an i ă |τυ
ω | such that

ppπυ

ωæi
p|συ

ωæi
|´1qq

` ă x. Since there are only finitely many such i, there is

some single i so that, taking γ “ ω æ i, S
ąppπυ

γ p|συ
γ |´1qq` is infinite, and

therefore συ
γ must not be a leaf.

We now look for an active ω. Consider the function ω0 which is constantly
equal to r (and therefore always relevant). If |τυ

ω0
| “ s then τυ

ω0
is a leaf,

and therefore there is an i ă |τυ
ω0

| so that συ
ω0æi

is not a leaf. But |συ
ω0æi

| “

ω0piq “ r, which is a contradiction.
So |τυ

ω0
| ă s. If ω0 is not active, it must be because |συ

ω0æ|τυ
ω0

|
| ă r ´ 1. So

consider ω1 given by setting ω1p|τυ
ω0

|q “ |συ

ω0æ|τυ
ω0

|
| ` 1 and ω1piq “ ω0piq “ r

for all other s1.
If ω1 is not active, it must be because |συ

ω1æ|τυ
ω1

|
| ă r ´ 1 “ ω1p|τυ

ω1
|q ´ 1,

so we can find an ω2 by the same process. The length |τυ
ωk

| decreases at each
step, so we must eventually find an ω which is active.

Let γ “ ω æ |τυ
ω |. Let q1 “ qρ̂υ

ωp|τ̂υ
ω |´1q and let p1 “ pπυ

γ p|συ
γ |´1q.

Suppose that S1 “
Ş

xPq1 SKx is cofinite, and let S2 consist of those x

such that there is a p˚ P S with p1 Ď p˚, pp˚q` “ x, and such that there
is an immediate extension σ of συ

γ in T ` so that there exist witnesses to

K
X‘p˚

T `;σ
. If S2 is finite then pp1, q, S1zSKxq witnesses R` on the chain side by

satisfying ∆X‘p1

R`;συ
γ

pcq.

If S2 is infinite then S2 has an infinite computable subset S˚ and pp, q1, S˚q

witnesses R´ on the antichain side by satisfying ∆X‘q1

R´;τ̂υ
ω

pcq.
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Otherwise, suppose S1 is not cofinite. Then there must be some x P q1

so that Sąx is infinite. There is some j ă |τ̂υ
ω | and some k ď kρ̂υ

ωpjq so that

ppk
ρ̂υ

ωpjqq
` “ x. Then pp, qρυ

ωp|τυ
ω |´1q, Sąxq satisfies R´ on the antichain side

by satisfying ∆
X‘qρυ

ωp|τυ
ω |´1q

R´;τυ
ω

pcq. �

2.4. Solving WKL. We wish to show:

Lemma 2.14. Suppose c satisfies every requirement in X and Ue is an
infinite, t0, 1u-branching, X-computable tree. Then there is an infinite path
Λ so that c satisfies every requirement in X ‘ Λ.

We will need variants of this repeatedly, so we state and prove a mild
generalization, essentially showing that the same holds if we place various
restrictions on the kinds of requirements we wish to deal with.

Lemma 2.15. Let J Ď I Ď N be given with 0 P IzJ . Suppose c satisfies
every requirement in X with range I which is transitive in every j P J and Ue

is an infinite, t0, 1u-branching, X-computable tree. Then there is an infinite
path Λ so that c satisfies every requirement in X ‘ Λ with range I which is
transitive in every j P J .

Then Lemma 2.14 is the case with I “ N and J “ H.

Proof. By Lemma 2.7, it suffices to show that for any linear requirement
R “ pT, tKσu, tdσuq, we can find an initial segment λ P Ue and an infinite
X-computable U 1 Ď Ue of extensions of λ so that whenever Λ is a branch
through Ue, c satisfies R in X ‘ Λ.

We will describe a requirement R1 “ pT 1, tLσu, td1
σuq with range I which

is transitive in every j P J . R1 will share the same tree, T 1 “ T .
The auxiliary datum bi will have the form psi, ki, b1

i , . . . , bki
i q where si is a

suitable bound, ki is the number of branches we need to consider, and the

b
j
i are the corresponding data for KX

υ .
LX

υ ppb0, . . . , b|υ|´1q,~aq will hold if, for every λ P Ue with |λ| “ si, there is

a sequence ji ď ki so that KX‘λ
υ ppbj0

0 , . . . , b
j|υ|´1

|υ|´1
q,~aq holds.

This means that when ∆X
R1;υ holds, each λ satisfies ∆X‘λ

R;υ .

Naturally we have d1
υ “ dυ, which ensures that d1

υ is transitive.
We must check that satisfaction of our requirement ensures that we can

choose a λ forcing satisfaction of the original requirement. Suppose we
satisfy ΘX

R1;υpcq. Consider the tree U2 Ď Ue consisting of those λ1 such that

∆X‘λ1

υ holds but we cannot find witnesses to ∆X‘λ1

υ"x0y which extend the fixed

witnesses to ∆X‘λ1

υ . If U2 were finite then we would satisfy ∆X
R1;υ"x0y, so U2

is infinite, and there must be some λ satsifying ∆X‘λ
υ with infinitely many

extensions in U2. Letting U 1 Ď U2 consist of the extensions of λ, we have
forced ΘX‘Λ

R;υ pcq. �
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2.5. Constructing STS(2).

Lemma 2.16. There is a computable stable c : rNs2 Ñ N satisfying all
requirements in H.

Again, we prove a more general version that will include later cases.

Lemma 2.17. Let J Ď I Ď N with 0 P IzJ . There is a computable stable
c : rNs2 Ñ I transitive in every color in J and satisfying all requirements in
H with range I which are transitive in every color in J .

Again, Lemma 2.16 is the case with J “ H and I “ N.

Proof. This is a standard finite injury priority argument. Informally, we
place all requirements with range I transitive in every color in J in order,
and every time we find witnesses violating a negative requirement compo-
nent, we remember the witnesses, restrain them so future colors comply with
the corresponding positive requirement component, and injure all lower pri-
ority requirements; that requirement is then witnessed along a longer branch
υ. Since each requirement has a finite tree, each requirement eventually
stops acting, either because some negative requirement component holds or
because we reach a leaf.

More formally, we proceed as follows. We order the requirements R0, R1, . . ..
At each stage s we have fixed:

‚ cs : rss2 Ñ I transitive in each color in J ,
‚ for r ă s, υs,r P Tr, bs,r,0, . . . , bs,r,|υs,r|´1, ~as,r,0, . . . ,~as,r,|υs,r|´1, ts,r,

and sets As,r,j so that:
– for each i ă |υs,r|, Kυs,ræpk`1qppbs,r,0, . . . , br,iq,~as,r,iq,

– if j ‰ j1 then As,r,j X As,r1,j1 “ H,
– each ~as,r,i P As,r,dυs,r piq,

– if r1 ă r then ts,r1 ď ts,r and ts,r1 ă ~as,r,i,
– if b P As,r,i, i P J , a ă b, and cpa, bq “ i then a P As,r,i.

We will have cs Ď cs`1. The sets
Ť

rďs As,r,i are approximations to A˚
i pcq.

If a R
Ť

rďs

Ť

i As,r,i, we will treat a as if it belongs to some As,r,0.
Suppose we have constructed up to stage s. Define cs`1pn, s ` 1q for

n ă s ` 1 by setting cs`1pn, s ` 1q “ i if n P As,r,i for some r. (The
closure condition on As,r,i ensures transitivity of c.) Let r ă s be least (if
there is any) so that there is some b, some ~a P pts,r, s ` 1q, and some υ

an immediate extension of υs,r in Tr so that Kυppbs,r,0, . . . , bs,r,|υs,r|´1, bq,~aq

holds; otherwise r “ s. For r1 ă r, we have υs`1,r1 “ υs,r1 , bs`1,r1,i “ bs,r1,i,
~as`1,r1,i “ ~as,r1,i, ts`1,r1 “ ts,r1, and As`1,r1,i “ As,r,i.

If r ă s, let υs`1,r “ υ, bs`1,r,|υ|´1 “ b, bs`1,r,i “ bs,r,i, ~as`1,r,|υ|´1 “ ~a,
~as`1,r,i “ ~as,r,i, and ts`1,r “ s ` 1. Take As`1,r,j to consist of those ~as`1,r,i

with dυpiq “ j, together with any elements required by the closure condition.
Note that if a P As`1,r1,j for some r1 ă r then cspa, bq “ j for any b ą ts,r1,
so in particular any ~as`1,r,i, so if b P As`1,r,j, there is no conflict with having
a P As`1,r,j as well.
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For r1 P pr, ss (or r1 “ s if r “ s), set υs`1,r1 “ xy, As`1,r1,i “ H,
ts`1,r1 “ s ` 1, and As`1,r1,j “ H.

We only injure a requirement Rj if we make the node υs,j1 longer for some
j1 ă j, so a requirement is injured only finitely many times. In particular,
there is a limiting node υj “ lims υs,j. The witnesses bs,j,0, . . . , bs,j,|υj|´1 and
~as,j,0, . . . ,~as,j,|υj|´1 also stabilize to witnesses bj,0, . . . , bj,|υj |´1 and ~aj,0, . . . ,~aj,|υj |´1.

In particular, these witness ∆Rj ;υj
pcq. Furthermore, if υj is not a leaf, ts,j

stabilizes to some tj larger than any witness to any lower priority require-
ment, and there do not exist b,~a and υ extending υj with ~a ą tj so that
KRj ;υppb0, . . . , b|υ|´1q,~aq, since if there were, we would have taken υs,j “ υ

at some stage, so ΘRj ;υj
pcq holds.

Finally, we check that c is stable; it suffices to show that for each n, there
is some s, i such that for all s1 ě s, n P As,i. But n can only be moved from
one Ai to another when some requirement ď n acts, which only happens
finitely many times. �

3. Separating SProdWQO

3.1. Separating from ADS. In this section we construct a computable
instance c of SProdWQO (and, a fortiori, of SCAC) and a Turing ideal I

which has no solution to c, but does satisfy both trRT2

k
for all k and WKL.

Definition 3.1. An SProdWQO-requirement is a requirement R “ pT, tKαuσPT , tdσuσPT q
with range t0, 1, 2u transitive in both colors 1 and 2.

Lemmata 2.8, 2.15 and 2.17 apply with J “ t1, 2u, I “ t0, 1, 2u, so we
have:

Lemma 3.2. If c satisfies all SProdWQO-requirements in X then when-
ever B is an X-computable infinite set, there exist a, b, c, d P B with cpa, bq “
1 and cpc, dq “ 2.

Lemma 3.3. If c satisfies all SProdWQO-requirements in X and U is an
infinite X-computable t0, 1u-branching tree then there is an infinite branch
Λ so that c satisfies all SProdWQO-requirements in X ‘ Λ.

Lemma 3.4. There is a computable stable c : rNs2 Ñ t0, 1, 2u transitive in
the colors 1 and 2 satisfying every SProdWQO-requirement in H.

We first give our argument showing that we can satisfy ADS.

Lemma 3.5. Suppose c satisfies every SProdWQO-requirement in X and
ă is a linear ordering. Then there is an infinite ă-monotone sequence Λ so
that c satisfies every SProdWQO-requirement in X ‘ Λ.

Proof. The proof is similar to the proof of Lemma 2.11. Again, it suffices
to assume that ă is stable-ish as witnessed by V , and we again force with
conditions pp, qq where p` P V , q` R V . Again, it suffices to show:
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Figure 2.

p˚q Suppose R` and R´ are requirements and pp, qq is a
condition. Then there is a condition pp1, q1q extending pp, qq
which either forces R` on the increasing side or R´ on the
decreasing side.

Let R` “ pT `, tLσu, td`
σ uq and R´ “ pT ´, tMτ u, td´

τ uq be given. As in
Lemma 2.11, we can assume that d`

σ p|σ| ´ 1q “ 0 for any σ P T `, and a
similar assumption for T ´. Recall that a split pair is a pair pp1, q1q with
p Ď p1, q Ď q1, and pp1q` “ pq1q`.

The basic idea—combining split pairs of various lengths—is the same as
in Lemma 2.13. However in the proof of Lemma 2.13, we had many split
pairs which were all active simultaneously. To deal with the transitivity
requirement, we want to deactivate some split pairs while we are in the
process of constructing others.

In particular, when we obtain a split pair pp, qq, we want to ensure that
no segment of p (other than the last one) was active at any stage where
any segment of q (other than the last one) was constructed and vice-versa.
(Furthermore, because of transitivity, we should assume that if a segment
is active at a stage constructing a new segment of any sequence, it is also
active at any stage where that new segment is active.)

There is no obstacle in the case where T ` “ T ´ “ txy, x0yu. As in
the proof of Lemma 2.13, we can have a tree with just two nodes, xy and
x0y, whre KX

x0yppb0q,~a0q holds when b0 “ pe0, p0, f0, q0q, pp0, q0q is a split pair,

p Ă p0, q Ă q0, and both L
X‘p0

x0y ppeeq,~a0q and M
X‘q0

x0y ppf0q,~a0q hold. Further,

notice that ΘX
R;xypcq will imply either ΘX‘Λ

R`;xypcq or ΘX‘Λ
R´;xy as in Lemma 2.13.

Next, suppose we have T ` “ T ´ “ txy, x0y, x0, 0yu, and suppose we want
to find a split pair pp, qq where p witnesses x0y and q witnesses x0, 0y. Then
we can arrange to have a tree of four nodes, indicated in Figure 2, which is
again essentially identical to the process described in Lemma 2.13.

More formally, we have four nodes, υ, υ"x0y, υ"x1y, and υ"x1, 1y, each
bi “ pei, pi, fi, qiq, and, for instance, KX

υ"x1yppb0, . . . , b|υ|q,~a|υ|q holds if pp|υ|, q|υ|q

is a split pair, p|υ|´1 Ď p|υ|, q Ď q|υ|, L
X‘p|υ|

x0,0y ppe|υ|´1, e|υ|q,~a|υ|q, and M
X‘q|υ|

x0y ppf|υ|q,~a|υ|q.

Now consider the same case, where T ` “ T ´ “ txy, x0y, x0, 0yu, but sup-
pose we want to find a split pair pp, qq where both sequences witness x0, 0y.
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x0y

p0 q0

x0, 0y

p1 q1

x0, 0, 0y

p2 q1 Ă q2

x0, 0, 1y

p1 Ă p2 q2

x0, 0, 1, 0y

p3 q2 Ă q3

p0 q0

x0, 0, 0y or x0, 0, 1, 0y, redrawn

p3 q2 Ă q3p0 q0

x0, 0, 0y or x0, 0, 1, 0y, redrawn

p3 q2 Ă q3

x. . . , 0y

p3 Ă p4 q0 Ă q4

x. . . , 1y

p0 Ă p4 q4

x. . . , 1, 0y

p5 q5

x. . . , 1, 0, 0y

p6 q5 Ă q6

x. . . , 1, 0, 1y

p5 Ă p6 q6

x. . . , 1, 0, 1, 0y

p7 q6 Ă q7

p0 Ă p4 q4

x. . . , 1, 0, 0y or x. . . , 1, 0, 1, 0y redrawn

p7 q6 Ă q7p0 Ă p4 q4

x. . . , 1, 0, 0y or x. . . , 1, 0, 1, 0y redrawn

p7 q6 Ă q7

x. . . , . . . , 0y

p7 Ă p8 q4 Ă q8

Figure 3.

We illustrate the process in Figure 3, and will now go through the steps to
clarify the diagram. As drawn, there are some redundancies and inefficien-
cies, but these reflect how our actual construction will be built recursively.

First, we explain the notion used in the diagram and the underlying tree
it represents, and then explain how it is obtained. Each bi “ pei, pi, fi, qiq,
where pi and qi are a split pair and ei and fi are the auxiliary date for L

and M . Each box labeled υ indicates the configuration that is promised to
exist by KX

υ . For example, KX
x0,0,1,0yppb0, . . . , b3q,~a3q holds when pp4, q4q is

a split pair, q3 Ă q4, L
X‘p4

x0y ppe4q,~a3q, and M
X‘qr

x0,0y ppf3, f4q,~a3q.
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The nodes x0, 0, 0y and x0, 0, 1, 0y each have the same subtree below them,
so we only copy it once. For instance, the node x. . . , 0y refers to two nodes—
x0, 0, 0, 0y and x0, 0, 1, 0, 0y—which are largely identical. (However the in-
dices come from descendents of the longer branch; for example, the node
x0, 0, 0, 0y should actually be labeled p3 Ă p4, q1 Ă q4.) This occurs again at
the very end, where the nodes x. . . , 1, 0, 0y and x. . . , 1, 0, 1, 0y have the same
subtree (consisting of a single node) below them.

The definition of d is that segments are inactive when a segment is outside
a dotted box and the child nodes are inside the box. For example, dx...,1yp0q “
0, because the segments pp0, q0q were constructed outside the box and the
child of x. . . , 0y is inside the box. However dx...,1,0,0yp0q “ d`

x0,0yp0q because

the split pair pp5, q5q should be active in the construction of children of
x. . . , 1, 0, 0y.

The boxes with two split pairs are comparing the order of the endpoints—
in the left copy of “x0, 0, 0y or x0, 0, 1, 0y, redrawn”, the node p`

3 ă p`
0 while

in the right copy, p`
0 ă p`

3 . These two situations can lead to slightly different
possible outcomes, so we illustrate them separately.

As an example, we go through our analysis when ΘX
T ;x0,0,1,0ypcq holds.

Since ∆X
T ;x0,0,1,0ypc, pb0, . . . , b3q,~a0, . . . ,~a3q holds, we have the split pairs pp0, q0q

and pp3, q3q where L
X‘p3

x0y ppe3q,~a3q, M
X‘q3

x0,0y ppf2, f3q,~a3q, and so on. If p`
3 ă

p`
0 —that is, the left hand case—then either there are infinitely many x with

x ă p`
3 , infinitely many x with p`

3 ă x ă p`
0 , or infinitely many x with

p`
0 ă x. If there are infinitely many x with x ă p`

3 then ΘX‘q3

T ´;x0,0ypcq holds.

If there are infinitely many x with p`
3 ă x ă p`

0 then one of ΘX‘p3

T `;x0ypcq

and ΘX‘q0

T ´;x0ypcq must hold (because otherwise we would be able to find wit-

nesses to the node x. . . , 0y). If there are infinitely many x with p`
0 ă x then

ΘX‘p3

T `;x0ypcq must hold (because otherwise we would be able to find witnesses

to the node x. . . , 1y).
In the right hand case, where p`

0 ă p`
3 , the situation is simpler: we only

care about whether there are infinitely many x with x ă p`
3 or infinitely

many x with p`
3 ă x. If there are infinitely many x with x ă p`

3 then we

have ΘX‘q3

T ´;x0,0ypcq. If there are infinitely many x with p`
3 ă x then also there

are infinitely many x with p`
0 ă x, so we have ΘX‘p0

T `;x0ypcq (since otherwise

we would find witnesses to x. . . , 1y).
Similar analyses (usually with fewer cases) hold at other nodes.
We now point out how this tree is built. The way our recursion works is

that we will build constructions of longer split pairs by combining the trees
that build short ones. In particular, we will take a “sub-process”—that is a
tree of nodes producing some particular configuration—and insert it into a
second tree (the “main process”). In Figure 3, the four nodes in the dotted
box represent the sub-process, which in this case is the tree from Figure 2,
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which is repeated twice. At the end node of each of these subprocesses, we
have ensured the construction of a split pair pp1, q1q where p1 has one segment
and q1 has two segments.

In this case the main process is actually the same process: the four nodes
with doubled borders actually form the same underlying tree. We produce
this by beginning with the four nodes from the original process, identical
to those in the dotted box. However every time were are at a node one of
whose children is a leaf, we insert a copy of our subprocess.

Consider the first time this happens. The nodes x0y and x. . . , 0y in the
larger tree correspond to the nodes x0, 0y and x0, 0, 0y in the dotted box.
In the sub-process, this corresponds to extending a decreasing segment of
length 1 to a decreasing segment of length 2, paired with a new segment of
length 1. In the passage from x0y to x. . . , 0y, however, we pair this segment
with an increasing sequence of length 2—we use the sub-process to obtain a
second, unrelated, split pair, and we use p3 from that pair as the basis for
forming a longer increasing sequence.

Note that this tree is simpler than a general tree for constructing split
pairs where both segments have length 2, because we are taking advantage
of the fact that we never build segments of length greater than 2. In general,
there would have to be additional side branches corresponding to cases where,
instead, one of our segments of length 2 was extended to a segment of length
3.

We now describe our general construction. Let r “ maxt|σ| | σ P T `u
and s “ maxt|τ | | τ P T ´u. Let D be the set of pairs pr1, s1q with r1 P r1, rs
and s1 P r1, ss.

When D1 is a set of pairs, a process of type D1 is a requirement RD1 “
pTD1 , tKD1,υu, tdK 1,υuq such that each leaf constructs a split pair whose lengths

belong to D1. Stated formally, for each leaf υ P TD1 , ∆X
D1,υpc, pb0, . . . , b|υ|´1q,~a0, . . . ,~a|υ|´1q

implies that each bi has the form pei, pi, fi, qiq where:

‚ p Ď pi,
‚ q Ď qi,
‚ ppi, qiq is a split pair,
‚ there are σ P T ` and τ P T ´ and sequences pv0, . . . , v|σ|´1q and

pw0, . . . , w|τ |´1q such that:
– the sequences are disjoint except that v|σ|´1 “ w|τ |´1,

– p|σ|, |τ |q P D1,

– ∆X‘pi

T `;σ
pc, pev0

, . . . , ev|σ|´1
q,~av0

, . . . ,~av|σ|´1
q,

– ∆X‘qi

T ´;τ
pc, pfw0

, . . . , fw|σ|´1
q,~aw0

, . . . ,~a2
w|τ |´1

q.

Furthermore, we require that for each non-leaf υ P TD1 , ΘX
RD1 ;υ

pcq implies

that either there is a p1 forcing R` on the chain side or a q1 forcing R´ on
the antichain side. (For notational reasons, we allow D1 Ę D, however note
that a process of type D1 is equivalent to a process of type D1 X D.)
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Our main construction will show that, given a process of type tp1, s1qu
and a process of type tp1, s1 ` 1q, pr1, s1qu, we can produce a process of type
tp1, s1 ` 1q, pr1 ` 1, s1qu.

We have constructed a process of type tp1, 1qu: for each σ P T ` and
τ P T ´, Ttp1,1qu has a node xpσ, τqy, with ∆X

Rt1,1u;xpσ,τqypc, pe0, p0, q0, f0q,~a0q

holding when both ∆X‘p0

R`;σ
pc, pe0q,~a0q and ∆X‘q0

R´;τ
pc, pf0q,~a0q hold (and also

the usual conditions—pp0, q0q are a split pair with p Ă p0 and q Ă q0).
For the recursive part of the construction, suppose we have Rtp1,s1`1q,pr1,s1qu

and Rtp1,s1qu. We describe Rtp1,s1`1q,pr1`1,s1qu. Roughly speaking, we will copy
Rtp1,s1qu except that, before each leaf, we will insert a copy of Rtp1,s1`1q,pr1,squ

and modify the leaf accordingly.
We construct Ttp1,s1`1q,pr1`1,s1qu and, as we do, a partial function f :

Ttp1,s1`1q,pr1`1,s1qu Ñ Ttp1,s1qu and, for each υ P dompfq, a monotone rein-
dexing function πυ : r0, |fpυq|q Ñ r0, |υ|q. We set fpxyq “ xy. Suppose
υ P dompfq.

If no children of fpυq are leaves of Ttp1,s1qu then we copy the children of
fpυq to be the children of υ: for each child fpυq"xxy P Ttp1,s1qu, we place a
node υ"xxy P Ttp1,s1`1q,pr1`1,s1qu with fpυ"xxyq “ fpυq"xxy, and set:

‚ πυ"xxy “ πυ Y tp|fpυq|, |υ|qu,
‚ for each i ă |fpυq|, dtp1,s1`1q,pr1`1,squ,υpπυpiqq “ dtp1,s1qu,fpυqpiq,

‚ KX
tp1,s1`1q,pr1`1,squ,υ"xxyppb0, . . . , b|υ|q,~a|υ|q holds exactly when

KX
tp1,s1`1qu,fpυq"xxyppbπυ"xxyp0q, . . . , bπυ"xxyp|fpυq|qq,~aπυ"xxyp|fpυq|qq.

Suppose that a child of fpυq is a leaf of Ttp1,s1qu. Then we first place
a copy of Ttp1,s1`1q,pr1`1,s1qu: for each ζ P Ttp1,s1`1q,pr1,s1qu, we have a node
υ"ζ P Ttp1,s1`1q,pr1`1,s1qu with:

‚ for each i ă |υ|, dtp1,s1`1q,pr1`1,s1qu,υ"ζpiq “ 0,
‚ for each i P r|υ|, |υ"ζ|q, dtp1,s1`1q,pr1`1,s1qu,υ"ζpiq “ dtp1,s1`1q,pr1,s1qu,ζpi´

|υ|q,
‚ for ζ ‰ xy, KX

tp1,s1`1q,pr1`1,s1qu,υ"ζppb0, . . . , b|υ|`|ζ|´1q,~a|υ|`|ζ|´1q holds

exactly when KX
tp1,s1`1q,pr1,s1qu,ζ

ppb|υ|, . . . , b|υ|`|ζ|´1q,~a|υ|`|ζ|´1q holds.

Consider a leaf ζ P Ttp1,s1`1q,pr1,s1qu. There is some pair pσ, τq with p|σ|, |τ |q P
tp1, s1 ` 1q, pr1, s1qu corresponding to this leaf. If p|σ|, |τ |q “ p1, s1 ` 1q then
υ"ζ is a leaf of Ttp1,s1`1q,pr1`1,s1qu as well.

So suppose p|σ|, |τ |q “ pr1, s1q. We have corresponding indices v0, . . . , v|σ|´1

and w0, . . . , w|τ |´1. We set dtp1,s1`1q,pr1`1,s1qu,υ"ζ by:

‚ for i ă |fpυq|, dtp1,s1`1q,pr1`1,s1qu,υ"ζpπυpiqq “ dtp1,s1`1qupiq,

‚ for i ă |σ|, dtp1,s1`1q,pr1`1,s1qu,υ"ζp|υ| ` viq “ d`
σ piq,

‚ for i ă |τ |, dtp1,s1`1q,pr1`1,s1qu,υ"ζp|υ| ` wiq “ d´
τ piq.

Note that we have arranged for this choice of dtp1,s1`1q,pr1`1,s1qu,υ"ζ to be
consistent with the transitivity requirements.
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For each fpυq"xxy P Ttp1,s1qu which is not a leaf, we have a node υ"ζ"xxy P
Ttp1,s1`1q,pr1`1,s1qu with fpυ"ζ"xxyq “ fpυq"xxy and πυ"ζ"xxy “ πυ Y

tp|υ|, |υ|`|ζ|qu. In this case, dtp1,s1`1q,pr1`1,s1qu,υ"ζ"xxy and KX
tp1,s1`1q,pr1`1,s1qu,υ"ζ"xxy

are copied from Ttp1,s1qu just like the case where no child of fpυq was a leaf.

Consider a leaf fpυq"xxy P Ttp1,s1qu; it must be associated to a pair pσ1, τ 1q
with |σ1| “ 1 and |τ 1| “ s1. We have a corresponding sequence of wit-
nesses w1

0, . . . , w1
|τ 1|´1. For each immediate extension σ2 of σ, have a leaf

υ"ζ"xp1, σ1, xqy, and KX
tp1,s1`1q,pr1`1,s1qu,υ"ζ"xp1,σ1,xqyppb0, . . . , b|υ|`|ζ|q,~a|υ|`|ζ|q

to hold when

‚ pp|υ|`|ζ|, q|υ|`|ζ|q is a split pair,
‚ p|υ|`|ζ| extends p|υ|`|ζ|´1,
‚ q|υ|`|ζ|´1 extends qπυpw1

|τ 1|´2
q,

‚ L
X‘p|υ|`|ζ|

T `;σ2 ppe|υ|`v0
, . . . , e|υ|`v|σ|´1

, e|υ|`|ζ|´1q,~a|υ|`|ζ|q holds,

‚ M
X‘q|υ|`|ζ|

T ´;τ 1 ppfπυp0q, . . . , fπυp|τ 1|´1q, f|υ|`|ζ|q,~a|υ|`|ζ|q holds.

Iteration of this method gives the desired process. We have a process of
type tp1, 1qu. Given a process of type tp1, s1qu, we apply this combination
to obtain a process of type tp1, s1 ` 1q, p2, s1qu, and by repeating tp1, s1 `
1q, pr1, s1qu for any r1. In particular, we get a process of type tp1, s1 ` 1q, pr `
1, s1qu, which is the same as a process of type tp1, s1 ` 1qu. Inductively, we
have processes of type tp1, s1qu for all s1. In particular, applying the first
iteration again, we have processes of type tp1, s`1q, pr1, squ for each r1, which
is the same as a process of type tpr1, squ. Finally, we obtain a process of type
tpr, squ, which suffices to give the desired extensions. �

3.2. Separating from trRT2

k
. We need to generalize the ideas of the previ-

ous subsection to trRT2

k
. The general ideas are the same, but the bookkeep-

ing is slightly more complicated because we now have k different processes
we need to interleave.

Lemma 3.6. Suppose c satisfies every SProdWQO-requirement in X and
c˚ : rNs2 Ñ r1, ks with all colors transitive. Then there is an infinite c˚-
homogeneous set S so that c satisfies every SProdWQO-requirement in
X ‘ Λ.

Proof. Our conditions are tuples pp1, . . . , pkq where each pi is homogeneously
colored i and there are infinitely many x so that, for each a P pi, c˚pa, xq “ i.
Given requirements R1, . . . , Rk, we must find a condition pp1

1, . . . , p1
kq with

each pi Ď p1
i so that some Ri is forced.

A split k-tuple is a tuple pq1, . . . , qkq with each pi Ď qi and pq1q` “ ¨ ¨ ¨ “
pqkq`; it follows that there is at least one i0 so that, taking p1

i0
“ qi0

and
p1

i “ pi for i ‰ i0, pp1
1, . . . , p1

kq is a condition.
For each i ď k, ri “ maxt|σ| | σ P Tiu, and we take D “

ś

ir1, ris. The
notion of constructing a split tuple of type pr1

1, . . . , r1
kq P D and a process of



CONSTRUCTING SEQUENCES ONE STEP AT A TIME 31

type D1 Ď D are given by the generalizations of the corresponding notions
from the previous subsection.

We can describe a process of type tp1, . . . , 1qu: for each sequence pσ1, . . . , σkq
with σi P Ti and |σi| “ 1, we have a node xpσ1, . . . , σkqy where KX

Rtp1,...,1qu;xpσ1,...,σkqyppb0q,~a0q

holds when

‚ b0 “ pe0
0, p0

0, . . . , ek
0 , pk

0q,
‚ pp0

0, . . . , pk
0q is a split k-tuple,

‚ pi Ă pi
0 for each i ď k,

‚ K
X‘pi

Ri;σi
ppei

0q,~a0q for each i ď k.

We want to work towards processes of “larger” type. It is clear that, say,
finding a split tuple of type p1, 2, 2q represents more progress than a tuple of
type p1, 2, 1q; we work lexicographically, so we also consider a tuple p1, 1, 2q
to be further progress than a tuple of type p1, 3, 1q. (This is consistent with
what we did above, where we considered a slightly longer antichain to be
more progress than a much longer chain.)

We place tuples ~d in reverse lexicographic order, so ~d ă ~d1 if there is
an i so that dj “ d1

j for i ă j, and di ă d1
i. p1, . . . , 1q is the smallest

element in this ordering. Given some ~d P pd1, . . . , dkq, we define ~d`i “
p1, . . . , 1, di ` 1, di`1, . . . , dkq—that is,

d`i
j “

$

&

%

1 if j ă i

dj ` 1 if j “ i

dj if j ą i

.

We define

D~d
“ D X pt~du Y t~d`i | Dj ă i dj ‰ 1uq.

So Dp1,...,1q “ tp1, . . . , 1qu while

Dp1,2,1,2,1q “ tp1, 2, 1, 2, 1q, p1, 1, 2, 2, 1q, p1, 1, 1, 3, 1q, p1, 1, 1, 1, 2qu.

We will show by induction on ~d that we can construct a process of type D~d
.

The basic idea is the same as in the previous subsection: when we want
to construct a process of type p1, 1, . . . , ci, ci`1, . . . , ckq where ci ą 1, we
take a proces of type p1, 1, . . . , 1, ci`1, . . . , ckq; before each step which might
be a leaf, we decativate all segments constructed so far and insert a sub-
process of type pr1, . . . , ri´1, ci ´ 1, ci`1, . . . , ckq. (Both these processes pre-
ceed p1, 1, . . . , ci, ci`1, . . . , ckq in our ordering, so we may assume they exist.)
Then we return to the original process, except that we look for the i-th se-
quence in our new tuple to extend the i-th sequence created by the inserted
sub-process.

Suppose we have constructed a process of type D~e for all ~e ă ~d. Then
~d “ pc1, . . . , ckq; since we covered the case of a process of type tp1, . . . , 1qu
above, we may assume there is some i with ci ‰ 1. Fix i least so that ci ‰ 1.
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Let ~d´ “ p1, . . . , 1, ci ´ 1, ci`1, . . . , ckq and ~d0 “ p1, . . . , 1, 1, ci`1, . . . , ckq.
We will obtain our process of type D~d

as a suitable modification of our
process of type D~d0

.

We begin by copying TD~d0

: as we construct TD~d
, we define a partial

function f : TD~d
Ñ TD~d0

and, for each υ P dompfq, a monotone function

πυ : r0, |fpυq|q Ñ r0, |υq. We set fpxyq “ xy. Consider some υ P dompfq.
If no children of fpυq are leaves of D~d0

which gives a tuple of type

p1, . . . , 1, 1, ci`1, . . . , ckq then we copy the children of fpυq: for each child
fpυq"xxy P TD~d0

, we place a node υ"xxy P T~d
with fpυ"xxyq “ fpυq"xxy

and we set:

‚ πυ"xxy “ πυ Y tp|fpυq|, |υ|qu,
‚ for each i ă |fpυq|, dD~d

,υpπυpiqq “ dD~d0
,fpυqpiq,

‚ KX
D~d

,υ"xxyppb0, . . . , b|υ|q,~a|υ|q holds exactly when

KX
D~d0

,fpυq"xxyppbπυ"xxyp0q, . . . , bπυ"xxyp|fpυq|qq,~aπυ"xxyp|fpυq|qq

holds.

Suppose that some child of fpυq is a leaf of TD~d0

which gives a tuple of

type p1, . . . , 1, 1, ci`1, . . . , ckq. Then we place a copy of TD~d1
below υ: for

each ζ P TD~d1
we have a node υ"ζ P TD~d

with:

‚ for each i ă |υ|, dD~d
,υ"ζpiq “ 0,

‚ for each i P r|υ|, υ"ζq, dD~d
,υ"ζpiq “ dD~d1 ,ζpi ´ |υ|q,

‚ for ζ ‰ xy, KX
D~d

,υ"ζppb0, . . . , b|υ|`|ζ|´1q,~a|υ|`|ζ|´1q holds exactly when

KX
D~d1 ,ζ

ppb|υ|, . . . , b|υ|`|ζ|´1q,~a|υ|`|ζ|´1q holds.

Consider a leaf ζ of TD~d1
, which is witnessed by some tuple pc1

1, . . . , c1
kq P

D~d1 . If pc1
1, . . . , c1

kq ‰ ~d1 then also pc1
1, . . . , c1

kq P D~d
, so ζ is a leaf of TD~d

.

So consider a leaf ζ of TD~d1
witnessed by pc1

1, . . . , c1
kq “ ~d1, with a corre-

sponding tuple pσ1, . . . , σkq with |σj| “ c1
j . Then for each j ă k we have a

sequence of indices of segments v
j
0, . . . , v

j
c1

j´1
. Then

‚ for i ă |fpυq|, dD~d
,υζ pπυpiqq “ d~d0

piq,

‚ for j ă k and i ă c1
j , dD~d

,υζ p|υ| ` v
j
i q “ dRj ;σj

piq.

For each fpυq"xxy P TD~d0

which is not a leaf producing a tuple of type

p1, . . . , 1, 1, ci`1, . . . , ckq, we have a node υ"ζ"xxy P TD~d
with fpυ"ζ"xxyq “

υ"xxy as in the case above.
Consider some fpυq"xxy P TD~d0

which is a leaf producing a tuple of type

p1, . . . , 1, 1, ci`1, . . . , ckq witnessing the nodes pτ1, . . . , τkq, where, for j ě i`1,

the resulting sequences will come from the segments w
j
0, . . . , w

j
cj´1 ď |fpυq|.

Then for each σ˚ P TRi
an immediate extension of σi, we have a node θ “
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υ"ζ"xpτ1, . . . , τi´1, σ˚, τi`1, . . . , τkqy where KX
D~d

,θppb0, . . . , b|υ|`|ζ|q,~a|υ|`|ζ|q

holds exactly when:

‚ pp0
|υ|`|ζ|, . . . , pk

|υ|`|ζ|q is a split tuple,

‚ for j ă i, p
j
|υ|`|ζ| extends pj,

‚ pi
|υ|`|ζ| extends pi

|υ|`|ζ|´1,

‚ for j ą i, p
j
|υ|`|ζ| extends pj

wcj´1
,

‚ for j ă i, K
X‘p

j

|υ|`|ζ|

Rj ;σj
ppej

|υ|`|ζ|q,~a|υ|`|ζ|q holds,

‚ K
X‘pi

|υ|`|ζ|

Ri;σ˚ ppei
|υ|`vi

0

, . . . , ei
|υ|`vi

ci´2

, ei
|υ|`|ζ|q,~a|υ|`|ζ|q holds,

‚ for j ą i, K
X‘p

j

|υ|`|ζ|

Rj ;τj
ppej

πυp0q, . . . , e
j
πυpcj´2q, e

j
|υ|`|ζ|q,~a|υ|`|ζ|q.

As desired, this yields a process of type D~d
, so we obtain a process of type

Dpr1,...,rkq by induction. �

Combining these as before, we have:

Theorem 3.7. There is a Turing ideal satisfying trRT2

k
for all k and WKL

but not SProdWQO.

4. Separating SCAC

In this section we construct a computable instance ĺ of SCAC and a
Turing ideal I which has no solution to ĺ, but does satisfy both ProdWQO
and WKL.

Definition 4.1. An SCAC-requirement is a requirement R “ pT, tKσuσPT , tdσuσPT q
with range t0, 1u and transitive in color 1.

Lemmata 2.8, 2.15 and 2.17 apply with J “ t1u, I “ t0, 1u, so we have:

Lemma 4.2. If c satisfies all SCAC-requirements in X, taking ă to be the
partial ordering so that a ă b iff a ă b and cpa, bq “ 1, whenever B is an
X-computable infinite set, there exist a, b, c, d P B, a ă b, c ă d (so d ć c)
and c ć d.

Lemma 4.3. If c satisfies all SCAC-requirements in X and U is an infinite
X-computable t0, 1u-branching tree then there is an infinite branch Λ so that
c satisfies all SCAC-requirements in X ‘ Λ.

Lemma 4.4. There is a computable stable c : rNs2 Ñ t0, 1u transitive in
the color 1 satisfying every SCAC-requirement in H.

In the lemma below, we associate a stable partial ordering ĺ with a
coloring with colors 0, 1 so that color 1 is transitive. In particular, we say
that ĺ satisfies an SCAC-requirement when the corresponding coloring
does. So it remains to show:
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Lemma 4.5. Let I be a countable Turing ideal satisfying WKL, and sup-
pose ĺ satisfies every SCAC-requirement in any X P I and c : rNs2 Ñ
t0, 1, 2u is a coloring in I with colors 1 and 2 transitive. Then there is an
infinite set S so that c restricted to S either omits the color 1 or omits the
color 2 and ĺ satisfies every SCAC-requirement in X ‘ S for any X P I.

Proof. The new complication here is that, on the one hand, we have to
work with SCAC-requirements, so we have to make sure our construction
satisfies the transitivity requirement. On the other hand, we only have a
limited amount of transitivity to work with, because the color c can assign
the value 0.

Let us say c is 01 on p if, for all x, y P p, cpx, yq P t0, 1u. Similarly, let us
say c is 02 on q if, for all x, y P q, cpx, yq P t0, 2u.

A prediction is a function ρ : S Ñ t0, 1, 2u for some set S such that if
a, b P S, a ă b, and cpa, bq “ ρpbq ‰ 0 then ρpaq “ ρpbq. We say ρ ď ρ1 if
dompρq Ď dompρ1q and whenever ρpaq ‰ 0, ρ1paq “ ρpaq. Note that, for any
x, the function ρx

S given by ρx
Spsq “ cps, xq is a prediction.

We work with conditions pp, q, Xq such that:

‚ c is 01 on p,
‚ c is 02 on q,
‚ for all x, x1 P X and all a P p, cpa, xq “ cpa, x1q P t0, 1u,
‚ for all x, x1 P X and all b P q, cpb, xq “ cpb, x1q P t0, 2u, and
‚ X is an infinite set in I.

Let us say pp, q, Xq forces R` on the 01-side if whenever Λ is an infinite
sequence with p Ď Λ, pΛzpq Ď X, and cpa, bq P t0, 1u for a, b P Λ, ă satisfies
R` in X ‘Λ. Similarly, we say pp, q, Xq forces R´ on the 02-side if whenever
Λ is an infinite sequence with p Ď Λ, pΛzpq Ď X, and cpa, bq P t0, 2u for
a, b P Λ, ă satisfies R´ in X ‘ Λ.

Using Lemma 2.7, it suffices to show:

p˚q Suppose R` are R´ are linear requirements and pp, q, Xq
is a condition. Then there is a condition pp1, q1, X 1q extending
pp, q, Xq which either forces R` on the 01-side or forces R´

on the 02-side.

Let us show p˚q. Fix pp, q, Xq and requirements R` “ pT `, tLσuσPT ` , td`
σ uσPT ` q

and R´ “ pT ´, tMτ uτPT ´ , td´
τ uτPT ´q. Below we always assume elements not

in p, q are chosen from X.
Suppose we have the fortune to find p1, q1 extending p, q and witnessing

nodes of T ` and T ´ so that there is an a such that, for each x P p1zp,
cpa, xq “ 2, while for each y P q1zq, cpa, yq “ 1. Then for any z ą maxtp1, q1u,
we must either have cpx, zq P t0, 1u for all x P p1 or cpy, zq P t0, 2u for all
y P q1. Then p1, q1 function like a split pair: every future z is compatible
with either p1 or q1. If we could find such pairs consistently, we could carry
out a construction like the one in the proof of Theorem 3.5.

So suppose we have a finite set S, an extension p1 of p witnessing a node
of T `, an extension q1 of q witnessing a node of T ´, and a prediction ρ on S
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so that for each x P p1zp, ρx
S “ ρ and for each y P q1zq, ρ

y
S “ ρ. Now suppose

there are also infinitely many z such that, for some a P S with ρpaq ‰ 0,
cpa, zq ‰ ρpaq. Then there must be a single such a P S with ρpaq ‰ 0—
without loss of generality, let us assume ρpaq “ 1—so that there are infinitely
many z with cpa, zq “ 2. Then either we find some q2 witnessing a node of
T ´, putting us in the setting of the previous paragraph, or the set of such
z contains no such q2 (and therefore forces R´ on the 02-side).

Our strategy will be to have an “inner construction” and an “outer con-
struction”. During the inner construction, we will begin constructing exten-
sions of p and q in segments. Once we have constructed some segments all
of whose elements belong to some set S, we will look for sequences p1 and
q1 inducing a common prediction ρ on S; we then use p1 and q1 to “guar-
antee” the prediction ρ—we divide all z into those with ρ ď ρz

S and those
with ρ ę ρz

S . When ρ ď ρz
S , we continue with the inner construction, using

these z to look for segments extending the sequences in S. But if we have
many points with ρ ę ρz

S , we may find either a pair pp1, q2q or pp2, q1q as
in the previous paragraph; in this case we use pp1, q2q to extend the outer
construction. When the outer construction extends, we discard all progress
on the inner construction and begin a new inner construction.

We first build a tree represneting the outer construction, essentially using
the construction of Lemma 3.5, with a minor adjustment—the two halves
of our “split pairs” will not share blocks of witnesses—and some additional
information to account for the inner construction we discuss later.

All the changes are present in the construction of a process of type
tp1, . . . , 1qu: we construct a tree with three non-root nodes, x0y, x0, 1y, and
x0, 2y. KX

tp1,...,1qu,x0yppb0q,~a0q will hold when b0 “ pd0, e0, p0, f0, q0q and:

‚ p Ă p0,
‚ q Ă q0,
‚ whenever a ă d0 and x, y P pp0zpq Y pq0zqq, cpa, xq “ cpa, yq,

‚ L
X‘p0

x0y pe0,~a0q,

‚ M
X‘q0

x0y pf0,~a0q.

KX
tp1,...,1qu,x0,1yppb0, b1q,~a1q will hold when b0 “ pd0, e0, p0, f0, q0q and b1 “

pe1, p1q and:

‚ p Ď p1,
‚ there is an a ă d0 so that for each x P pp1zpq and y P pq0zqq, cpa, xq “

2 while cpa, yq “ 1,

‚ L
X‘p1

x0y pe1,~a1q.

This is, in the node x0, 1y, the pair pp1, q0q form an effective split pair.
Symmetrically, KX

tp1,...,1qu,x0,2yppb0, b1q,~a1q will hold when b0 “ pd0, e0, p0, f0, q0q

and b1 “ pf1, q1q and:

‚ q Ď q1,
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‚ there is an a ă d0 so that for each x P pp0zpq and y P pq1zqq, cpa, xq “
2 while cpa, yq “ 1,

‚ M
X‘q1

x0y pf1,~a1q.

We need to work in two steps—in the first step we find a pair pp0, q0q, but
these don’t properly form a split pair because we could easily have neither
be extendible. In the second step we replace one of p0 and q0 with a new
sequence—we work with either pp1, q0q or pp0, q1q—because these form a
genuine split pair.

We then form compound processes using the same construction as Lemma
3.5, but starting from our new three node basic process. The result is
Rpr,sq “ pTpr,sq, tKpr,sq,ζu, tdpr,sq,ζuq such that:

‚ whenever ζ P Tpr,sq is a leaf, ∆X
pr,sq,ζpc, pb0, . . . , b|ζ|´1q,~a0, . . . ,~a|ζ|´1q

implies that each bi has the form pdi, ei, pi, fi, qiq, pei, piq, or pei, qiq
where:

– p Ď pi,
– q Ď qi,
– there are disjoint sequences pv0, . . . , vr´1q and pw0, . . . , ws´1q

such that, taking σ and τ to be the branches of length r and s,
respectively,:

˚ ∆X‘pi

T `;σ
pc, pev0

, . . . , evr´1
q,~av0

, . . . ,~avr´1
q,

˚ ∆X‘qi

T ´;τ
pc, pfw0

, . . . , fws´1
q,~aw0

, . . . ,~aws´1
q,

‚ whenever ζ P Tpr,sq is not a leaf and |ζ| is odd, Θpr,sq,ζpcq implies that

there is either a p1 so that pp1, q, ρ, Xq forces R` on the 01-side, or a
q1 so that pp, q1, ρ, Xq forces R´ on the 02-side,

‚ whenever ζ P Tpr,sq is not a leaf and |ζ| is even, Θpr,sq,ζpcq implies
that either:

– for every a ă d|ζ|´2 there is an i P t1, 2u such that there are
only finitely many z ą a with cpa, zq “ i,

– there is an a ă d|ζ|´2 and a p1 so that pp1, q, ρ, tx P X | cpa, xq “

2uq forces R` on the 01-side, or
– there is an a ă d|ζ|´2 and a q1 so that pp, q1, ρ, tx P X | cpa, xq “

1uq forces R´ on the 02-side.

Note that the final case is why Rpr,sq does not complete the proof of the
lemma: we might indeed be in the case where, for every a ă d|ζ|´2 there is
an i P t1, 2u such that there are only finitely many z ą a with cpa, zq “ i.
So we will need to interpolate additional steps into Rpr,sq to account for this
possibility.

We will construct our actual requirement R “ pT, tKυu, tdυuq. Along
with our construction, we define a partial function f : T Ñ Tpr,sq and, for
υ P dompfq, a function πυ : r0, |fpυq|q Ñ r0, υq.

We begin by setting fpxyq “ xy.
Suppose we have a node υ with |fpυq| even. We construct a subtree

extending υ as our “inner construction”. The precise definition requires
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some tedious bookkeeping, but the basic idea is that we take a pair p1, q1

active at the node fpυq and we search for a set S of points which could be
included in extensions of both p1 and q1, and so that for every prediction ρS

on S, there is either a p0 or a q0 witnessing the corresponding node of T ` or
T ´. If we cannot find such an S (despite there being infinitely many points
which could be included in such a set), we can use weak König’s lemma to
find a partition of points in which there are either no such p0 or no such q0.

If we find such an S, we then search for extensions p2, q2 of S so that
every x P pp2zp1q Y pq2zq1q induces the same prediction ρS on S. If we find
p2, q2, these are associated to a child of fpυq.

Now consider later points z. If ρS ę ρz
S then we can use z as a point

to look for a split pair pp2, q˚q or pp˚, q2q; if we find such a pair, we can
extend to a descendent of fpυq and throw away the inner construction. If
we have ρS ď ρz

S , we begin working towards a new set S1 in which we look
for either p1 or q1 extending p0 or q0. If we find such an S1, we then search
for replacements of p2 and q2 which also agree on a prediction on S1.

The inner construction then iterates this process: we keep extending pi

or qi, and each time we do, we look for new “guards” p2 and q2. In order to
avoid transitivity issues, when we extend pi, we discard our progress on qi.

Formally, in this subtree, enumerate the children of fpυq as ζ1, . . . , ζz.

Each node υ1 in this subtree will be associated to tuples prυ1

1 , sυ1

1 , tυ1

i , rυ1

2 , sυ1

2 , tυ1

i , . . . , rυ1

z , sυ1

z , tυ1

z q

with rυ1

j ď r, sυ1

j ď s, and tυ1

z P t0, 1u, and to sequences of distinct val-

ues vυ1

j,0, . . . , vυ1

j,rj´1, wυ1

j,0, . . . , wυ1

sj´1, uj where vυ1

j,i ă vυ1

j,i`1 ă wυ1

j,0 and wυ1

j,i ă

wυ1

j,i`1 ă uυ1

j ă vυ1

j`1,0 and where uυ1

j is only present if rυ1

j ` sυ1

j ` tυ1

j ą 0. We

associate υ with the tuple p0, . . . , 0q (and therefore the sequences vυ1

j,i, wυ1

j,i, uυ1

j

are empty). We order the tuples lexicographically and guarantee that the
assigned tuples will not decrease along branches of the tree.

We will need to construct three kinds of nodes: the nodes in which we
search for sets S, the nodes in which we search for guards p2, q2 (extending
p1

j, q1
j), and the nodes in which we search for for the split pair p˚ or q˚

(also extending p1
j or q1

j). Which of these nodes are children of a given node
depends on the parameters so far. When tj “ 0, we need to search for a set

S. When tj “ 1, we need to search for guards. (Further, when sυ1

j ą 0, we

will also need to look for alternative, more restrictive guards.) When rυ1

j ą 0

or sυ1

j ą 0, we must have already found guards, so we also need to look for
the corresponding split pair.

Consider a node υ1 and we construct the children of υ1.
First, consider some j with tυ1

j “ 0. In this case we will have b|υ1| “

pS|υ1|, E|υ1|, λ|υ1|q. Let S´ “
Ť

iărυ1
j

S
vυ1

j,i
Y

Ť

iăsυ1
j

S
wυ1

j,i
. If rυ1

j “ sυ1

j “ 0,

S´ “ H and ρS´ is trivial; otherwise let ρS´ “ ρx
S´ for any x P p2

uj
. υ1 has

a child υ1"xp0, jqy so that KX
υ1"xp0,jqy holds when:

‚ S|υ1| is a finite set,
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‚ for every prediction ρS on S´ Y S|υ1| with ρS´ ď ρS æ S´, λ|υ1|pρSq
is a sequence and E|υ1|pρSq is a number such that either:

– c is 01 on λ|υ1|pρSq and:

˚ (if rυ1

j “ 0) p Ă λ|υ1|pρSq or (if rυ1

j ą 0) λ
vυ1

rj ´1

pρS æ S´q Ă

λ|υ1|pρSq, and

˚ letting σ be the branch of length rυ1

j `1, L
X‘λ|υ1|pρSq
σ ppE

vυ1
0

pρS æ

S
vυ1

0

q, . . . , E
vυ1

rj ´1

pρS æ S
vυ1

rj´1

q, E|υ1|pρSqq,~aq,

or,
– c is 02 on F|υ1|pρSq and:

˚ (if sυ1

j “ 0) q Ă λ|υ1|pρSq or (if sυ1

j ą 0) λ
wυ1

sj ´1

pρS æ S´q Ă

λ|υ1|pρSq, and

˚ letting τ be the branch of length sυ1

j `1, M
X‘λ|υ1|pρSq
τ ppE

vυ1
0

pρS æ

S
vυ1

0

q, . . . , E
vυ1

rj ´1

pρS æ S
vυ1

rj´1

q, E|υ1|pρSqq,~aq.

We copy the parameters rj1 , sj1 for j1 ď j and reset these to 0 for j1 ą j;
that is:

‚ For j1 ď j, we set r
υ1"x0,jy
j1 “ rυ1

j1 , s
υ1"x0,jy
j1 “ sυ1

j1 , v
υ1"x0,jy
j1,i “ vυ1

j1,i,

and w
υ1"x0,jy
j1,i “ wυ1

j1,i.

‚ For j1 ă j, t
υ1"x0,jy
j1 “ tυ1

j1 and u
υ1"x0,jy
j1 “ uυ1

j1 .

‚ t
υ1"x0,jy
j “ 1 and u

υ1"x0,jy
j “ |υ1|.

‚ For j1 ą j, r
υ1"x0,jy
j1 “ s

υ1"x0,jy
j1 “ t

υ1"x0,jy
j1 “ 0.

We set dυ1"xp0,jqypiq “ dυ1 piq for i ă |υ1| and dυ1"xp0,jqyp|υ1|q “ 0.

Next, consider some j with tυ1

j “ 1. Let S´ “
Ť

iărυ1
j

S
vυ1

j,i
Y

Ť

iăsυ1
j

S
wυ1

j,i
.

We have two children υ1"xp1, j, bqy for b P t0, 1u with fpυ1"xp1, j, bqyq “ ζj .
KX

υ1"xp1,j,0qy holds when KX
pr,sq,ζj

holds and there is any ρS1 ě ρx
S1 (for some,

and therefore every, x P p|υ1| Y q|υ1|) so that c is 02 on F|υ1|pρS1q. KX
υ1"xp1,j,1qy

holds when KX
pr,sq,ζj

holds and for every ρS1 ě ρx
S1 (for some, and therefore

every, x P p|υ1| Y q|υ1|), c is 01 on F
uυ1

j
pρS1q.

In this case:

‚ For j1 ă j, r
υ1"x1,j,by
j1 “ rυ1

j1 , s
υ1"x1,j,by
j1 “ sυ1

j1 , v
υ1"x1,j,by
j1,i “ vυ1

j1,i,

w
υ1"x1,j,by
j1,i “ wυ1

j1,i, and u
υ1"x1,j,by
j1 “ uυ1

j1 .

‚ r
υ1"x1,j,1y
j “ rυ1

j ` 1, v
υ1"x1,j,1y
j,i “ vυ1

j,i for i ă rυ1

j , and v
υ1"x1,j,1y

j,rυ1
j

“ uυ1

j .

‚ s
υ1"x1,j,0y
j “ sυ1

j ` 1, w
υ1"x1,j,0y
j,i “ wυ1

j,i for i ă sυ1

j , and w
υ1"x1,j,0y

j,sυ1
j

“

uυ1

j .

‚ s
υ1"x1,j,1y
j “ 0 and u

υ1"x1,j,by
j “ uυ1

j .

‚ r
υ1"x1,j,0y
j “ rυ1

j and v
υ1"x1,j,0y
j,i “ vυ1

j,i.
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‚ For j1 ą j, r
υ1"x1,j,by
j1 “ s

υ1"x1,j,by
j1 “ s

υ1"x1,j,by
j1 “ 0.

We set dυ1"xp1,j,0qypw
υ1"xp1,j,0qy
j,i q “ d´

τ piq (where |τ | “ s
υ1"xp1,j,0qy
q . We

set dυ1"xp1,j,1qypvυ1"xp1,j,1qyq “ d`
σ piq (where |σ| “ r

υ1"xp1,j,1qy
j ). Otherwise

dυ1"xp1,j,bqypiq “ dυ1 piq where consistent with transitivity requirements, and
as required by transitivity otherwise.

Consider some j with sυ1

j ą 0. Let S´ “
Ť

iărυ1
j

S
vυ1

j,i
Y

Ť

iăsυ1
j

S
wυ1

j,i
. We

have a child υ1"xp2, jqy with fpυ1"xp2, jqyq “ ζj. (This case is nearly iden-

tical to the υ1"xp1, j, 1qy case above.) KX
υ1"xp2,jqy holds when KX

pr,sq,ζj
holds

and for every ρS1 ě ρx
S1 (for some, and therefore every, x P p|υ1| Y q|υ1|), c is

01 on F
uυ1

j
pρS1q.

‚ For j1 ă j, r
υ1"x2,jy
j1 “ rυ1

j1 , s
υ1"x2,jy
j1 “ sυ1

j1 , v
υ1"x2,jy
j1,i “ vυ1

j1,i, w
υ1"x2,jy
j1,i “

wυ1

j1,i, and u
υ1"x2,jy
j1 “ uυ1

j1 .

‚ r
υ1"x2,jy
j “ rυ1

j ` 1, v
υ1"x2,jy
j,i “ vυ1

j,i for i ă rυ1

j , and v
υ1"x2,jy

j,rυ1
j

“ uυ1

j .

‚ s
υ1"x2,jy
j “ 0 and u

υ1"x2,jy
j “ uυ1

j .

‚ For j1 ą j, r
υ1"x2,jy
j1 “ s

υ1"x2,jy
j1 “ s

υ1"x2,jy
j1 “ 0.

We set dυ1"xp1,j,1qypvυ1"xp1,j,1qyq “ d`
σ piq (where |σ| “ r

υ1"xp1,j,1qy
j ). Other-

wise dυ1"xp1,j,bqypiq “ dυ1 piq where consistent with transitivity requirements,
and as required by transitivity otherwise.

For the final case, consider a j with tυ1

j “ 0 and rυ1

j ` sυ1

j ą 0. Then we

have two children υ1"xp3, j, bqy for b P t1, 2u. We will set fpυ1"xp3, j, bqyq “

ζj
"xby and πυ1"xp3,j,bqy “ πυYtp|fpυq|, uυ1

j q, p|fpυq|`1, |υ1|qu, and KX
υ1"xp3,j,bqy

will hold exactly when KX
ζj

"xby does. For i ď |ζj | we have dυ1"xp3,j,bqypπυ1"xp3,j,bqypiqq “

dζ"

j
xbypiq; otherwise dυ1"xp3,j,bqypiq “ 0 if this is consistent with transitivity,

and as required by transitivity otherwise. These children are not part of the
subtree: |fpυ1"xp3, j, bqyq| is even, so these nodes discard the entire subtree
and start a new one.

We must verify that ΘX
υ pcq implies the existence of the desired extension

of pp, q, Xq. Consider some node υ1, which belongs to one of our subtrees—υ1

extends (perhaps non-properly) a node υ with |fpυq| even.
Consider each of the children of fpυq, the nodes ζj ; when KX

pr,sq,ζj
pc, pb0, . . . , b|ζj |´1q,~a0, . . . ,~a|ζj |´1q

holds, we have b|ζj |´1 “ pd|ζj |´1, e|ζj |´1, p|ζj |´1, f|ζj |´1, q|ζj |´1q where p|ζj |´1 Ą

pv|σj |´1
(or p|ζj |´1 Ą p if |σj| “ 1) and q|ζj |´1 Ą qw|τj |´1

(or q|ζj |´1 Ą q if

|τj| “ 1) where σj, τj depend on the node ζj . In particular, we are interested
in the segments which these sequences would extend: let p1

j “ pπυpv|σj |´1q if

|σj| ą 1 and p1
j “ p if |σj| “ 1; similarly, let q1

j “ qπυpw|τj |q´1 if |τj| ą 1 and

q1
j “ q if |τj | “ 1.

Each ζj of fpυq is looking for extensions consisting of points z satisfying
conditions like cpx, zq P t0, 1u for all x P p1

j and cpy, zq P t0, 2u for all y P p1
j.
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These conditions are exhaustive—every point z satisfies these conditions for
some ζj—so we may choose a j and an X 1 Ď X so that X 1 is infinite and
every z P X 1 can be used in an extension witnessing ζj. We may also fix the
set S´ “

Ť

iărυ1
j

S
vυ1

j,i
Y

Ť

iăsυ1
j

S
wυ1

j,i
. There is some ρS´ such that there are

infinitely many z P X 1 with ρz
S´ “ ρS´ . Let X2 Ď X be the set of such z.

Suppose tυ1

j “ 1. Then either pp, q1
j, X2q or pp1

j , q, X2q is the needed

condition—if we could find extensions to both q1
j and p1

j in X2 then we

would have a witness to υ1"xp1, j, bqy for some b (where b depends on rS´).

So suppose tυ1

j “ 0. Consider the “guards” p
uυ1

j
, q

uυ1
j

(which extend p1
j, q1

j).

For any (equivalently, every) x P p
uυ1

j
Yq

uυ1
j

, let ρ0
S´ “ ρx

S´. We now consider

some cases.

‚ Suppose ρ0
S´ ę ρS´.

– If there is an a P S´ with ρ0
S´paq “ 1 but ρS´paq “ 2 then

pp
uυ1

j
, q, X2q witnesses Θ

X‘p
uυ1

j

R`;σ
pcq (where σ is the length of the

node in T ` corresponding to ζj) since any witness to an ex-
tension of σ would be an extension of p

uυ1
j

in X2, and would

therefore witness ∆X
R;υ1"xp3,j,1qy.

– Otherwise there is an a P S´ with ρ0
S´paq “ 2 but ρS´paq “ 1,

and pp, q
uυ1

j
, X2q witnesses Θ

X‘q
uυ1

j

R´;τ
pcq (where τ is the length of

the node in T ´ corresponding to ζj) since any witness to an
extension of τ would be an extension of q

uυ1
j

in X2, and would

therefore witness ∆X
R;υ1"xp3,j,2qy.

‚ Otherwise ρ0
S´ ď ρS´ .

– Suppose sυ1

j ą 0 but F
uυ1

j
pρS´q is 01 on c. Then either pp1

j, q, X2q

or pp, q1
j , X2q is the needed condition (witnessing Θ

X‘p1
j

R`;σ
pcq or

Θ
X‘q1

j

R´;τ
pcq respectively)—if we could find extensions to both p1

j

and q1
j in X2 then we would have a witness to ∆X

R;υ1"xp2,jqypcq)

– Otherwise sυ1

j “ 0 or F
uυ1

j
pr1

S´q is 02 on c. Then for every

finite set S ą S´ with S Ď X2, there cannot be a function
F witnessing ∆X

R;υ1"xp0,jqypcq, so there must be some prediction

ρS such that there is neither a p˚ nor a q˚ with the needed
properties. In particular, we may divide S: let S1 “ tz P S |
ρSpzq P t0, 1uu and S2 “ tz P S | ρSpzq P t0, 2uu. Then there is
no p˚ Ď S1 nor q˚ Ď S2 with the desired properties. We now use
the technique of Lemma 4.22 of [5]. Consider the tree of such
partitions. Since I satisfies WKL, there is such a partition
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X2 “ X1 Y X2. One of the pieces X1 or X2 must be infinite, so
either pp

rυ1
j

, q, X1q or pp, q
sυ1

j
, X2q is the desired condition.

�

Combining these as before, we have:

Theorem 4.6. There is a Turing ideal satisfying ProdWQO and WKL
but not SCAC.

5. A Question

The original goal of this project was simply to separate ProdWQO
from SCAC; incorporating WKL (and therefore simultaneously separat-
ing ADS ` WKL from SCAC) seemed to be forced on the project by the
nature of the arguments needed.

Question 5.1. Is it possible to separate ProdWQO from SCAC without
separating ProdWQO ` WKL from SCAC?

In particular, it would be interesting to identify a way to make precise
the claim that the separation of ProdWQO from SCAC somehow requires
dealing with WKL.
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