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GUESSING MODELS AND THE APPROACHABILITY IDEAL

RAHMAN MOHAMMADPOUR AND BOBAN VELIČKOVIĆ

Abstract. Starting with two supercompact cardinals we produce a generic extension
of the universe in which a principle that we call GM+(ω3, ω1) holds. This principle
implies ISP(ω2) and ISP(ω3), and hence the tree property at ω2 and ω3, the Singular
Cardinal Hypothesis, and the failure of the weak square principle �(ω2, λ), for all regular
λ ≥ ω2. In addition, it implies that the restriction of the approachability ideal I[ω2] to
the set of ordinals of cofinality ω1 is the non stationary ideal on this set. The consistency
of this last statement was previously shown by Mitchell.

Introduction

In [28] C. Weiß formulated some combinatorial principles that capture the essence of
some large cardinal properties, but can hold at small cardinals. These principles usually
have two parameters, a regular uncountable cardinal κ and a cardinal λ ≥ κ. Among
them there are, in increasing strength, the principles TP(κ, λ), ITP(κ, λ), and ISP(κ, λ).
We will write P(κ), if the property P(κ, λ) holds, for all λ ≥ κ. The study of these
principles was continued by M. Viale and C. Weiß in [26]. Using them they obtained
a striking result saying that any standard forcing construction of a model of the Proper
Forcing Axiom (PFA) requires at least a strongly compact cardinal. One important
concept that emerged from this work is that of a guessing model. These models have
generated considerable interest and have a number of interesting applications, see for
instance [25], [2], [3], and [22].

Given the interest of these principles, it is natural to ask if they can hold simultaneously
at several successive regular cardinals. In this direction, L. Fontanella [5] extended the
previous work of U. Abraham [1] to obtain, modulo two supercompact cardinals, a model
of ZFC in which ITP(ω2) and ITP(ω3) hold simultaneously. Now, it was shown in [28]
that ISP(ω2) is strictly stronger that ITP(ω2). In fact, in the model constructed by B.
König in [9], the principle ITP(ω2) holds, but ISP(ω2) fails. One can then ask if ISP(ω2)
and ISP(ω3) can hold simultaneously. Let us point out that in [22] Trang showed the
consistency of ISP(ω3). However, in his model CH holds, and therefore the principle
ISP(ω2) fails.

One concept closely related to the above principles is that of the approachability
property on a regular uncountable cardinal λ and the associated ideal I[λ]. These notions
were introduced by Shelah implicitly in [18], and studied by him extensively over the past
40 years. For instance, in [19] he showed that if λ is a regular cardinal then S<λ

λ+ ∈ I[λ+],
and in [20] he showed that if κ is regular and κ+ < λ then I[λ] contains a stationary
subset of Sκ

λ . Shelah then asked in [19] if it is consistent to have a regular λ such that

2010 Mathematics Subject Classification. 03E35, 03E55, 03E05.
Key words and phrases. approachability ideal, guessing models, supercompact cardinals.

1

http://arxiv.org/abs/1802.10125v2


2 RAHMAN MOHAMMADPOUR AND BOBAN VELIČKOVIĆ

I[λ+]↾Sλ
λ+ is the non stationary ideal on Sλ

λ+ . This major question was finally answered
by W. Mitchell [15]. He started with a cardinal κ that is κ+-Mahlo, and built an involved
forcing construction yielding a model in which I[ω2] ↾S

ω1

ω2
is the non stationary ideal on

Sω1

ω2
. One feature of this construction is that it uses �κ in the ground model, and so

ω3 ∈ I[ω3] in the extension. It is therefore unclear if Mitchell’s method can be adapted
to obtain a model in which both I[ω2] ↾S

ω1

ω2
and I[ω3] ↾S

ω2

ω3
contain only non stationary

sets. The connection with the principles introduced by Weiß is the following. If κ is a
regular uncountable cardinal then ISP(κ+) implies that there is a stationary subset of
Sκ
κ+ that is not in I[κ+], but it does not imply Mitchell’s result. The main purpose of

this paper is to formulate and show the relative consistency of a principle that we call
GM+(ω3, ω1). This statement implies ISP(ω2) and ISP(ω3) and hence the tree property
at ω2 and ω3. It also implies Mitchell’s result, namely that I[ω2] ↾ S

ω1

ω2
= NSω2

↾ Sω1

ω2
.

Starting with a model with two supercompact cardinals κ < λ we produce a generic
extension in which κ = ω2, λ = ω3, and GM+(ω3, ω1) holds. In fact for Mitchell’s
result we do not need the full strength of the principle GM+(ω3, ω1), a weaker principle
FS(ω2, ω1) suffices. In order to obtain FS(ω2, ω1) it is enough to assume that λ is just
inaccessible.

The origin of this paper is as follows. Inspired by Mitchell’s breakthrough, I. Nee-
man [16] introduced a method for iterating proper forcing notions using finite chains
of elementary submodels as side conditions. This allowed him to give a new proof of
the consistency of PFA using this type of iteration. More importantly, this opened a
possibility of iterating forcing while preserving two successive cardinals and potentially
getting strong forcing axioms at ω2 and higher cardinals. The second author then ex-
tended Neeman style iteration to more general classes of forcing. This lead to the notion
of a virtual model. Using this type of models as side conditions allows us not only to
generalize Neeman’s iteration theory to semiproper forcing, but also to formulate and
prove iteration theorems for large classes of forcing notions preserving two uncountable
cardinals, such as ω1 and ω2. This theory is presented in [23] and [24]. In fact, our main
poset is an adaptation of the pure side condition forcing from [24] to two types of models,
but replacing models of size ω1 by models having a strong closure property that we call
Magidor models.

The paper is organized as follows. In §1 we present the preliminaries and fix some
notations. In §2 we review the theory of virtual models from [23] and [24] and adapt it
to the context of Magidor models. In §3, we introduce our main forcing notion Pκ

λ and
establish some of its properties. Finally, in §4 we study guessing models in the generic
extension by Pκ

λ, and show that if κ is supercompact and λ > κ is inaccessible then
ISP(ω2) and FS(ω2, ω1) hold in the generic extension. If λ is also supercompact we show
that GM+(ω3, ω1) holds as well.

1. Preliminaries

Throughout this paper by a model M we mean a set or a class such that (M,∈)
satisfies a sufficient fragment of ZFC. For a model M , we let M denote its transitive
collapse and we let πM be the collapsing map. For a set X and an uncountable regular
cardinal κ, we let Pκ(X) denote the set of all subsets of X of size less than κ. We say
that a subset S of Pκ(X) is stationary if, for every function F : [X ]<ω → X, there exists
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A ∈ S such that A∩ κ ∈ κ and A is closed under F . For regular cardinals κ < λ, we let
Sκ
λ denote the set {α < λ : cof(α) = κ}. For a cardinal θ we let Hθ denote the collection

of all sets whose transitive closure has size less than θ.
We now recall some relevant definitions from [25]. For a set or class M we say that a

set x ⊆ M is bounded in M if there is y ∈ M such that x ⊆ y.

Definition 1.1. Let γ be a regular cardinal. A set or a class M is said to be γ-guessing
if for any x ⊆ M which is bounded in M , if x is γ-approximated by M , i.e. x∩ a ∈ M ,
for all a ∈ M ∩ Pγ(M), then x is M-guessed, i.e. there is g ∈ M such that x = g ∩M .

We say that a transitive model R is a powerful if it is closed under taking subsets, i.e.
if x ∈ R and y ⊆ x then y ∈ R. We are mainly interested in the case R = Vα, for some
ordinal α, or R = Hθ, for some uncountable regular cardinal θ. For a powerful model R,
a regular cardinal γ and a cardinal κ, we let

Gκ,γ(R) = {M ∈ Pκ(R) : M ≺ R and M is γ-guessing}.

Definition 1.2. For a powerful model R, GM(κ, γ, R) is the statement that Gκ,γ(R) is
stationary in Pκ(R). GM(κ, γ) is the statement that GM(κ, γ,Hθ) holds, for all suffi-
ciently large regular θ.

Remark 1.3. Notice that if M is γ-guessing and γ ≤ γ′ then M is γ′-guessing. Therefore
GM(κ, γ) implies GM(κ, γ′).

The statement GM(κ, ω1) is a reformulation of the principle ISP(κ) introduced by C.
Weiß in [27] and further studied in [25], [26] and [28]. It was shown in [27] and [28]
that ISP(κ) implies the two cardinal tree property TP(κ, λ) and the failure of the weak
square principle �(κ, λ), for all regular λ ≥ κ. The equivalence between GM(κ, ω1) and
ISP(κ) was established in [26], where it was also proved that ISP(ω2) follows from the
Proper Forcing Axiom. ISP(κ) has strong influence on cardinal arithmetic. By using
the results of Viale [25], Krueger [10] showed that, for a regular cardinal κ, the principle
ISP(κ), and hence GM(κ, ω1), implies the Singular Cardinal Hypothesis holds above κ.
Let us also mention that in [22] Trang showed the consistency of GM(ω3, ω2) assuming
the existence of a supercompact cardinal. In his model the Continuum Hypothesis holds.

We also recall the related notion of the γ-approximation property, introduced by
Hamkins in [8].

Definition 1.4. Let γ be an uncountable regular cardinal. Suppose M and N are tran-
sitive models (sets or classes), M ⊆ N and γ ∈ M . We say the pair (M,N) satisfies
the γ-approximation property, if whenever x ∈ N is a bounded subset of M such that
x ∩ a ∈ M , for all a ∈ M with |a|M < γ, then x ∈ M .

Remark 1.5. Suppose R is a powerful model and let γ be a regular cardinal with γ ∈ R.
Note that M ≺ R is a γ-guessing model if and only if the pair (M,V ) satisfies the
γ-approximation property.

Our plan is to strengthen the principle GM(ω2, ω1) in order to control the approacha-
bility ideal on ω2. Let us first recall the relevant definitions from [19].
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Definition 1.6. Let λ be a regular cardinal. A λ-approaching sequence is a sequence of
bounded subsets of λ. If ā = (aξ : ξ < λ) is a λ-approaching sequence, we let B(ā) denote
the set of all δ < λ such that there is a cofinal subset c ⊆ δ such that:

(1) otp(c) < δ, in particular δ is singular,
(2) for all γ < δ, there exists η < δ such that c ∩ γ = aη.

Definition 1.7. Suppose λ is a regular cardinal. Let I[λ] be the ideal generated by the
sets B(ā), for all λ-approaching sequences ā, and the non stationary ideal NSλ.

Remark 1.8. It is straightforward to check that I[λ] is a normal ideal on λ, but it may
be non proper. I[λ] is called the approachability ideal on λ.

Shelah asked if it is consistent that I[κ+] ↾ Sκ
κ+ = NSκ+ ↾Sκ

κ+, for a regular cardinal κ.
Mitchell in [15] answered this question affirmatively by showing the following.

Theorem 1.9 (Mitchell, [15]). Assume that κ is a κ+-Mahlo cardinal. Then there is a
generic extension in which I[ω2] ↾ S

ω1

ω2
= NSω2

↾Sω1

ω2
.

Remark 1.10. In his paper [15], Mitchell mentions that the large cardinal assumption
used in his result is necessary by an unpublished theorem of Shelah; a proof can be found
in [12], Theorem 13. It is also mentioned at the end of [15] that one can prove the same
result for λ++ where λ is a regular cardinal, more precisely let λ regular be given, then
under the same assumption (with κ > λ) of his theorem there is a generic extension of

the universe satisfying I[λ++]↾Sλ+

λ++ = NSλ++ ↾Sλ+

λ++ .

We now formulate a principle that implies Mitchell’s result.

Definition 1.11 (FS(κ+, γ)). Suppose γ ≤ κ are regular uncountable cardinals. The
principle FS(κ+, γ) asserts that, for every X ∈ Hκ+, there is a collection G of γ-guessing
models of cardinality κ all containing X such that {M ∩ κ+ : M ∈ G} is κ-closed and
unbounded in κ+.

Proposition 1.12. Suppose κ is a regular uncountable cardinal and FS(κ+, κ) holds.
Then we have that I[κ+]↾Sκ

κ+ = NSκ+ ↾Sκ
κ+.

Proof. Suppose that FS(κ+), κ holds. Let ā = (aξ : ξ < κ+) be a κ+-approaching
sequence. Let G be the family of κ-guessing models all containing ā whose existence
is guaranteed by FS(κ+). We show that M ∩ κ+ /∈ B(ā), for any M ∈ G such that
cof(M ∩ κ+) = κ. Fix one such M ∈ G. Let δ = M ∩ κ+ and suppose c ⊆ δ satisfies (1)
and (2) of Definition 1.6. Let µ = otp(c). Note that µ < δ, hence µ ∈ M . Since ā ∈ M ,
we have that c∩ γ ∈ M , for all γ < δ, and hence c∩Z ∈ M , for all Z ∈ M with |Z| < κ.
Since M is a κ-guessing model, there must be d ∈ M such that c ∩ δ = d ∩ δ. We may
assume d ⊆ κ+. Then c is an initial segment of d, so if ρ is the µ-th element of d then
d ∩ ρ = c. Since µ, d ∈ M , we have ρ ∈ M as well, and hence c = d ∩ ρ ∈ M . But then
δ = sup(c) belongs to M , a contradiction. 1.12

FS(ω2, ω1) is a local principle, i.e. it refers only to Hω3
, therefore it cannot imply

GM(ω2, ω1). We now formulate a principle that implies both FS(ω2, ω1) and GM(ω2, ω1).
We state it for any pair of uncountable regular cardinals γ ≤ κ.
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Definition 1.13. Let γ ≤ κ be regular cardinal cardinals. A model M of cardinality
κ+ is strongly γ-guessing if it is the union of an increasing chain (Mξ : ξ < κ+) of
γ-guessing models of cardinality κ and Mξ =

⋃

{Mη : η < ξ}, for every ξ of cofinality κ.

Remark 1.14. We only define the notion of strongly γ-guessing for sets M whose cardi-
nality is a successor of a regular cardinal κ. We have not explored other variations of
this concept. Note that if M is strongly γ-guessing then M is γ-guessing.

For a powerful model R and regular cardinals γ and κ, we let

G
+
κ++,γ

(R) = {M ∈ Pκ++(R) : M ≺ R and M is strongly γ-guessing}.

Definition 1.15. For a powerful model R, GM+(κ++, γ, R) states that G
+
κ++,γ

(R) is

stationary in Pκ++(R). GM+(κ++, γ) is the statement that GM+(κ++, γ,Hθ) holds, for
all sufficiently large regular θ.

Clearly GM+(κ++, γ) implies both FS(κ+, γ) and GM(κ+, γ). The main result of this
paper is the following.

Theorem 1.16. Suppose that κ is supercompact and λ > κ is inaccessible. Then there
is a forcing notion such that in the generic extension GM(ω2, ω1) and FS(ω2, ω1) hold.
If, in addition, λ is supercompact, then GM+(ω3, ω1) holds as well.

Remark 1.17. By what we have said above the principle GM+(ω3, ω1) implies the follow-
ing: I[ω2]↾S

ω1

ω2
= NSω2

↾Sω1

ω2
, the principles ISP(ω2) and ISP(ω3), and hence the tree tree

property at ω2 and ω3, the Singular Cardinal Hypothesis, and the failure of the weak
square principle �(ω2, λ), for all regular λ ≥ ω2. It is also not hard to see that it implies
the negation of the weak Kurepa Hypothesis at ω1 and that the continuum is at least ω3.

The notion of strong properness, introduced by Mitchell in [13], plays the key role in
our construction. Let us recall the following definition.

Definition 1.18. Let P be a forcing notion and A a set. We say that p ∈ P is (A,P)-
strongly generic if for all q ≤ p there is a condition q ↾A ∈ A such that any r ≤ q ↾A
with r ∈ A is compatible with q.

Definition 1.19 (Strong properness). Let P be a forcing notion, and S a collection of
sets. We say that P is S-strongly proper if, for every A ∈ S and p ∈ A ∩ P, there is
q ≤ p that is (A,P)-strongly generic.

The following proposition connects the approximation property with strong proper-
ness.

Proposition 1.20. Let P be a forcing notion and κ an uncountable regular cardinal.
Suppose P is S-strongly proper, for some stationary subset S of Pκ(P). If G is V -generic
over P, then (V, V [G]) has the κ-approximation property.

Proof. Work in V . Let α be an ordinal, Ẋ a P-name, and suppose some condition p ∈ P

forces that Ẋ ⊆ α and Ẋ ∩ Ž ∈ V , for all Z ∈ V with |Z|V < κ. Fix a sufficiently large
regular cardinal θ. By the stationarity of S, we can find M ≺ Hθ containing p,P, Ȧ, and
such that M ∩P ∈ S. Let q ≤ p be (M ∩P)-strongly generic. Since M ∩P is of size < κ,
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by strengthening q if necessary, we may assume that q decides Ẋ ∩M . Since q ↾ (M ∩P)
and p are compatible, and M is elementary, they are compatible in M . Therefore, by
replacing q ↾ (M ∩ P) by a stronger condition in M , we may assume that it extends p.

We now argue that q ↾ (M ∩ P) decides Ẋ. Otherwise, by elementary of M , we can find
ξ ∈ α ∩ M and r0, r1 ∈ M with r0, r1 ≤ q ↾ (M ∩ P) such that r0 forces ξ ∈ Ẋ and r1
forces ξ /∈ Ẋ. Now, by strong genericity of q, we have that r0 and r1 are both compatible
with q. Let s0 be a common extension of q and r0, and s1 a common extension of q and
r1. Then s0, s1 ≤ q and force contradictory information about ξ ∈ Ẋ. This contradicts
the fact that q decides Ẋ ∩M . 1.20

We will also need the following well-known theorem due to Magidor.

Theorem 1.21 (Magidor, [11]). The following are equivalent for a regular cardinal κ.

(1) κ is supercompact.
(2) For every γ > κ and x ∈ Vγ there exist κ̄ < γ̄ < κ, and an elementary embedding

j : Vγ̄ → Vγ with critical point κ̄ such that j(κ̄) = κ and x ∈ j[Vγ̄].

1.21

2. Virtual Models

In this section we review the notion of virtual models introduced in [23] and [24]. In
[24] we used virtual models of two types: countable and internally club (I.C.) models of
size ℵ1. In the current situation we replace the I.C. models by models that have a much
stronger closure property that we call Magidor models. We shall consider the language
L obtained by adding a single constant symbol c to the standard language Lǫ of set
theory. Let us say that a structure A of the form (A,∈, κ) is suitable if A is a transitive
set satisfying ZFC in the expanded language, when κ, the interpretation of the constant
symbol c, is inaccessible in A. We shall often abuse notation and refer to the structure
(A,∈, κ) simply by A. Suppose A is a suitable structure. If α is an ordinal in A, we let
Aα denote A ∩ Vα. Finally, we let

EA = {α ∈ A : Aα ≺ A}.

Note that EA is a closed, possibly empty, subset of ORDA. It is not definable in A, but
EA ∩ α is uniformly definable in A with parameter α, for each α ∈ EA. If α ∈ EA we
let nextA(α) be the least ordinal in EA above α, if such an ordinal exists. Otherwise, we
leave nextA(α) undefined. We start with a simple technical lemma.

Lemma 2.1. Suppose M is an elementary submodel of a suitable structure A. Then

(1) If α ∈ EA and (M ∩ORDA) \ α 6= ∅, then min(M ∩ORDA \ α) ∈ EA.
(2) sup(EA ∩M) = sup(EA ∩ sup(M ∩ORDA)).

Proof. The second item follows from the first one, so we only give the proof of (1). Let
β be the least ordinal in M \ α. We need to show that Aβ is an elementary submodel
of A. Suppose otherwise, then by the Tarski-Vaught criterion, there is a tuple x̄ ∈ Aβ

and a formula ϕ(y, x̄) such that A |= ∃yϕ(y, x̄), but there is no y ∈ Aβ such that
A |= ∃yϕ(y, x̄). Since β ∈ M and M is an elementary submodel of A, there is such a
tuple x̄ ∈ Aβ ∩ M . Now, β is the least ordinal in M above α, therefore x̄ ∈ M ∩ Aα.
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Since Aα is an elementary submodel of A, there is y′ ∈ Aα witnessing that Aα |= ϕ(y′, x̄)
and so A |= ϕ(y′, x̄). Since α ≤ β, it follows that y′ ∈ Aβ, a contradiction. 2.1

Definition 2.2. Suppose M is a submodel of a suitable structure A and X is a subset
of A. Let

Hull(M,X) = {f(x̄) : f ∈ M, x̄ ∈ X<ω, f is a function, and x̄ ∈ dom(f)}.

The main reason we have defined the Hull operation in this way is that it allows us to
define the Skolem hull of M and X without referring explicitly to the ambient model A.

Lemma 2.3. Suppose A is a suitable structure, M is an elementary submodel of A and
X is a subset of A. Let δ be sup(M ∩ORDA), and suppose X ∩ Aδ is nonempty. Then
Hull(M,X) is the least elementary submodel of A containing M and X ∩Aδ.

Proof. For each γ ∈ A, let idγ be the identity function on Aγ. Clearly, if γ ∈ M then
idγ ∈ M . Therefore, X∩Aδ is a subset of Hull(M,X). Let γ ∈ M be such that X∩Aγ is
nonempty. For each z ∈ M , the constant function cz defined on Aγ is in M , therefore M
is a subset of Hull(M,X). The minimality of Hull(M,X) is clear from the definition. It
remains to show that Hull(M,X) is an elementary submodel of A. We check the Tarski-
Vaught criterion for Hull(M,X) and A. Let ϕ be a formula and a1, . . . , an ∈ Hull(M,X)
such that A |= ∃uϕ(u, a1, . . . , an). Then we can find functions f1, . . . , fn ∈ M and tuples
x̄1, . . . , x̄n ∈ X<ω such that ai = fi(x̄i), for all i. If Di is the domain of fi, this implies
that x̄i ∈ Di. By regularity and the axiom of choice in A we can find a function g
defined on D1× . . .×Dn such that for every ȳ1 ∈ D1, . . . , ȳn ∈ Dn, if there is u such that
A |= ϕ(u, f1(ȳ1), . . . , fn(ȳn)) then g(ȳ1, . . . , ȳn) is such a u. Moreover, by elementarity of
M , we may assume that g ∈ M . Let a = g(x̄1, . . . , x̄n). It follows that a ∈ Hull(M,X)
and A |= ϕ(a, a1, . . . , an). Therefore, Hull(M,X) is an elementary submodel of A. 2.3

Now, let us fix an inaccessible cardinal κ, a cardinal λ > κ such that Vλ satisfies ZFC.
We shall write E instead of EVλ

and next(α) instead of nextVλ
(α). For each α ∈ E,

we shall define certain families Fα ∈ Vλ, as well as relations Rα and operations Oα

on Vλ. Being a member of Fα will be expressed by a Σ1-formula with parameter Vα

and similarly for Rα and Oα. If A is another suitable structure we can interpret these
formulas in A and obtain families FA

α , relations RA
α and operations OA

α . In this section
we shall only consider suitable A such that the interpretation of the constant symbol c
is κ and A ⊆ Vλ. Note that if we have such an A and α ∈ EA ∩ E with Aα = Vα then
FA

α ⊆ Fα. Similarly, if x, y ∈ A are such that xRA
αy then xRαy, and if x ∈ A then

OA
α (x) = Oα(x). If M is an elementary submodel of a suitable A and α ∈ EA ∩M we

shall write FM
α for FA

α ∩M , and RM
α and OM

α for restrictions of RA
α and OA

α to M .

Definition 2.4. Suppose α ∈ E. We let Aα denote the set of all transitive A that are
elementary extensions of Vα and have the same cardinality as Vα.

Note that if A ∈ Aα and α ∈ A then EA ∩ α = E ∩ α. If A ∈ Aα we will refer to Vα

as the standard part of A. Note that if A has nonstandard elements then α ∈ EA.

Definition 2.5. Suppose α ∈ E. We let Vα denote the collection of all substructures M
of Vλ of size less than κ such that, if we let A = Hull(M,Vα), then A ∈ Aα and M is an
elementary submodel of A.
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Definition 2.6. We refer to the members of Vα as the α-models. We write V<α for
⋃

{Vγ : γ ∈ E ∩ α}. Collections V≤α and V≥α are defined in the obvious way. We will
write V for V<λ . If M ∈ V , we then write η(M) for the unique ordinal α such that
M ∈ Vα.

Remark 2.7. Note that if M ∈ Vα then sup(M ∩ ORD) ≥ α. In general, M is not
elementary in Vλ, in fact, this only happens if M ⊆ Vα. In this case we will say that M
is a standard α-model.

Convention 2.8. We refer to members of V as virtual models. We also refer to members
of V A, for some suitable A with A ⊆ Vλ, as general virtual models.

Definition 2.9. Suppose M,N ∈ V and α ∈ E. We say that an isomorphism σ : M →
N is an α-isomorphism if it has an extension to an isomorphism σ̄ : Hull(M,Vα) →
Hull(N, Vα). We say that M and N are α-isomorphic and write M ∼=α N if there is an
α-isomorphism between them. Note that if σ and σ̄ exist, they are unique.

Clearly, ∼=α is an equivalence relation, for every α ∈ E. Note that if M ∈ Vγ, for some
γ < α, then the only model α-isomorphic to M is M itself. Suppose α, β ∈ E and α ≤ β.
It is easy to see that, if M,N ∈ V are β-isomorphic, then they are α-isomorphic. We
will now see that, if α < β, then for every β-model M there is a canonical representative
of the ∼=α-equivalence class of M which is an α-model.

Definition 2.10. Suppose α and β are members of E and M is a β-model. Let Hull(M,Vα)
be the transitive collapse of Hull(M,Vα), and let π be the collapsing map. We define M ↾α
to be π[M ], i.e. the image of M under the collapsing map of Hull(M,Vα).

Remark 2.11. Note that if β < α then M ↾ α = M . If β ≥ α, then Hull(M,Vα) belongs
to Aα, so M ↾α is an α-model which is α-isomorphic to M . Note also that if β = α, then
M ↾α = M since Hull(M,Vα) is already transitive.

Note also that if A ∈ Aα then V A
α ⊆ Vα. Therefore, if A,B ∈ Aα, M ∈ V A, and

N ∈ V B, we can still write M ∼=α N if M ↾ α = N ↾ α. This is of course equivalent to
the existence of an α-isomorphism between M and N .

The following is straightforward.

Proposition 2.12. Suppose α, β ∈ E and α ≤ β. Let M ∈ V . Then (M ↾β)↾α = M ↾α.

2.12

We also need to define a version of the membership relation, for every α in E.

Definition 2.13. Suppose M,N ∈ V and α ∈ E. We write M ∈α N if there is M ′ ∈ N
with M ′ ∈ V N such that M ′ ∼=α M . If this happens, we say that M is α-in N .

Note that if M ⊆ Vα, this simply means that M ∈ N . However, in general, we may
have M ∈α N even if the rank of M is higher than the rank of N . We shall often use
the following simple facts without mentioning them.

Proposition 2.14. Suppose M,N ∈ V with M ∈ N . Let α ∈ E, and suppose N ′ ∈ V A,
for some A ∈ Aα, and σ : N → N ′ is an α-isomorphism. Then M and σ(M) are
α-isomorphic.
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Proof. Since |M | < κ < |Vα|, we conclude that M ⊆ Hull(N, Vα), and hence Hull(M,Vα) ⊆
Hull(N, Vα). Let σ̄ be the extension of σ to Hull(N, Vα). It follows that σ̄ ↾ Hull(M,Vα)
is an isomorphism between Hull(M,Vα) and Hull(σ(M), Vα). Hence σ̄ ↾ M is an α-
isomorphism between M and σ(M). 2.14

Proposition 2.15. Let α, β ∈ E with α ≤ β. Suppose M,N ∈ V≥β and M ∈β N . Then
M ↾α ∈α N ↾α.

Proof. Fix some M ′ ∈ N such that M ∼=β M ′. Since α ≤ β, we have that M ∼=α M ′.
If π is the Mostowski collapse map of Hull(N, Vα), then π(M ′) ∈ N ↾ α. On the other
hand, since |M | < κ < |Vα|, we have that Hull(M ′, Vα) ⊆ Hull(N, Vα) and π[M ′] =
π(M ′). It follows that π ↾ Hull(M ′, Vα) is an isomorphism between Hull(M ′, Vα) and
Hull(π(M ′), Vα). Therefore, M ∼=α π(M ′) ∈ N ↾ α. 2.15

We refer to the following proposition as the continuity of the α-isomorphism.

Proposition 2.16. Let α be a limit point of E. Suppose N,M ∈ V and M ∼=γ N for
unboundedly many γ below α. Then M ∼=α N .

Proof. For each γ ∈ E ∩ α, let σγ be the unique isomorphism between Hull(M,Vγ) and
Hull(N, Vγ) such that σγ [M ] = N . If γ < γ′, we have that σγ′ ↾ Hull(M,Vγ) = σγ. Let
σ =

⋃

{σγ : γ ∈ E ∩ α}. Then σ witnesses that M and N are α-isomorphic. 2.16

Proposition 2.17. Let α be a limit point of E of uncountable cofinality. Assume that
M,N ∈ V and N is countable. Suppose that M ∈γ N for unboundedly many γ < α.
Then M ∈α N .

Proof. Since N is countable and α is of uncountable cofinality, there is M ′ ∈ N with
M ′ ∈ V N such that M ∼=γ M ′, for unboundedly many γ ∈ E ∩ α. By Proposition 2.16
we have that M ∼=α M ′, and hence M ∈α N . 2.17

In our forcing we will use two types of virtual models, the countable ones and some
nice models of size less than κ defined below.

Definition 2.18. For α ∈ E, we let Cα denote the collection of countable models in Vα.
We define similarly C<α, C≤α and C≥α. We write C for C<λ, and Cst for the collection
of standard models in C .

Proposition 2.19. Suppose λ is of uncountable cofinality. Then Cst contains a club in
Pω1

(Vλ).

Proof. First note that since λ is of uncountable cofinality E is unbounded and thus club
in λ. Suppose M is a countable elementary submodel of (Vλ,∈, E). Let α = sup(M ∩E).
Note that M ∩ORD is unbounded in α. Hence M is a standard α-model. 2.19

The following definition is motivated by Magidor’s reformulation of supercompactness,
see Theorem 1.21.

Definition 2.20. We say that a model M is a κ-Magidor model if, letting M be the
transitive collapse of M and π the collapsing map, M = Vγ̄, for some γ̄ < κ with
cof(γ̄) ≥ π(κ), and Vπ(κ) ⊆ M . If κ is clear from the context we omit it.
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Proposition 2.21. Suppose κ is supercompact and µ > κ with cof(µ) ≥ κ. Then the set
of κ-Magidor models is stationary in Pκ(Vµ).

Proof. Fix a function F : [Vµ]
<ω → Vµ. We have to find a κ-Magidor model closed

under F . Let γ > µ be such that Vγ satisfies a sufficient fragment of ZFC. Since κ is
supercompact, by Theorem 1.21 we can find κ̄ < γ̄ < κ and an elementary embedding
j : Vγ̄ → Vγ with critical point κ̄ such that j(κ̄) = κ and such that F ↾ [Vµ]

<ω ∈ j[Vγ̄ ].
Note that this implies that Vµ ∈ j[Vγ̄ ]. Let µ̄ be such that j(µ̄) = µ. Since cof(µ) ≥ κ,
by elementarity we must have that cof(µ̄) ≥ κ̄. Let N = j[Vµ̄]. Then N is a κ-Magidor
elementary submodel of Vµ that is closed under F , as required. 2.21

Definition 2.22. Let U κ
α be the collection of all M ∈ Vα that are κ-Magidor models.

We define U κ
<α, U κ

≤α, and U κ
≥α in the obvious way. We write U κ for U κ

<λ. When κ is
clear from the context, we omit it. We also write Ust for the standard models in U .

Remark 2.23. Suppose M is a κ-Magidor α-model. Let Vγ̄ be its transitive collapse, and
let j be the inverse of the collapsing map π. Let κ̄ = π(κ), and let A = Hull(M,Vα).
Note that j : Vγ̄ → A is an elementary embedding with critical point κ̄ and j(κ̄) = κ.

By Proposition 2.21 we have the following immediate corollary.

Proposition 2.24. Suppose κ is supercompact and λ is inaccessible. Then Ust is sta-
tionary in Pκ(Vλ).

2.24

Note that both classes C and U of virtual models are closed under projections. We
shall study some particular finite collections of these two types of models. We start by
establishing the following easy fact.

Proposition 2.25. Let α ∈ E. Suppose M,N, P ∈ V and M ∈α N ∈α P . If either N
is countable or P is a Magidor model then M ∈α P .

Proof. Pick N ′ ∈ P with N ′ ∈ V P which is α-isomorphic to N . We first establish that
N ′ ⊆ P . If N is countable this is immediate. Suppose both N and P are Magidor models.
Let N ′ be the transitive collapse of N ′, and let π be the collapsing map. Then N ′ ∈ Vκ∩P
since |N ′| < κ. Since P is a Magidor model, we know that Vκ∩P is transitive, and hence
N ′ ⊆ P , but then also N ′ ⊆ P . Let σ be an α-isomorphism between N and N ′, and let
M ′ ∈ N with M ′ ∈ V N be a model that is α-isomorphic to M . By Proposition 2.14 we
know that σ(M ′) is α-isomorphic to M ′, and also to M by the transitivity of ∼=α. On
the other hand σ(M ′) ∈ N ′ ⊆ P and thus M ∈α P , as desired. 2.25

Our next goal is to define when a virtual model M is active at some α ∈ E.

Definition 2.26. Let M ∈ V . We say that M is active at α ∈ E if η(M) ≥ α and
Hull(M,VκM

) ∩ E ∩ α is unbounded in E ∩ α, where κM = sup(M ∩ κ). We say that M
is strongly active at α if η(M) ≥ α and M ∩ E ∩ α is unbounded in E ∩ α.

Remark 2.27. We are primarily interested in the case M ∈ C ∪ U . First note that if
M is a Magidor model, then VκM

⊆ M , hence M is active at some α ∈ E if and only
if it is strongly active at α. The situation is quite different for countable models. If M
is countable, then the set of α ∈ E at which M is strongly active is at most countable,
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while the set of α ∈ E at which M is active can be of size |VκM
|. One feature of our

definition is that if N ∈α M , then for all γ ∈ E ∩ α, if N is active at γ then so is M .
Let us also remark what happens at levels α that are successor points of E. Suppose

α = next(β), for some β ∈ E, and M is active at α. We must have β ∈ M as β = max(E∩
α). we must also have sup(M ∩ORD) ≥ α since η(M) ≥ α,. If sup(M ∩ORD) = α then
M is a countable standard model. If sup(M ∩ ORD) > α, let γ = min(M ∩ ORD \ α),
and let A = Hull(M,Vγ). Then by Lemma 2.1 γ ∈ EA. Since γ ∈ M , we have that
EA ∩ (γ + 1) ∈ M and therefore we can compute α in M as the the next element of
EA ∩ (γ + 1) above β. Thus, in this case we have α ∈ M .

It will be convenient to also have the following definition.

Definition 2.28. Suppose M ∈ V . Let a(M) = {α ∈ E : M is active at α} and
α(M) = max a(M).

Note that a(M) is a closed subset of E of size at most |Hull(M,VκM
)|.

Proposition 2.29. Let M ∈ V and N ∈ U . Suppose α ∈ E, M and N are active at
α, and M ∈α N . Then α ∈ N .

Proof. We may assume that M and N are α-models. Let A = Hull(N, Vα). Then A ∈ Aα.
Fix M∗ ∈ N with M∗ ∈ V A which is α-isomorphic to M . Since M∗ is α-equivalent to
M , we have that α ∈ aA(M∗). On the other hand, aA(M∗) ∈ N and has size < κN ,
hence aA(M∗) ⊆ N . It follows that α ∈ N . 2.29

Proposition 2.30. Let M ∈ V and N ∈ U . Suppose α ∈ a(M) is a limit point of E
and M ∈γ N , for all γ ∈ E ∩ α. Then α ∈ N and M ∈α N .

Proof. Let a = a(M) ∩N ∩ α. Note that A is unbounded in α and has size < κN . Since
N is closed under < κN -sequences, it follows that a ∈ N , and hence α = sup(a) ∈ N .
For γ < α, let Mγ = M ↾ γ. For γ ∈ a, we have that M ∈γ N , and hence Mγ ∈ N . Let
Aγ = Hull(Mγ , Vγ). For γ, δ ∈ a with γ < δ, we have that Mδ ↾ γ = Mγ . In other words,
Aγ is the transitive collapse of Hull(Mδ, Vγ) , and if σγ,δ is the inverse of the collapsing
map, we have σγ,δ[Mγ ] = Mδ. Each of the maps σγ,δ is definable from Mδ and γ, and
hence it belongs to N . Now, N is closed under < κN -sequences and therefore the whole
system (Aγ, σγ,δ : γ ≤ δ ∈ a) belongs to N . Let A be the direct limit of this system,
and let σγ be the canonical embedding of Aγ to A. If we let πγ be the collapsing map of
Hull(M,Vγ) to Aγ, we then have that, for every γ < δ, the following diagram commutes:

Hull(M,Vγ) Hull(M,Vδ)

Aγ Aδ

id

πγ πδ

σγ,δ

Since Hull(M,Vα) =
⋃

{Hull(M,Vγ) : γ ∈ a}, we have that A is isomorphic to Hull(M,Vα).
Therefore, its transitive collapse is Aα = Hull(M ↾ α, Vα), and if we let π be the col-
lapsing map, π[M ] = M ↾ α. We can therefore identify A with Aα, and we get that
σγ[Mγ ] = M ↾ α, for any γ ∈ a. Thus M ↾ α ∈ N , as required. 2.30
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We now define an operation that will play the role of intersection for virtual models. We
call it the meet. We only define the meet of two models of different types. Suppose N ∈ U

and M ∈ C . Let N be the transitive collapse of N , and let π be the collapsing map. Note
that if N ∈ M , then N ∩M is a countable elementary submodel of N . Then N ∩M ∈ N
since N is closed under countable sequence. Note that π−1(N ∩M) = π−1[N ∩M ], and
this model is elementary in N .

Definition 2.31. Suppose N ∈ U and M ∈ C . Let α = max(a(N) ∩ a(M)). We
will define N ∧ M if N ∈α M . Let N be the transitive collapse of N , and let π be the
collapsing map. Set

η = sup(sup(π−1[N ∩M ] ∩ORD) ∩ E ∩ (α + 1)).

We define the meet of N and M to be N ∧M = π−1[N ∩M ] ↾ η.

To make sense of the above definition, we need to prove the following.

Proposition 2.32. Under the assumptions of the above definition, N ∧M ∈ Cη.

Proof. Since η(N) ≥ α we can form the model A = Hull(N, Vα) and, we therefore
have N ≺ A and Vα ≺ A. Since N ∈ M , we have that N ∩ M ≺ N . Therefore,
we have π−1[N ∩ M ] ≺ N . Now, η ∈ E ∩ (α + 1) and so Vη ≺ Vα ≺ A. Moreover,
sup(π−1[N∩M ]∩ORD) ≥ η. By Lemma 2.3 we have that Hull(π−1[N∩M ], Vη) ≺ A and
Vη ⊆ Hull(π−1[N∩M ], Vη). It follows that the transitive collapse of Hull(π−1[N∩M ], Vη)
belongs to Aη and thus the image of π−1[N ∩ M ] under the collapsing map belongs to
Cη. 2.32

Proposition 2.33. Let N ∈ U and M ∈ C . Suppose α ∈ E and the meet N ∧M is
defined and active at α. Then (N ∧M) ∩ Vα = N ∩M ∩ Vα.

Proof. Let β = max(a(N)∩ a(M)). Since the meet of N and M is defined we must have
N ∈β M . Since N ∧M is active at α, we must have α ≤ β. Let N ′ ∈ V M be such that
N ′ ∼=β N . Let σ be the β-isomorphism between N and N ′. Notice that σ is the identity
on N ∩ Vβ and thus also on N ∩ Vα. Let N denote the common transitive collapse of N
and N ′, and let π and π′ be the collapsing maps. Then the following diagram commutes.

N N ′

N

π

σ

π′

Note that (N ∧M)∩Vα = π−1[N ∩M ]∩Vα = σ−1[N ∩M ∩Vα]. Since σ is the identity
on N ∩ Vα, it follows that (N ∧M) ∩ Vα = N ∩M ∩ Vα. 2.33

Proposition 2.34. Let α ∈ E. Suppose N ∈ U and M ∈ C , the meet N∧M is defined,
and N and M strongly active at α. Then N ∧M is strongly active at α.

Proof. Let β = max(a(N) ∩ a(M)). Since both N and M are active at α, we must have
α ≤ β. Let N ′ ∈ M with N ′ ∈ V M be such that N ′ ∼=β N . Let σ be the β-isomorphism
between N ′ and N . Then σ ↾ N ′ ∩ Vβ is the identity. Note that N ′ ∩ M ∩ E ∩ α is
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unbounded in E ∩ α. Since N ′ ∩ Vα = N ∩ Vα, we must have that N ∩M ∩E ∩ α is also
unbounded in E ∩ α. By Proposition 2.33, N ∧M is strongly active at α. 2.34

The next proposition states the meet operation commutes with projections.

Proposition 2.35. Let N ∈ U and M ∈ C . Suppose α ∈ E and the meet N ∧M is
defined and active at α. Then (N ∧M) ↾ α = N ↾ α ∧M ↾ α.

Proof. First note that if N ∧M is active at α, then α ∈ a(N) ∩ a(M). It follows that
α is the maximum of a(N ↾ α) ∩ a(M ↾ α). Then note that N ∧ M depends only on
max(a(N) ∩ a(M)), N , and M ∩ N , where N is the transitive collapse of N . Now,
N is also the transitive collapse of N ↾ α. In fact, if σ is the α-isomorphism between
N and N ↾ α, and π and π′ are the collapsing maps of N and N ′ respectively, then
π = π′ ◦ σ. Therefore, σ ↾ π−1[N ∩M ] is an an α-isomorphism between π−1[N ∩M ] and
π′−1[N ∩M ↾ α]. It follows that (N ∧M) ↾ α = N ↾ α ∧M ↾ α. 2.35

Proposition 2.36. Let α ∈ E. Suppose N ∈ U , M ∈ C , both are active at α and
N ∈α M . Let P be another virtual model also active at α. Then P ∈α N ∧M if only if
P ∈α N and P ∈α M .

Proof. By Proposition 2.35 we may assume that N,M and P are all α-models. Assume
first that P ∈α N ∧M . In particular this means that N ∧M is active at α. In particular
we have that N ∧ M ⊆ N , and hence P ∈α N . Fix N ′ ∈ V M which is α-isomorphic
to N . Let N be the transitive collapse of both N and N ′ and let π and π′ be the
respective collapsing maps. Note that σ = π′ ◦ π−1 is the α-isomorphism between N
and N ′. Then σ[N ∧ M ] = N ′ ∩ M . Pick also P ′ ∈ N ∧ M which is α-isomorphic to
P . By Proposition 2.14 P ′ and σ(P ′) are also α-isomorphic. Since σ(P ′) ∈ M , by the
transitivity of ∼=α we get that P is α-isomorphic to σ(P ′). This implies that P ∈α M .

Now assume P ∈α N and P ∈α M . By Proposition 2.29 we know that α ∈ N . Since
P is an α-model, we conclude that P ∈ N . If also α ∈ M , we have that N,P ∈ M
and N ∧ M = N ∩ M . Therefore, P ∈ N ∧ M . Assume now that α /∈ M and let
α∗ = min(M ∩ λ \ α). Let A = Hull(M,Vα). Since we assumed that M is an α-model,
we have that A ∈ Aα and α ∈ EA. By Lemma 2.1 we also have that α∗ ∈ EA. Fix
P ∗, N∗ ∈ M that are α-isomorphic to P and N respectively. By projecting them to α∗

if necessary, we may assume P ∗, N∗ ∈ V A
α∗ . Moreover, N∗ is a Magidor model from the

point of view of A. Since P ∗ ∈α N∗ and α∗ is the least ordinal in M above α we have

M |= ∀δ ∈ EA ∩ α∗P ∗ ∈δ N
∗.

Moreover, M |= ”P ∗ is active at α∗”. Since α∗ is a limit point of EA, we can apply
Proposition 2.30 in A and conclude that α∗ ∈ N∗ and P ∗ ∈ N∗. Hence P ∗ ∈ N∗ ∩M .
Let σ be the α-isomorphism between N∗ and N . Then σ[N∗ ∩ M ] = N ∧ M . Hence
σ(P ∗) ∈ N ∧M and is α-isomorphic to P . It follows that P ∈α N ∧M . 2.36

One feature of the meet is the following absorption property.

Proposition 2.37. Suppose N ∈ U , M ∈ C , and the meet N ∧ M is defined. Let
α ∈ E, and suppose P is a Magidor α-model active at α such that P ∈α N ∧M . Then
P ∧M = P ∧ (N ∧M).
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Proof. Since P ∈α N ∧M and P is active at α, so is N ∧M , and hence both N and M
are active at α as well. Let P be the transitive collapse of P . Then P ∈ N ∩ Vκ, and
since N ∩Vκ is transitive, we have P ⊆ N . Hence P ∩ (N ∧M) = P ∩M . It follows that
P ∧M = P ∧ (N ∧M). 2.37

Proposition 2.38. Let α ∈ E. Suppose N ∈ U , M ∈ C and the meet N ∧M is defined
and active at α. Suppose P ∈ V and N,M ∈α P . Then N ∧M ∈α P .

Proof. We may assume M,N and P are all α-models. If α ∈ P then N,M ∈ P ,
and hence also N ∧ M ∈ P . Suppose now α /∈ P . Let A = Hull(P, Vα) and let
α∗ = min(P ∩ORD \ α). Note that α∗ has uncountable cofinality in A. By Lemma 2.1
we have α∗ ∈ EA. We can find N∗,M∗ ∈ P such that N∗ ∼=α N and M∗ ∼=α M . We may
assume that N∗ ∈ U A

α∗ and M∗ ∈ C A
α∗ . Work for a moment in A. Since N∗ ∈α M∗, α∗ is

the least ordinal of P above α, and N∗,M∗ ∈ P , we have

A |= ∀γ ∈ EA ∩ α∗N∗ ∈γ M∗.

By applying Proposition 2.17 inside A we have that N∗∈α∗ M∗, and hence A can compute
the meet, say Q, of N∗ and M∗. Then Q ∈ P , and by applying Proposition 2.35 inside
A, we get Q↾α = N∗ ↾α ∧M∗ ↾α. Hence Q ∼=α N ∧M . 2.38

Definition 2.39. Let α ∈ E and let M be a set of virtual models. We let M ↾ α =
{M ↾ α : M ∈ M} and Mα = {M ↾ α : M ∈ M is active at α}.

We can now define what we mean by an α-chain.

Definition 2.40. Let α ∈ E and let M be a subset of U ∪C . We say M is an α-chain
if for all distinct M,N ∈ M, either M ∈α N or N ∈α M , or there is a P ∈ M such
that either M ∈α P ∈α N or N ∈α P ∈α M .

Proposition 2.41. Suppose α ∈ E and M is a finite subset of U ∪ C . Then M
is an α-chain if and only if there is an enumeration {Mi : i < n} of M such that
M0 ∈α M1 ∈α · · · ∈α Mn−1.

Proof. Suppose first M is an α-chain. Define the relation < on M by letting M < N
iff κM < κN . It is straightforward to see that < is a total ordering on M. We can
then let {Mi : i < n} be the <-increasing enumeration of M. Conversely, suppose
M = {Mi : i < n} is the enumeration such that M0 ∈α M1 ∈α · · · ∈α Mn−1. Let
i < j < n. If j = i + 1 then Mi ∈α Mj . Suppose j > i + 1. If Mj is a Magidor model
or if there are no Magidor models between Mi and Mj by Proposition 2.25 we conclude
that Mi ∈α Mj . Otherwise let k < j be the largest such that Mk is a Magidor model.
Then again by Proposition 2.25, we conclude that Mi ∈α Mk ∈α Mj . 2.41

Let α ∈ E and let M be an α-chain. Let ∈∗
α be the transitive closure of ∈α. Then ∈∗

α

is a total ordering on M. For M,N ∈ M, we say M is α-below N in M, or equivalently
N is α-above M in M, if M ∈∗

α N in M. Now using the transitivity of ∈∗
α we can form

intervals in M. Let
(M,N)αM = {P ∈ M : M ∈∗

α P ∈∗
α N}.

Similarly we can define [M,N ]αM, [M,N)αM, etc. For convenience we also allow that the
endpoints of the intervals to be ∅ or Vλ; let (∅, N)αM be {P ∈ Mα : P ∈∗

α N} in the first
case, and let (N, Vλ)

α
M be {P ∈ M : N ∈∗

α P} in the second.
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3. Main Forcing

We fix an inaccessible cardinal κ and a cardinal λ > κ with cof(λ) ≥ κ such that
(Vλ,∈, κ) is suitable. We start by defining the forcing notions Mκ

α, for all α ∈ E ∪ {λ}.

Definition 3.1. Suppose α ∈ E. We say that p = Mp belongs to Mκ
α if:

(1) Mp is a finite subset of C≤α ∪ U κ
≤α that is closed under meets,

(2) Mδ
p is a δ-chain, for all δ ∈ E ∩ (α+ 1).

We let Mq ≤ Mp if for all M ∈ Mp there is N ∈ Mq such that N ↾η(M) = M . Finally,
let Mκ

λ =
⋃

{Mκ
α : α ∈ E} with the same ordering.

Remark 3.2. Conditions (1) and (2) can be merged to a single condition. Let us say that
a δ-chain M consisting of models active at δ is closed under meets if for every M,N ∈ M,
if the meet M ∧N is defined and active at δ then M ∧N ∈ M. Thus we can simply say
that Mδ

p is a δ-chain closed under meets, for all δ ∈ E ∩ (α + 1). The order is natural
since if N ↾η(M) = M , then N carries all the information that M does.

If κ < λ are supercompact cardinals then Mκ
λ forces the principles GM+(ω3, ω1). Let

us explain what happens. Suppose G is generic over Mκ
λ. Then ω1 is preserved, but κ

becomes ω2 and λ becomes ω3 in V [G]. Let MG =
⋃

G, and let Gα = G ∩ Mκ
α, for

α ∈ E. One can show that for every α ∈ E and β > α, Vβ[Gα] is a strong ω1-guessing
model in V [G]. To see this fix some δ ∈ E \ β with cof(δ) < κ. One shows that if
M is a Magidor model in Mδ

G then M [Gα] is an ω1-guessing model in V [G]. Moreover,
if M is a Magidor model which is a limit of Magidor models in the δ-chain Mδ

G then
M ∩ Vδ is covered by the union of the previous models in Mδ

G. Therefore, if we let
G = {(M ∩ Vβ)[Gα] : M ∈ Mδ

G ∩ Uκ
δ }, then G is an increasing sequence of ω1-guessing

models which is continuous at uncountable limits and the union of this sequence is Vβ[Gα].
We will actually present a proof not for the forcing Mκ

λ, but for a slight variation Pκ
λ.

We would like to arrange that in addition the set {sup(M ∩ κ) : M ∈ Mδ
G} be a club

in κ, for all δ ∈ E with cof(δ) < κ. In order to achieve this we will add decorations to
the conditions of Mκ

λ. This device, introduced by Neeman [16], consists of attaching to
each model M of an ∈-chain a finite set dp(M) which belongs to all models N of the
chain such that M ∈ N . In a stronger condition this finite set is allowed to increase.
The main point is that dp(M) controls what models can be added ∈-above M in stronger
conditions. In our situation there are some complications. First, we have not one chain,
but a δ-chain, for each δ ∈ E. It is therefore reasonable to have decorations for each level
δ ∈ E. Now, models from a higher level project to lower levels at which they are active,
but also in order to arrange strong properness for countable models, some models from
lower levels will be lifted to higher levels and put on the chain. This imposes a subtle
interplay between the decorations on different levels. In order to describe this precisely,
we need to make some preliminary definitions.

Definition 3.3. Suppose Mp ∈ Mκ
λ. Let L(Mp) = {M ↾ α : M ∈ Mp and α ∈ a(M)}.

Definition 3.4. Suppose Mp ∈ Mκ
λ. We say that M ∈ L(Mp) is Mp-free if every

N ∈ Mp with M ∈η(M) N is strongly active at η(M). Let F(Mp) denote the set of all
M ∈ L(Mp) that are Mp-free.
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Note that if Mq ≤ Mp then L(Mp) ⊆ L(Mq) and F(Mq) ∩ L(Mp) ⊆ F(Mp). In
other words, a node M ∈ L(Mp) that is not Mp-free is not Mq-free, for any Mq ≤ Mp.
We are now ready to define our main forcing notion.

Definition 3.5. Suppose α ∈ E ∪ {λ}. We say that a pair p = (Mp, dp) belongs to Pκ
α

if Mp ∈ Mκ
α, dp is a finite partial function from F(Mp) to Pω(Vκ), and

(∗) if M ∈ dom(dp), N ∈ Mp, and M ∈η(M) N , then dp(M) ∈ N .

We say that q ≤ p if Mq ≤ Mp, and for every M ∈ dom(dp) there is γ ∈ E∩ (η(M)+1)
such that M ↾ γ ∈ dom(dq) and dp(M) ⊆ dq(M ↾ γ).

Remark 3.6. We refer to dp as the decoration of p. The point is that if M ∈ dom(dp) is
a δ-model then dp(M) constraints what models N with M ∈δ N can be put on Mδ

q, for
any q ≤ p. In general, M may not be Mq-free, in which case M /∈ dom(dq), but then we
have some γ ≤ δ such that M ↾ γ is Mq-free and dp(M) ⊆ dq(M ↾ γ). Note that then
we must have dp(M) ∈ N , for any N ∈ Mq such that M ∈δ N .

The ordering on Pκ
λ is clearly transitive. We will say that q is stronger than p if q

forces that p belongs to the generic filter, in order words, any r ≤ q is compatible with
p. We write p ∼ q if each of p and q is stronger than the other. We identify equivalent
conditions, often without saying it. Our forcing does not have meets, but if p and q do
have a weakest lower bound we will denote it by p ∧ q. To be precise we should refer to
p∧ q as the ∼-equivalence class of a weakest lower bound, but we ignore this point since
it should not cause any confusion. Note that if p ∈ Pκ

α and M ∈ Mp is a δ-model that
is not active at δ, we may replace M by M ↾ α(M) and we get an equivalent condition.
Thus, if α ∈ E and cof(α) ≥ κ, then Pκ

α is forcing equivalent to
⋃

{Pκ
γ : γ ∈ E ∩ α}.

Convention 3.7. Suppose p ∈ Pκ
λ and δ ∈ E. If M,N ∈ Mδ

p with M ∈∗
δ N , we will

write (M,N)δp for the interval (M,N)δMp
, and similarly, for [M,N)δp, (M,N ]δp, etc.

Suppose α, β ∈ E and α ≤ β. For every p ∈ Pκ
β, we let Mp↾α = Mp ↾ α and

dp↾α = dp ↾ F(Mp ↾ α). It is easily seen that p = (Mp↾α, dp↾α) ∈ Pκ
α. The following is

straightforward.

Lemma 3.8. Suppose α, β ∈ E with α ≤ β. Let p ∈ Pκ
β and let q ∈ Pκ

α be such that
q ≤ p ↾ α. Then there exists r ∈ Pκ

β such that r ≤ p, q.

Proof. We let Mr = Mp ∪ Mq. Note that Mr is closed under meets. We define dr
by letting dr(M) = dq(M) if M ∈ dom(dq), and dr(M) = dp(M) if M ∈ dom(dp) with
η(M) > α. It is straightforward that r is as required. 3.8

Remark 3.9. The condition r from the previous lemma is the greatest lower bound of p
and q, so we will write r = p ∧ q.

Corollary 3.10. Suppose α ∈ E. Then Pκ
α is a complete suborder of Pκ

λ.

3.10

Our goal is to prove that our poset Pκ
λ is strongly proper for an appropriate class of

models. We start by showing that if a condition p belongs to a model M we can always
add M to Mp and form a new condition.
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Lemma 3.11. Let p ∈ Pκ
λ and M ∈ C ∪U be such that p ∈ M . Then there is a weakest

condition pM ≤ p with M ∈ MpM .

Proof. Suppose first that M is a Magidor model. Then we let MpM = Mp and dpM = dp.
It is straightforward that pM = (MpM , dpM ) is as required.

Now assume that M is countable. We let MpM be the closure of Mp ∪ {M} under
meets. Fix δ ∈ E. We show that Mδ

p is an ∈δ-chain. We may assume that M is active at

δ since otherwise Mδ
pM

= ∅. By Proposition 2.37 we know that the only models added

to Mδ
p in order to form Mδ

pM
are M ↾ δ and N ∧ M for N ∈ Mδ

p such that N ∧ M

is active at δ. Suppose N ∈ Mδ
p is such a model, and let P be the ∈δ-predecessor of

N in Mδ
p, if it exists. First note that N ∩ M ∈ N since N is closed under countable

sequence. Therefore, N ∧ M ∈ N . Moreover, if P exists by Proposition 2.36 we have
that P ∈δ N ∧M . This establishes that Mδ

pM
is a δ-chain.

Let us now define the decoration dpM . Suppose N ∈ dom(dp) is a δ-model. Then
δ ∈ M . If M is strongly active at δ, then by Proposition 2.33, for every Magidor model
P ∈ Mp if P ∧M is active at δ then it is strongly active at δ. Hence N is MpM -free.
We then keep N in dom(pM) and let dpM (N) = dp(N). Now, suppose M is not strongly
active at δ. This means that δ has uncountable cofinality in M . Let δ̄ = sup(M ∩ δ) and
note that δ̄ is a limit point of E. We claim that N ↾ δ̄ is MpM -free. Indeed, if there is
P ∈ MpM such that N ∈δ̄ P and P is not strongly active at δ̄, then P ∈ M , and hence
η(P ) ≥ δ. Moreover, P is active but not strongly active at δ as well. Since N ∈δ̄ P and
N,P ∈ M it follows that N ∈γ P , for unboundedly many γ ∈ E ∩ δ ∩M . But then by
Proposition 2.17 applied in M we conclude that N ∈δ P , and hence N is not Mp-free, a
contradiction. Notice also that if P ∈ Mp and N ∈δ̄ P then by Proposition 2.17 again
we must have that N ∈δ P and thus dp(N) ∈ P . Therefore, we can replace N by N ↾ δ̄
and let dpM (N ↾ δ̄) = dp(N). It is straightforward to check that pM is a weakest extension
of p such that M ∈ MpM . 3.11

If N,M are virtual models it will be convenient to set α(N,M) = max(a(N)∩ a(M)).

Definition 3.12. Suppose p ∈ Pκ
λ and M ∈ L(Mp) is a Magidor model. For N ∈ Mp

we let N ↾ M = N ↾ α(N,M) if κN < κM , otherwise N ↾ M is undefined. Let

Mp↾M = {N ↾M : N ∈ Mp}.

Let dp↾M = dp ↾ (dom(dp) ∩M), and let p ↾ M = (Mp↾M , dp↾M).

Lemma 3.13. Suppose p ∈ Pκ
λ and M ∈ L(Mp) is a Magidor model. Then p ↾ M ∈

Pκ
λ ∩M and p ≤ p ↾ M .

Proof. Since p is a condition, we have that if N ∈ Mp and κN < κM , then N ∈∗
γ M ,

for all γ ∈ a(N) ∩ a(M). By Proposition 2.25 we then conclude that N ∈γ M , for all
such γ. By Proposition 2.29 we have that α(N,M) ∈ M , and hence N ↾ α(N,M) ∈ M .
We also have that dp↾M ∈ M , thus p ↾ M ∈ M . Let us check that Mp↾M ∈ Mκ

λ.
Suppose δ ∈ E. If M is not active at δ then Mδ

p↾M is empty, otherwise it is equal to

(∅,M ↾ δ)δp, which is obviously a δ-chain. To check that Mp↾M is closed under meets,
suppose N ↾ M,P ↾ M ∈ Mp↾M and their meet is defined. Note that then N ∧ P is also
defined and, by Proposition 2.35 (N ∧ P ) ↾ M = N ↾ M ∧ P ↾ M . It is straightforward
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to check that every N ∈ dom(dp↾M) is Mp↾M -free, and (∗) from Definition 3.5 holds.
Finally, the fact that p ≤ p ↾ M follows from the definition. 3.13

Lemma 3.14. Suppose p ∈ Pκ
λ and M ∈ L(Mp) is a Magidor model. Suppose q ∈ M∩Pκ

λ

extends p ↾ M . Then q is compatible with p and the meet p ∧ q exists.

Proof. We define r ∈ Pκ
λ and check that it is a weakest condition extending p and q. Let

Mr = Mp ∪ Mq. We check that if δ ∈ E, then Mδ
r is a δ-chain closed under meets,

meaning if P,Q ∈ Mδ
r and the meet P ∧Q is defined and active at δ then P ∧Q ∈ Mδ

r.
Fix such δ ∈ E. If M is not active at δ, then Mδ

r = Mδ
p and thus has the required

property since p is a condition. Now, suppose M is active at δ. If R ∈ Mδ
r and R ∈∗

δ M ,
then by Proposition 2.25 we know that R ∈δ M , and by Proposition 2.29 we get that
δ ∈ M . Hence R ∈ M and therefore R ∈ Mδ

q. Therefore, Mδ
r is the union of Mδ

q and

[M ↾ δ, Vλ)
δ
p, and hence is a δ-chain. Now suppose P,Q ∈ Mδ

r and their meet is defined

and active at δ. We need to check that Q ∧ P ∈ Mδ
r. If both P and Q belong either to

Mδ
q or Mδ

p, this follows from the fact that p and q are conditions. Since Q ∈δ P and

Mδ
q is an ∈∗

δ-initial segment of Mδ
r, we may assume Q ∈ Mδ

q and P ∈ Mδ
p \M

δ
q. The

proof goes by induction on the number of Magidor models on the δ-chain [M ↾ δ, P )δp. If

M ∈δ P then M ∧ P ∈ Mδ
p and is δ-below M ↾ δ, hence belongs to Mδ

q. On the other

hand, by Proposition 2.37 we have Q∧ P = Q∧ (M ∧ P ), and since Mδ
q is closed under

meets we get that Q ∧ P ∈ Mδ
q. In general, if N is the ∈∗

δ-largest Magidor model in

[M ↾ δ, P )δp, by Proposition 2.25, we have that Q ∈δ N ∈δ P . In particular, N ∧ P is
defined and by Proposition 2.37 we have that Q∧P = Q∧ (N ∧P ). Now, we are done if
N ∧P ∈ Mδ

q as q is a condition. Otherwise, it belongs to the interval [M ↾ δ, P )δp. Then

there are fewer Magidor models in [M ↾ δ, N ∧ P )δp and thus we can use the induction
hypothesis.

Let dr = dq ∪ dp ↾ (dom(dp) \ M). Let us check that every N ∈ dom(dr) is Mr-free.
For simplicity, let η = η(N). If N ∈ dom(dp) \M , then there is no P ∈ Mq such that
N ∈η P , and hence the conclusion follows from the fact that p is a condition. Suppose
now N ∈ dom(dq) and P ∈ Mr is such that N ∈η P . We have to check that P is
strongly active at η. We may assume that P is a countable model. If P ↾ η is η-below
M , then P ↾M is defined and P ↾M ∼=η P , therefore, the conclusion follows from the
fact that q is a condition. If P ↾ η is η-above M , then M ∧ P is defined and belongs to
Mp. Moreover, by Proposition 2.36, N ∈η M ∧ P . Now (M ∧ P ) ↾M is defined, and

belongs to Mα(M∧P,M)
q , and is strongly active at η since N is Mq-free. Therefore, P is

also strongly active at η. The fact that dr satisfies condition (∗) from Definition 3.5 is
straightforward. Finally, the fact that r is the weakest common extension of p and q
follows readily from the definition. 3.14

By Lemma 3.11 and Lemma 3.14 we immediately get the following.

Theorem 3.15. The forcing Pκ
λ is U -strongly proper.

3.15

We now proceed to define an analogue of p ↾M for countable models M ∈ L(Mp).
The situation here is more subtle since p↾M may not belong to the original forcing, only
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its version as defined in M . We first analyze the part involving Mp. It will be useful to
make the following definition.

Definition 3.16. Let M be a subset of C ∪ U and M ∈ C . For δ ∈ E, we let
(M ↾ M)δ = {N ∈ Mδ : N ∈δ M}.

Lemma 3.17. Let Mp ∈ Mκ
λ and δ ∈ E. Suppose M ∈ Mδ

p is countable. Then

(Mp ↾M)δ is a δ-chain closed under meets and

(Mp ↾ M)δ = (∅,M ↾ δ)δp \
⋃

{[N ∧M,N)δp : N ∈ (Mp ↾ M)δ and is a Magidor model}.

Here, if N ∧M is defined and not active at δ, by [N ∧M,N)δp we mean (∅, N)δp.

Proof. It is clear that (Mp ↾ M)δ ⊆ (∅,M)δp. Suppose P ∈ Mδ
p and P ∈δ M . Then,

for any Magidor model N ∈ (P,M)δp, we have P ∈δ N by Proposition 2.25. Then by

Proposition 2.36 we have that P ∈δ N ∧ M . Conversely, suppose P is in (∅,M)δp, but

not in (Mp ↾ M)δ. Then, by Proposition 2.25 again, there must be a Magidor model
N ∈ Mδ

p such that P ∈δ N ∈δ M . Let N be the ∈∗
δ-least such model. If N ∧M is not

active at δ, then P ∈ (∅, N)δp. Suppose N ∧ M is active at δ. We have to show that
either P = N ∧ M or N ∧ M ∈∗

δ P . Indeed, otherwise we have P ∈∗
δ N ∧ M . Note

that there cannot be a Magidor model Q ∈ Mδ
p with P ∈δ Q ∈δ N ∧M since then we

would have Q ∈δ M as well, and this contradicts the minimality of N . Since Mδ
p is a

δ-chain, by Proposition 2.25 we conclude that P ∈δ N ∧ M , but then also P ∈δ M , a
contradiction. The fact that (Mp ↾M)δ is a δ-chain follows from the above analysis. By
Proposition 2.38 it is also closed under meets. 3.17

Lemma 3.18. Let p ∈ Pκ
λ and M,N ∈ Mp. If there is γ ∈ a(M) ∩ a(N) such that

N ∈γ M , then N ∈δ M , for all δ ∈ a(M) ∩ a(N).

Proof. Let α = α(M,N). If N ∈α M then N ∈γ M , for all γ ∈ a(M) ∩ a(N), by
Proposition 2.15. Now suppose N /∈α M . If M is a Magidor model we have κM ≤ κN ,
and hence there is no γ such that N ∈γ M . Assume now that M is countable. Then
by Lemma 3.17 there is a Magidor model P ∈ Mδ

p with P ∈δ M such that N ↾ δ is in

the interval [P ∧M,P )δp. Now, P ∧M is active at all γ ∈ a(N) ∩ α and N ↾ γ is in the
interval [(P ∧M) ↾ γ, P ↾ γ)γp , for all such γ. But then, by Lemma 3.17 again, N /∈γ M ,
for all γ ∈ a(M) ∩ a(N). 3.18

It would be useful to introduce some notation.

Definition 3.19. Suppose M ∈ V and M is a finite subset of V . Let α ∈ E. We write
M ∈α M if N ∈α M , for all N ∈ M.

Lemma 3.20. Suppose Mp ∈ Mκ
λ and δ ∈ E. Suppose M ∈ Mδ

p is a countable model,

M ∈δ M is a finite δ-chain closed under meets, and (Mp ↾M)δ ⊆ M. Then the closure
of Mδ

p ∪M under meets that are active at δ is a δ-chain.

Proof. Let us first show that Mδ
p∪M is a δ-chain. Indeed, by Lemma 3.17 it is obtained

by adding to M the intervals [N ∧M,N)δp, where N ∈ (Mp ↾M)δ is a Magidor model,

and the interval [M,Vλ)
δ
p. Consider one such interval, say [N ∧M,N)δp. If P is the last
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model of M before N then P ∈δ M by the assumption that M ∈δ M , and P ∈δ N by
Proposition 2.25. Hence by Proposition 2.35 we have that P ∈δ N ∧M . It follows that
Mδ

p ∪M is a δ-chain.

Let us now consider what happens when we close Mδ
p∪M under meets that are active

at δ. Suppose Q,P ∈ Mδ
p ∪ M, Q is a Magidor model, P is countable, and Q ∈δ P .

If P ∈ M then Q ∈δ P ∈δ M , and hence by Proposition 2.25 Q ∈ M , and so Q ∈ M
as well. Since M is closed under meets, we have that Q ∧ P ∈ M. Now suppose
P ∈ Mδ

p \M. By Lemma 3.17 we have that P ∈ [M,Vλ)
δ
p or P ∈ [N ∧M,N)δp, for some

Magidor model N ∈ (Mp ↾M)δ. The two cases are only notationally different, so let us
assume that there is a Magidor model N ∈ (Mp ↾M)δ such that P ∈ [N ∧M,N)δp. We
may assume that Q ∈ M. Note that Q ∈δ N and Q ∈δ M , hence by Proposition 2.36
Q ∈δ N ∧M . If there is a Magidor model R ∈ Mp such that Q ∈∗

δ R ∈∗
δ P , let R be the

∈∗
δ-largest such model. By Proposition 2.25 we have that R ∈δ P and hence R ∧ P is

defined and is below P on the δ-chain Mδ
p. Moreover, since Mp∪M is a δ-chain, also by

Proposition 2.25, we have Q ∈δ R. Now, by Proposition 2.36 we have that Q ∈δ R ∧ P ,
and by Proposition 2.37 we have Q ∧ P = Q ∧ (R ∧ P ). Therefore, we may assume that
there are no Magidor models R ∈ Mδ

p with Q ∈δ R ∈δ P . Now, let {Pi : i < k} list all

countable models on the chain [N ∧M,N)δp below the first Magidor model, if it exists.
Then P0 = N ∧M and P = Pj, for some j. Note that Q ∈δ Pi, for all i < k, again by
Proposition 2.25. Now let S be the ∈∗

δ-predecessor of N on the δ-chain Mδ
p ∪ M, if it

exists, otherwise let S be ∅. Note that S ∈δ N ∧ M . Indeed, if S ∈ Mp this follows
from Proposition 2.25, and the fact that there are no Magidor models in (S,N ∧M)δp.
If S ∈ M then S ∈δ M and thus S ∈δ N ∧M . Now, by Proposition 2.25 we have that
S ∈δ Pi, for all i < k. Hence, by Proposition 2.36 we have S ∈δ Q ∧ Pi, for all i. By
Proposition 2.38 we have Q ∧ Pi ∈δ Pi+1, for all i < k − 1. Since Q is a Magidor model,
we also have that Q ∧ Pi ∈δ Q, for all i < k. By Proposition 2.36 again, we have that
Q ∧ Pi ∈δ Q ∧ Pi+1, for all i < k − 1. Therefore, S ∈δ Q ∧ P0 ∈δ . . . ∈δ Q ∧ Pk−1 ∈δ Q,
and Q ∧ P appears on this chain. If S = ∅ then an initial segment of this chain may be
nonactive at δ, but the remainder is still a δ-chain. 3.20

Now, suppose p ∈ Pκ
λ and M ∈ Mp is a countable β-model, for some β ∈ E. Let

A = Hull(M,Vβ). Then A ∈ Aβ. Note that EA ∩ β = E ∩ β, and if β ∈ A then β ∈ EA.
Also, note that the definitions of Pκ

α and the order relation is Σ1 with parameter Vα. For
α ∈ EA, let (Pκ

α)
A be the version of Pκ

α as defined in A. Then (Pκ
α)

A = Pκ
α if α < β,

and (Pκ
β)

A ⊆ Pκ
β. We will let V M

α = V A
α ∩M , and (Pκ

α)
M = (Pκ

α)
A ∩M , if α ∈ EA ∩M .

Suppose N ∈ Mp and N ∈δ M , for some δ ∈ a(M) ∩ a(N), Then by Lemma 3.18,
N ∈α M , where α = α(M,N). Note that if M is a standard β-model then α < β.
It may be that α /∈ M , but then, if we let α∗ = min(M ∩ ORD \ α), we have that
α∗ ∈ EA ∩M , and α∗ is of uncountable cofinality in A. By the previous remarks, if M
is a standard β-model or β ∈ M then α∗ ∈ E ∩ (β + 1), otherwise α∗ may be in the
nonstandard part of M . Since N ∈α M , there is a model N∗ ∈ M with N∗ ∈ V A which
is α-isomorphic to N . Now, M can compute N∗ ↾ α∗, hence we may assume N∗ ∈ V A

α∗ .
Moreover, such N∗ is unique. Indeed, if there is another model N∗∗ ∈ M with the same
property, since α∗ is the least ordinal in M above α and N∗ ∼=α N∗∗ we would have that
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N∗ ∼=δ N
∗∗, for all δ ∈ EA ∩α∗∩M . Hence, by Proposition 2.16 applied in M , we would

have that N∗ = N∗∗. This justifies the following definition.

Definition 3.21. Suppose p ∈ Pκ
λ and let M ∈ L(Mp) be a countable β-model, for some

β ∈ E. Let N ∈ Mp and let α = α(M,N). If N ∈α M we let α∗ = min(M ∩ORD \ α).
We define N ↾ M to be the unique N∗ ∈ V M

α∗ such that N∗ ∼=α N . Otherwise we leave
N ↾ M undefined. Let

Mp↾M = {N ↾ M : N ∈ Mp}, and

dom(dp↾M) = {N ↾ M : N ∈ dom(dp) and N ∈η(N) M}.

If N ∈ dom(dp) and N ∈η(N) M , let dp↾M(N ↾M) = dp(N). Let p↾M = (Mp↾M , dp↾M).

Remark 3.22. Suppose N ∈ dom(dp) and let η = η(N). If N ∈η M then M is strongly
active at η since N is Mp-free. If η ∈ M then we put N in dom(dp↾M) and keep the
same decoration at N . If η /∈ M we lift N to the least level η∗ of M above η, we put
the resulting model N∗ in dom(dp↾M) and copy the decoration of N to N∗. If P ∈ Mp

is such that P ↾η = N then (P ↾M) ↾η∗ = N∗. Moreover, from N∗ we can recover N as
N∗ ↾ sup(η∗ ∩M). Thus, the function dp↾M is well defined. Note also that p↾M ∈ M .

Proposition 3.23. Suppose p ∈ Pκ
λ and M ∈ L(Mp) is a countable β-model, for some

β ∈ E. Let
α = max{α(N,M) : N ∈α(N,M) M and N ∈ Mp}.

Let α∗ = min(M ∩ORD \ α). Then p ↾ M ∈ (Pκ
α∗)M .

Proof. Let A = Hull(M,Vβ) and work in A. It is clear that Mp↾M is a finite subset
of C A

≤α∗ ∪ U A
≤α∗ . We first show that Mγ

p↾M is a γ-chain closed under meets, for all

γ ∈ EA ∩ (α∗ + 1). Fix such γ and let δ = min(M ∩ ORD \ γ) and δ̄ = sup(M ∩ δ). If
δ̄ = δ then γ = δ, and hence γ ∈ M and the conclusion follows from the fact that p is a
condition and Lemma 3.17. Let us assume now that δ̄ < δ. Note that then δ̄, δ ∈ E, δ
is of uncountable cofinality in M , and is a limit point of E. Note that if P ∈ Mp↾M is
a δ-model that is active at γ then a(P ) is cofinal in δ. Moreover, a(P ) ∈ M and since

δ̄ = sup(M∩δ) we have that δ̄ ∈ a(P ). This implies that Mγ
p↾M ↾ δ̄ = Mδ̄

p ↾M . Therefore,

by Lemma 3.17 it is a δ̄-chain closed under active meets. Now, suppose N,P ∈ Mδ
p↾M and

N ∈δ̄ P . Since δ̄ = sup(M ∩ δ) we have that N ∈ξ P , for unboundedly many ξ ∈ E ∩ δ.
We conclude that N ∈δ P . Indeed, if P is countable this follows from Proposition 2.17
applied in A, and if P is a Magidor model this follows from Proposition 2.30, again applied
in A. Moreover, assuming N is a Magidor model and P is countable, and N ↾ γ ∧ P ↾ γ
is defined and active at γ then, by Proposition 2.35, N ∧ P is defined and active at
unboundedly many ξ ∈ E ∩ δ, and hence it is also active at δ and δ̄. It follows that
Mδ

p↾M is a δ-chain closed under meets, and hence Mγ
p↾M is a γ-chain closed under meets

as well.
Let us check that every P ∗ ∈ dom(dp↾M) is Mp↾M -free. If P ∗ ∈ dom(dp) this is

immediate. Otherwise, P ∗ is of the form P ↾ M , for some P ∈ dom(dp) such that
η(P ) /∈ M . Let η = η(P ) and η∗ = η(P ∗). Note that M is strongly active at η and η∗

is the least ordinal of M above η. Suppose N ∈ Mp↾M is such that P ∗ ∈η∗ N . Then
N ↾η ∈ L(Mp) and P ∈η N . Since P is Mp-free, N must be strongly active at η. Since
η = sup(M ∩ η∗) and N ∈ M we must have that N is strongly active at η∗ as well. This
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also establishes (∗) from Definition 3.5. Indeed, if P ∗ ∈η∗ N then P ∈η N ↾η, and hence
dp(P ) ⊆ N , since N ↾ η ∈ L(Mp), and p is a condition. This completes the proof that
p↾M = (Pκ

α∗)A. 3.23

Remark 3.24. Note that if p, q ∈ Pκ
λ are such that q ≤ p and M ∈ Mp then q ↾M ≤ p↾M .

We are planning to show that if p is a condition and M ∈ Mp is a countable β-model
then, for any q ≤ p ↾M with q ∈ M , p and q ↾ β are compatible, and in fact the meet
p ∧ q ↾β exists. Before that we show the following special case of this statement.

Lemma 3.25. Suppose p ∈ Pκ
λ and δ ∈ E. Suppose M ∈ Mδ

p is a countable model,
M ∈δ M,M ∈ Mκ

δ , and (Mp ↾M)γ ⊆ Mγ, for all γ ∈ E ∩ (δ + 1). Suppose further that
P /∈η(P ) M , for all P ∈ dom(dp). Let Mq be the closure of Mp ∪M under meets and
let dq = dp. Finally, let q = (Mq, dq). Then q ∈ Pκ

λ.

Proof. Let us first check that Mγ
q is a γ-chain closed under active meets, for all γ ∈ E.

Fix γ ∈ E. If M is not active at γ then Mγ
q = Mγ

p , so this follows from the fact that p
is a condition. If M is active at γ then this follows from Lemma 3.20.

Thus, it remains to check that every P ∈ dom(dp) is Mq-free and dp(P ) ∈ Q, for all
Q ∈ Mq such that P ∈η(P ) Q. Now, fix one such P ∈ dom(dp) and let η = η(P ). If M is
not active at η, then no model of M is active at η, and hence Q ∈ Mp, for all Q ∈ Mq

such that P ∈η Q. The conclusion then follows from the fact that p is a condition and dp
is its decoration. Suppose now that M is active at η, but P is either equal to M ↾η or is
above M ↾η on the η-chain Mη

p. Then, again any Q ∈ Mq such that P ∈η Q is in Mp,
and the conclusion follows as above. Suppose now that M is active at η and P ∈∗

η M .
Note that Mη

q is obtained by closing Mη
p∪Mη under meets that are active at η. Suppose

P is below M ↾ η on Mη
p. By the assumption, P /∈η M , hence by Lemma 3.17, there

must be a Magidor model N ∈ (Mp ↾M)η such that P is in the interval [N ∧M ↾η,N)ηp.
By Proposition 2.25, we have that P ∈η N and thus dq(P ) ∈ N . Note that P also
belongs to the interval [N ∧ M ↾ η,N)ηq . Suppose Q ∈ Mq and P ∈η Q. By replacing
Q with Q ↾η, we may assume that Q ∈ Mη. Note that Q cannot be a countable model
since then we would have P ∈η M . If Q is a Magidor model in Mη then Q cannot be
below N since then it would be below N ∧M ↾ η on Mη

q . Therefore, Q must be either
equal to N or above N on the η-chain Mη. Then we would have N ∩ Vκ ⊆ Q ∩ Vκ, and
hence dp(P ) ∈ Q. If Q ∈ Mp then Q is strongly active at η and dp(P ) ∈ Q, since p
is a condition. It remains to consider the case when Q is of the form R ∧ S, for some
Magidor model R ∈ Mη and countable S ∈ Mη

p \ Mη. Now, we must have R = N or
N ∈η R since otherwise R, and hence also R ∧ S, would be below N ∧ M ↾ η. Since
dp(P ) ∈ N , we must have dp(P ) ∈ R. Moreover, since S ∈ Mη

p, and dp is the decoration
of p, S must be strongly active at η and dp(P ) ∈ S. By Proposition 2.34, R ∧ S is
strongly active at η. By Proposition 2.33, we have R ∧ S ∩ Vη = R ∩ S ∩ Vη, and hence
dp(P ) ∈ R ∧ S = Q. 3.25

Lemma 3.26. Suppose p ∈ Pκ
λ and M ∈ L(Mp) is a countable β-model, for some β ∈ E.

Let α∗ ∈ M be such that p ↾M ∈ (Pκ
α∗)M . Then for any q ∈ (Pκ

α∗)M with q ≤ p ↾M , p
and q ↾β are compatible, and the meet p ∧ q ↾β exists.

Proof. Let Mr be the closure of Mp ∪Mq↾β under meets. By Lemma 3.20 we already
know that Mδ

r is a δ-chain, for all δ ∈ E. Hence Mr ∈ Mκ
λ. It remains to define the
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decoration dr, and check that it satisfies (∗) from Definition 3.5. Let

Dp = {P ∈ dom(dp) : P /∈η(P ) M}.

Now, suppose P ∈ dom(dq). Let δ(P ) be the largest ordinal γ ∈ E ∩ (η(P ) + 1) such
that M is strongly active at γ. Let

Dq = {P ↾δ(P ) : P ∈ dom(dq)}.

Note that, for every P ∈ dom(dq), we have (P ↾δ(P ))↾M = P , and P is active at δ(P ).
Observe that Dp and Dq are disjoint. Let dom(dr) = Dp ∪Dq and define dr by:

dr(P ) =

{

dp(P ) if P ∈ Dp

dq(P ↾M) if P ∈ Dq and η(P ) ≤ β

We have to check that every P ∈ dom(dr) is Mr-free and condition (∗) holds. By
Lemma 3.25 we have that (Mr, dp ↾Dp) is already a condition, so we may assume P ∈ Dq.
Fix one such P ∈ Dq, and let η = η(P ). Note that it suffices to show that the least
model, say R, on the η-chain Mη

r above P is strongly active at η, and dr(P ) ∈ R. By
Lemma 3.17 either R ∈η M or R = N ∧M ↾η, for some Magidor model N ∈ (Mp ↾M)η.
Now, if R is of the form N ∧ M , then, since N and M are strongly active at η, by
Proposition 2.34, so is R. Moreover, N ↾M ∈ L(Mq) and dq(P ↾M) ∈ M ∩N . It follows
that dr(P ) ∈ R. Suppose now that R ∈η M . Let ρ = min(E ∩ M \ η). Then P ↾M
and R ↾M are ρ-models, R ↾M ∈ L(Mq), and P ↾M ∈ρ R ↾M . Therefore, R ↾M is
strongly active at ρ, and dq(P ↾ M) ∈ R ↾ M . Since (R ↾ M) ∩ Vκ = R ∩ Vκ, we get
that dq(P ↾M) ∈ R, and hence dr(P ) ∈ R. Moreover, since R ↾M is strongly active at
ρ, it follows that R is strongly active at η. This shows that all the models in dom(dr)
are Mr-free and condition (∗) holds for r. The fact that r ≤ p, q ↾ β and is in fact the
weakest such condition follows from the definition. 3.26

Remark 3.27. Suppose p ∈ Pκ
λ and M ∈ Mp is a countable β-model, for some β ∈ E.

If either M is standard or β ∈ M we have that p ↾M ∈ Pκ
λ. In particular, Lemma 3.26

shows that if p ∈ Pκ
λ then p and p ↾M are compatible. Now, we have already observed

that, if q ∈ Pκ
λ and q ≤ p, then q ↾M ≤ p↾M . Therefore, even though it may not be the

case that p ≤ p ↾M , every p forces p ↾M to belong to the generic filter, and hence p is
stronger than p↾M .

Now, by Lemma 3.11 and Lemma 3.26 we immediately get the following.

Theorem 3.28. Pκ
λ is Cst-strongly proper.

Proof. Suppose M ∈ C and p ∈ M∩Pκ
λ. Let pM be the condition defined in Lemma 3.11.

If q ≤ pM then M ∈ L(Mq) and q ↾M ∈ M , and by Remark 3.27, q ↾ M ∈ Pκ
λ. Then,

by Lemma 3.26 any extension r of q ↾M with r ∈ M is compatible with q, and moreover
q ∧ r exists. Thus, pM is a (M,Pκ

λ)-strongly generic condition extending p. 3.28

Remark 3.29. A similar proof shows that the forcing Pκ
α is strongly proper for the col-

lection of all M ∈ C such that α ∈ M .

Notation 3.30. Let F be a filter in Pκ
λ. Then we let MF denotes

⋃

{Mp : p ∈ F}.
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Let G be a Pκ
λ-generic filter over V . We let Gα = G∩Pκ

α, for all α ∈ E. The following
is straightforward.

Proposition 3.31. Let δ ∈ E with cof(δ) < κ. Then Mδ
G is a δ-chain.

3.31

Proposition 3.32. Let δ ∈ E with cof(δ) < κ. Suppose M ∈ Mδ
G is a Magidor model

and is not the least model in Mδ
G. Then M ∩ Vδ =

⋃

{Q ∩ Vδ : Q ∈δ M and Q ∈ Mδ
G}.

Proof. It suffices to show that if p ∈ Pκ
λ and M ∈ Mδ

p is a Magidor model that is not the

least model of Mδ
p, and x ∈ M ∩ Vδ, then there is q ≤ p and Q ∈ Mq which is active

at δ such that Q ∈δ M and x ∈ Q. Let N ∈ Mp be active at δ such that N ∈δ M .
Fix some Q∗ ∈ C such that N,M, x ∈ Q∗. By Lemma Lemma 3.11 there is a condition
q ≤ p such that Q∗ ∈ Mq. Since N ∈δ M and N ∈δ Q∗, if we let Q = M ∧ Q∗,
by Proposition 2.35 N ∈δ Q, and hence Q is active at δ. Moreover, Q ∈δ M and by
Proposition 2.33 Q∩ Vδ = N ∩Q∗ ∩ Vδ and hence x ∈ Q. It follows that the condition q
and the model Q are as required. 3.32

Theorem 3.33. Assume κ is supercompact. Then Pκ
λ preserves ω1 and κ, and collapses

all cardinals between ω1 and κ to ω1.

Proof. By Proposition 2.19, Cst is stationary in Pω1
(Vλ), and by Lemma 3.26, Pκ

λ is
Cst-strongly proper. Hence ω1 is preserved. By Proposition 2.24, U is stationary in
Pκ(Vλ), and by Theorem 3.15, Pκ

λ is U -strongly proper. Hence κ is preserved. Now,
fix a cardinal µ < κ. Let G be a Pκ

λ-generic filter over V . Fix α ∈ E of cofinality less
than κ. A standard density argument shows that there exists a Magidor model N ∈ Mα

G

such that µ ∈ N . By Proposition 3.31 Mα
G is an ∈α-chain. Let N∗ be the least Magidor

model above N in Mα
G, and let I = (N,N∗)αMG

. Note that every model in I is countable
and ∈α is transitive on I. Hence if P,Q ∈ I and P ∈α Q then P ∩Vα ⊆ Q∩Vα. Another
standard density argument shows that, for every x ∈ N ∩ Vα, there is P ∈ I such that
x ∈ P . Thus, {P ∩ Vα : P ∈ I} is an increasing chain of countable sets whose union
covers N ∩ Vα. It follows that N ∩ Vα is of cardinality at most ω1. Since µ belongs to
the transitive part of N , we also get that |µ| ≤ ω1. 3.33

Theorem 3.34. Pκ
λ collapses cardinals of the interval between κ and λ to κ.

Proof. Let α ∈ E be of cofinality less than κ, and let G be a V -generic filter over Pκ
λ..

Let Uα be the set of Magidor models in Mα
G. By Proposition 2.25, we have that ∈α is

transitive on Uα. Note that if P,Q ∈ Uα then P ∩Vα ⊆ Q∩Vα. Now, a standard density
argument using the stationarity of U shows that, for every x ∈ Vα, there is P ∈ Uα such
that x ∈ P . It follows that {P ∩ Vα : P ∈ Uα} is an increasing family of sets of size < κ
whose union is Vα. Therefore, Vα has cardinality ≤ κ in V [G]. 3.34

Theorem 3.35. Suppose λ is an inaccessible cardinal. Then Pκ
λ is λ-c.c.

Proof. For each p ∈ Pκ
λ, let a(p) =

⋃

{a(M) : M ∈ Mp}. Note that a(p) is a closed
subset of E of size < κ, for all p. Suppose A is a subset of P κ

λ of cardinality λ. Since λ
is inaccessible, by a standard ∆-system argument, we can find a subset B of A of size λ
and a subset a of E such that a(p) ∩ a(q) = a, for all distinct p, q ∈ B. Note that a is



GUESSING MODELS AND THE APPROACHABILITY IDEAL 25

closed, and if we let γ = max(a) then γ ∈ E. Since B has size λ, by a simple counting
argument, we may assume there is M ∈ Mκ

γ such that Mp ↾γ = M, for all p ∈ B. Now,
pick distinct p, q ∈ B, and define Mr = Mp ∪Mq and dr = dp ∪ dq. Let r = (Mr, dr).
It is straightforward to check that r ∈ Pκ

λ and r ≤ p, q. 3.35

Definition 3.36. Suppose G is V -generic over Pκ
λ and α ∈ E is of cofinality less than

κ. Let Cα(G) = {κM : M ∈ Mα
G}.

Lemma 3.37. Let G be a V -generic filter over Pκ
λ. Then Cα(G) is a club in κ, for all

α ∈ E of cofinality < κ. Moreover, if α < β then Cβ(G) \ Cα(G) is bounded in κ.

Proof. Let us check the second statement first. Fix α, β ∈ E such that cof(α), cof(β) < κ,
and α < β. By a standard density argument using the stationarity of U there is p ∈ G
and a Magidor model M ∈ MG which is active at both α and β. Therefore, any model N
above M ↾β on the β-chain Mβ

G is also active at α. It follows that Cβ(G) \Cα(G) ⊆ κM .

We work in V and prove the first statement by induction on α. Let Ṁα and Ċα be
canonical Pκ

λ-names for Mα
G and Cα(G), for α ∈ E. Now, fix α ∈ E of cofinality less

than κ and suppose the statement has been proved for all ᾱ ∈ E ∩ α of cofinality < κ.
Suppose γ < κ and p ∈ Pκ

λ forces that γ is a limit point but not a member of Ċα We may
assume that there is a model M ∈ Mα

p such that p forces that M is the least model on

the α-chain Ṁα such that γ ≤ κM . Then we must have γ < κM . Let P be the previous
model on Mα

p before M . We may assume that such a model exists since p forces that γ

is a limit point of Ċα. Note that κP < γ since p forces that γ /∈ Ċα.
Case 1. Suppose M is strongly active at α. Since P is Mp-free and we may assume
that P ∈ dom(dp), by defining dp(P ) = ∅ if necessary. Since γ < κM , we can find
δ ∈ M such that γ ≤ δ < κM . Define a condition q as follows. Let Mq = Mp, and
let dom(dq) = dom(dp). Let dq(P ) = dp(P ) ∪ {δ}, and dq(Q) = dp(Q), for any other
Q ∈ dom(dp). Let q = (Mq, dq). Then q is a condition and forces that the next model

of Ṁα above P contains δ. Hence, it forces that there is no element of Ċα between κP

and γ, and so it forces that γ is not a limit point of Ċα, a contradiction.
Case 2. Suppose now that M is not strongly active at α. Then M is countable. Let
A = Hull(M,Vα), let α∗ be the least ordinal of M above α, and let ᾱ = sup(M ∩ α).
Note that α∗ ∈ EA, ᾱ is a limit point of E of cofinality ω, and that P is also active
at ᾱ. Now, by the proof of the second part of the lemma, p forces that Ċα \ Ċᾱ ⊆ κP ,

and so it also forces that γ is a limit point of Ċᾱ. By the inductive assumption Ċᾱ is
forced to be a club, so there is q ≤ p and some N ∈ Mᾱ

q such that κN = γ. Now, for

each Q ∈ (Mq ↾M)ᾱ, we can find a unique model Q∗ ∈ M with Q∗ ∈ V A
α∗ such that

Q∗ ↾ ᾱ = Q. Let M∗ = {Q∗ : Q ∈ (Mp ↾M)ᾱ}. Working in A, M∗ is an α∗-chain closed
under meets that are active at α∗. Let M = {Q∗ ↾ α : Q∗ ∈ M∗}. Then M ∈α M ,
is an α-chain closed under meets that are active at α, and (Mq ↾M)α ⊆ M. We now
define a condition r. Let Mr be the closure of Mp and M under meets. By applying
Lemma 3.20, for all levels δ ∈ E ∩ (ᾱ, α], we have that Mr ∈ Mκ

λ. Let dr = dq and
r = (Mr, dr). Observe that Mη

r = Mη
q , for all η ∈ E \ (ᾱ, α]. Also, if R ∈ dom(dq) and

η(R) ∈ (ᾱ, α] then R /∈η(R) M , since M is not strongly active at η(R). By Lemma 3.25,
we conclude that r is a condition. Also, we have that r ≤ q. Recall that N ∈ Mᾱ

q

and κN = γ. Let Q be the model on the ᾱ-chain Mᾱ
r immediately before M ↾ ᾱ. Then
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Q∗ ∈ M∗, and hence Q∗ ↾α ∈ Mr. Let R = Q∗ ↾α. In other words, we lifted the model
Q to level α and called this model R. Note that κR = κQ. Then r forces that R ∈ Ṁα

and γ ≤ κR < κM , which contradicts the fact that p forces that γ /∈ Ċα and M is the
least model on Ṁα with γ ≤ κM . This completes the proof of the lemma. 3.37

4. Guessing Models in V [G]

We assume κ is supercompact and λ is inaccessible and analyze ω1-guessing models
in the the generic extension by Pκ

λ. Suppose α ∈ E. We have already established in
Corollary 3.10 that Pκ

α is a complete suborder of Pκ
λ. Let us fix a V -generic filter Gα

over Pκ
α, and let Qα denote the quotient forcing. Recall that Qα consists of all p ∈ Pκ

λ

such that p ↾ α ∈ Gα, with the induced ordering. Forcing with this poset over V [Gα]
produces a V -generic filter G for Pκ

λ such that G∩Pκ
α = Gα. We first show that the pair

(V [Gα], V [G]) has the ω1-approximation property. We will need the following definition.

Definition 4.1. Let C α
st denote the set of all M ∈ Cst such that η(M) > α, α ∈ M , and

M ↾α ∈ MGα.

Lemma 4.2. C α
st is stationary subset of Pω1

(Vλ) in the model V [Gα].

Proof. We work in V . Let Ċ α
st and Ṁα be the canonical Pκ

α-names for C α
st and MGα.

Suppose p ∈ Pκ
α forces that Ḟ : [Vλ]

<ω → Vλ is a function. Let θ be a sufficiently
large regular cardinal. By Proposition 2.19, Cst is club in Pω1

(Vλ), hence we can find a
countable M∗ ≺ H(θ) containing all the relevant objects such that letting M = M∗ ∩Vλ

we have that M ∈ Cst. Let M ′ = M ↾α. Note that p ∈ M ′, so we can form the condition
pM

′

. Then pM
′

is (M ′,Pκ
α)-strongly generic and pM

′

≤ p. Let σ be the α-isomorphism
between M and M ′. Note that σ(q) = q, for all q ∈ M ∩ Pκ

α. Hence, M ∩ Pκ
α = M ′ ∩ Pκ

α.
Therefore, pM

′

is also (M,Pκ
α)-strongly generic, and thus it is (M∗,Pκ

α)-generic. Since
Ḟ ∈ M∗, it follows that pM

′

forces that M is closed under Ḟ . It also forces that M ′

belongs to Ṁα, hence it forces that M belongs to Ċ α
st . 4.2

Lemma 4.3. Suppose α ∈ E and let Gα be V -generic over Pκ
α. Then Qα is C α

st -strongly
proper.

Proof. Work in V [Gα]. Let p ∈ Qα, and M ∈ C α
st be such that p ∈ M . Let pM be

the condition defined in Lemma 3.11. Since α ∈ M we have p ↾ α ∈ M , and also
p ↾α ∈ M ↾α. Note that pM ↾α = (p ↾α)M↾α. Since p ↾α ∈ Gα and M ↾α ∈ MGα, we
have that pM ↾α ∈ Gα, thus pM ∈ Qα. Let us show that pM is (M,Qα)-strongly generic.
Suppose q ≤ pM and q ↾α ∈ Gα. Since α ∈ M ↾α we have (q ↾M) ↾α = (q ↾α) ↾ (M ↾α),
and hence q ↾M ∈ M ∩ Qα. Let r ≤ q ↾M be such that r ∈ M ∩ Qα. By Lemma 3.26,
r and q are compatible in Pκ

λ and the meet r ∧ q exists. Now, observe that the meet of
r ↾α and q ↾α exists, and r ↾α ∧ q ↾α = (r ∧ q) ↾α. Since r ↾α, q ↾α ∈ Gα, we conclude
that r ↾α ∧ q ↾α ∈ Qα. It follows that q and r are compatible in Qα. 4.3

Now, by Lemma 4.2, Lemma 4.3, and Proposition 1.20, we get the following.

Corollary 4.4. The pair (V [Gα], V [G]) has the ω1-approximation property.

4.4
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Suppose now N ∈ U . Let 1
N = ({N}, ∅). By Lemma 3.14, 1N is (N,Pκ

λ)-strongly
generic. Moreover, for every q ≤ 1

N and r ≤ q ↾N , q and r are compatible, and the meet
q ∧ r exists. Let PN = Pκ

λ ∩N and let

Pκ
λ ↾N = {q ∈ Pκ

λ : N ∈ Mq}.

Then the map p 7→ pN is a complete embedding from PN to Pκ
λ ↾N . Now, fix a V -generic

filter GN over PN .

Definition 4.5. Let GN be a V -generic filter over PN . Let C N
st denote the set of all

M ∈ Cst such that N ∈ M and N ∧M ∈ MGN
.

Lemma 4.6. The collection C N
st is stationary in Pω1

(Vλ) in the model V [GN ].

Proof. This is very similar to the proof of Lemma 4.2. We work in V . Let Ċ N
st be the

canonical PN -name for C N
st . Suppose p ∈ PN forces that Ḟ : [Vλ]

<ω → Vλ is a function.
Let θ be a sufficiently large regular cardinal. By Proposition 2.19, Cst is stationary in
Pω1

(Vλ), hence we can find a countable M∗ ≺ H(θ) containing all the relevant objects.
Let M = M∗∩Vλ, and note that M ∈ Cst. Since N ∈η(N) M , the meet N ∧M is defined.
Let η = η(N ∧M) and let σ be the η-isomorphism between N ∩M and N ∧M . Note
that σ(q) = q, for all q ∈ PN . Now, pN∧M is (N ∧M,PN)-strongly generic, hence also
(N ∩M,PN )-strongly generic, and therefore it is (M∗,PN)-generic. It follows that pN∧M

forces that M ∈ Ċ N
st and is closed under Ḟ . 4.6

Let QN denotes the quotient forcing (Pκ
λ ↾N)/GN .

Lemma 4.7. QN is C N
st -strongly proper.

Proof. Work in V [GN ]. Let p ∈ QN and M ∈ C N
st be such that p ∈ M . Let pM

be the condition defined in Lemma 3.11. Since p,N ∈ M , we have p ↾N ∈ M . Thus,
p↾N ∈ N∩M . Observe that pM ↾N = (p↾N)N∧M . Since p↾N ∈ GN and N∧M ∈ MGN

,
we have that pM ↾N ∈ GN , thus pM ∈ QN . Let us show that pM is (M,QN )-strongly
generic. Suppose q ≤ pM and q ∈ QN . Observe that (q ↾M) ↾N = (q ↾N) ↾ (N ∧ M),
and hence q ↾M ∈ QN . Let r ≤ q ↾M be such that r ∈ M ∩QN . By Lemma 3.26, r and
q are compatible in Pκ

λ and the meet r ∧ q exists. Note that r ↾N ∈ N ∩M ⊆ N ∧M ,
and r ↾N extends (q ↾N) ↾ (N ∧ M). Hence, again by Lemma 3.26, the meet of r ↾N
and q ↾N exists, and r ↾N ∧ q ↾N = (r ∧ q) ↾N . Since r ↾N, q ↾N ∈ GN , we have that
r ↾N ∧ q ↾N ∈ GN . It follows that r and q are compatible in QN . 4.7

Suppose G is a V -generic filter over Pκ
λ. As before, for α ∈ E, let Gα = G ∩ Pκ

α.

Lemma 4.8. Let α ∈ E. Suppose N ∈ MG is a Magidor model with α ∈ N . Then
N [Gα] is an ω1-guessing model in V [G].

Proof. Let N be the transitive collapse of N , and let π be the collapsing map. For
convenience, let us write κ̄ for κN . Then N = Vγ̄, for some γ̄ with cof(γ̄) ≥ κ̄ and
π(κ) = κ̄. Let ᾱ = π(α). Note that π(PN) = Pκ̄

ᾱ. Let GN = Gα ∩ N and Gκ̄
ᾱ = π[GN ].

Then the transitive collapse N [GN ] of N [GN ] is equal to Vγ̄ [G
κ̄
ᾱ] = V

V [GN ]
γ̄ . Hence

N [GN ] is an ω1-guessing model in V [GN ]. On the other hand, by Lemma 4.7, the
quotient forcing QN is C N

st -strongly proper, and C N
st is stationary in Pω1

(Vλ). It follows
by Proposition 1.20 that the pair (V [GN ], V [G]) has the ω1-approximation property.
Thus, N [GN ] remains an ω1-guessing model in V [G]. 4.8
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A similar argument shows the following.

Lemma 4.9. Suppose µ > λ and N ≺ Vµ is a κ-Magidor model containing all the
relevant parameters. Then N [G] is an ω1-guessing model in V [G].

4.9

Now, by Proposition 2.21 we have the following.

Theorem 4.10. The principle GM(ω2, ω1) holds in V [G].

4.10

Theorem 4.11. The principle FS(ω2, ω1) holds in V [G].

Proof. Fix X ∈ H(ω3)
V [G]. We have to find a collection G of ω1-guessing models con-

taining X such that {M ∩ ω2 : M ∈ G} is an ω1-closed unbounded subset of ω2. Back

in V we can find α ∈ E, and a canonical Pκ
λ-name Ẋ, such that Ẋ [Gα] = X. Fix some

β ∈ E \ (α+1) with cof(β) < κ. By a standard density argument, we can find a Magidor
model M ∈ MGβ

such that α, Ẋ ∈ M . Suppose P ∈ MGβ
is also a Magidor model

and M ∈β P . Notice that M ∩ Vβ ⊆ P ∩ Vβ, so Ẋ ∈ P , and hence X ∈ P [Gα]. By
Lemma 4.8, P [Gα] is an ω1-guessing model, for all such P . Now, by Lemma 3.37, the
set Cβ(G) is club in ω2, and hence the family G = {P ∈ MGβ

∩ U : M ∈β P} is as
required. 4.11

Finally, we observe that if λ is also supercompact, then GM+(ω3, ω1) holds in V [G] as
well. In fact, we show that for all µ > λ the set of strong ω1-guessing models is stationary
in Pω3

(Vµ[G]).

Lemma 4.12. Suppose µ > λ and N ≺ Vµ is a λ-Magidor model containing all the
relevant parameters. Then N [G] is a strong ω1-guessing model.

Proof. Since N is a λ-Magidor model, its transitive collapse N equals Vγ̄, for some γ̄ < λ.

Let λ̄ = N ∩ λ. Note that cof(λ̄) ≥ κ, and hence the transitive collapse N [G] of
N [G] equals Vγ̄[Gλ̄]. On the other hand, by Corollary 4.4, the pair (V [Gλ̄], V ) has

the ω1-approximation property. Moreover, by Lemma 4.3, P
Vγ̄ [Gλ̄]
ω1 (Vγ̄[Gλ̄]) is cofinal in

P
V [G]
ω1 (Vγ̄[Gλ̄]). Therefore, Vγ̄[Gλ̄] and hence also N [G] remains an ω1-guessing model in

V [G]. To see that Vγ̄[Gλ̄] is a strong ω1-guessing model, fix some δ ∈ E with δ > γ̄ and
cof(δ) < κ. Note that if M ∈ Mδ

G is a Magidor model with λ̄ ∈ M then by Lemma 4.8
M [Gλ̄] is an ω1-guessing model. Moreover, if M ∈ Mδ

G is a limit of such Magidor models
then by Proposition 3.32,

M ∩ Vγ̄ =
⋃

{Q ∩ Vδ : Q ∈δ M and Q ∈ Mδ
G}.

Hence if we let G be the collection of the models (M ∩ Vγ̄)[Gλ̄], for Magidor models
M ∈ Mδ

G with λ̄ ∈ M , then G is an increasing ⊆-chain of length ω2 which is continuous
at ω1-limits and whose union is Vγ̄[Gλ̄]. Therefore, Vγ̄[Gλ̄] and hence also N [G] s a strong
ω1-guessing model in V [G], as required. 4.12

Now, by Proposition 2.21 and Lemma 4.12 we conclude the following.
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Theorem 4.13. Suppose κ < λ are supercompact cardinals. Let G be V -generic over
Pκ
λ. Then in V [G] the principle GM+(ω3, ω1) holds.

4.13
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