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A DESCRIPTIVE MAIN GAP THEOREM

FRANCESCO MANGRAVITI AND LUCA MOTTO ROS

Abstract. Answering one of the main questions of [FHK14, Chapter 7], we
show that there is a tight connection between the depth of a classifiable shallow
theory T and the Borel rank of the isomorphism relation ∼=κ

T
on its models

of size κ, for κ any cardinal satisfying κ<κ = κ > 2ℵ0 . This is achieved
by establishing a link between said rank and the L∞κ-Scott height of the
κ-sized models of T , and yields to the following descriptive set-theoretical
analogue of Shelah’s Main Gap Theorem: Given a countable complete first-
order theory T , either ∼=κ

T
is Borel with a countable Borel rank (i.e. very simple,

given that the length of the relevant Borel hierarchy is κ+ > ℵ1), or it is not
Borel at all. The dividing line between the two situations is the same as in
Shelah’s theorem, namely that of classifiable shallow theories. We also provide
a Borel reducibility version of the above theorem, discuss some limitations
to the possible (Borel) complexities of ∼=κ

T
, and provide a characterization of

categoricity of T in terms of the descriptive set-theoretical complexity of ∼=κ
T

.

1. Introduction

In the whole paper, (first-order) theories, usually denoted by T , are assumed to
be countable, complete and to have infinite models, unless otherwise stated.

Classification theory (also known as stability theory) was first conceived as a
tool to solve in a systematic and general way the spectrum problem for countable
complete theories, that is, the problem of computing the number I(κ, T ) of noniso-
morphic models of T of size κ ≥ ℵ1. The obvious bounds for I(κ, T ) are

1 ≤ I(κ, T ) ≤ 2κ.

The main idea of classification theory, as shown in Shelah’s masterpiece [She90],
is that there are several key dichotomies that can be used to identify how well-
behaved a theory is: (super)stable versus un(super)stable, DOP (Dimensional Or-
der Property) versus NDOP (Not-DOP), OTOP (Omitting Types Order Property)
versus NOTOP (Not-OTOP), shallow versus deep, and so on. Shelah first proved
that if a theory T is either unsuperstable, or superstable and either DOP or OTOP,
then the spectrum function always assumes the maximal value, i.e. I(κ, T ) = 2κ for
every κ ≥ ℵ1. Thus theories T which are (stable) superstable, NDOP and NOTOP
are the only ones for which there can be a nontrivial upper bound on the spectrum
function, and for this reason such T ’s are called classifiable.
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2 F. MANGRAVITI AND L. MOTTO ROS

The following quote from [Bal88] concisely explains how the spectrum problem
for classifiable theories was solved by Shelah:

The solution of the spectrum problem for classifiable theories de-
pends upon a key construction which assigns to each model of size
κ a skeleton of submodels. Each submodel has cardinality at most
2ℵ0 , and the skeleton is partially ordered by the natural tree order
on a subset of <ωκ. The isomorphism type of the model is deter-
mined by the small submodels and this partial ordering. [...] If one
of these trees is not well-founded, the theory is said to be deep

and has 2κ models for every κ ≥ ℵ1. If not, the theory is shallow

and the type of structure theory we have described exists. We are
able to assign to each such shallow theory a depth α corresponding
to the rank of a system of invariants, as discussed above, and to
compute the spectrum function of T in terms of that depth.

(John T. Baldwin, Fundamentals of Stability Theory)

The above “decomposition” technique yields that an upper bound to the num-
ber of isomorphism types for κ-sized models of a classifiable shallow theory T
can essentially be obtained by computing how many labeled (with labels of size
≤ 2ℵ0) well-founded subtrees of <ωκ of rank ≤ α are there. Summing up all these
informations, one finally gets Shelah’s celebrated Main Gap Theorem.

Theorem 1.1 ([She90, The Main Gap Theorem 6.1]). Let κ ≥ ℵ1 be the γ-th
cardinal.

(1) If T is classifiable shallow of depth α, then

I(κ, T ) ≤ iα

(
|γ|2

ℵ0

)
.

(If α ≥ ω then iα

(
|γ|2

ℵ0

)
can be replaced by iα (|γ|).)

(2) If T is not classifiable shallow, then

I(κ, T ) = 2κ.

Since by [Las85, Théorème 4.1] classifiable shallow theories have countable depth,
when we are in case (1) of the above theorem we actually get a uniform upper bound
on I(κ, T ) which is independent of the depth of T , namely

I(κ, T ) < iω1
(|γ|) .

Remark 1.2. The upper bound in Theorem 1.1(1) may become trivial (e.g. when κ
is a fixed point of the ℵ-function), but it is not when e.g. κ = ℵγ is such that

iω1
(|γ|) ≤ κ.

Indeed, in this case Shelah’s upper bound is even < κ. In general it is easy to
find cardinals satisfying the above condition. For example, under GCH there are
unboundedly many such κ’s: if γ, δ ≥ ω1 with |γ| ≥ |δ|, then every κ = ℵγ+δ does
the job. In particular, letting δ vary over all uncountable ordinals we get examples
of such κ which are either successors or singular cardinals of any cofinality.

The Main Gap Theorem can be taken as evidence that Shelah’s notion of a
classifiable shallow theory does in fact capture the general idea of model-theoretic
“simplicity”. Such theories appear quite naturally in mathematics: some well-known
examples are the theory of algebraically closed fields of fixed characteristic (along
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with all uncountably categorical theories) and the theory of the additive group of
integers.

The reader may wonder why so far we have only considered uncountable models.
One thing to note is that, in contrast to the uncountable case, we do not yet know
how many countable models a theory T may have in general. Indeed, Vaught’s
conjecture, asserting that either I(ℵ0, T ) ≤ ω or I(ℵ0, T ) = 2ℵ0 , is still one of the
major open problems in model theory. One of the strategies devised to tackle this
problem in the Nineties was that of using methods from (classical) descriptive set
theory. The starting point of this approach is that countable structures can natu-
rally be coded as elements of the Cantor space ω2 (i.e. countable binary sequences),
so that the isomorphism relation ∼=ω

T on countable models of T may be construed
as an analytic equivalence relation on such space. Some progress has been obtained
through this method: for example, Silver’s theorem [Sil80] yields that Vaught’s
conjecture holds for those theories T for which the isomorphism relation ∼=ω

T is
Borel. The latter condition may be seen as a simplicity notion itself. Indeed, ∼=ω

T

is Borel if and only if there is an “effective” procedure which, using only countable
set-theoretical operations such as unions, intersections, and complements, allows
us to determine whether two countable models of T are isomorphic or not — in
other words, there is a Borel procedure to classify the countable models of T up
to isomorphism. Unfortunately, there is no relation between Shelah’s classification
of T in terms of its stability properties and the simplicity of ∼=ω

T in the descriptive
set-theoretic sense: for example, the theory of dense linear orders is unstable, but
the isomorphism relation on its countable models is very simple (it is a Borel equiv-
alence relation with Borel rank 2 and only 4 different classes); conversely, in [Koe11]
it is shown that there are theories T which are very simple stability-wise, but such
that ∼=ω

T is not even Borel.
This failure forces us to move to the uncountable setting again. Replacing ω

with an uncountable cardinal κ, it is easy to check that, up to isomorphism, all
κ-sized structures can be coded as elements of the generalized Cantor space κ2, i.e.
the space of all binary κ-sequences equipped with the so-called bounded topology,
a natural generalization of the standard topology on ω2 (see Section 2). Despite
the fact that κ2 is no longer a Polish space, it is still possible to naturally mirror
all classical definitions in the new setting: for example, Borel sets are replaced
by κ+-Borel ones (i.e. by the sets in the smallest κ+-algebra generated by the
open sets), analytic sets are replaced by κ-analytic ones (i.e. continuous images of
κ+-Borel sets), and so on. Even though the resulting theory, which is nowadays
called generalized descriptive set theory, presents many differences from the classical
theory and is severely affected by a myriad of independence phenomena already for
very simple sets, some of the basic features are preserved. For example, in [AMR19,
Lemma 4.15, and Proposition 4.19] it is shown that the κ+-Borel subsets of κ2 can
be stratified in a hierarchy with κ+-many levels,1 so that to each κ+-Borel set
A ⊆ κ2 we can assign an ordinal rkB(A) < κ+, called Borel rank, measuring its
complexity. For simplicity of notation, we stipulate that rkB(A) = ∞ whenever A
is not κ+-Borel.

Working in this new setup, one can show that the set of (codes for) κ-sized models
of a given theory T form a κ+-Borel set, and that the isomorphism relation on it,

1If κ<κ 6= κ, the argument to prove this is quite different from the one used in the classical
setting κ = ω.
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which will be denoted by ∼=κ
T , is a κ-analytic equivalence relation. It is thus natural

to ask how much “simple” ∼=κ
T is from the (generalized) descriptive set-theoretical

point of view.

Question 1.3. For which theories T and which uncountable cardinals κ does it
happen that ∼=κ

T is κ+-Borel? What can we say about the Borel rank of ∼=κ
T ?

A finer question is

Question 1.4. Does the κ+-Borelness (and/or the Borel rank) of ∼=κ
T depend on

both parameters κ and T , or does it just depend on the theory T?

In the latter case one could regard the theory T itself as “simple” if some/any of
the ∼=κ

T ’s is κ+-Borel.
The first part of Question 1.3 and Question 1.4 were answered by S.-D. Friedman,

T. Hyttinen, and V. Kulikov in their impressive and seminal work [FHK14].

Theorem 1.5 (S.-D. Friedman-Hyttinen-Kulikov, [FHK14, Theorem 63]). Let κ
be such that2 κ<κ = κ > 2ℵ0 .

(1) If T is classifiable shallow, then ∼=κ
T is κ+-Borel.

(2) If T is not classifiable shallow, then ∼=κ
T is not κ+-Borel.

Remarkably, the dividing line distinguishing whether ∼=κ
T is κ+-Borel or not is

thus the same as in Shelah’s Main Gap Theorem 1.1. The following question,
although with a slightly different formulation, may be found as one of the main
open problems listed in [FHK14, Chapter 7].

Question 1.6. If T is classifiable shallow, what is the Borel rank of ∼=κ
T ? Is it

related to the depth of T?

The goal of this paper is precisely to address this and other related problems.
After proving in Section 2 some (old and new) preliminary results about generalized
descriptive set theory, as a first step we provide in Section 3 a purely descriptive
set-theoretical characterizion of κ-categoricity by showing that all κ-sized models
of a theory T are isomorphic (i.e. T is κ-categorical) if and only if ∼=κ

T is (cl)open
(Theorem 3.3).

In Section 4 we carefully analize the Friedman-Hyttinen-Kulikov’s proof of The-
orem 1.5 and obtain the following result (see also Theorem 4.11) connecting the
Borel rank of ∼=κ

T to the L∞κ-Scott height of its κ-sized models, which may be of
independent interest. Given a theory T and a cardinal κ ≥ ℵ1, set

B(κ, T ) = rkB(∼=
κ
T ).

Recall that if ∼=κ
T is κ+-Borel the obvious bounds on B(κ, T ) are 0 ≤ B(κ, T ) < κ+,

while if ∼=κ
T is not κ+-Borel then B(κ, T ) = ∞ (which here is considered as the

maximal complexity). Let also S(κ, T ) be the supremum of the L∞κ-Scott heights
of the κ-sized models of the theory T (see Section 4.1). It can be shown that S(κ, T )
is either ≤ κ+ or else undefined, in which case we set S(κ, T ) = ∞.

Theorem 1.7. Let κ be such that κ<κ = κ. Then

• if S(κ, T ) < κ+, then B(κ, T ) ≤ 2S(κ, T ) < κ+;

2In [FHK14, Theorem 63] it is further required that κ is not weakly inaccessible. However, as
it can be checked following the proofs below, there is no need to add this restriction to obtain the
above result and its refinement.
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• if B(κ, T ) 6= ∞, then S(κ, T ) ≤ B(κ, T ) < κ+.

In particular, B(κ, T ) and S(κ, T ) always have finite distance.

This kind of analysis actually applies to a wider setup: indeed, instead of con-
sidering just the models of a given first-order theory T , we can pick any collection
of κ-sized models C closed under isomorphism, and obtain an analogue of Theo-
rem 1.7 for the isomorphism relation ∼=κ

C on C. This yields the following corollary,
which generalizes to uncountable κ’s (and to a slightly more general setting) a re-
sult obtained in the countable case κ = ω by Becker and Kechris [BK96, Corollary
7.1.4].

Corollary 1.8. Let κ be such that κ<κ = κ, and let C be any collection of κ-sized
models closed under isomorphism. Then ∼=κ

C is κ+-Borel if and only if there is
β < κ+ such that the L∞κ-Scott height of any structure in C is ≤ β.

In Section 5 we use the previous results to solve the “Borel analogue” of the
spectrum problem, thus sharpening Theorem 1.5 and answering (at least partially)
Question 1.6.

Theorem 1.9 (Descriptive Main Gap Theorem). Let κ be such that κ<κ = κ > 2ℵ0 .

(1) If T is classifiable shallow of depth α, then B(κ, T ) ≤ 4α.
(2) If T is not classifiable shallow, then B(κ, T ) = ∞.

Thus in case (1), which corresponds exactly to Theorem 1.1(1), the ordinal
B(κ, T ) is almost everywhere dominated by a constant function which, unlike She-
lah’s upper bound on the number of isomorphism types, depends only on the depth
α of the theory and not on the cardinal κ under consideration. Moreover, in view of
the above-mentioned fact that α < ℵ1 by [Las85, Théorème 4.1], in case (1) we can
get a nontrivial uniform upper bound which is independent of α as well, namely

B(κ, T ) < ℵ1 < κ+.

In particular, there is no theory T with ∼=κ
T of uncountable Borel rank. Another

interesting difference from Shelah’s Main Gap is that the upper bound on the Borel
rank of ∼=κ

T is almost never trivial for the relevant κ’s: for example, under GCH the
descriptive gap is non-trivial for every regular cardinal κ ≥ ℵ2 (in particular, for
all the successors, with the possible exception of ℵ1).

Summing up all the mentioned results, we get the picture described in Table 1
strictly relating the model-theoretic properties of T , the number of its κ-sized mod-
els I(κ, T ) (up to isomorphism), the L∞κ-Scott height S(κ, T ) of T , the topological
complexity of ∼=κ

T , and its Borel rank B(κ, T ).
Theorem 1.9 imposes ℵ1 as an upper bound on the Borel rank of a given ∼=κ

T , but
a full answer to the first part of Question 1.6 would require to assess which Borel
classes with a (necessarily countable) index are actually inhabitated by such an
isomorphism relation. We address this problem in Sections 6.1 and 6.2 and provide
some partial answers. For example, we show that ∼=κ

T can never be a proper Σ
0
α

set for α limit (Theorem 6.1); this is a new (and somehow unexpected) observation
also in the classical setup of countable models κ = ω. Moreover, when κ > 2ℵ0

satisfies certain additional conditions, then ∼=κ
T cannot be a proper Σ0

α or a proper
Π

0
α set for any ordinal α (Proposition 6.2). Finally, in Section 6.3 we obtain a

variant of the Descriptive Main Gap Theorem 1.9 in which the complexity of ∼=κ
T

is measured using Borel reducibility ≤κ
B rather than Borel ranks: under certain
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Model-theoretic
properties of T

κ-categorical Classifiable shallow Not classifiable shallow

Number of
κ-sized models

I(κ, T ) = 1 (∗) I(κ, T ) < iω1
(|γ|) (†) I(κ, T ) = 2κ (†)

L∞κ-Scott
height of T

S(κ, T ) = 0 (∗) S(κ, T ) < ℵ1 (†) S(κ, T ) ∈ {κ+,∞} (†)

Topological
complexity of ∼=κ

T

(Cl)open κ+-Borel (‡) Not κ+-Borel (‡)

κ+-Borel
rank of ∼=κ

T

B(κ, T ) = 0 B(κ, T ) < ℵ1 B(κ, T ) = ∞ (‡)

Table 1. Characterizations of some stability notions from model-
theory when L is a relational language, T is a countable complete
first-order theory, and κ = ℵγ is an uncountable cardinal such that
κ<κ = κ > 2ℵ0 . Entries marked with (∗) are easy reformulations of
κ-categoricity, the ones marked with (†) are due to Shelah [She90],
those marked with (‡) are due to Friedman, Hyttinen and Ku-
likov [FHK14], while the remaining ones are obtained in this paper.

conditions on κ, if T is classifiable shallow while T ′ is not, then ∼=κ
T <κ

B
∼=κ

T ′ and
there are equivalence relations lying strictly ≤κ

B-between the two (Proposition 6.7).

2. Generalized descriptive set theory

In this section we introduce the tools from generalized descriptive set theory that
are used in the sequel. We will prove only those results which are not explicitly
proved elsewhere in the literature, referring the reader to [FHK14, AMR19] for a
thorough and detailed exposition of the theory and its basics.

We denote by On the class of all ordinal numbers. Given two sets X,Y we
denote by XY the set of all functions f : X → Y . When α is an ordinal we set
<αY =

⋃
β<α

βY . For the rest of this section, let κ be an infinite cardinal. The

following definitions generalize that of the usual Baire and Cantor spaces (which
correspond to the case κ = ω), and of their Borel and analytic subsets.

Definition 2.1. The generalized Baire space is the space κκ equipped with the
(bounded) topology τb, which is generated by the sets of the form

(2.1) Np = {x ∈ κκ | p ⊆ x}

for p ∈ <κκ.
The generalized Cantor space κ2 is the closed subspace of κκ consisting of func-

tions taking values in 2 = {0, 1}.
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For the sake of simplicity, we will develop our theory of κ+-Borel sets for sub-
spacesX of κκ (endowed with the relativization of the bounded topology τb), but all
definitions and results straightforwardly generalize to their homeomorphic copies.

Definition 2.2. Let X ⊆ κκ be endowed with the relative topology. A set A ⊆ X
is called κ+-Borel if it belongs to the κ+-algebra generated by the topology of X .
The collection of κ+-Borel subsets of X is denoted by Bor(κ,X).

When κ is clear from the context we drop it from both the terminology and the
notation above. As in the classical case, (κ+-)Borel sets can be stratified into a
hierarchy according to the following recursive definition:

Σ
0
1(κ,X) = {U ⊆ X | U is open} Π

0
1(κ,X) = {C ⊆ X | C is closed}

Σ
0
α(κ,X) =





⋃

γ<κ

Aγ | Aγ ∈
⋃

1≤β<α

Π
0
β(κ,X)



 Π

0
α(κ,X) =

{
X \A | A ∈ Σ

0
α(κ,X)

}

We also set ∆0
α(κ,X) = Σ

0
α(κ,X)∩Π

0
α(κ,X), and we again drop κ from the nota-

tion whenever this is not a source of confusion. As shown in [AMR19, Proposition
4.19], for 1 ≤ α < β

∆
0
α(X) ( Σ

0
α(X),Π0

α(X) ( ∆
0
β(X),

and moreover

Bor(X) =
⋃

1≤α<κ+

Σ
0
α(X) =

⋃

1≤α<κ+

Π
0
α(X) =

⋃

1≤α<κ+

∆
0
α(X).

(When κ<κ = κ one can use the classical arguments as in [Kec95, Theorem 22.4];
otherwise a different proof is required.) Notice also that if Γ(X) is one of Σ0

α(X),
Π

0
α(X), or Bor(X), then for every A ⊆ X

A ∈ Γ(X) ⇔ A = A′ ∩X for some A′ ∈ Γ(κκ).

If A ∈ Bor(X), the smallest ordinal 1 ≤ α < κ+ such that A ∈ Σ
0
α(X) ∪Π

0
α(X)

is called the Borel rank of A and denoted by rkB(A). To simplify some of the
statements (and proofs) below, with a little abuse of notation we set Σ

0
0(X) =

Π
0
0(X) = ∆

0
1(X) and rkB(A) = 0 if A ∈ ∆

0
1(X).

The symbol Γ(X) will denote an arbitrary class of the form Σ
0
α(X), Π0

α(X), or
∆

0
α(X). In particular, we say that “A is Γ(X)” if A ∈ Γ(X), and that “A is a true

Γ(X) set” if A ∈ Γ(X) but it does not belong to any other class as above properly
contained in Γ(X). All these notions strictly depend on the ambient space X .
Nevertheless, when X is clear from the context we will remove any reference to it
in all the terminology and notation above. This convention will be systematically
applied when dealing with an equivalence relation E on some space X , that is,
when discussing the complexity of E we will always tacitly refer to its ambient
space X ×X .

2.1. Borel codes. Similarly to what happens in the classical case [Bla81], κ+-Borel
sets can be characterized via certain games on well-founded trees which essentially
code how the given set is constructed from the clopen sets using the operations of
κ-unions and κ-intersections.

A tree T = (T,≤) is a (nonempty) partial order with exactly one minimal ele-
ment, called root, and in which the set predT (p) = {q ∈ T | q < p} of predecessors
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of any p ∈ T is a finite linear order. The elements of a tree are called nodes.
The height of a node p ∈ T is the order type (equivalently, the cardinality) of
predT (p). A leaf is a terminal node, i.e. a node p ∈ T such that p 6< q for every
q ∈ T . The tree T is well-founded if it contains no infinite chain. In this case, we
can recursively define the rank ̺T (p) of a node p ∈ T as follows:

• all leaves have rank 0;
• if p is not a leaf, then ̺T (p) = sup{̺T (q) + 1 | p < q ∈ T }.

The rank of the well-founded tree T is ̺(T ) = ̺T (r) + 1, where r is the root of
T . Notice that if |T | ≤ κ then ̺(T ) is always a successor ordinal smaller than
κ+.

Particularly important examples of trees are the trees of finite sequences over a
set A, namely, T ⊆ <ωA which are closed under initial segments and ordered by
end-extensions. If S ⊆ <ωA, the tree generated by S is

T (S) = {t ∈ <ωA | t ⊆ s for some s ∈ S}.

Notice that for such a tree T we have that its root is ∅ and |T | ≤ max{ℵ0, |A|},
whence if A is infinite and T is well-founded, then ̺(T ) < |A|+.

Canonical examples of well-founded trees of sequences are the sets Tα of all
strictly decreasing sequences of ordinals < α, for α any ordinal (so T0 is the single-
ton containing the empty sequence). It is well known that such trees are universal
among well-founded trees of size κ, that is, every κ-sized well-founded tree embeds
in Tα for some α < κ+. The next result makes explicit the dependence of such an
α from the rank of the tree under consideration.

Lemma 2.3. Let κ be an infinite cardinal. Every well-founded tree T of size ≤ κ
and rank β + 1 < κ+ can be embedded into Tκ·β. Moreover, for every β < κ+

there exists a tree of size ≤ κ and rank β+1 which does not embed in any Tα with
α < κ · β.

Proof. By induction on β < κ+. If β = 0, then T consists only of its root, and
thus it is isomorphic to Tκ·0 = T0 = {∅}. So let us assume that β > 0 (it makes no
difference whether β is successor or limit). In this case, the ≤ κ-many immediate
successors {pi | i < I}, I ≤ κ, of the root r of T are in turn roots of the trees
T i = {q ∈ T | pi ≤ q}, which are necessarily of rank ≤ β. By inductive hypothesis,
there are embeddings ψi : T i → Tκ·γi

for some γi < β (where if β = γ + 1 we may
have γi = γ for all i < I). Then the function ψ : T → Tκ·β defined by letting
ψ(r) = ∅ and ψ(q) be the sequence consisting of κ · γi + i followed by ψi(q), where
i < I is the unique index for which q ∈ T i, is clearly a well-defined embedding.

The second part of the statement is again proved by induction on β < κ+. The
basic case β = 0 is trivial. Now assume that β = γ+1, and let T ′ be a tree of size
≤ κ and rank γ + 1 which does not embed into any Tα for α < κ · γ. Let T be
obtained by appending κ-many copies of T ′ to a common root r, and let pi, i < κ,
be an enumeration of the immediate successors of r in T . Notice that T has size
κ and rank ̺(T ′) + 1 = β + 1. Towards a contradiction, let α < κ · β = κ · γ + κ
be such that there is an embedding f of T into Tα. Each f(pi) is a nonempty
sequence with some last element αi < α, so that the cone of Tα above f(pi) is
isomorphic to Tαi

. Since there are κ-many pi’s and α < κ · γ + κ, by a cardinality
argument one can check that there is ı̄ ∈ κ such that αı̄ < κ · γ. But then the
restriction of f to the cone of T above pı̄, which is isomorphic to T ′, would yield
an embedding of T ′ into Tαı̄

, contradicting the choice of T ′. The limit case is
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similar, the only complication being that we cannot start from a single tree of rank
β (since the rank of a tree is always a successor ordinal). This is fixed by choosing
a sequence (βi)i<cof(β) cofinal in β and, for each i < cof(β), a tree T i of size ≤ κ
and rank βi + 1 which cannot be embedded in any Tα for α < κ · βi, and then
considering the tree obtained by appending all these T i to a common root. �

Remark 2.4. The proof of the first part of Lemma 2.3 actually yields that each tree
T of size ≤ κ and rank β + 1 < κ+ can be embedded into Tκ·β in the following
strong sense: T is isomorphic to a subtree of Tκ·β closed under initial segments.

We now present the games which characterize the κ+-Borel subsets of X ⊆ κκ.
Let T be a well-founded tree of size ≤ κ, let ℓ be a labeling function sending the
leaves of T to clopen subsets of X , and let x be an element of X . The game
G(T , ℓ, x) is played by two players I and II on the tree T as follows. Player I

starts playing an immediate successor of the root of T , and afterwards I and II

take turns in picking an immediate successor in T of the opponent’s previous move.
Since T is well-founded, after a finite number of turns a leaf p will be selected, so
that the game cannot continue from that point on: when this happens, we have
that II won the run if and only if x ∈ ℓ(p), otherwise I won. Winning strategies
for I and II are defined as usual, and we write II ↑ G(T , ℓ, x) if player II has a
winning strategy in such game.

Remark 2.5. The set of all possible runs in G(T , ℓ, x) only depends on T , while ℓ
and x are involved only in the definition of the winning condition.

A pair consisting of a well-founded tree T of size ≤ κ and a labeling function ℓ
as above will be called a κ+-Borel code. Given such a code (T , ℓ), we let

B(T , ℓ) = {x ∈ X | II ↑ G(T , ℓ, x)}

be the set coded by (T , ℓ).
It is well known that a set A ⊆ X is κ+-Borel if and only if there is a κ+-Borel

code (T , ℓ) for it. In the next result we sharpen this by relating the Borel rank
rkB(A) of A to the rank ̺(T ) of T .

Theorem 2.6. Let κ be an infinite cardinal, X ⊆ κκ, and α < κ+. Given a set
A ⊆ X, we have that A ∈ Π

0
α(X) if and only if A = B(T , ℓ) for some κ+-Borel

code (T , ℓ) with ̺(T ) ≤ α+ 1.

Notice that since Σ
0
α(X) ⊆ Π

0
α+1(X) for every α < κ+, this also gives us a

κ+-Borel code (T , ℓ) of any given set B ∈ Σ
0
α(X) \ ∆

0
α(X) with ̺(T ) = α + 2,

while there cannot be a κ+-Borel code for B whose tree has rank < α + 2 (unless
α = 0).

Proof. First, we are going to show that every Borel set B ∈ Π
0
α(X) is coded by

some (T , ℓ) with ̺(T ) ≤ α + 1. We work by induction on α < κ+. Assume first
α = 0, i.e. B ∈ Π

0
0(X) = ∆

0
1(X): then B = B(T , ℓ) where T consists just of its

root (so that ̺(T ) = 1) and ℓ(r) = B. Assume now α = 1. Then B ∈ Π
0
1(X),

so that B =
⋂

i<κBi with Bi clopen. Let T be the tree consisting of a root
r together with κ-many immediate successors pi (i < κ) of it, and let ℓ be the
labeling function defined by ℓ(pi) = Bi. Then ̺(T ) = 2 and B = B(T , ℓ). Finally,
let α > 1. We have that B =

⋂
i<κ Bi for some Bi ∈ Σ

0
αi
(X) with 1 ≤ αi < α, and

in turn Bi =
⋃

j<κBi,j for some Bi,j ∈ Π
0
αi,j

(X) with αi,j < αi. By the inductive
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hypothesis, Bi,j = B(Ti,j , ℓi,j) with ̺(Ti,j) ≤ αi,j + 1. Let us consider the tree T

obtained by appending to each of the κ-many distinct successors pi of its root r the
trees Ti,j (that is, the root pi,j of each Ti,j is a distinct immediate successor of pi).
Notice that by construction ̺T (pi,j) = ̺Ti,j

(pi,j), whence ̺T (pi,j) ≤ αi,j because
̺Ti,j

(pi,j) + 1 = ̺(Ti,j) ≤ αi,j + 1. By definition of rank,

̺T (pi) = sup{̺T (pi,j) + 1 | j < κ} ≤ sup{αi,j + 1 | j < κ} ≤ αi,

whence ̺T (r) = sup{̺T (pi)+1 | i < κ} ≤ sup{αi+1 | i < κ} ≤ α and ̺(T ) ≤ α+
1. Define now a labeling function ℓ on the leaves of T as follows. By construction,
for each leaf p of T there is a unique pair i, j of ordinals < κ such that pi,j ≤ p: set
ℓ(p) = ℓi,j(p). We claim that B = B(T , ℓ). In fact, consider a run in G(T , ℓ, x).
In the first turn I will pick some pı̄, and II will respond by picking some pı̄,̄.
After these two moves, the rest of the run will be equivalent to a run in the game
G(Tı̄,̄, ℓı̄,̄, x). Thus we have II ↑ G(T , ℓ, x) if and only if for every i < κ there is
j < κ such that II ↑ G(Tij , ℓij , x), whence

B(T , ℓ) =
⋂

i<κ

⋃

j<κ

B(Ti,j , ℓi,j) =
⋂

i<κ

⋃

j<κ

Bi,j =
⋂

i<κ

Bi = B.

Conversely, we now prove that if B = B(T , ℓ) with ̺(T ) ≤ α + 1, then
B ∈ Π

0
α(X). The proof is again by induction on α < κ+. If α = 0, i.e. ̺(T ) = 1,

then T consists only of its root r and

B = B(T , ℓ) = ℓ(r) ∈ ∆
0
1(X) = Π

0
0(X).

Assume now α = 1. Since we already dealt with the case α = 0, we may assume
̺(T ) = 2. Let {pi | i < I}, for a suitable I ≤ κ, be the set of immediate successors
of the root r of T , so that T contains no other nodes. Then

B = B(T , ℓ) =
⋂

i<I

ℓ(pi) ∈ Π
0
1(X).

Finally, let α > 1. We may assume ̺(T ) ≥ 3. Let {pi | i < I} be the set of
immediate successors of the root r, and, for each i < I, let {pi,j | j < Ji} be the set
of immediate successors of pi in T (for suitable3 I, Ji ≤ κ). Finally, let Ti,j be the
subtree of T with domain {p ∈ T | pi,j ≤ p}, and let ℓi,j be defined on the leaves
p of Ti,j by setting ℓi,j(p) = ℓ(p) (notice that p is a leaf of Ti,j if and only if p is a
leaf of T and p ∈ Ti,j). By construction, B = B(T , ℓ) =

⋂
i<I

⋃
j<Ji

B(Ti,j , ℓi,j).

Moreover, since ̺(T ) ≤ α + 1, we get ̺T (r) ≤ α, and by definition of rank
̺T (pi,j) < ̺T (pi) < ̺T (r) for all relevant i, j. It follows that

̺(Ti,j) ≤ ̺T (pi) < α.

By inductive hypothesis, this implies that

B(Ti,j , ℓi,j) ∈
⋃

β<̺T (pi)

Π
0
β(X),

whence ⋃

j<Ji

B(Ti,j , ℓi,j) ∈ Σ
0
̺T (pi)(X) ⊆

⋃

β<α

Σ
0
β(X)

3Since we assumed ̺(T ) ≥ 3, we have that I > 0, while possibly Ji = 0 for some, but not all,
i < I.



A DESCRIPTIVE MAIN GAP THEOREM 11

for all i < I, which in turn implies
⋂

i<I

⋃

j<Ji

B(Ti,j , ℓi,j) ∈ Π
0
α(X),

as desired. �

Remark 2.7. It is clear from the proof above that we still obtain κ+-Borel sets if we
modify the definition of κ+-Borel codes by allowing the labeling function to take
arbitrary κ+-Borel sets as values. However, the Borel rank of the coded set would
in this case depend on the Borel ranks of the sets used as labels.

We also notice that one can code all κ+-Borel sets by using only the canonical
well-founded trees Tα to form codes: in a sense this shows that the relevant infor-
mation in a κ+-Borel code actually relies on the labeling function together with the
rank of the tree, but not on the specific tree itself.

Corollary 2.8. Every κ+-Borel set admits a κ+-Borel code of the form (Tα, ℓ)
for some α < κ+. More precisely, if B ∈ Π

0
α(X), then B = B(Tκ·α, ℓ) for some

labeling function ℓ.

Proof. By Theorem 2.6 there is a Borel code (T ′, ℓ′) for B with ̺(T ′) ≤ α+1. By
Lemma 2.3 and Remark 2.4, we may assume without loss of generality that T ′ is a
subtree of Tκ·α closed under initial segments. Let ℓ be the labeling function defined
on the leaves p of Tκ·α as follows. Let p′ be the largest node such that p′ ∈ T ′ and
p′ ≤ p. We distinguish three cases:

(1) if p′ is a leaf of T ′, then set ℓ(p) = ℓ′(p′);
(2) if predTκ·α

(p′) = predT ′(p′) has an odd number of elements, then set ℓ(p) = ∅;
(3) if predTκ·α

(p′) = predT ′(p′) has an even number of elements, then set ℓ(p) = X .

We claim that B(Tκ·α, ℓ) = B(T ′, ℓ′), whence B = B(Tκ·α, ℓ).
Indeed, let x ∈ X . If II ↑ G(Tκ·α, ℓ, x), then by (2) his winning strategy never

involves playing a node outside T ′ unless either I already did or in a previous turn
a leaf p′ of T ′ was reached, in which case any leaf p that will be reached at the
end of the run will be such that ℓ(p) = ℓ′(p′) by (1). Thus the restriction of any
winning strategy of II to T ′ actually witnesses II ↑ G(T ′, ℓ′, x), since obviously in
the restricted game I always plays inside T ′.

Conversely, a winning strategy for II in G(T ′, ℓ′, x) can be converted into a
winning strategy for II in G(Tκ·α, ℓ, x) as follows. As long as I is playing nodes in
T ′ which are not leaves of T ′, player II follows his strategy in G(T ′, ℓ′, x) (notice
that in this case the node played by II will be in T ′ as well). If I plays for the
first time a node outside T ′, then II can make random moves from that point
on because by (3) any leaf p of Tκ·α that will be reached will satisfy ℓ(p) = X ,
whence x ∈ ℓ(p) trivially. In the remaining case, i.e. when a leaf p′ of T ′ has been
reached by either I or II, player II can again make random moves from that point
on because by (1) any leaf p of Tκ·α that will be reached at the end of the run will
be such that ℓ(p) = ℓ′(p′), whence x ∈ ℓ(p) because p′ was reached following the
winning strategy of II in G(T ′, ℓ′, x). �

Remark 2.9. Corollary 2.8 allows us to reformulate the games coding κ+-Borel sets
as follows. Given α < κ+, a labeling function ℓ : Tα → ∆

0
1(X), and a point x ∈ X ,

the game Gα(ℓ, x) is played as follows. Player I start by choosing some ordinal
α0 < α and player II responds with some α1 < α0. Then I chooses some α2 < α1
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while II chooses α3 < α2. They continue in this way until 0 is reached, at which
point we say that II wins if and only if x ∈ ℓ(〈α0, α1, . . . , 0〉). It turns out from
what we proved above that A ⊆ X is κ+-Borel if and only if there are α < κ+ and
ℓ : Tα → ∆

0
1(X) such that A is the set of those x ∈ X for which II has a winning

strategy in Gα(ℓ, x).

2.2. Codes for κ-sized structures. Our use of generalized descriptive set theory
is mainly concerned with spaces of codes for first-order structures of size κ. For the
sake of simplicity we will consider only finitary relational4 languages L = {Ri | i <
I}, where I ≤ κ and Ri is a relation symbol of arity ni. Up to isomorphism, we
can assume without loss of generality that every κ-sized L-structure has domain
κ, hence it can be coded through the characteristic functions of its predicates.
Therefore we can regard

ModκL =
∏

i≤I

(niκ)2

as the space of (codes of) all κ-sized L-structures. It is natural to equip this space
with the logic topology, i.e. with the topology generated by the sets

(2.2) NQ = {M ∈ ModκL | Q is a substructure of the L′-reduct of M} ,

with L′ varying over subsets of L of size < κ, and Q varying over the L′-structures
with domain bounded5 in κ. Clearly, if L already has size < κ we can avoid any
reference to L′ and just let Q vary over L-structures with domain bounded in κ.
It is an easy exercise to show that ModκL is homeomorphic to κ2, so that we can
speak of (κ+-)Borel subsets of ModκL and of their Borel ranks. Given some theory
T , we denote by ModκT the space of κ-sized models of T with the subspace topology
induced by ModκL.

Recall that the infinitary logic Lκ+κ is the extension of the usual first-order logic
obtained by allowing conjunctions and disjunctions of length ≤ κ and (simultane-
ous) quantifications over sequences of variables of length < κ, while L∞κ is the
further extension of Lκ+κ in which we also allow conjunctions and disjunctions of
arbitrary (set-)size. For σ an Lκ+κ-sentence, we set

Modκ
σ
= {M ∈ ModκL | M |= σ},

and we say that a set A ⊆ ModκL is axiomatized by σ if A = Modκσ. Arguing as
in the classical case κ = ω, when κ<κ = κ there is a tight relation between the
κ+-Borel subsets of ModκL closed under isomorphism and the subsets of ModκL that
can be axiomatized within the logic Lκ+κ.

Theorem 2.10. Let κ be such that κ<κ = κ. For every A ⊆ ModκL the following
are equivalent:

(i) A ∈ Bor(ModκL) and is closed under isomorphism (i.e. M ∈ A and M ∼= N

implies N ∈ A);
(ii) A is axiomatized by some Lκ+κ-sentence σ.

A full proof of this theorem can be found in [Vau75, Theorem 4.1] or [FHK14,
Theorem 24], and more refined versions of it are presented in [AMR19, Section 8.2].

4This is not a true limitation, as functions can be dealt with through their graphs, and constants
can be construed as 0-ary functions.

5In particular, such a Q has size < κ. When κ is regular, these two conditions become equiva-
lent: the domain of Q is bounded in κ if and only if it has size < κ.
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Remark 2.11. Inspecting the above mentioned proofs from [FHK14, AMR19], it is
not hard to see that if some A ⊆ ModκL is axiomatized by a first-order formula,
then its Borel rank is finite. It follows that if A = ModκT =

⋂
σ∈T Modκ

σ
for some

countable first-order theory T , then A has Borel rank ≤ ω.

For what follows, we need to modify Theorem 2.10 in two directions:

(a) we need to “relativize” it to arbitrary subspaces of ModκL closed under isomor-
phism;

(b) we need a level-by-level version connecting the Borel rank of the set A to the
quantifier rank of the Lκ+κ-sentence axiomatizing it, as defined below.

Definition 2.12. Let ϕ be an L∞κ-formula. The quantifier rank R(ϕ) of ϕ is
defined by recursion on the complexity of ϕ as follows:

• if ϕ is atomic, then R(ϕ) = 0;
• if ϕ is of the form ¬ψ, then R(ϕ) = R(ψ);
• if ϕ is of the form

∧
j∈J ψj for some set J , then R(ϕ) = supi∈J R(ψj);

• if ϕ is of the form ∃x̄ψ, then R(ϕ) = R(ψ) + 1.

Definition 2.13. A set C ⊆ ModκL is called an invariant set if it is closed under
isomorphism. If C is of the form ModκT for T a first-order theory (respectively, of the
form Modκ

ϕ
for ϕ an Lκ+κ-sentence) we say that C is axiomatized by T (respectively,

by ϕ) and call it a first-order elementary class (respectively, an Lκ+κ-elementary
class).

Theorem 2.14. Let κ be such that κ<κ = κ. Let C ⊆ Modκ
L be an arbitrary

invariant set. Then for every A ⊆ C, we have that A ∈ Bor(C) and is closed under
isomorphism if and only if there is an Lκ+κ-sentence σ such that A = Modκ

σ
∩C.

Moreover, if A is κ+-Borel and closed under isomorphism, then σ can be chosen so
that R(σ) ≤ max{rkB(A), 1}.

Proof. One direction is easy: if σ is an Lκ+κ-sentence, then Modκ
σ
∈ Bor(ModκL)

by Theorem 2.10, hence A = Modκ
σ
∩C ∈ Bor(C).

For the other direction, following the proof of Theorem 2.10 we first need the
following claim. Let Sκ ⊆ κκ be the group of all permutations p : κ → κ endowed
with the relative topology. A basis for Sκ is given by the sets

N
−1
u = {p ∈ Sκ | p−1 ∈ Nu ∩ Sκ},

where u ∈ <κκ and Nu is the usual basic open set of κκ determined by u (clearly,
N

−1
u 6= ∅ if and only if u is injective). Recall that if κ<κ = κ then Sκ satisfies

the (generalized) Baire category theorem: every nonempty open subset of Sκ is not
κ-meager, i.e. it is not the union of κ-many nowhere dense sets ([AMR19, Theorem
6.12]). Consider the logic action of Sκ on ModκL defined by letting pM be the unique
L-structure for which p is an isomorphism between M and pM; notice that such
action is continuous. Finally, given A ⊆ Modκ

L and u ∈ <κκ, let A∗u ⊆ ModκL be
the collection of those M for which the set {p ∈ N

−1
u | pM ∈ A} is κ-comeager (i.e.

the complement of a κ-meager set) in N
−1
u .

Claim 2.14.1. Let A ∈ Bor(Modκ
L). For every β < κ there is an Lκ+κ-formula

ϕA
β ((xi)i<β) such that for every u ∈ βκ

(2.3) A∗u = {M ∈ ModκL | M |= ϕA
β [u]},
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where ϕA
β [u] is obtained by assigning to each variable xi, i < β, the element

u(i) ∈ M. Moreover, if A ∈ Π
0
α(Modκ

L) for some α < κ+, then we can also get
R(ϕA

β ) ≤ max{α, 1}.

Proof of the claim. A full proof of the first part of the claim can be found in the
second part of the proof of [FHK14, Theorem 24] or in [AMR19, Lemma 8.16]
(indeed, Claim 2.14.1 is the special case where λ = µ = κ = κ<κ). Here we just
observe that the formulas ϕA

β constructed therein have the correct quantifier rank.
We first consider four basic cases.

(1) Assume that A = NQ is a basic open set of ModκL. Let γ < κ be smallest
such that Q ⊆ γ, and let θ((yj)j<γ) be the (conjunction of the formulas in
the) L′-atomic diagram of Q, where L′ is the signature of Q (i.e. the unique
sublanguage of L of size < κ such that Q is an L′-structure). Then ϕA

β is
either ∧

j<γ

(xj = yj) ∧ θ((yj)j<γ)

or

∀(yj)j<γ




∧

i<β

(xi = yi) ∧
∧

i<j<γ

(yi 6= yj) → θ((yj)j<γ)


 ,

depending on whether γ ≤ β or β < γ. Notice that in both cases, R(ϕA
β ) ≤ 1.

(2) Assume now that A = ModκL \NQ. This case was not explicitly dealt with
in [FHK14, AMR19]. However, inspecting the proof of the previous case
one easily sees that it is enough to systematically replace θ((yj)j<γ) with
¬θ((yj)j<γ) in the formulas appearing in (1) to get the desired ϕA

β . So also

in this case R(ϕA
β ) ≤ 1.

(3) Assume now that A =
⋂

δ<κAδ with ϕAδ

β witnessing (2.3) for the set Aδ (and

the same β < κ). Then it is enough to let ϕA
β be the formula

∧
δ<κϕ

Aδ

β .

Notice that R(ϕA
β ) = supδ<κR(ϕ

Aδ

β ).

(4) Finally, assume that A = ModκL \B with ϕB
γ witnessing (2.3) for the set B

and an arbitrary γ < κ. Then it is enough to let ϕA
β be the formula

∧

β<γ<κ

∀(yj)j<γ






∧

i<β

(xi = yi) ∧
∧

i<j<γ

(yi 6= yj)


 → ¬ϕB

γ ((yj)j<γ)




Notice that R(ϕA
β ) = supβ<γ<κ(R(ϕ

B
γ ) + 1).

Using these facts, one can easily check by induction on α < κ+ that the second part
of the statement is true. Indeed, for the basic cases α = 0 or α = 1 it is enough
to observe6 that since we assumed κ<κ = κ, each A ∈ Π

0
1(ModκL) different from

ModκL is of the form A =
⋂

δ<κ(ModκL \NQδ
) for the appropriate basic open sets

NQδ
, whence R(ϕA

β ) ≤ 1 by (2) and (3). If instead A = ModκL, then A = N∅ and

hence we can conclude as well using (1). The limit case obviously follows from (3).
Finally, the successor step follows from (4) and (3), together with the fact that
each A ∈ Π

0
α+1(ModκL) is by definition of the form A =

⋂
δ<κ(Modκ

L \Aδ) with

6Notice that the bound on R(ϕA
β
) cannot be improved when α = 0: even in the simplest case

of a (nontrivial) basic clopen set A, we still have R(ϕA
β
) = 1 for small enough β’s.
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Aδ ∈ Π
0
α(ModκL) for every δ < κ (here we are also using that R(ϕAδ

γ ) is actually
independent of γ). �

Assume now that A ∈ Bor(C), with rkB(A) = α for some α < κ+, and let it be
closed under isomorphism. Without loss of generality we may assume A ∈ Π

0
α(C).

(Indeed, if A ∈ Σ
0
α(C) and σ is the Lκ+κ-sentence witnessing the theorem for

C \ A ∈ Π
0
α(C), then ¬σ is a witness for A.) Let A′ ∈ Π

0
α(ModκL) be such that

A = A′ ∩C. Applying Claim 2.14.1 to such A′ with β = 0 we get an Lκ+κ-sentence
ϕA′

0 such that (A′)∗∅ = {M ∈ ModκL | M |= ϕA′

0 } = Modκ
ϕ

A′

0

: we claim that ϕA′

0 is

the Lκ+κ-sentence σ witnessing the theorem for A. We first prove that

(A′)∗∅ ∩ C = A.

In fact, if M ∈ A then {p ∈ Sκ = N
−1
∅ | pM ∈ A′} = Sκ because A = A′ ∩ C is

closed under isomorphism, and Sκ is trivially κ-comeager in N
−1
∅ = Sκ because Sκ

satisfies the (generalized) Baire category theorem; it follows that M ∈ (A′)∗∅ ∩ C.
Conversely, if M ∈ C \ A then {p ∈ N

−1
∅ | pM ∈ A′} = ∅ because both C and

A = A′ ∩ C are closed under isomorphism; since ∅ is trivially κ-meager (hence not
κ-comeager) in N

−1
∅ , we conclude M /∈ (A′)∗∅ ∩ C.

Summing up, we have shown that A = Modκ
ϕ

A′

0

∩C, and hence we are done

because rkB(A) = α and R(ϕA′

0 ) ≤ max{α, 1} by the second part of Claim 2.14.1.
�

2.3. Equivalence relations. Throughout the paper we will repeatedly use the
following easy observations, often without explicitly mentioning them.

Fact 2.15. Let E be an equivalence relation on a topological space X. Then each
E-equivalence class [x]E is the continuous preimage of E through the continuous
function f : X → X2 defined by setting f(y) = (y, x).

Fact 2.16. Let E be an equivalence relation on X. Then

E =
⋃

{[x]E × [x]E | x ∈ X}

and

X2 \ E =
⋃

{[x]E × [y]E | x, y ∈ X and x 6E y}.

Proposition 2.17 (Folklore). Let X be any topological space, and E be an equiv-
alence relation on X. The following are equivalent:

(a) E is open;
(b) all E-equivalence classes are open;
(c) all E-equivalence classes are clopen;
(d) E is clopen.

If the equivalent conditions above are satisfied for E and X has a basis of size κ,
then E has at most κ-many classes.

Proof. Given x ∈ X , let [x]E be the E-equivalence class of E. If E is open, then
[x]E is open as well by Fact 2.15: this shows (a) ⇒ (b). To show (b) ⇒ (c) it is
enough to observe that

X \ [x]E =
⋃

{[y]E | x, y ∈ X and x 6E y},
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while (c) ⇒ (d) follows from Fact 2.16. Since (d) ⇒ (a) is obvious, we get that the
four conditions (a)–(d) are equivalent to each other.

For the additional part, notice that if B is a basis for X and x0 is any element
of X , then the map f : B → X/E defined by

f(B) =

{
[x]E if B 6= ∅ and B ⊆ [x]E

[x0]E otherwise

is well-defined and surjective (because all E-equivalence classes are nonempty open
sets). �

Corollary 2.18. For any topological space there is no true Σ
0
1 equivalence rela-

tion on X. Moreover, if X is connected (e.g. X = Rn) than the unique (cl)open
equivalence relation on it is the trivial one, that is E = X2.

Proposition 2.17 shows that no equivalence relation can be a true open set; for all
other possible complexities one can instead build an equivalence relation of exactly
that complexity.

Example 2.19 (Folklore). Let X be a Hausdorff topological space and Γ be one
of the classes Σ

0
α, Π0

α, or ∆
0
α, with the sole exception of Σ0

1. Suppose that there
is a true Γ(X) set A. Define the equivalence relation EA on Y = X × {0, 1} by
setting for x, y ∈ X and i, j ∈ {0, 1}

(x, i) EA (y, j) ⇔ (x = y) ∧ (i = j ∨ x ∈ A).

Then all EA-equivalence classes have either 1 or 2 elements (in particular, they are
closed sets), and EA is a true Γ set.

3. Categoricity from the topological viewpoint

It is well known that every complete first-order theory T has the joint embedding
property, namely: for every pair M0,M1 of models of T there is N |= T in which
M0 and M1 jointly embed (see any classical model theory textbook, e.g. [Hod93]).
From this one can easily infer that T satisfies a cardinality-preserving version of
such property.

Lemma 3.1. Let κ be any infinite cardinal, T be a (not necessarily countable)
complete first-order theory in a language L of size ≤ κ, and let M0,M1 ∈ ModκT .
Then there exists N ∈ ModκT such that M0 and M1 both embed into it.

Proof. Use the joint embedding property to find some Ñ |= T such that M0,M1

both embed into Ñ (so that in particular Ñ has size ≥ κ), and fix embeddings f0, f1
witnessing this. Let L′ be the language obtained by adding to L a new constant
symbol aα for any α ∈ M0 and a new constant symbol bβ for any β ∈ M1. Expand

Ñ to an L′-structure Ñ′ by interpreting each aα in f0(α) and each bβ in f1(β). Since
L′ has size ≤ κ, by the downward Löwenheim-Skolem theory there is an elementary

substructure N′ of Ñ′ of size κ. By the choice of the interpretations of aα, bβ in

Ñ
′, it follows that the L-reduct N of N′ is (isomorphic to a structure) in ModκT and

both M0 and M1 embed into it. �

Proposition 3.2. Let κ be any infinite cardinal, T be a (not necessarily countable)
complete first-order theory in a language L of size ≤ κ, and let M ∈ ModκT . If [M]∼=
has nonempty interior (with respect to ModκT ), then it is dense in ModκT .
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Proof. Let Q0 be such that ∅ 6= NQ0
∩ModκT ⊆ [M]∼=, and fix an arbitrary Q1 such

that NQ1
∩ModκT 6= ∅ (in particular, Q0 and Q1 are suitable reducts of bounded

substructures of κ-sized model of T ): we want to show that there is N1
∼= M such

that N1 ∈ NQ1
∩ModκT . By applying Lemma 3.1 to any M0 ∈ NQ0

∩ModκT and
M1 ∈ NQ1

∩ ModκT we obtain N ∈ ModκT such that M0 and M1 (and therefore
Q0 and Q1) embed into it. Appropriate permutations of N will induce isomorphic
copies N0 ∈ NQ0

∩ModκT and N1 ∈ NQ1
∩ ModκT . By our choice of Q0 we have

N0
∼= M, whence also N1

∼= N ∼= N0
∼= M. �

As a corollary, we get the following purely topological characterization of cate-
goricity.

Theorem 3.3. Let κ be any infinite cardinal and T be a (not necessarily countable)
complete first-order theory in a language L of size ≤ κ. The following are equivalent:

(1) T is κ-categorical;
(2) rkB(∼=

κ
T ) = 0, i.e. ∼=κ

T is clopen;
(3) [M]∼= is (cl)open for every M ∈ ModκT ;
(4) there is M ∈ ModκT such that [M]∼= is clopen.

In particular, there is no complete non-κ-categorical first-order theory T for which
∼=κ

T is a nontrivial open set.

Proof. The unique nontrivial implication is (4) ⇒ (1). Assume towards a contradic-
tion that [M]∼= is clopen but T is not κ-categorical. Then [M]∼= would trivially have
nonempty interior and ModκT \[M]∼= would be a nonempty open set, contradicting
Proposition 3.2.

The additional part follows from the fact that if ∼=κ
T is open, then so is [M]T for

all M ∈ ModκT . �

In particular, by the Morley-Shelah theorem [Hod93, Theorem 12.2.1], ∼=κ
T is

(cl)open for some uncountable κ > |T | if and only if the same happens for all
uncountable κ > |T |. We will see in Section 6.2 that this does not hold if ∼=κ

T is
more complicated.

In the countable case the above results can be further improved. The following
proposition shows that the assumption on M in Proposition 3.2 can be removed
when κ = ω, the reason being that in this case the bounded topology τb coincides
with the product topology (see also Remark 3.8),

Proposition 3.4. Let T be a complete first-order theory in a countable language
L. Then for every M ∈ ModωT , its isomorphism class [M]∼= is dense in ModωT .

Proof. Let L′ ⊆ L be finite and Q be any finite L′-structure with domain contained
in ω such that NQ ∩ModωT 6= ∅ (i.e. Q is a finite substructure of the L′-reduct of
some element of ModωT ). Let (αi)i<n be the increasing enumeration of the domain
of Q, let7 θ((yi)i<n) be the (conjunction of the formulas in the) L′-atomic diagram
of Q, and let ψ be the first-order sentence

∃y0 . . .∃yn−1 θ((yi)i<n).

By our assumption on Q, the set T ∪{ψ} is consistent, thus T |= ψ by completeness
of T . It follows that for every M ∈ ModωT , there are distinct β0, . . . , βn−1 ∈ ω such

7Here we consider first-order logic with equality, thus we include e.g. the formulas ¬(yi = yj)

for i 6= j when building such θ.
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that M |= θ[β0, . . . , βn−1]. Fix any permutation p of ω such that p(βi) = αi for
every i < n, and let N be the (unique) L-structure on ω which is isomorphic to M

via p: then N |= T and N ∈ NQ ∩ModωT ∩[M]∼=. �

Corollary 3.5. Let T be a complete first-order theory in a countable language.
Then there is no nontrivial open or closed set A ⊆ Modω

T which is closed under
isomorphism.

Proof. Assume towards a contradiction that there is such an A ⊆ ModωT . Without
loss of generality, we may assume that A is open (otherwise we replace A with
ModωT \A). Since A 6= ModωT , there is M ∈ ModωT \A, while since A is open and
nonempty we get [M]∼= ∩A 6= ∅ by Proposition 3.4, contradicting the fact that A is
closed under isomorphism. �

The following theorem strengthens Theorem 3.3 in the case κ = ω. The unique
nontrivial implication (namely, (5) ⇒ (1)) follows from Corollary 3.5.

Theorem 3.6. Let T be a complete first-order theory in a countable language. The
following are equivalent:

(1) T is ω-categorical;
(2) ∼=ω

T is clopen;
(3) rkB(∼=

ω
T ) ≤ 1, i.e. ∼=ω

T is open or closed;
(4) all isomorphism classes of the ω-sized models of T are open or closed;
(5) there is M ∈ ModωT such that [M]∼= is open or closed.

In particular, there is no complete first-order theory such that ∼=ω
T is a true open or

a true closed set.

Remark 3.7. We currently do not know if there can be an uncountable cardinal κ
and a complete first-order theory T (in a language of size ≤ κ) such that T is not
κ-categorical, yet ∼=κ

T is a true closed set. However, in such case [M]∼= would be
nowhere dense for every M ∈ ModκT : indeed, [M]∼= would be closed by Fact 2.15
and ModκT \[M]∼= would be nonempty and open, hence it would be enough to apply
Proposition 3.2 to get the desired conclusion. In particular, if κ = ℵγ is such that
κ<κ = κ and iω1

(|γ|) ≤ κ, then in the above scenario ModκT would be κ-meager
in itself (hence also in ModκL): this means that from the topological point of view
such a T would have very few κ-sized models.

Remark 3.8. Theorem 3.6 can be extended to uncountable cardinals κ if ModκT is
endowed with the so-called product topology rather than the logic one, where the
product topology is the one generated by the sets

NQ = {M ∈ ModκL | Q is a substructure of the L′-reduct of M},

with L′ ⊆ L finite and Q a finite L′-structure with domain contained in κ. (Notice
that with this topology ModκL becomes homeomorphic to κ2 when the latter is
endowed with the product of the discrete topology on 2.)

We end this section with a quite unexpected phenomenon uncovered by Theo-
rem 3.6 in the context of (classical) Borel reducibility, see [Gao09] for a standard
reference on this subject. Recall that an equivalence relation E on a topological
(usually: Polish) space X is called smooth if there is a Borel function f : X → Y
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with Y Polish8 such that for all x, y ∈ X

x E y ⇔ f(x) = f(y).

This basically means that the elements of X can be classified up to E-equivalence
using reals as complete invariants; since real numbers are well-understood, smooth
equivalence relations are thus often called concretely classifiable [Gao09, Defini-
tion 5.4.1]. However, in some situations such classification may fail to be completely
satisfactory because the Borel classifying map f could be quite complicated, and
thus it could be practically unfeasible to compute the invariant f(x) from a given in-
put x ∈ X . A natural and more adequate variation, naturally related to the notion
of continuous reducibility considered e.g. in [Gao09, Definition 5.1.2] or [Tho09],
could be the following.

Definition 3.9. An equivalence relation E on a topological space X is called
topologically smooth if there is a Hausdorff space Y and a continuous map f : X → Y
such that for all x, y ∈ X

x E y ⇔ f(x) = f(y).

Notice that the more stringent requirement that the classifying map f be con-
tinuous is balanced by the fact that we allow the classifying objects to form a more
complicated topological space, if desired; indeed, being Hausdorff is arguably the
minimal requirement in order to clearly distinguish two given invariants from each
other (but obviously nothing prevents us to further require Y to be a nicer space,
e.g. a Polish one).

It is not hard to see that there are theories T for which ∼=ω
T is smooth: con-

sider e.g. theories having at most countably many countable models. What about
topological smoothness? Of course if T is ω-categorical, then ∼=ω

T is (trivially) topo-
logical smooth. Quite surprisingly, the next result shows that if instead T is not
ω-categorical, then it is not possible to classify its countable models in a continuous
way, even in the very simple case in which T has just finitely many models.

Theorem 3.10. Let T be a complete first-order theory in a countable language.
Then ∼=ω

T is topologically smooth if and only if T is ω-categorical.

Proof. For the nontrivial direction, suppose that f : X → Y witnesses that T is
topologically smooth. Then ∼=ω

T is the preimage under the product function f × f
of the diagonal of Y . Since Y is Hausdoff, the latter is closed, and hence so is
∼=ω

T because f × f is continuous. By Theorem 3.6 we can then conclude that T is
ω-categorical. �

Remark 3.11. By Remark 3.8, similar considerations apply to the isomorphism
relations ∼=κ

T with κ > ω, provided that the continuity requirement in Definition 3.9
is referred to the product topology on ModκT .

In particular, Theorem 3.10 provides another topological characterization of
ω-categoricity, while from the point of view of Borel reducibility it yields many
natural examples of pairs of analytic equivalence relations such that one is Borel
reducible yet not continuously reducible to the other one, a notoriously difficult
problem in descriptive set theory (see the discussion in the introduction of [Tho09]).
It is maybe worth noticing that our examples are even smooth, thus simpler than

8Without loss of generality, since all uncountable Polish spaces are Borel isomorphic to each
other one can always take Y = R.
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previously known instances of this phenomenon, and can be chosen so that they
have countably many (or even finitely many) equivalence classes.

4. Scott height and Borel rank

4.1. Scott height and Ehrenfeucht-Fraïssé games. Given two κ-sizedL-structures
M,N and α ∈ On, we write M ≡α N if M and N satisfy the same L∞κ-sentences
of quantifier rank ≤ α.

Definition 4.1. Let C ⊆ ModκL be an invariant set and M ∈ C. The L∞κ-Scott
height9 of M (with respect to C) is

S(κ, C,M) = min {α ∈ On | ∀N ∈ C (M ≡α N ⇒ M ∼= N)} .

If there is no such ordinal, we set S(κ, C,M) = ∞.
When C is axiomatized by a first-order theory T we write S(κ, T,M) instead of

S(κ,ModκT ,M), and similarly when C is axiomatized by an Lκ+κ-sentence ϕ.

For our purposes, the following oft-overlooked notion becomes crucial.

Definition 4.2. The L∞κ-Scott height of an invariant set C ⊆ ModκL is the supre-
mum of the L∞κ-Scott heights of its κ-sized models, i.e.

S(κ, C) = sup{S(κ, C,M) | M ∈ C}.

We again simplify the notation writing S(κ, T ) and S(κ,ϕ) rather than S(κ,ModκT )
and S(κ,Modκ

ϕ
), respectively.

Remark 4.3. Recall that when L is a relational language, then M ≡0 N for all
M,N ∈ ModκL because there are no L∞κ-sentences with quantifier rank 0. Thus
the following are equivalent for any L-theory T :

(a) T is uncountably categorical;
(b) for some/any κ > ω there is M ∈ ModκT with S(κ, T,M) = 0;
(c) for some/any κ > ω, S(κ, T ) = 0.

More generally, if C ⊆ ModκL is an invariant set we have: C consists of a single
isomorphism class if and only if there is M ∈ C with S(κ, T,M) = 0, if and only if
S(κ, C) = 0.

A useful way to deal with these notions is via Ehrenfeucht-Fraissé games.

Definition 4.4. Let T be a well-founded ≤ κ-sized tree and let M and N be
models (with domain κ). In the Ehrenfeucht-Fraïssé game EFκ

T (M,N), at every
step player I plays a pair (p, C) where p is a node of T and C is a subset of κ, while
player II picks a partial function f : κ → κ. The rules are as follows. Suppose the
sequence of moves ((pi, Ci), fi)i<n has been played. Then:

• player I picks a node pn ∈ T which is an immediate successor of pn−1 (or
of the root, if n = 0) and a subset Cn ⊂ κ of size less than κ such that
Cn ⊇ Ci for every i < n;

• player II picks a partial function fn : κ → κ such that | dom(fn)| < κ,
dom(fn) ∩ ran(fn) ⊇ Cn, and fn ⊇ fi for every i < n.

9This is slightly different from the definition of Scott height found in [FHK14].
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The game ends when player I runs out of nodes to pick from, that is, she cannot
move on the n-th round because pn−1 is a leaf of T (this must happen at some
stage n < ω because T is well-founded). Then player II wins if f =

⋃
i<n fi

is a partial isomorphism between M and N, otherwise player I wins. We write
Ω ↑ EFκ

T (M,N) to indicate that player Ω has a winning strategy in EFκ
T (M,N),

and Ω 6↑ EFκ
T (M,N) to indicate she has none.

Remark 4.5. When T has rank 1, i.e. when it consists only of its root, there is
no possible first move for I: this means that f =

⋃
i<n fi is the empty function,

which is always a partial isomorphism. We conclude that for such a T we have
II ↑ EFκ

T (M,N) for any M,N.

Remark 4.6. The possible runs of EFκ
T (M,N) are independent of both M and N,

which are instead involved only in the winning condition of the game. For this
reason we will speak about “run(s) in the game EFκ

T (·, ·)” when we want to refer
to run(s) in some/any game of the form EFκ

T (M,N) for M,N ∈ ModκL.

To simplify the notation, we write EFκ
α(M,N) for EFκ

Tα
(M,N). The link between

EF-games and Scott height is the following result.

Theorem 4.7. [Vää11, Theorem 9.27] For any two models M and N and every
ordinal α,

M ≡α N ⇔ II ↑ EFκ
α(M,N).

It follows that

S(κ, C,M) = min {α ∈ On | ∀N ∈ C (II ↑ EFκ
α(M,N) ⇒ M ∼= N)} .

4.2. Scott height and Borel rank. The following two theorems refine the two
directions of [FHK14, Theorem 65] in order to obtain an explicit connection between
Scott height of a theory and Borel rank of its isomorphism relation. We also consider
arbitrary invariant sets C rather than just those of the form ModκT for T a first-
order theory: this will allow us to obtain further corollaries concerning e.g. Lκ+κ-
elementary classes. The proofs are essentially unchanged: the novelty is the explicit
computation of the ranks involved.

Let us fix an invariant set C ⊆ ModκL, with L a relational language as in Sec-
tion 2.2. We consider the isomorphism relation ∼=κ

C between structures in C as a
subset of C × C. In particular, rkB(∼=

κ
C) is computed relatively to C × C, that is,

rkB(∼=
κ
C) is the smallest δ ∈ On such that

{
(M,N) ∈ C2 | M ∼= N

}
= D ∩ C2

for some D ∈ Σ
0
δ

(
(ModκL)

2
)
∪Π

0
δ

(
(ModκL)

2
)

if such a δ exists, and rkB(∼=
κ
C) = ∞

otherwise.

Theorem 4.8. Let κ<κ = κ. If rkB(∼=
κ
C) 6= ∞, then for every M,N ∈ C

M ∼= N ⇔ II ↑ EFκ
max{rkB(∼=κ

C
),1}(M,N).

Proof. First, we extend our language L = {Ri | i < I} (where each Ri is of arity
ni) to the language L̄ = L ∪ {P}, where P is a new unary relational symbol. The
first step is to turn ∼=κ

C into a Borel subset A (with same Borel rank) of a suitable
invariant set C′ ⊆ ModκL̄, so that we can apply Theorem 2.14.

Let

W =
{
Ā ∈ ModκL̄ |

∣∣∣P Ā

∣∣∣ =
∣∣∣κ \ P Ā

∣∣∣ = κ
}
.
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Clearly W is closed under isomorphism, and for every Ā ∈ W there are unique
order preserving bijections

τ Ā1 : κ→ P Ā and τ Ā2 : κ→ κ \ P Ā.

We can then define a continuous surjective map h : W → (Modκ
L)

2 such that

h(Ā) = (h1(Ā), h2(Ā)) = (A1,A2)

where for k = 1, 2 we let Ak be the L-structure defined by setting

RAk

i (x1, . . . , xni
) ⇔ RĀ

i (τ
Ā

k (x1), . . . , τ
Ā

k (xni
))

for every i < I. Let

C′ =W ∩ h−1 [C × C] .

Our hypothesis is that rkB(∼=
κ
C) < κ+, hence also δ = max{rkB(∼=

κ
C), 1} < κ+. By

continuity of h we have that

A =
{
Ā ∈ C′ | h1(Ā) ∼= h2(Ā)

}
= h−1(∼=κ

C)

is such that rkB(A) ≤ rkB(∼=
κ
C), and clearly both C′ and A are closed under isomor-

phisms because Ā ∼= B̄ implies both Ā∩P Ā ∼= B̄∩P B̄ and Ā \P Ā ∼= B̄ \P B̄: thus
by Theorem 2.14 there exists an L̄κ+κ-sentence σ with R(σ) ≤ max{rkB(A), 1} ≤ δ
such that

A =
{
Ā ∈ C′ | Ā |= σ

}
.

It follows that Ā 6≡δ B̄ for all Ā ∈ A and B̄ ∈ C′ \A. By Theorem 4.7, this means
that for all Ā, B̄ ∈ C′

(4.1) if Ā ∈ A and B̄ /∈ A, then II 6↑ EFκ
δ (Ā, B̄).

We use this fact to show that for all M,N ∈ C

M ∼= N ⇔ II ↑ EFκ
δ (M,N),

as desired. The direction (⇒) is obvious by definition of EF-games. In order to
prove (⇐), suppose towards a contradiction that there are nonisomorphic models
M,N ∈ C such that II ↑ EFκ

δ (M,N). We define Ā, B̄ ∈ X by setting:

• P Ā = P B̄ = {2α | α < κ}, so that

τ Ā1 = τ B̄1 : κ→ P Ā : α 7→ 2α

and

τ Ā2 = τ B̄2 : κ→ κ \ P Ā : α 7→ 2α+ 1,

and for every Ri ∈ L

• RĀ(τ Ā1 (x1), . . . , τ
Ā
1 (xni

)) ⇔ RĀ(τ Ā2 (x1), . . . , τ
Ā
2 (xni

)) ⇔ RM(x1, . . . , xni
)

• RB̄(τ B̄1 (x1), . . . , τ
B̄
1 (xni

)) ⇔ RM(x1, . . . , xni
), while RB̄(τ B̄2 (x1), . . . , τ

B̄
2 (xni

)) ⇔
RN(x1, . . . , xni

)

• for every x1, . . . , xni
∈ κ, if there are 1 ≤ k, k′ ≤ ni such that P Ā(xk) and

¬P Ā(xk′ ) then ¬RĀ(x1, . . . , xni
), and the same with Ā replaced by B̄.

Note that h(Ā) = (M,M) and h(B̄) = (M,N).

Claim 4.8.1. II ↑ EFκ
δ (Ā, B̄).
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Proof of the claim. Clearly II ↑ EFκ
δ (M,M), and we assumed II ↑ EFκ

δ (M,N).
Let σ1 and σ2 be two winning strategies for II in the respective games. We are
going to show how to combine σ1 and σ2 in order to obtain a winning strat-
egy for II in EFκ

δ (Ā, B̄). To this aim, first note that any partial isomorphisms

f1 : M → M and f2 : M → N induce partial isomorphisms f1 : Ā ∩ P Ā → B̄ ∩ P B̄

and f2 : Ā \ P Ā → B̄ \ P B̄, whose union is still a partial isomorphism f : Ā → B̄

(because of the last condition in the definition of Ā and B̄). Suppose player I has
last played (p, C) in EFκ

δ (Ā, B̄) for some p ∈ T and C ⊂ κ. Let

C1 = {α < κ | 2α ∈ C} and C2 = {α < κ | 2α+ 1 ∈ C}.

Then the map

(p, C) 7→ σ1((p, C1)) ∪ σ2((p, C2))

is clearly a winning strategy for player II. �

Now notice that Ā ∈ A because h(Ā) = (M,M), while B̄ /∈ A because h(B̄) = (M,N)
and we assumed M ≇ N. Thus II 6↑ EFκ

δ (Ā, B̄) by (4.1), contradicting Claim 4.8.1.
�

Theorem 4.9. Let κ<κ = κ and assume that |L| < κ. Suppose that there is a
well-founded ≤ κ-sized tree T with ̺(T ) = β + 1 such that for every M,N ∈ C

M ∼= N ⇔ II ↑ EFκ
T (M,N).

Then ∼=κ
C ∈ Π

0
2β(C

2), whence, in particular, rkB(∼=
κ
C) ≤ 2β.

Proof. Let U be the tree of all partial runs in EFκ
T (·, ·), that is, the tree generated

by the sequences of the form

〈(p0, C0), f0, . . . , (pn−1, Cn−1), fn−1〉

such that:

• p0 is an immediate successor of the root r of T , and pi is an immediate
successor of pi−1 for every 0 < i < n;

• Ci ⊆ Cj ⊂ κ with |Cj | < κ for every 0 ≤ i ≤ j < n;
• fj : κ→ κ is a partial function such that dom(fj)∩ran(fj) ⊇ Cj , | dom(fj)| < κ

and fi ⊆ fj for every 0 ≤ i ≤ j < n.

Clearly U is still a well-founded tree because every branch of U is long twice
some branch of T (plus the root), and it is of size ≤ κ because the amount of
successors of any node of U , which is determined by the number of possible moves
of I and II in a round of EFκ

T (·, ·), is at most κ<κ = κ. Notice also that the leaves
of U are exactly the maximal runs in EFκ

T (·, ·), that is sequences

〈(p0, C0), f0, . . . , (pn−1, Cn−1), fn−1〉

where pn−1 is a leaf of T . (When β = 0 we have U = {∅}, and the unique maximal
branch of U is 〈∅〉.)

Claim 4.9.1. ̺(U ) = 2β + 1.

Proof of the claim. By induction on β. The case β = 0 is clear. Suppose β > 0.
Then the root r of T has rank β, and its immediate successors {qi | i < κ} have
rank βi < β. By the inductive hypothesis every node of the form 〈(qi, C), f〉 ∈ U

has rank 2βi, thus every node of the form 〈(qi, C)〉 has rank 2βi + 1 and the root
has rank sup{2βi + 2 | i < κ} = 2β, whence U has rank 2β + 1. �
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Next we define a labeling function ℓ on the leaves

b = 〈(p0, C0), f0, . . . , (pn−1, Cn−1), fn−1〉

of U by setting f =
⋃

i<n fi = fn−1 and

(4.2) ℓ(b) =
{
(M,N) ∈ C2 | f : M → N is a partial isomorphism

}
.

(Notice that when β = 0 then necessarily n = 0, so that f is the empty function
and ℓ(b) = C2.) We claim10 that ℓ(b) is a (relatively) clopen subset of C2. Let
(M,N) ∈ ℓ(b), and let Q and R be the substructures of, respectively, M and N with
domain dom(f) ∪ ran(f). Since | dom(f) ∪ ran(f)| < κ and κ is regular, NQ and
NR are basic clopen sets of ModκL and clearly

(M,N) ∈ (NQ ×NR) ∩ C2 ⊆ ℓ(b).

This shows that ℓ(b) is (relatively) open in C2, and the same argument (applied to
any (M,N) /∈ ℓ(b)) shows that it is also (relatively) closed.

Thus (U , ℓ) is a κ+-Borel code for a subset of C2: we claim that B(U , ℓ) is
exactly ∼=κ

C , that is that for every M,N ∈ C

M ∼= N ⇔ II ↑ G(U , ℓ, (M,N)).

Indeed, by the hypothesis of the theorem it suffices to show

II ↑ EFκ
T (M,N) ⇔ II ↑ G(U , ℓ, (M,N)) :

but this follows immediately from the fact that the two games have essentially the
same moves (by definition of U ), and the winning conditions for player II in the
two games are equivalent (by definition of ℓ).

Since ̺(U ) = 2β+1 by Claim 4.9.1, by Theorem 2.6 we then get that ∼=κ
C = B(U , ℓ)

belongs to Π
0
2β(C

2), as required. �

We are now ready to prove our main technical result, which refines [FHK14,
Theorem 65] and yields to Theorem 1.7 by setting C = ModκT for T the first-order
theory under consideration.

Definition 4.10. Given an invariant set C ⊆ ModκT , we set

B(κ, C) = rkB(∼=
κ
C).

When C is of the form ModκT for some first-order theory T (respectively, of the form
Modκ

ϕ
for some Lκ+κ-sentence ϕ) we simply write B(κ, T ) (respectively, B(κ,ϕ))

rather than B(κ,ModκT ) (respectively, B(κ,Modκ
ϕ
)).

Theorem 4.11. Let κ<κ = κ, assume that |L| < κ, and let C ⊆ ModκL be an
invariant set.

(1) S(κ, C) ≤ max{B(κ, C), 1}. In particular, if ∼=κ
C is κ+-Borel, then S(κ, C) <

κ+. If moreover C = ModκT for some complete first-order theory T , then we
further have S(κ, C) ≤ B(κ, C).

(2) If S(κ, C) < κ+, then ∼=κ
C ∈ Π

0
2S(κ,C)(C

2), whence ∼=κ
C is κ+-Borel. In partic-

ular, B(κ, C) ≤ 2S(κ, C).

10Here is where we use the assumption |L| < κ, which ensures that we can take Q and R below
to be substructures of M and N, and not just of suitable reducts of them.
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Proof. If B(κ, C) 6= ∞, then by Theorem 4.8 for every M,N ∈ C we have
II ↑ EFκ

max{B(κ,C),1}(M,N) ⇔ M ∼= N, which means S(κ, C) ≤ max{B(κ, C), 1}. The
additional part when C is axiomatized by a complete first-order theory T follows
from the fact that if rkB(∼=

κ
T ) = 0 then T is κ-categorical by Theorem 3.3, hence

also S(κ, C) = S(κ, T ) = 0.
On the other hand, if S(κ, C) < κ+ then TS(κ,C), which is of rank S(κ, C) + 1,

witnesses the hypothesis of Theorem 4.9, so ∼=κ
C ∈ Π

0
2S(κ,C)(C

2). �

Corollary 4.12. Let κ<κ = κ, assume that |L| < κ, and let C ⊆ ModκL be an
invariant set.

(1) If one of B(κ, C) and S(κ, C) is < κ+, then both of them are < κ+ and

S(κ, C) ≤ max{B(κ, C), 1} and B(κ, C) ≤ 2S(κ, C),

so that S(κ, C) and B(κ, C) have finite distance.
(2) If moreover C = ModκT for a complete first-order theory T , then actually

S(κ, T ) ≤ B(κ, T ) ≤ 2S(κ, T ).

(3) If one of B(κ, C) and S(κ, C) is a limit ordinal < κ+, then

B(κ, C) = S(κ, C).

Proof. For part (3), notice that if S(κ, C) is limit then S(κ, C) = 2S(κ, C), whence
B(κ, C) = S(κ, C) by (1). Therefore it is enough to show that if S(κ, C) is not limit,
then neither is B(κ, C): this follows again from (1), noticing that in such case all
ordinals between S(κ, C) and 2S(κ, C) are not limit, and either B(κ, C) is among
them or it is 0. �

We will see in Section 6.2 that part (3) above may fail for successor ordinals
even when considering the special case of invariant sets axiomatized by a countable
complete first-order theory T .

Remark 4.13. In some of the above results we had to require |L| < κ. This has no
influence on the main results of the paper contained in Section 5, as there we will
be dealing with uncountable κ’s and countable languages L. As for the results of
this section, notice that the hypothesis that L be small is only used in the proof of
Theorem 4.9 to ensure that the labelling function ℓ defined after Claim 4.9.1 takes
clopen sets as values. When L is of size κ, the set ℓ(b) in (4.2) turns out to be in
general closed: this just causes a minor modification to the indexes one gets. For
example, in this situation we can still conclude at least that ∼=κ

C ∈ Π
0
2β+1(C

2), so
that rkB(∼=

κ
C) ≤ 2β + 1. With this in mind, one can easily modify the subsequent

results accordingly and get e.g. that S(κ, C) and B(κ, C) have finite distance also
when |L| = κ.

5. A descriptive analogue to Shelah’s Main Gap Theorem

For the rest of this section, we fix a countable complete first-order theory T
(which in particular means that the underlying language L is countable as well).
Under certain cardinality hypotheses, Shelah’s classification can be translated in
terms of Scott height. We sum up in the following theorem the results we need.

Theorem 5.1 (Shelah). (1) Let κ > 2ℵ0 . If T is classifiable shallow of depth α,
then all of its κ-sized models have L∞κ-Scott height ≤ 2α.
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(2) Let κ ≥ 2ℵ0 . If T is superstable deep (in particular, if it is classifiable deep),
then there are κ-sized models of T with arbitrarily large L∞κ-Scott height below
κ+.

(3) Let κ > ω regular. If T is not classifiable, then there are κ-sized models of T
with L∞κ-Scott height ∞. The converse holds as well if κ > 2ℵ0 .

Proof. (1) This is a special case of [She90, Theorem XIII.1.5], the hypotheses
of which come true because all countable theories with NOTOP have the
existence property by [She90, Conclusion XII.5.14].

(2) This is a consequence of [She90, Theorem XIII.1.8] obtained by letting µ = λ.
(3) The first implication is [She87, Main Conclusion 0.2] when T = T1, while the

other direction holds for every κ > 2ℵ0 by [She90, Theorem XIII.1.1]. �

We also need the following result by Lascar.

Theorem 5.2 (Lascar, [Las85, Théorème 4.1]). If T is classifiable shallow, the
depth of T is countable.

Summing up the above results, we get the following corollary.

Corollary 5.3. Let κ > 2ℵ0 be regular. Then S(κ, T ) < ∞ if and only if T is
classifiable. Furthermore:

• if T is classifiable shallow of depth α, then S(κ, T ) ≤ 2α < ω1;
• if T is classifiable deep, then S(κ, T ) = κ+.

Combining Corollary 5.3 with Theorem 4.11 we immediately obtain the following
result, yielding in particular to Theorem 1.9 and refining Theorem 1.5 (that is,
[FHK14, Theorem 63]).

Theorem 5.4. Let κ<κ = κ > 2ℵ0 . Then

• if T is classifiable shallow of depth α, then ∼=κ
T ∈ Π

0
4α((ModκT )

2);
• if T is not classifiable shallow, then ∼=κ

T is not κ+-Borel.

In particular, T is classifiable shallow if and only if rkB(∼=
κ
T ) < ω1.

This gives us a non-trivial upper bound for the Borel rank of the isomorphism
relation on the κ-sized models of a classifiable shallow theory. We remark once
again that it does not depend on the fixed size κ of the models. Here we collect a
few sample applications of this observation (κ is always assumed to be any cardinal
satisfying κ<κ = κ > 2ℵ0). The source for these examples (and more!) is [HL97].

(i) The classifiable theory T of the additive group of integers has depth 1, thus
∼=κ

T is Π
0
4.

(ii) Fix β < ω1, suppose our language contains binary relation symbols Eα for
every α < β, and define a theory T β such that:

– Eα is an equivalence relation for every α < β;
– if γ < δ < β, then Eγ refines Eδ and every class in Eδ contains infinitely

many classes of Eγ ;
– each class of E0 is infinite.

It can be shown that T β is a classifiable shallow theory of depth β + 1, thus
∼=κ

Tβ is Π0
4β+4. Furthermore, the disjoint union of theories T βi with βi cofinal

in γ is a classifiable shallow theory T̄ γ of depth γ, thus ∼=κ
T̄γ is Π

0
4γ .
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In principle, this approach could be reversed. The above Descriptive Main Gap
Theorem 5.4 could provide different means to study the stability properties of a
theory T . Namely, if one succeeds, using descriptive set-theoretical methods, in
proving that ∼=κ

T is κ+-Borel for a suitable uncountable κ, then we can conclude
that T is classifiable shallow; and if one can also compute rkB(∼=

κ
T ), then we have a

lower bound for (four times) the depth of T . This method could thus turn out to be
useful to isolate “natural” classifiable shallow theories with higher and higher depth,
a notoriously tricky problem. The advantages of this new approach compared to
the classical ones would be the following:

• There is a lot of freedom in choosing the cardinal κ, it is enough that
κ<κ = κ > 2ℵ0 .

• There is also some freedom in the choice of the set-theoretic universe to
work in. For example, any forcing extension of the universe in which all
cardinals and the continuum are preserved would be fine.

• It could be easier to compute the Borel rank of ∼=κ
T rather than directly

computing the depth of T . In particular, we do not need to analyze all
models of T individually, it suffices to look for a “Borel” way to classify
them up to isomorphism.

6. Further results and open problems

6.1. Possible complexities for ∼=κ
C. The fact that B(κ, C) = α for some ordinal

α < κ+ tells us that ∼=κ
C is either a true ∆

0
α set, or a true Σ

0
α set, or a true Π

0
α set,

but it does not distinguish among the three possibilities. Below we provide some
additional information on this finer classification of complexities.

The case of Σ0
1 has been dealt with in Proposition 2.17 and Section 3: ∼=κ

C cannot
be a true open set, and if C is axiomatized by a complete first-order theory T then
∼=κ

C is (cl)open if and only if T is κ-categorical. In Example 2.19 we have instead
seen that for any of the other pointclasses there is an equivalence relation on κ2
lying exactly in that class. Quite surprisingly, the next result shows, in particular,
that this is no more true if we restrict our attention to isomorphism relations over
models of a countable complete first-order theory T or of an Lκ+κ-sentence ϕ: if
κ<κ = κ, then ∼=κ

T and ∼=κ
ϕ

cannot be a true Σ
0
α set if α is a limit ordinal.

Theorem 6.1. Let κ<κ = κ, assume that |L| < κ, and let α < κ+ be a limit
ordinal. Then there is no invariant set C ⊆ ModκL for which ∼=κ

C is a true Σ
0
α set.

Proof. Suppose that ∼=κ
C is Σ

0
α. Then B(κ, C) = α, whence S(κ, C) = α by Corol-

lary 4.12(3), so that ∼=κ
C is Π

0
α by Theorem 4.11(2). This shows that ∼=κ

C is ∆
0
α, i.e.

it is not a true Σ
0
α set. �

Notice that Theorem 6.1 applies to κ = ω as well: to the best of our knowledge,
this is a new observation also in this context. In contrast, we will see in Proposi-
tion 6.5 that, working in ZFC alone, ∼=κ

C may be a true Π
0
α set or a true ∆

0
α set

for appropriate α’s, even when restricting the attention to first-order elementary
classes C = ModκT .

The next result provides other nontrivial limitations to the possible complexities
of ∼=κ

C (for some specific cardinals κ) when C is first-order axiomatizable.
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Proposition 6.2. Assume that κ = ℵγ is such that κ<κ = κ and iω1
(|γ|) ≤ κ.

Then there is no countable complete first-order theory T such that ∼=κ
T is a true Σ

0
α

or a true Π
0
α for any 1 ≤ α < κ+.

Proof. Let T be any countable complete first-order theory, and assume that
rkB(∼=

κ
T ) = α for some 1 ≤ α < κ+. Then for all M ∈ ModκT we also have

rkB([M]∼=) = α by Fact 2.15. By Remark 1.2 there are < κ-many ∼=κ
T -equivalence

classes, hence the complement of any ∼=κ
T -equivalence class is a union of < κ-many of

them. Since κ<κ = κ implies that Π0
α(ModκT ) is closed under unions of size < κ (and

the same trivially holds for Σ
0
α(ModκT )), it follows that [M]∼= ∈ ∆

0
α(ModκT ) for ev-

ery M ∈ ModκT . By Fact 2.16 and the fact that there are < κ-many ∼=κ
T -equivalence

classes, we then conclude that both ∼=κ
T and (ModκT )

2 \ ∼=κ
T are Σ

0
α, whence ∼=κ

T is
∆

0
α. �

Remark 6.3. As argued in Remark 1.2 it is not difficult to find cardinals satisfying
the hypothesis of Proposition 6.2. For example, under GCH it is enough to pick
any ω1 ≤ δ, γ ∈ On with |γ| ≥ |δ| and δ a successor ordinal, and then set κ = ℵγ+δ

(the requirement that δ be successor is to ensure that κ<κ = κ).

Motivated by the above partial results, we end this section with the following
very general question (compare it with Proposition 6.5 below).

Question 6.4. For which infinite cardinals κ and classes Γ ∈ {Σ0
α,Π

0
α,∆

0
α} with

1 ≤ α < κ+ there is an invariant set C ⊆ ModκL such that ∼=κ
C is a true Γ set?

In particular, is there any C and κ as above such that ∼=κ
C is a true Σ

0
α set for

some 1 ≤ α < κ+, at least consistently? If yes, can C be taken to be a first-order
elementary class or an Lκ+κ-elementary class?

6.2. An example. In this section we show that the values of B(κ, C) and S(κ, C)
may depend on the cardinal κ, and that they may differ from each other when they
are successor ordinals (compare this with Corollary 4.12(3)). In particular, this can
happen even when restricting to invariant sets of the form ModκT for T a countable
complete first-order theory in a finite language.

Let L = {P} be the language consisting of just one relational symbol, and let
T be the countable complete first-order L-theory asserting that there are infinitely
many elements which satisfy P and infinitely many elements which do not. The
isomorphism type of a model M of T is uniquely determined by the cardinality of
PM and of its complement. In particular, the cardinality of (at least) one of these
two sets must equal the size of M, while the other set may have any intermediate
infinite cardinality. Thus if we consider models of size κ = ℵα then there are
|α|-many isomorphism types if α ≥ ω, and 2n + 1-many ones if α = n < ω; in
particular, there are always ≤ κ-many of them, and if κ is not a fixed point of the
ℵ function, then there are < κ-many ones. Notice also that T is ℵ0-categorical but
not uncountably categorical.

Proposition 6.5. Let κ<κ = κ > ω.

(1) If κ = λ+ is a successor cardinal, then S(κ, T ) = 2 and ∼=κ
T is a true ∆

0
3 set.

In particular, B(κ, T ) = 3.
(2) If κ is a limit cardinal, then S(κ, T ) = 1 while ∼=κ

T is a true Π
0
2 set. In

particular, B(κ, T ) = 2.



A DESCRIPTIVE MAIN GAP THEOREM 29

Proof. We first consider the case κ = λ+, and begin with the computation of
S(κ, T ).

Claim 6.5.1. Let M,N ∈ ModκT be such that |PM| = λ while |κ \ PM| = |PN| =
|κ \ PN| = κ = λ+. Then II ↑ EFκ

1 (M,N).

Proof of the claim. Any run of EFκ
1 (M,N) consists of just one round where I pro-

vides a set C ⊆ κ of size ≤ λ and II has to respond with a partial isomorphism
f between M and N of size < κ and such that C ⊆ dom(f) ∩ ran(f). But clearly
this is always possible: just let dom(f) = ran(f) = D ⊇ C be any subset of κ such
that all of D ∩ PM, D \ PM, D ∩ PN, and D \ PN have size λ, and then define f
in the obvious way. �

Claim 6.5.2. If M,N ∈ ModκT are not isomorphic, then I ↑ EFκ
2 (M,N) (whence

II 6↑ EFκ
2 (M,N)).

Proof of the claim. Since M 6∼= N we have that either |PN| 6= |PM| or |κ \ PM| 6=
|κ \ PN|. Without loss of generality, we may assume |PM| < |PN| ≤ κ (the other
cases are similar). Let I play PM in the first round of the game, and let f be the
move of II in this first round, which may be assumed to be a partial isomorphism
(otherwise I already won). Notice that it cannot happen that ran(f) ⊇ PN because
of the cardinality assumption on PM and PN. Thus on the second round I can
play any D ⊇ PM of size < κ containing at least one point in PN \ ran(f), and
II will not be able to extend f to a partial isomorphism with range extending D
because there are no more points in (κ \ dom(f)) ∩ PM. �

On the one hand S(κ, T ) > 1 because the structures M and N considered in
Claim 6.5.1 are not isomorphic. On the other hand, Claim 6.5.2 yields S(κ, T ) ≤ 2
by contrapositive. Thus S(κ, T ) = 2.

Now we compute the topological complexity of ∼=κ
T . Let M̂ ∈ ModκT be such that

|P M̂| = |κ \ P M̂| = κ.

Claim 6.5.3. [M̂]∼= is a true Π
0
2(ModκT ) set.

Proof of the claim. Indeed,

[M̂]∼= =
⋂

α<κ

⋃

α≤β,β′<κ

{N ∈ ModκT | β ∈ PN ∧ β′ /∈ PN},

whence [M̂]∼= ∈ Π
0
2(ModκT ). On the other hand, the function f sending x ∈ κ2 to

the structure N ∈ ModκT such that

PN = λ ∪ {λ+ 2α | x(α) = 1}

is continuous and such that f−1([M̂]∼=) = P where

P = {x ∈ κ2 | ∀α < κ ∃α ≤ β < κ (x(β) = 1)}.

Since the latter is a well-known true Π
0
2(

κ2) set, [M̂]∼= cannot be Σ
0
2(ModκT ) and

we are done. �

Claim 6.5.4. If N ∈ ModκT \[M̂]∼=, then [N]∼= ∈ Σ
0
2(ModκT ).



30 F. MANGRAVITI AND L. MOTTO ROS

Proof of the claim. Let us consider the case where N is such that |PN| = λ (the
other cases are similar). We have

[N]∼= =
⋃{

AQ ∩ModκT | Q is a λ-sized structure

with domain ⊆ κ and |PQ| = λ
}
,

where
AQ = NQ ∩ {R ∈ ModκL | PR = PQ}.

Since {R ∈ ModκL | PR = PQ} is closed in ModκL, then so is AQ, whence [N]Q is a
union of κ-many closed sets by κ<κ = κ. �

Claim 6.5.5. Let N̂ ∈ ModκT be such that |P N̂| = λ. Then [N̂]∼= is a true Σ0
2(Modκ

T )
set.

Proof of the claim. By Claim 6.5.4 it is enough to show that [N̂]∼= /∈ Π
0
2(Modκ

T ).

But if f and P are as in the proof of Claim 6.5.3, then f−1([N̂]∼=) =
κ2 \ P : since

κ2 \ P is a true Σ
0
2(

κ2) set, we are done. �

Since there are at most κ-many isomorphism types for κ-sized models of T , by
Claim 6.5.3 and Claim 6.5.4 we get that both

∼=κ
T =

⋃
{[M]∼= × [M]∼= | M ∈ ModκT }

and
(Modκ

T )
2 \ ∼=κ

T =
⋃

{[M]∼= × [N]∼= | M,N ∈ ModκT and M 6∼= N}

belong to Σ
0
3, whence ∼=κ

T ∈ ∆
0
3. Finally, ∼=κ

T /∈ Σ
0
2 and ∼=κ

T /∈ Π
0
2 by Claim 6.5.3

and Claim 6.5.5, respectively, together with Fact 2.15.

We now consider a limit cardinal κ, and again compute first S(κ, T ).

Claim 6.5.6. If M,N ∈ ModκT are not isomorphic, then I ↑ EFκ
1 (M,N) (whence

II 6↑ EFκ
1 (M,N)).

Proof of the claim. Since M 6∼= N we have that either |PM| 6= |PN| or
|κ \ PM| 6= |κ \ PN|. Without loss of generality, we may assume |PM| < |PN| (the
other cases are similar). Since κ is limit, there is a cardinal λ < κ such that
|PM| < λ ≤ |PN|. So I can play any subset C of PN of size λ as her first (and
unique) move, and by choice of λ player II will not be able to produce a partial
isomorphism between M and N with range containing C. �

By contrapositive, S(κ, T ) ≤ 1. On the other hand, S(κ, T ) > 0 because T is
not uncountably categorical. Thus S(κ, T ) = 1.

To compute the topological complexity of ∼=κ
T , notice that for every M,N ∈ ModκT

one has M ∼= N if and only if

for all cardinals λ < κ, there are at least λ-many elements in PM if
and only if there are at least λ-many elements in PN, and the same
when replacing PM and PN with κ \PM and κ \PN, respectively.

(Here it is crucial that κ is a limit cardinal to ensure that if for all λ < κ there are
at least λ-many elements in PM, then |PM| = κ, and similarly for PN, κ\PM, and
κ \PN.) The above condition easily yields that ∼=κ

T ∈ Π
0
2. To see that ∼=κ

T does not
belong to any lower class, just observe that Claim 6.5.3 holds for limit κ’s as well
and use again Fact 2.15. �
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Notice that in part (2) the relation ∼=κ
T has the maximal complexity allowed by

Theorem 4.9. We also remark that Proposition 6.5(2) does not contradict Propo-
sition 6.2 because it deals with regular limit (i.e. weakly inaccessible) cardinals,
which in models of GCH are inaccessible and thus limit points of the ℵ-function —
by Remark 1.2 in such a situation the upper bound on the number of models given
by Theorem 1.1 is trivial and the proof of Proposition 6.2 does not go through.

6.3. Borel reducibility. Borelness is a very strong dividing line among the pos-
sible complexities of isomorphism relations of the form ∼=κ

T : knowing that ∼=κ
T is

κ+-Borel means that there is a procedure involving only κ-ary Boolean operations
and with a fixed length α < κ+ which allows us to classify the κ-sized model of T
up to isomorphism, while if ∼=κ

T is not κ+-Borel then there is no such algorithm. A
finer complexity analysis is provided by κ+-Borel reducibility.

Definition 6.6. LetX,Y be topological spaces homeomorphic to a κ+-Borel subset
of κ2, and let E,F be binary relations on X,Y , respectively. A function f : X → Y
is called a reduction of E to F is for all x, x′ ∈ X

x E x′ ⇔ f(x) F f(x′).

We say that E is κ+-Borel reducible to F , in symbols E ≤κ
B F , if there is a κ+-Borel

measurable function which is a reduction of E to F . We also set E <κ
B F if E ≤κ

B F
but F 6≤κ

B E.

A possible interpretation of the statement “E <κ
B F ” is that F is strictly more

complicated than E. Obviously, if E ≤κ
B F and F is κ+-Borel (respectively, E is

not κ+-Borel), then E is κ+-Borel (respectively, F is not κ+-Borel). However, it
is not true that all κ+-Borel equivalence relations are κ+-Borel reducible to each
other, and the fact that E is κ+-Borel and F is not does not in general imply
that E ≤κ

B F . Thus κ+-Borel reducibility provides a complexity analysis which is
strictly finer than the distinction κ+-Borel versus non-κ+-Borel.

The following easy observation shows that, for suitable cardinals κ, there is also
a gap in the sense of κ+-Borel reducibility between classifiable shallow theories and
those which are not. (Notice that it makes sense to consider κ+-Borel reducibility
among isomorphism relations of the form ∼=κ

T because ModκT is a κ+-Borel subset
of ModκL by Theorem 2.14, and the latter is isomorphic to κ2.)

Proposition 6.7. Let κ = ℵγ be such that κ<κ = κ and iω1
(|γ|) ≤ κ. Let T, T ′

be arbitrary countable complete first-order theory, and assume that T is classifiable
shallow, while T ′ is not. Then

∼=κ
T <κ

B
∼=κ

T ′ .

Moreover, the ≤κ
B-interval between the two isomorphism relations is nonempty, that

is, there is a (κ+-Borel) equivalence relation E such that

∼=κ
T <κ

B E <κ
B
∼=κ

T ′ .

Proof. Let λ be the number of ∼=κ
T -equivalence classes: by Theorem 1.1 and Re-

mark 1.2 we have λ < κ. Let E be any κ+-Borel equivalence relation on a topo-
logical space X (homeomorphic to a κ+-Borel subset of κ2) having exactly κ-many
classes. Pick representatives Mi, i < λ, in each ∼=κ

T -equivalence class, and pairwise
E-inequivalent elements (xi)i<λ. Then the map f : ModκT → X sending N ∈ ModκT
to the unique xi for which N ∼= Mi is trivially a reduction of ∼=κ

T to E, and it
is κ+-Borel because the f -preimage of any subset of X is a union of ≤ λ-many
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∼=κ
T -equivalence classes, which are all κ+-Borel by Fact 2.15 and the fact that ∼=κ

T

is κ+-Borel by Theorem 1.5. Moreover E 6≤κ
B
∼=κ

T because of the number of equiv-
alence classes, hence ∼=κ

T <κ
B E.

To prove E <κ
B

∼=κ
T ′ we use the same idea. Indeed, ∼=κ

T ′ 6≤κ
B E because by

Theorem 1.1 there are 2κ-many ∼=κ
T ′ -equivalence classes, while there are only κ-

many E-equivalence classes. To produce a κ+-Borel reduction of E to ∼=κ
T pick

instead representatives xi, i < κ, in each E-equivalence class, and pairwise non-
isomorphic models (Ni)i<κ in ModκT ′ : the map g : X → ModκT ′ sending each y ∈ X
to the unique Ni such that y E xi is clearly a reduction, and it is κ+-Borel because
E is. �

Notice that the conditions on κ in Proposition 6.7 are the same of Proposition 6.2,
thus Remark 6.3 applies here as well. Moreover, the proof above actually shows that
under the same assumptions on κ, if T, T ′ are both classifiable shallow theories then
∼=κ

T ≤κ
B

∼=κ
T ′ if and only if I(κ, T ) ≤ I(κ, T ′), thus the isomorphism relations over

κ-sized models of classifiable shallow theories are prewellordered under κ+-Borel
reducibility. Other variations along the same lines are of course possible; we leave
them to the interested reader.

In the same vein, Hyttinen, Kulikov, and Moreno considered in [HKM17] an-
other dividing line among countable complete first order theories, and proved the
following descriptive set-theoretic gap.

Theorem 6.8 ([HKM17, Theorem 6]). Assume V = L. Let κ = κ<κ = λ+ with
2λ > 2ℵ0 and λ<λ = λ. Let T , T ′ be arbitrary countable complete first-order
theories, and assume that T is classifiable, while T ′ is not. Then

∼=κ
T <κ

B
∼=κ

T ′ .

The same conclusion can be forced to hold over any model of ZFC through a κ-closed
κ+-cc forcing notion.

Comparing Proposition 6.7 with Theorem 6.8 one may notice the following:

• The dividing line in Theorem 6.8 is classifiability, while the dividing line in
Proposition 6.7 coincides with the one of Shelah’s Main Gap Theorem 1.1.

• Theorem 6.8 is a consistency result which holds in certain specific models of
ZFC, namely Gödel’s constructible universe L or certain forcing extensions of
V. It is apparently open whether one can get such a result in ZFC alone (and
possibly with less constraints on κ) — see the Question at the end of [HKM17].
In contrast, Proposition 6.7 is proved in ZFC alone.

• The conditions on κ in the two results are quite different. If e.g. we work
in L, then the successors of inaccessible cardinals satisfy the hypotheses of
Theorem 6.8 but not those of Proposition 6.7; conversely, there are succes-
sors of singular cardinals (of any cofinality) which satisfy the hypotheses of
Proposition 6.7 but not those of Theorem 6.8.

• Proposition 6.7 is just an easy observation following mostly from cardinality
considerations together with Theorem 1.5. Theorem 6.8 is instead much more
informative and requires involved techniques, and it is arguably stronger in
at least two different directions: it can be shown that the κ+-Borel reduction
between ∼=κ

T and ∼=κ
T ′ can actually be taken to be continuous; moreover, the

≤κ
B-gap between the two isomorphism relations can be shown to be very large

and complicated (see [HKM17, Theorem 7]).
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The last item naturally raises the following question.

Question 6.9. Let κ be as in Proposition 6.7. How large can be the ≤κ
B-gap

between ∼=κ
T and ∼=κ

T ′ when T is classifiable shallow and T ′ is not? In particular,
what happens if T ′ is classifiable deep? (By Theorem 6.8 this is the unique relevant
case that needs to be studied, if we work in L and further assume that κ satisfies
the hypotheses of that theorem.)

6.4. Incomplete theories. Expanding on a suggestion of M. Moreno, we notice
that weaker forms of the Descriptive Main Gap Theorem 1.9 apply to more general
situations, including the case of countable theories T which are not necessarily com-
plete (simply notice that ModκT is trivially closed under elementary equivalence).
We denote by Th(M) the (complete) theory of a structure M.

Theorem 6.10. Let κ<κ = κ > 2ℵ0 . Let L be a countable first-order language,
and C ⊆ ModκL be any class closed under elementary equivalence. Then either
B(κ, C) = rkB(∼=

κ
C) ≤ ω1, or else ∼=κ

C is not κ+-Borel at all.

Proof. Let (Tα)α<ν (for some ν ≤ 2ℵ0) be an enumeration without repetitions of
the complete theories of the form Th(M) for M ∈ C, so that ModκTα

⊆ C for every
α < ν by the hypothesis on C. Notice that, by the choice of the Tα’s, for every
M ∈ C there is a unique α < 2ℵ0 such that M ∈ ModκTα

, namely the α < ν such
that Tα = Th(M). We distinguish two cases.

If for some α < 2ℵ0 the theory Tα is not classifiable shallow, then ∼=κ
Tα

is not
κ+-Borel by Theorem 1.5, and hence the same applies to the whole ∼=κ

C .
Assume now that all Tα’s are classifiable shallow, so that rkB(∼=

κ
Tα

) < ω1 by

Theorem 5.4, and let Bα ⊆ (Modκ
L)

2 be corresponding κ+-Borel sets of rank < ω1

such that Bα ∩ (Modκ
Tα

)2 = ∼=κ
Tα

. Then for all M,N ∈ C

M ∼= N ⇔
∨

α<ν

(
M ∈ ModκTα

∧N ∈ ModκTα
∧ (M,N) ∈ Bα

)
.

Since by Remark 2.11 all the ModκTα
are κ+-Borel subsets of ModκL with rank ≤ ω,

the formula in parentheses defines κ+-Borel sets with rank11 < ω1, hence they are
all in ∆

0
ω1

. Since such class is closed under < κ-unions by κ<κ = κ and we assumed

2ℵ0 < κ, it follows that ∼=κ
C ∈ ∆

0
ω1
(C2). �

Of course a similar argument can be used to extend Shelah’s Main Gap The-
orem 1.1 to classes C as in Theorem 6.10. In particular, if κ ≥ ℵ1 is the γ-th
cardinal and T is a countable (not necessarily complete) first-order theory, then
either I(κ, T ) ≤ iω1

(|γ|), or else I(κ, T ) = 2κ.
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