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INTERPOLATIVE FUSIONS I

ALEX KRUCKMAN, CHIEU-MINH TRAN, ERIK WALSBERG

Abstract. We define the interpolative fusion T
∗

∪
of a family (Ti)i∈I of first-

order theories over a common reduct T∩, a notion that generalizes many
examples of random or generic structures in the model-theoretic literature.
When each Ti is model-complete, T ∗

∪
coincides with the model companion of

T∪ = ⋃i∈I Ti. By obtaining sufficient conditions for the existence of T
∗

∪
, we

develop new tools to show that theories of interest have model companions.

1. Introduction

It is often desirable to decompose a mathematical structure into simpler components
and analyze the structure in terms of how the components behave and interact. In
this paper, we take the components to be reducts of the structure, and we are
interested in situations when these reducts interact in a definably random fashion
modulo some common agreements. By Theorem 1.1 below, “definably random” in
our sense agrees with “generic” in the sense of Robinson: e.g., if the first-order
theory of each reduct is model-complete, then the original structure satisfies the
model companion of the union of these theories.

In this paper, we introduce interpolative structures and interpolative fusions as an
abstract framework for studying structures and theories that exhibit definably ran-
dom/generic interactions between certain reducts. We observe that many examples
in model theory can be put into this framework, and we obtain sufficient conditions
for first-order logic to be able to capture the aforementioned randomness/genericity.
This yields new strategies to show that certain theories have model companions. In
subsequent papers, we will develop more machinery to determine model-theoretic
properties of the structure or theory from those of its reducts.

Throughout, I is an index set, L∩ is a first-order language, and (Li)i∈I is a family
of first order languages, all with the same set S of sorts, such that Li ∩Lj = L∩ for
all distinct i, j ∈ I. Let Ti be a (possibly incomplete) Li-theory for each i ∈ I, and
assume that each Ti has the same set T∩ of L∩-consequences. (This assumption is
quite mild: given an arbitrary family of Li-theories (Ti)i∈I , we can extend each Ti
with the set of all L∩-consequences of ⋃i∈I Ti.) Set

L∪ = ⋃
i∈I

Li and T∪ = ⋃
i∈I

Ti,

and assume that T∪ is consistent. (Alternatively, we could just assume that T∩ is
consistent, as these two assumptions are equivalent by Robinson joint consistency;
see Corollary 2.2.) Finally, M∪ is an L∪-structure, M◻ is the L◻-reduct of M∪, and
X◻ ranges over M◻-definable sets (with parameters) for ◻ ∈ I ∪ {∩}.
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Suppose J ⊆ I is finite and Xi ⊆Mn is Mi-definable for all i ∈ J . Then (Xi)i∈J is
separated if there is a family (X i)i∈J of M∩-definable subsets of Mn such that

Xi ⊆X i for all i ∈ J,and ⋂
i∈J

X i = ∅.
We say M∪ is interpolative if for all families (Xi)i∈J such that J ⊆ I is finite and
Xi ⊆Mn is Mi-definable for all i ∈ J , (Xi)i∈J is separated if and only if ⋂i∈J Xi = ∅.
If the class of interpolative models of T∪ is elementary with theory T ∗∪ , then we say
that T ∗∪ is the interpolative fusion (of (Ti)i∈I over T∩). We also say that “T ∗∪
exists” if the class of interpolative T∪-models is elementary; this is not automatic,
as the definition of an interpolative structure is not first-order.

The name “interpolative fusion” comes from the following resemblance with Craig’s
interpolation theorem: When I = {1,2}, M∪ is interpolative if and only if for all
X1 ⊆X2, there is an X∩ such that X1 ⊆X∩ and X∩ ⊆X2. A natural generalization
of Craig’s theorem allows us to deduce the following theorem in Section 2.1.

Theorem 1.1. Suppose each Ti is model-complete. Then M∪ ⊧ T∪ is interpolative
if and only if it is existentially closed in the class of T∪-models. Hence, T ∗∪ is
precisely the model companion of T∪, if either of these exists.

Theorem 1.1 can be seen as offering a semantic/geometric characterization of the
existentially closed T∪-models and providing a path toward obtaining the model
companion of T∪. For readers who see the notion of interpolative structures as
directly reflecting definable randomness and thus fundamental on its own right,
Theorem 1.1 can also be read as an explanation for the model-theoretically tame
behavior of interpolative structures under favorable conditions. When the Ti are not
model-complete, we can still view interpolative models as “relatively existentially
closed” and T ∗∪ as the “relative model companion” of T∪; see Theorem 2.7.

Example 1.2. The following are natural examples of interpolative fusions. See
Section 2.3 for more details.

(1) The expansion of a theory T by a generic predicate P [CP98]. This is the
interpolative fusion of T with the the theory of an infinite and co-infinite
predicate P over the theory of an infinite set. More generally, the model
companion of the union of any two model complete theories in disjoint
languages, as treated by Winkler in [Win75].

(2) Algebraically closed fields with multiple independent valuations [vdD,
Joh16]. This is the interpolative fusion of multiple copies of ACVF (with
distinct valuation symbols) over ACF. More generally, the model com-
panion of the theory of fields expanded by multiple structures (valuations,
derivations, automorphisms, etc.).

(3) The group of integers with multiple p-adic valuations [Ad19]. This is similar
to the previous example, using a distinct symbol for each p-adic valuation.

(4) Algebraically closed fields with generic multiplicative circular orders
[Tra17]. This is the interpolative fusion of ACF and the theory of cir-
cularly ordered multiplicative groups of models of ACF over the theory of
multiplicative groups of models of ACF. If F is the algebraic closure of a
finite field and ◁ is any multiplicative circular order on F×, then (F,◁) is
a model of this theory.
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The model companion T ∗ of a theory T of interest is usually not of the form T∪
for any nontrivial choice of (Ti)i∈I . However, we can sometimes construct a family(Ti)i∈I of model-complete theories so that T is existentially bi-interpretable with T∪.
One can then deduce that T ∗∪ exists and is existentially bi-interpretable with T ∗,
i.e., T ∗ is essentially an interpolative fusion. See Section 2.2 for relevant material,
in particular, the precise definition of existential bi-interpretation and the fact that
existential bi-interpretations preserve existence of model companions.

Example 1.3. Each of the following examples is existentially bi-interpretable with
an interpolative fusion. See Section 2.3 for details.

(1) ACFA, the theory of existentially closed difference fields [CH99]. More gener-
ally, the expansion of any theory by a generic automorphism [CP98].

(2) DCF0, the theory of differentially closed fields of characteristic 0 [Rob59]. More
generally, theories of existentially closed D-fields in the sense of Moosa and
Scanlon [MS14].

(3) The random graph. More generally, the Fraïssé limits of the classes of finite
directed graphs, tournaments, n-hypergraphs, k-colored graphs etc.

(4) Generic Skolemizations, as defined in [Win75] and further studied in [KR18].

In the examples above, we can deduce existence of T ∗∪ from the fact that T has a
model companion with results proven in Sections 2.1 and 2.2, but applications of
these results can go in the other direction as well. The proof that a theory T of
interest has a model companion T ∗ often involves obtaining a semantic/geometric
characterization of the existentially closed models of T and showing that this se-
mantic/geometric characterization is first-order axiomatizable. In many cases the
semantic/geometric characterization is close to the notion of an interpolative struc-
ture. So we may hope to prove the existence of T ∗∪ directly, and then recover the
existence of T ∗.

The bulk of the technical work of this paper, Section 3 onward, concerns general
machinery that aims to actualize the last statement of the preceding paragraph.
This also provides the reader with the following new strategy to show that a theory
T has a model companion T ∗:

(1) Find (Ti)i∈I so that T∪ is existentially bi-interpretable with T ;
(2) Use the machinery developed here to conclude that T ∗∪ exists and then,

with Corollary 2.16, deduce that T ∗ exists.

In each of the examples above, the collection of definable subsets of T∩-models is
equipped with an ordinal-valued dimension satisfying some natural conditions. We
refer to this setting as “pseudo-topological” and investigate it in Section 3. We say
that an arbitrary set A is pseudo-dense in X∩ if A intersects every M∩-definable
Y∩ ⊆ X∩ such that dimY∩ = dimX∩, and we say that X∩ is a pseudo-closure of
A if A ⊆ X∩ and A is pseudo-dense in X∩. We say that Mi has pseudo-closures

in M∩ if every Mi-definable set has a pseudo-closure, and we say Ti has pseudo-

closures in T∩ if the same situation holds for every Ti-model. We say that Ti
defines pseudo-denseness over T∩ if pseudo-denseness is uniformly definable.

We obtain the following general conditions for the existence of interpolative fusions:

Theorem 1.4. Suppose dim is an ordinal dimension on T∩, Ti defines pseudo-
denseness over T∩, and Ti has pseudo-closures in T∩ for all i ∈ I. Then T ∗∪ exists.
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Without using the condition that Ti defines pseudo-denseness over T∩ for i ∈ I in
the preceding theorem, we can still show that M∪ ⊧ T∪ is interpolative if and only
if ⋂i∈J Xi ≠ ∅ whenever J ⊆ I is finite, Xi is Mi-definable for all i ∈ J , and there is
some M∩-definable setX∩ such that eachXi is pseudo-dense inX∩. This property is
first-order axiomatizable when pseudo-denseness is definable, and it yields a natural
system of “pseudo-topological” axioms for T ∗∪ . The pseudo-topological axioms are
essentially identical with known axiomatizations in many examples.

In Sections 4, 5, and 6, we focus on more specific settings applicable to the examples
listed above. We show that under further hypotheses on the theories and the notion
of dimension, the general conditions of Theorem 1.4 specialize to more familiar
notions.

Section 4 treats several settings where T∩ is equipped with natural topology com-
patible with the aforementioned dimension; the use of the term “pseudo-topological”
is motivated by consideration of these special cases. When T∩ is o-minimal and dim

is the canonical o-minimal dimension, for example, any theory extending T∩ defines
pseudo-denseness, and Ti has pseudo-closures in T∩ if and only if T∩ is an open core
of Ti, i.e., the closure of any Mi-definable set is already M∩-definable. This gives
the following result.

Theorem 1.5. Suppose T∩ is o-minimal. If T∩ is an open core of each Ti then T ∗∪
exists.

In Section 5, we show that if T∩ is ℵ0-stable, and dim is Morley rank, then any theory
extending T∩ has pseudo-closures in T∩. The induced dimension of a definable
set X in a model of Ti is the Morley rank of any pseudo-closure of X . Assuming
further that T∩ defines multiplicity, we show that Ti defines pseudo-denseness if
and only if Ti uniformly defines induced dimension. Theorem 1.6 applies to the
example of algebraically closed fields with independent valuations.

Theorem 1.6. Suppose T∩ is ℵ0-stable and defines multiplicity. If each Ti defines
induced dimension, then T ∗∪ exists.

In Section 6 we consider the case when T∩ is ℵ0-stable, ℵ0-categorical, and weakly
eliminates imaginaries. We prove that Ti defines pseudo-denseness if and only if Ti
eliminates ∃∞. This applies to the examples of generic predicates, generic Skolem-
izations, and the random graph, hypergraph, and tournament. It also generalizes
Winkler’s result on model companions of disjoint unions of theories [Win75].

Theorem 1.7. Suppose T∩ is complete, ℵ0-stable, and ℵ0-categorical. If T eq

i elim-
inates ∃∞ for all i, then T ∗∪ exists. If T∩ weakly eliminates imaginaries and each
Ti eliminates ∃∞, then T ∗∪ exists.

In [vdD, 3.1.20] van den Dries notes a similarity between his main result and Win-
kler’s theorem and claims that this similarity “. . . suggests a common generalization
of Winkler’s and my results”. We believe the present paper provides a moral answer
to this suggestion but perhaps not the final answer, as our results do not in fact
generalize the main result of [vdD].

1.1. Conventions and notation. Throughout, m and n range over the natural
numbers (containing 0), and k and l range over the integers. We work in multi-
sorted first-order logic. Our semantics allows empty sorts and empty structures.
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Our syntax includes logical constants ⊺ and � interpreted as true and false, respec-
tively. We view constant symbols as 0-ary function symbols.

Throughout, L is a language with S the set of sorts. Concepts like variables,
functions, formulas, etc. are by default with respect to L. Suppose M is an L-
structure. We use the corresponding capital letterM to denote the S-indexed family(Ms)s∈S of underlying sets of the sorts of M. By A ⊆ M , we mean A = (As)s∈S
with As ⊆Ms for each s ∈ S. If A ⊆M , then a tuple of elements (possibly infinite)
in A is a tuple whose each component is in As for some s ∈ S. If x = (xj)j∈J is
a tuple of variables (possibly infinite), we let Ax = ∏j∈J As(xj) where s(xj) is the
sort of the variable xj . If ϕ(x, y) is an L-formula and b ∈ My, we let ϕ(M, b) be
the set defined in M by the L(b)-formula ϕ(x, b). We call such ϕ(M, b) a definable
set in M or an M-definable set. Hence, “definable” means “definable, possibly with
parameters”. If we wish to exclude parameters, we write “∅-definable”.

Whenever we consider multiple reducts of a structure, we decorate these reducts
with the same decorations as their languages. For example, if L0 ⊆ L1 are languages,
we denote an L1-structure by M1, and we denote its reduct M1∣L0

to L0 by M0. In
this situation, we write “in M0” to denote that we are evaluating some concept in
the reduct.

Acknowledgement. We would like to thank Anand Pillay and Pierre Simon for
pointing to us useful known results. The referee’s comments were particularly
helpful in shaping the current form of the paper.

2. Interpolative fusions and model companions

2.1. Basic results. This section clarifies the relationship between interpolative
fusions and model companions of unions of theories. We make use of the definitions
and notation set in the introduction.

The name “interpolative fusion” is inspired by a connection to the classical Craig
interpolation theorem, which we state below; a proof is given, for example, in
[Hod93, Theorem 6.6.3]. It is well-known that in the context of first-order logic, the
Craig interpolation theorem is equivalent to Robinson’s joint consistency theorem.

Theorem 2.1. Suppose L1 and L2 are first order languages with intersection L∩
and ϕi is an Li-sentence for i ∈ {1,2}. If ⊧ (ϕ1 → ϕ2) then there is an L∩-sentence
ψ such that ⊧ (ϕ1 → ψ) and ⊧ (ψ → ϕ2). Equivalently: {ϕ1, ϕ2} is inconsistent if
and only if there is an L∩-sentence ψ such that ⊧ (ϕ1 → ψ) and ⊧ (ϕ2 → ¬ψ).
Our first result is an easy generalization of Theorem 2.1, applicable to our setting.

Corollary 2.2. For each i ∈ I, let Σi(x) be a set of Li-formulas. If ⋃i∈I Σi(x) is
inconsistent, then there is a finite subset J ⊆ I and an L∩-formula ϕi(x) for each
i ∈ J such that:

Σi(x) ⊧ ϕi(x) for all i ∈ J,and {ϕi(x) ∣ i ∈ J} is inconsistent.

Proof. By introducing a new constant symbol for each free variable, we reduce to
the case when x is the empty tuple of variables. We may also assume that the sets
Σi are closed under conjunction. By compactness, if ⋃i∈I Σi is inconsistent, then
there is a nonempty finite subset J ⊆ I and a formula ϕi ∈ Σi for all i ∈ J such that{ϕi ∣ i ∈ J} is inconsistent.
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We argue by induction on the size of J . For the sake of notational simplicity,
we suppose J = {1, . . . , n}. If n = 1, then {ϕ1} is inconsistent, and we choose ϕ1

to be the contradictory L∩-formula �. Suppose n ≥ 2. Then (ϕ1 ∧ . . . ∧ϕn−1) is an(L1 ∪ . . . ∪Ln−1)-sentence and the set

{(ϕ1 ∧ . . . ∧ ϕn−1), ϕn} is inconsistent.

Applying Theorem 2.1, we get a sentence ψ in Ln ∩(L1∪ . . .∪Ln−1) = L∩ such that

⊧ (ϕ1 ∧ . . . ∧ϕn−1) → ψ and ⊧ ϕn → ¬ψ.
Then ϕi ∧ ¬ψ is an Li-sentence for all 1 ≤ i ≤ n − 1, and {ϕi ∧ ¬ψ ∣ 1 ≤ i ≤ n − 1} is
inconsistent. Applying induction, we choose for each 1 ≤ i ≤ n − 1 an L∩-sentence
θi such that

⊧ (ϕi ∧ ¬ψ) → θi for all 1 ≤ i ≤ n − 1,and ⊧ ¬(θ1 ∧ . . . ∧ θn−1).
Finally, set ϕi to be (ψ ∨ θi) for 1 ≤ i ≤ n − 1, and set ϕn to be ¬ψ. It is easy to
check that all the desired conditions are satisfied. �

Corollary 2.3 follows immediately from Corollary 2.2 and generalizes Robinson’s
joint consistency theorem.

Corollary 2.3. Let p(x) be a complete L∩-type, and for all i ∈ I, let pi(x) be a
complete Li-type such that p(x) ⊆ pi(x). Then ⋃i∈I pi(x) is consistent.

Corollary 2.2 also allows us to show that families of definable sets that are not
separated have “potentially” non-empty intersection.

Lemma 2.4. Let M∪ be an L∪-structure, and suppose J ⊆ I is finite and Xi ⊆Mx

is Mi-definable for all i ∈ J . The family (Xi)i∈J is separated if and only if for every
L∪-structure N∪ such that Mi ≼ Ni for all i ∈ I, ⋂i∈J Xi(N∪) = ∅.

Proof. Suppose (Xi)i∈J is separated. Then there are M∩-definable X1, . . . ,Xn such
that Xi ⊆ X i for all i ∈ J and ⋂i∈J X

n = ∅. Suppose N∪ is a T∪-model satisfying
Mi ≼ Ni for all i ∈ I. Then Xi(N∪) ⊆X i(N∪) for all i ∈ J and ⋂i∈J X

i(N∪) = ∅, so
also ⋂i∈J Xi(N∪) = ∅.

Conversely, suppose that ⋂i∈J Xi(N∪) = ∅ for every L∪-structure N∪ such that
Mi ≼ Ni for all i ∈ I. For each i ∈ J , let ϕi(x, b) be an Li(M)-formula defining Xi.
Then the partial type

⋃
i∈I

Ediag(Mi) ∪ ⋃
i∈J

ϕi(x, b) is inconsistent.

By compactness, there is a finite subset J ′ ⊆ I with J ⊆ J ′, a finite tuple c ∈ My

and a formula ψi(b, c) ∈ Ediag(Mi) for each i ∈ J ′ such that

{ψi(b, c) ∣ i ∈ J ′} ∪ {ϕi(x, b) ∣ i ∈ J} is inconsistent.

Let ϕi be the true formula ⊺ when i ∈ J ′∖J , and define ϕ′i(x, y, z) = ϕi(x, y)∧ψi(y, z)
for all i ∈ J ′. Note that since Mi ⊧ ψi(b, c),

ϕi(M∪, b) = ϕ′i(M∪, b, c).
Applying Corollary 2.2, we obtain an inconsistent family {θi(x, y, z) ∣ i ∈ J ′} of
L∩-formulas such that ⊧ ϕ′i(x, y, z)→ θi(x, y, z) for each i ∈ J ′. It follows that

ϕi(M∪, b, c) ⊆ θi(M∪, b, c) for all i ∈ J ′, and ⋂
i∈J ′

θi(M∪, b, c) = ∅.
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But since ϕi(M∪, b, c) =Mx when i ∈ J ′ ∖ J , also θi(M∪, b, c) =Mx when i ∈ J ′ ∖ J .
So ⋂i∈J θi(M∪, b, c) = ∅ and (θi(M∪, b, c))i∈J separates (Xi)i∈J . �

Remark 2.5. If we change languages in a way that does not change the class of
definable sets (with parameters), then the class of interpolative L∪-structures is not
affected. In particular:

(1) An interpolative structure M∪ remains so after adding new constant sym-
bols naming elements of M to each of the languages L◻ for ◻ ∈ I ∪ {∪,∩}.

(2) Suppose L♢◻ is an expansion by definitions of L◻ for ◻ ∈ I∪{∩}, L♢i ∩L♢j = L♢∩
for distinct i and j in I, and L♢∪ = ⋃i∈I L

♢
i is the resulting expansion by

definitions of L∪. Then any L∪-structure M∪ has a canonical expansion
M
♢
∪ to an L♢∪-structure. And M∪ is an interpolative L∪-structure if and

only if M♢∪ is an interpolative L♢∪-structure.
(3) An interpolative M∪-structure remains so after replacing each function sym-

bol f in each of the languages L◻ for ◻ ∈ I ∪ {∪,∩} by a relation symbol
Rf , interpreted as the graph of the interpretation of f in M∪.

(4) Suppose M∪ is an L∪-structure. Moving to M
eq
∩ involves the introduction

of new sorts and function symbols for quotients by L∩-definable equivalence
relations on M . For all ◻ ∈ I ∪ {∪,∩}, let L∩−eq◻ be the language expanding
L◻ produced by adding new symbols for L◻-definable equivalence relations,
and let M

∩−eq
◻ be the natural expansion of M◻ to L

∩−eq
◻ . Then M∪ is

interpolative if and only if M∩−eq∪ is interpolative. This follows from the fact
that if X◻ is an M

∩−eq
◻ -definable set in one of the new sorts, corresponding

to the quotient of Mx by an L∩-definable equivalence relation, then the
preimage of X◻ under the quotient is M◻-definable.

We now show that interpolative models of T∪ can be thought of as “relatively
existentially closed” models of T∪, and the interpolative fusion T ∗∪ can be thought
of as the “relative model companion” of T∪.

Recall that a theory T is inductive if the class of models of T is closed under
directed unions. Equivalently, T admits an axiomatization by ∀∃-sentences.

Fact 2.6 ([Hod93] Theorem 8.3.6). Suppose T is inductive. Then T has a model
companion if and only if the class of existentially closed T -models is elementary. If
these equivalent conditions hold, then the model companion of T is the theory of
existentially closed T -models.

Theorem 2.7. Suppose M∪ ⊧ T∪.

(1) M∪ is an interpolative structure if and only if for all N∪ such that Mi ≼ Ni

for all i ∈ I,
N∪ ⊧ ∃xϕ∪(x) implies M∪ ⊧ ∃xϕ∪(x)

whenever ϕ∪(x) is a Boolean combination of Li-formulas with parameters
from M .

(2) If each Li is relational and each Ti is model-complete, then the interpolative
models of T∪ are exactly the existentially closed models, and the interpolative
fusion of T∪ is precisely the model companion of T∪, if either of these exists.

(3) There exists an interpolative structure N∪ such that M∪ ⊆ N∪, and Mi ≼ Ni

for all i ∈ I.
(4) If T ∗∪ exists, M∪ ⊧ T ∗∪ , N∪ ⊧ T

∗
∪ , and Mi ≼ Ni for all i ∈ I, then M ≼ N.
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Proof. Part (1) follows immediately from Lemma 2.4 and the definition of inter-
polative structure.

For part (2), since each Ti is model-complete, whenever M∪ ⊆ N∪ are both models
of T∪, we have

Mi ≼ Ni for all i ∈ I.
As L∪ is relational, no atomic formula contains symbols from distinct languages,
and hence every quantifier-free L∪-formula is a Boolean combination of Li-formulas.
Therefore, it follows from (1) that M∪ is interpolative if and only if it is existentially
closed in the class of T∪-models. Each Ti is model-complete and hence inductive,
so T∪ is also inductive. By Fact 2.6 that T ∗∪ is the model companion of T∪, if either
either of these exists.

For parts (3) and (4), applying Remark 2.5, we can assume by Morleyizing that
each Ti admits quantifier elimination and each Li is relational.

Now (3) follows from the well-known fact that every model of an inductive theory
embeds in an existentially closed model [Hod93, Theorem 8.2.1]. In particular, for
all M∪ ⊧ T∪, there exists N∪ such that M∪ ⊆ N∪ and N∪ ⊧ T∪ is existentially closed.
Then N∪ is interpolative by (2), and Mi ⪯ Ni for all i by quantifier elimination.

For (4), if T ∗∪ exists, then T ∗∪ is model-complete by (2). Since Mi is an Li-
substructure of Ni for all i ∈ I, M∪ is an L∪-substructure of N∪, so M∪ ⪯ N∪. �

In the rest of this section, we will do a bit more work to improve Theorem 2.7(2)
by removing the hypothesis that the languages Li are relational.

A formula is atomic flat if it is of the form x1 = x2, R(x1, . . . , xn), or
f(x1, . . . , xn) = xn+1, where R is an n-ary relation symbol and f is an n-ary func-
tion symbol. Here x1, . . . , xn+1 are arbitrary variables, which need not be distinct.
A flat literal is an atomic flat formula or the negation of an atomic flat formula.
A flat formula is a conjunction of finitely many flat literals. An E♭-formula is a
formula of the form ∃y ϕ(x, y), where ϕ(x, y) is flat and ⊧ ∀x∃≤1y ϕ(x, y). Here x
and y may be tuples of variables.

Remark 2.8. The class of E♭-formulas is closed (up to equivalence) under finite
conjunction: the conjunction of the E♭-formulas ∃y1 ϕ1(x, y2) and ∃y2ϕ2(x, y2) is
equivalent to the E♭-formula

∃y1y2 (ϕ1(x, y1) ∧ϕ2(x, y2)).
Lemma 2.9 is essentially [Hod93, Thm 2.6.1]. Hodges uses “unnested” for “flat”.

Lemma 2.9. Every literal (atomic or negated atomic formula) is logically equiva-
lent to an E♭-formula.

Proof. We first show that for any term t(x), with variables x = (x1, . . . , xn), there
is an associated E♭-formula ϕt(x, y) such that ϕt(x, y) is logically equivalent to
t(x) = y. We apply induction on terms. For the base case where t(x) is the variable
xk, we let ϕt(x, y) be xk = y. Now suppose t1(x), . . . , tm(x) are terms and f is an
m-ary function symbol. Then ϕf(t1,...,tm) is the E♭-formula equivalent to

∃z1 . . . zm [m⋀
i=1

ϕti(x, zi) ∧ (f(z1, . . . , zm) = y)] .
We now show that every atomic or negated atomic formula is equivalent to an

E♭-formula. Suppose t1(x), . . . , tm(x) are terms and R is either an m-ary rela-
tion symbol or = (in the latter case, we have m = 2). Then the atomic formula



INTERPOLATIVE FUSIONS 9

R(t1(x), . . . , tm(x)) is equivalent to

∃y1 . . . ym [m⋀
i=1

ϕti(x, yi) ∧R(y1, . . . , ym)] .
Negated atomic formulas can be treated similarly. �

Corollary 2.10. Every quantifier-free formula is logically equivalent to a finite
disjunction of E♭-formulas.

Proof. Suppose ϕ(x) is quantifier-free. Then ϕ(x) is equivalent to a formula in
disjunctive normal form, i.e., a finite disjunction of finite conjunctions of literals.
Applying Lemma 2.9 to each literal and using Remark 2.8, we find that ϕ(x) is
equivalent to a finite disjunction of E♭-formulas. �

Remark 2.11. Any flat literal L∪-formula is an Li-formula for some i ∈ I. As a
consequence, if ϕ(x) is a flat L∪-formula, then there is some finite J ⊆ I and a flat
Li-formula ϕi(x) for all i ∈ J such that ϕ(x) is logically equivalent to ⋀i∈J ϕi(x).
We obtain a restatement of Theorem 1.1 from the introduction:

Theorem 2.12. Suppose each Ti is model-complete. Then M∪ ⊧ T∪ is interpolative
if and only if it is existentially closed in the class of T∪-models. Hence, T ∗∪ is
precisely the model companion of T∪, if either of these exists.

Proof. We prove the first statement. Let M∪ ⊧ T∪ be existentially closed. Suppose
J ⊆ I is finite and ϕi(x) is an Li(M)-formula for each i ∈ J such that (ϕi(M∪))i∈J
is not separated. We may assume each ϕi(x) is existential, as Ti is model-complete.
Lemma 2.4 gives a T∪-model N∪ extending M∪ such that N∪ ⊧ ∃x ⋀i∈J ϕi(x). As
M∪ is existentially closed and each ϕi is existential, we have M∪ ⊧ ∃x ⋀i∈J ϕi(x).
Thus M∪ is interpolative.

Now suppose M∪ ⊧ T∪ is interpolative. Suppose ψ(x) is a quantifier-free L∪(M)-
formula and N∪ is a T∪-model extending M∪ such that N∪ ⊧ ∃xψ(x). Applying
Corollary 2.10, ψ(x) is logically equivalent to a finite disjunction of E♭-formulas

⋁n
k=1 ∃yk ψk(x, yk). Then for some k, N∪ ⊧ ∃x∃yk ψk(x, yk). By Remark 2.11, the

flat L∪(M)-formula ψk(x, yk) is equivalent to a conjunction ⋀i∈J ϕi(x, yk) where
J ⊆ I is finite and ϕi(x, yk) is a flat Li(M)-formula for each i ∈ J . So N∪ ⊧∃x∃yk ⋀i∈J ϕi(x, yk). As each Ti is model-complete, we have Mi ≼ Ni for all i ∈ I.
By Lemma 2.4, the sets defined by ϕi(x, yk) are not separated, and since M∪ is
interpolative, M∪ ⊧ ∃x∃yk ⋀i∈J ϕi(x, yk). So M∪ ⊧ ∃xψ(x). This shows M∪ is
existentially closed.

Each Ti is model-complete and hence inductive, so T∪ is inductive. Using
Fact 2.6, we get the second statement as a consequence of the first statement. �

2.2. Existential interpretations. In this section, we recall some standard facts
about interpretations. We pay special attention to the case of existential bi-
interpretations between inductive theories, which preserve the existence of model
companions. This allows us to sometimes identify the model companion T ∗ of
a theory T of interest with an interpolative fusion of simpler theories, via a bi-
interpretation. We keep the notational conventions from the introduction.

Let T be an L-theory and T ′ be an L′-theory. An interpretation of T ′ in T ,
F ∶T ↝ T ′, consists of the following data:

(1) For every sort s′ in L′, an L-formula ϕs′(xs′) and an L-formula Es′(xs′ , x∗s′).
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(2) For every relation symbol R′ in L′ of type (s′1, . . . , s′n) in L′, an L-formula
ϕR′(xs′

1
, . . . , xs′n).

(3) For every function symbol f ′ in L′ of type (s′1, . . . , s′n) → s′ in L′, an L-
formula ϕf ′(xs′

1
, . . . , xs′n , xs′).

We then require that for every model M ⊧ T , the formulas above define an L′-
structure M

′ ⊧ T ′ in the natural way. See [Hod93, Section 5.3] for details. For
every sort s′ in L′, the underlying set M ′

s′ of the s′ sort in M
′ is the quotient of

ϕs′(M) by the equivalence relation defined by Es′ . We write πs′ for the surjective
quotient map ϕs′(M)→M ′

s′ . We sometimes denote M
′ by F (M).

An interpretation F ∶T ↝ T ′ is an existential interpretation if for each sort s′ in
L′, the L-formula ϕs′(xs′) is T -equivalent to an existential formula, and all other
formulas involved in the interpretation and their negations (i.e., the formulas Es′ ,¬Es′ , ϕR′ , ¬ϕR′ , ϕf ′ , and ¬ϕf ′) are also T -equivalent to existential formulas.

Lemma 2.13. Suppose F ∶T ↝ T ′ is an existential interpretation. Let ϕ′(y) be
a quantifier-free L′-formula, where y = (y1, . . . , yn) and yi is a variable of sort s′i.
Then there is an existential L-formula ϕ̂(xs′

1
, . . . , xs′n) such that for every M ⊧ T

and every tuple a = (a1, . . . , an) with ai ∈ ϕs′
i
(M), M ⊧ ϕ̂(a) if and only if F (M) ⊧

ϕ′(πs1(a1), . . . , πsn(an)).
Proof. By Corollary 2.10, ϕ′(y) is equivalent to a finite disjunction of E♭-formulas.
In the proof of [Hod93, Theorem 5.3.2], Hodges gives an explicit translation from
L′-formulas to L-formulas. We apply this translation and observe that because F
is an existential interpretation, the translation of a finite disjunction of E♭-formulas
is an existential L-formula. �

A bi-interpretation (F,G, η, η′) between T and T ′ consists of an interpretation
F ∶T ↝ T ′ and an interpretation G∶T ′ ↝ T , together with L-formulas and L′-
formulas (one for each sort in L and L′, respectively) defining for each M ⊧ T and
each N

′ ⊧ T ′ isomorphisms

ηM ∶M→ G(F (M)) and η′
N′
∶ N′ → F (G(N′)).

See [Hod93, Section 5.4] for the precise definition. Such a bi-interpretation is exis-

tential if F and G are each existential interpretations, and moreover the L-formulas
and L′-formulas defining the isomorphisms are existential. If there is an existen-
tial bi-interpretation between T and T ′, we say that T and T ′ are existentially
bi-interpretable. The next lemma is [Hod93, Exercise 5.4.3].

Lemma 2.14. Suppose F ∶T ↝ T ′ is existential. Then F induces a functor from
the category of models of T and embeddings to the category of models of T ′ and
embeddings. Suppose moreover that (F,G, η, η′) is an existential bi-interpretation
between T and T ′. Then the induced functors form an equivalence of categories; in
particular, for every L-embedding f ∶M→ N, the following diagram, which expresses
that η is a natural isomorphism from the identity functor to G ○ F , commutes:

N
ηN

// G(F (N))

M

f

OO

ηM
// G(F (M))

G(F (f))

OO
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Proposition 2.15. Suppose (F,G, η, η′) is an existential bi-interpretation between
T and T ′. Then M is an existentially closed model of T if and only if F (M) is an
existentially closed model of T ′.

Proof. It suffices to show that if F (M) is an existentially closed model of T ′, then
M is an existentially closed model of T . Indeed, by symmetry it follows that if
G(N′) is an existentially closed model of T , then N

′ is an existentially closed model
of T ′. And then, since ηM ∶M→ G(F (M)) is an isomorphism, if M is existentially
closed, then F (M) is existentially closed.

So assume that F (M) is an existentially closed model of T ′. Let f ∶M→ N be an
embedding of T -models, and let ϕ(y) be a quantifier-free formula with parameters
from M that is satisfied in N. By commutativity of the diagram in Lemma 2.14,
after moving the parameters of ϕ(y) into G(F (M)) by the isomorphism ηM, we
find that ϕ(y) is satisfied in G(F (N)), and it suffices to show that it is satisfied in
G(F (M)).

By Lemma 2.13, there is an existential L′-formula ϕ̂′(x) with parameters from
F (M) such that F (N) ⊧ ϕ̂′(a) if and only if G(F (N)) ⊧ ϕ(b), where b is the image
of a under the appropriate πs quotient maps. Writing ϕ̂′(x) as ∃z ψ′(x, z), we have
F (N) ⊧ ψ′(a, c) for some c, where a is any preimage of the tuple from G(F (N))
satisfying ϕ(y). But since F (M) is existentially closed, there are some a∗ and c∗

in F (M) such that F (M) ⊧ ψ′(a∗, c∗), so F (M) ⊧ ϕ̂′(a∗), and it follows that ϕ(y)
is satisfied in G(F (M)), as desired. �

Corollary 2.16. Suppose T and T ′ are inductive, and (F,G, η, η′) is an existential
bi-interpretation between T and T ′. Then T has a model companion T ∗ if and only
if T ′ has a model companion (T ′)∗. Further, (F,G, η, η′) induces an existential
bi-interpretation between T ∗ and (T ′)∗ when they exist.

In particular, if Ti is model-complete for all i ∈ I, T is an inductive theory, and(F,G, η, η′) is an existential bi-interpretation between T and T∪, then T has a model
companion T ∗ if and only if the interpolative fusion T ∗∪ exists. Further, (F,G, η, η′)
induces an existential bi-interpretation between T ∗ and T ∗∪ when they exist.

Proof. Suppose T has a model companion T ∗. By [Hod93, Theorem 5.3.2], for every
L-sentence ϕ ∈ T ∗, there is an L′-sentence ϕ′, such that for all M′ ⊧ T ′, M′ ⊧ ϕ′ if
and only if G(M) ⊧ ϕ. Let (T ′)∗ = T ′ ∪ {ϕ′ ∣ ϕ ∈ T ∗}. Then M

′ ⊧ (T ′)∗ if and only
if M′ ⊧ T ′ and G(M′) ⊧ T ∗. By Proposition 2.15 and Fact 2.6, M′ ⊧ (T ′)∗ if and
only if M′ is an existentially closed model of T ′. So (T ′)∗ is the model companion
of T ′ by Fact 2.6. Proposition 2.15 further implies that M ⊧ T ∗ if and only if
F (M) ⊧ (T ′)∗. So (F,G, η, η′) induces an existential bi-interpretation between the
model companions.

The application to interpolative fusions then follows immediately from the first
statement and Theorem 2.12. �

2.3. Examples. We now give a more detailed description of the items of Exam-
ples 1.2 and 1.3. The first four examples are interpolative fusions from the literature.
The last four are well-known theories that we show are bi-interpretable with inter-
polative fusions of simpler theories. All of these examples are natural, as each is
either the model companion of a natural theory or is the theory of an interpolative
structure found in the wild.
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Generic predicates and disjoint unions of theories. The simplest case of the
notion of interpolative fusion is when the Li are pairwise disjoint. This case was
treated by Winkler [Win75]. In our notation, Winkler showed that if L∩ is the
empty language, T∩ is the theory of an infinite set, and each Ti is model-complete
and eliminates ∃∞, then T∪ has a model companion, which is T ∗∪ by Theorem 1.1.
This result easily generalizes via Morleyization to show that T ∗∪ exists when each
Ti eliminates ∃∞ and T∩ is the theory of an infinite set.

If I = {1,2} and T2 is the theory of an infinite set equipped with an infinite and co-
infinite unary predicate, then T ∗∪ is well-known as the expansion of T1 by a generic
unary predicate (see [CP98]).

Algebraically closed fields with independent valuations. Let T∩ be the
theory of algebraically closed fields and Ti be the theory of an algebraically closed
field equipped with a non-trivial valuation vi for each i ∈ I. (We let Li be the
language of fields extended by a unary predicate for the valuation ring of vi for each
i ∈ I.) Then T∪ has a model companion T ∗∪ , which is the theory of an algebraically
closed field K equipped with a family (vi)i∈I of pairwise independent valuations.
The theory T ∗∪ is studied in [vdD] and [Joh16].

The group of integers with p-adic valuations. Given integers k, l we write
k ≼p l if the p-adic valuation of k is no greater then the p-adic valuation of l. Let I
be the set of primes, T∩ be the theory of (Z,+), and Tp be the theory of (Z,+,≼p)
for p ∈ I. Then the theory of (Z,+, (≼p)p∈I) is the model companion T ∗∪ of T∪,
see [Ad19]. In particular, (Z,+, (≼p)p∈I) is an interpolative structure.

The algebraic closure of a finite field with a multiplicative circular orders.

Let (F,+,×) range over algebraic closures of finite fields, and let ◁ range over
multiplicatively invariant circular orders on F× (see [Tra17] for the definition). With
I = {1,2}, T∩ the common theory of all (F,×), T1 the common theory of all (F,+,×),
and T2 the common theory of all (F,×,◁), it follows from [Tra17] that T∪ has a
model companion T ∗∪ , which is the common theory of all (F,+,×,◁). In this case,
T2 is not model-complete, so the model-completeness assumption in Theorem 1.1
is sufficient but not necessary. In fact, T ∗∪ is the model companion of the theory of
algebraically closed fields with a multiplicative circular order. The initial motivation
of this paper was to find a common generalization of this example, algebraically
closed fields with independent valuations, and generic predicates.

Generic automorphisms. Let T0 be a one-sorted model-complete theory, and
let T be the theory whose models are (M0, σ), where M0 ⊧ T0 and σ is an auto-
morphism of M0. If T0 is ACF, then T has a model companion T ∗, which is called
ACFA [CH99]. In general, the question of existence of T ∗ is subtle.

Suppose M = (M0, σ) is a model of T . Then M is bi-interpretable with a two-
sorted structure (M0,N0; ι1, ι2), where ι1 and ι2 are isomorphisms M0 → N0. In
one direction, we can take N0 = M0, ι1 = id, and ι2 = σ. In the other direction,
we can take σ = ι−11 ○ ι2. Note also that (M0,N0; ι1) and (M0,N0; ι2) are both
bi-interpretable with M0.

Let I = {1,2}, let T∩ be the two-sorted theory of two disjoint elementarily equiv-
alent T0-models, and let Ti be the two-sorted theory of two T0-models with an
isomorphism ιi between them. Then T∪ is the theory of two T0-models with two
isomorphisms ι1 and ι2 between them. As described in the previous paragraph,
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T and T∪ are existentially bi-interpretable. By Corollary 2.16, if T ∗ exists, then
T ∗∪ exists and is existentially bi-interpretable with T ∗. Furthermore, T1 and T2
are both existentially bi-interpretable with T0. So, for example, ACFA is existen-
tially bi-interpretable with an interpolative fusion of two theories, each of which is
existentially bi-interpretable with ACF.

Differentially closed fields and free D-fields. Let T be the theory of differential
fields of characteristic 0 whose underlying field is algebraically closed. The theory
DCF0 of differentially closed fields is the model companion T ∗ of T [Rob59].

Let (K,∂) be a model of T . Let D = K[ε]/(ε2) be the ring of dual numbers over
K, and π ∶ D → K be the residue map π(a + bε) = a. Then (K,∂) is existentially
bi-interpretable with the two-sorted structure (K,D;π,σ1, σ2) where σ1 ∶ K →
D is given by a ↦ a + 0ε and σ2 ∶ K → D is given by a ↦ a + ∂(a)ε. It can
also be verified that (K,D;π,σ1) and (K,D;π,σ2) are isomorphic and mutually
existentially interpretable with K.

Let I = {1,2}, T∩ = Th(K,D;π), T1 = Th(K,D;π,σ1), and T2 = Th(K,D;π,σ2).
Then T∪ is existentially bi-interpretable with T , so T ∗∪ exists and is existentially
bi-interpretable with T ∗ = DCF0. Moreover, T2 is a copy of T1, and both are existen-
tially bi-interpretable with ACF0. Thus, DCF0 is existentially bi-interpretable with
the interpolative fusion of two theories each of which is existentially bi-interpretable
with ACF0.

ACFA and DCF0 admit a common generalization, the theories of existentially closed
D-fields of Moosa and Scanlon [MS14]. These theories are also essentially interpola-
tive fusions; they will be discussed in future work.

The random graph and related structures. Let T be the theory of infinite
graphs with infinitely many edges. The theory of the random graph is the model
companion T ∗ of T . Let SV be the quotient {(v1, v2) ∈ V 2 ∶ v1 ≠ v2}/∼, where
the equivalence relation ∼ is defined by (v1, v2) ∼ (v′1, v′2) if and only if {v1, v2} ={v′1, v′2}. Let πV ∶ {(v1, v2) ∈ V 2 ∶ v1 ≠ v2} → SV be the quotient map seen as a
relation on V 2 ×SV , and EV the image of E under πV , considered as a relation on
SV . Then (V,SV ;πV ,EV ) is existentially bi-interpretable with (V ;E).
Now suppose I = {1,2}, T∩ is the common theory of (V,SV ), T1 is the common
theory of (V,SV ;πV ), and T2 is the common theory of (V,SV ;EV ). It can be
checked that T1 and T2 are model-complete. Then T∪ is existentially bi-interpretable
with T . Hence T ∗∪ exists, and is existentially bi-interpretable T ∗. It can also be
shown that T1 and T2 are interpretable in the theory of infinite sets, so the theory
of random graphs is up to existential bi-interpretation the interpolative fusion of
two theories interpretable in the theory of infinite sets. Similar ideas also work with
directed graphs, tournaments, n-hypergraphs, etc.

Generic Skolemizations. Suppose L0 is a one-sorted language and T0 is a model-
complete L0-theory. Let ϕ(x, y) be an L0-formula with y a single variable and x

a tuple of variables of length n > 0, such that T0 ⊧ ∀x∃≥ky ϕ(x, y) for all k. Let
L = L0∪{f} with f a new n-ary function symbol, and T = T0∪{∀xϕ(x, f(x))}. Then
T is the “ϕ-Skolemization” of T0. Winkler showed that T has a model companion
T ∗, the “generic ϕ-Skolemization” of T0, when T0 eliminates ∃∞ [Win75]. Generic
Skolemizations were also studied more recently in [KR18].
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Let M = (M0, f) range over the models of T . For each such M, let E ⊆ Mn+1 be
defined in M0 by ϕ, let px ∶ E → Mn and py ∶ E → M be the projection on the
first n coordinates and the last coordinate, respectively, and let g ∶Mn → E be the
function a ↦ (a, f(a)). Note that px is an infinite-to-one surjection onto Mn, and
g is a section of px. Then the two-sorted structure (M0,E;px, py) is existentially
bi-interpretable with M0, and (M0,E;px, py, g) is existentially bi-interpretable with
M.

Let I = {1,2}, let T∩ the common theory of all (M,E;px), let T1 be the common
theory of all (M0,E;px, py), and let T2 be the common theory of all (M,E;px, g).
Then T1 and T2 are model-complete, and T∪ is existentially bi-interpretable with T .
Hence T ∗∪ exists and is bi-interpretable with T ∗ when T0 eliminates ∃∞. It can also
be checked that T1 is existentially bi-interpretable with T0, and T2 is interpretable
in the theory of an infinite set.

3. Pseudo-topological base

In many examples, including most of those in Section 2.3, the existence of the
interpolative fusion can be explained by a simple idea: in the presence of a well-
behaved notion of dimension on L∩-definable sets, a family (Xi)i∈I of Li-definable
sets is not separated (as defined in Section 2.1) if and only if they are simultaneously
“dense” in some L∩-definable set.

In this section, we provide a general framework abstracting these examples. Under
very general hypotheses, we can use this framework to prove the existence of the
interpolative fusion and provide an explicit ∀∃-axiomatization.

Throughout the rest of the paper, we introduce the following additional notational
conventions: L′ is a first-order language extending L with the same sorts as L,
M
′ is an L′-structure and M is its L-reduct, T ′ is an L′-theory, and T is the set

of L-consequences of T ′. Moreover, we assume the existence of a function dim

that assigns an ordinal or the formal symbol −∞ to each M-definable set whenever
M ⊧ T , so that for all M-definable X,X1,X2 ⊆Mx:

(1) dimX1 ∪X2 =max{dimX1,dimX2};
(2) dimX = −∞ if and only if X = ∅;
(3) if X is finite then dimX = 0;
(4) dimX = dimX(N) for any elementary extension N of M.

We call such a function dim an ordinal dimension on T . Examples include
Morley rank on an ℵ0-stable theory, U-rank on a superstable theory, SU-rank on
a supersimple theory, and o-minimal dimension on an o-minimal theory. In fact,
most natural examples of tame theories are equipped with a dimension, which is
often canonical.

Let X be a definable subset of Mx and A an arbitrary subset of Mx. Then A is
pseudo-dense in X if A intersects every nonempty definable X ′ ⊆ X such that
dimX ′ = dimX . We call X a pseudo-closure of A if A ⊆X and A is pseudo-dense
in X . Lemma 3.1 collects a few easy facts about pseudo-denseness, the proofs of
which we leave to the readers.

Lemma 3.1. Let X and X ′ be M-definable subsets of Mx, and let A be an arbitrary
subset of Mx. Then:

(1) When dimX = 0, A is pseudo-dense in X if and only if X ⊆ A.
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(2) If A is pseudo-dense in X, X ′ ⊆X, and dimX ′ = dimX, then A is pseudo-
dense in X ′.

(3) If X1, . . . ,Xn ⊆X are M-definable, with dimX i = dimX for all i, and

dimX ∖ (X1 ∪ . . . ∪Xn) < dimX,

then A is pseudo-dense in X if and only if A is pseudo-dense in each X i.

If in addition X is a pseudo-closure of A, then:

(4) A ⊆X ′ implies dimX ≤ dimX ′.
(5) If X ′ is another pseudo-closure of A, then dim(X△X ′) < dimX = dimX ′.
(6) If A ⊆X ′ ⊆X then X ′ is a pseudo-closure of A.

We next introduce equivalent characterizations of interpolative structures under
extra assumptions. Let C be a collection of M-definable sets. Then X admits a
C-decomposition if there is a finite family (Xj)j∈J from C such that

dim (X △ ⋃
j∈J

Xj) < dimX,

and X admits a C-patching if there is a finite family (Xj, Y j , f j)j∈J such that for
all j, j′ ∈ J :

(1) Y j is in C.
(2) f j ∶ Xj → Y j is an M-definable bijection.

(3) And finally, dim (X △⋃j∈J X
j) < dimX.

We say that C is a pseudo-cell collection for M if either every M-definable set
admits a C-decomposition or dim is preserved under M-definable bijections and
every M-definable set admits a C-patching. Examples include the collection of
irreducible varieties in an algebraically closed field and the collection of cells in an
o-minimal structure.

Suppose dim is an ordinal dimension on Th(M∩) and C is a collection of M∩-
definable sets. We say M∪ is C-weakly interpolative if for all finite J ⊆ I,
X∩ ∈ C, and (Xi)i∈J , where Xi is Mi-definable and pseudo-dense in X∩, we have

⋂i∈J Xi ≠ ∅. If C is the collection of all M∩-definable sets then we say that M∪ is
weakly interpolative. It is easy to see that if C is a collection of pseudo-cells,
then M∪ is weakly interpolative if and only if M∪ is C-weakly interpolative.

Suppose M
′ is an expansion of M. Then M

′ has pseudo-closures in M (with
respect to the ordinal dimension dim on M) if every M

′-definable set admits an
M-definable pseudo-closure. For later use, we say that T ′ has pseudo-closures

in T if every T ′-model has pseudo-closures in its L-reduct.

Proposition 3.2. Suppose J ⊆ I is finite and Xi ⊆Mx is Mi-definable for all i ∈ J .
If there is an M∩-definable set X in which each Xi is pseudo-dense, then (Xi)i∈J
is not separated. The converse implication holds provided Mi has pseudo-closures
in M∩ for all i ∈ J . It follows that if C is a collection of M∩-definable sets, then:

(1) If M∪ is interpolative, then M∪ is C-weakly interpolative. In particular, if
M∪ is interpolative, then M∪ is weakly interpolative.

(2) Suppose moreover that each Mi has pseudo-closures in M∩. If M∪ is weakly
interpolative, or if M∪ is C-weakly interpolative and C is a collection of
pseudo-cells, then M∪ is interpolative.
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Proof. We only prove the first two claims, since then (1) and (2) follow easily.
For the first statement, suppose X is a nonempty M∩-definable subset of Mx

in which each Xi is pseudo-dense, and (X i)i∈J is a family of M∩-definable sets
satisfying Xi ⊆ X i for each i ∈ J . As Xi is pseudo-dense in X and disjoint from
X ∖X i, we have dimX ∖X i < dimX for all i ∈ J . Hence,

dim⋃
i∈J

(X ∖X i) < dimX.

Thus dim⋂i∈J X
i ≥ dimX , so ⋂i∈J X

i is nonempty.
For the converse, assume Mi has pseudo-closures in M∩ for each i ∈ J , and

suppose Xi is an Mi-definable set for each i ∈ J . We want to show that if there is
no M∩-definable set Z in which each Xi is pseudo-dense, then (Xi)i∈J is separated.
Simplifying notation, we assume J = {1, . . . , n}. We show (Xi)ni=1 is separated by
applying simultaneous transfinite induction to d1, . . . , dn where di is the dimension
of any pseudo-closure of Xi.

Let X i be a pseudo-closure of Xi for each i and let

Z =X1 ∩ . . . ∩Xn.

If dimXj = −∞ for some j ∈ J , then Xj and Z are both empty, so (X i)ni=1 separates(Xi)ni=1. If dimX i = dimZ for each i, then Lemma 3.1(2) shows each Xi is pseudo-
dense in Z, contradiction. After re-arranging theXi if necessary we suppose dimZ <
dimX1. Let Y1 =X1 ∩Z. As (Xi)ni=1 cannot be simultaneously pseudo-dense in an
M∩-definable set, it follows that Y1,X2, . . . ,Xn cannot be simultaneously pseudo-
dense in an M∩-definable set. As the dimension of any pseudo-closure of Y1 is
strictly less then the dimension of X1, an application of the inductive hypothesis
provides M∩-definable sets Y 1, . . . , Y n separating Y1,X2, . . . ,Xn. It is easy to see

Y 1 ∪ (X1 ∖Z), Y 2 ∩X2, . . . , Y n ∩Xn

separates X1, . . . ,Xn, which completes the proof. �

Let T be an L-theory equipped with an ordinal dimension dim and C an arbitrary
collection of definable sets in T -models. We say that C is a pseudo-cell collection

for T if for all M ⊧ T , C ∩Def(M) is a pseudo-cell collection for M. We say that T
defines C-membership if for every L-formula ϕ(x, y) there is an L-formula γ(y)
such that for all M ⊧ T and b ∈My,

ϕ(M, b) is in C if and only if M ⊧ γ(b).
We say that T ′ defines pseudo-denseness over C if for every L′-formula ϕ′(x, y)
and every L-formula ϕ(x, z), there is an L′-formula δ′(y, z) such that if M

′ ⊧ T ′

and c ∈My with ϕ(M′, c) ∈ C, then

ϕ′(M′, b) is pseudo-dense in ϕ(M′, c) if and only if M′ ⊧ δ′(b, c).
If C is the collection of all M∩-definable sets then we say that T ′ defines pseudo-

denseness over T .

We say T defines dimension if for every ordinal α, and every L-formula ϕ(x, y),
there is an L-formula δα(y) such that for all M ⊧ T and b ∈My

dimϕ(M, b) = α if and only if M ⊧ δα(b).
Note that if T defines dimension then, by compactness, for every formula ϕ(x, y),
there are finitely many ordinals α1, . . . , αn such that for all M ⊧ T and b ∈My, we
have dim(ϕ(M, b)) ∈ {α1, . . . , αn}.
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Proposition 3.3. Suppose C is a pseudo-cell collection, T defines C-membership
and dimension, and T ′ defines pseudo-denseness over C. Then T ′ defines pseudo-
denseness over T .

Proof. We only treat the case where dim is preserved under definable bijection
and every definable set admits a C-patching. The other case is similar and easier.
Let ϕ′(x, z′) be an L′-formula and ϕ(x, z) be an L-formula. We will produce an
L′-formula δ′(z, z′) such that whenever M

′ ⊧ T ′ and M =M
′↾L, we have

M
′ ⊧ δ(c, c′) if and only if ϕ′(M′, c′) is pseudo dense in ϕ(M, c).

Applying compactness we obtain n and an L-formula ψ(x, y,w) such that for all
M
′ ⊧ T ′ and M =M

′↾L we have the following

(1) For all d ∈ Mw, the formula ψ(x, y, d) defines a function fd from a subset
Xd of Mx to a subset Yd of My.

(2) For each c ∈ Mz, there exists J ⊆ {1, . . . , n} and (dj)j∈J from Mw, such
that (Xdj

, Ydj
, fdj
)j∈J as defined in (1) is a C-patching of ϕ(M, c).

Now we have that ϕ′(M, c′) is pseudo-dense in ϕ(M, c) if and only if there are J ,
and (dj)j∈J as in (1) and (2) such that fdj

(ϕ′(M, c′)∩Xdj
) is pseudo-dense in Ydj

for all j ∈ J such that dimXdj
= dimϕ(M, c). From the analysis above, it is easy

to see that we can choose the desired formula δ′(z, z′). �

With all the pieces in place, we can prove the main theorem of this section, which
has Theorem 1.4 from the introduction as a special case.

Theorem 3.4. Suppose C is a collection of definable sets of T∩-models such that
T∩ defines C-membership, and each Ti defines pseudo-denseness over C. Then we
have the following:

(1) The class of C-weakly interpolative T∪-models is elementary.
(2) If C is a pseudo-cell collection for T∩, then the class of weakly interpolative

T∪-models is elementary.
(3) If, in addition, each Ti has pseudo-closures in T∩, then the interpolative

fusion T ∗∪ exists.

In particular, taking C to be the collection of all definable sets in T∩-models:

(4) If Ti defines pseudo-denseness over T∩ for all i ∈ I, then the class of weakly
interpolative T∪-models is elementary.

(5) If, in addition, Ti has pseudo-closures in T∩ for all i ∈ I, then T ∗∪ exists.

Proof. It suffices to prove (1). Then (2) follows from (1) and the fact, noted above,
that C is a pseudo-cell collection for T∩, then M∪ is weakly interpolative if and only
if M∪ is C-weakly interpolative. Now (3) follows from Proposition 3.2. Finally, (4)
and (5) are special cases of (2) and (3), respectively.

Let ϕ∩(x, y) be an L∩-formula, let J ⊆ I be finite, and let ϕi(x, zi) be an Li-
formula for each i ∈ J . Let γ∩(y) be an L∩-formula defining C-membership for
ϕ∩(x, y), and let δi(y, zi) be an Li-formula defining pseudo-denseness over C for
ϕ∩(x, y) and ϕi(x, zi) for each i ∈ J . For simplicity, we assume J = {1, . . . , n}.
Then we have the following axiom:

∀y, z1, . . . , zn ((γ∩(y) ∧ n

⋀
i=1

δi(y, zi))→ ∃x n

⋀
i=1

ϕi(x, zi)) .
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Then T∪, together with one axiom of the above form for each choice of ϕ∩(x, y),
J , and ϕi(x, zi) for i ∈ J as above, axiomatizes the class of C-weakly interpolative
T∪-models. �

We refer to the axioms obtained in the proof of Theorem 3.4 as the pseudo-

topological axioms for T ∗∪ .

At present, we know that Theorem 3.4 applies to all examples described in Ex-
ample 1.2 and 1.3 except for the integers with p-adic valuations and differentially
closed fields. We do not know if Theorem 3.4 applies to differentially closed fields,
as in this case we do not have a good understanding of definable sets in the base
theory.

We now show that Theorem 3.4 does not apply to the example of the integers with
p-adic valuations. Let dim be the canonical ordinal dimension on the additive group
of integers, which coincides with U-rank, acl-dimension, etc., see [Con18].

Proposition 3.5. Suppose (Z;+,×) is an ℵ1-saturated elementary extension of(Z;+,×). Fix a prime p and let vp be the p-adic valuation on Z. Given a, b ∈ Z we
declare a ≼p b if and only if vp(a) ≤ vp(b). Fix N in Z such that vp(N) ≥ n for all
n ∈ N and let

E = {z ∈ Z ∣ N ≼p z}.
Then E does not have a pseudo-closure in (Z;+). So (Z;+,≼p) does not have
pseudo-closures in (Z;+).
Proof. The quantifier elimination for Th(Z;+) implies that every (Z;+)-definable
subset of Z is a finite union of sets of the form (kZ + l)∖F for k, l ∈ Z and finite F .
So if E has a pseudo-closure in (Z;+), then E is pseudo-dense in kZ + l for some
k, l ∈ Z with k ≠ 0.

So we fix k, l ∈ Z with k ≠ 0 and show that E is not pseudo-dense in kZ + l. As
dim(kZ + l) = 1, it is enough to show that E is disjoint from some infinite definable
subset of kZ + l.

If l ≠ 0, let n = vp(l), so l = pnm for some m ∈ Z which is coprime to p. Then
pn+1kZ + l = pn(pkZ +m) is an infinite definable subset of kZ + l. Every element of
this set has p-adic valuation at most n ∈ N, so it is disjoint from E.

If l = 0, consider kZ ∖ pkZ. This is an infinite definable subset of kZ, and if
a ∈ kZ ∖ pkZ, then vp(a) = vp(k) ∈ N. So E is disjoint from kZ ∖ pkZ. �

Remark 3.6. One can apply the “quasi-coset” decompositions given in [Con18,
Theorem 4.10] to show that {(k, l) ∈ Z2 ∶ k ≼p l} does not have a pseudo-closure
in Z2. This presents some technical difficulties, so we do not include it here. As
every (Z;+,≼p)-definable subset of Z is (Z;+)-definable [Ad19], we must pass to an
elementary extension to obtain a unary set without a pseudo-closure.

4. Tame topological base

We consider in this section specializations of Theorem 3.4 to settings in which the
base theory T∩ admits a well-behaved definable topology. Throughout, we maintain
the notational conventions described at the beginning of Section 3, and we explore
the degree to which the pseudo-topological notions defined there agree with natural
topological notions. We show, among other things, that if M is o-minimal, then
M
′ has pseudo-closures in M if and only if the closure of every M

′-definable set
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is M-definable. This equivalence only depends on two well-known facts from o-
minimality. One of these is known as the frontier inequality, and we refer to the
other as the residue inequality. Whenever these inequalities hold in our abstract
setting, we automatically obtain definability of pseudo-denseness.

A definable topology T on M consists of a topology Tx on each Mx, such that{ϕ(M, b) ∶ b ∈My} is a basis for Tx, for some L-formula ϕ(x, y). Note that we also
obtain a definable topology on every model of Th(M). For the rest of Section 4,
we suppose T is a definable topology on M and dim is an ordinal dimension on
T = Th(M) such that T defines dimension.

Let A be a subset of Mx. We denote by cl(A) the closure of A with respect to Tx.
The frontier of A, fr(A), is defined as cl(A) ∖A. Since T is a definable topology,
the interior, closure, and frontier of a definable subset of Mx are all definable.

In general there need be no connection between pseudo-denseness and T-denseness.
We give conditions under which the two naturally relate. We say M satisfies the
frontier inequality if

dim fr(X) < dimX for all definable X.

This is a strong assumption, which in particular implies, by a straight-forward
induction on dimension, that every definable set is a Boolean combination of open
definable sets.

Lemma 4.1. Suppose M satisfies the frontier inequality and X ′ ⊆ X are M-
definable sets. If dimX ′ = dimX, then X ′ has nonempty interior in X.

Proof. If X ′ has empty interior in X , then X ∖ X ′ is dense in X , and so X ′ ⊆
X ⊆ cl(X ∖X ′). In particular, X ′ ⊆ fr(X ∖X ′). The frontier inequality implies
dimX ′ < dimX ∖X ′ ≤ dimX . �

Lemma 4.2. The following are equivalent:

(1) M satisfies the frontier inequality.
(2) If A ⊆Mx is dense in a definable X ⊆Mx then A is pseudo-dense in X.

Proof. Suppose that M satisfies the frontier inequality and that A ⊆ Mx is dense
in a definable set X ⊆ Mx. Suppose X ′ ⊆ X is definable and dimX ′ = dimX .
Lemma 4.1 implies that X ′ has nonempty interior in X . Thus A intersects X ′. It
follows that A is pseudo-dense in X .

Conversely, assume (2), and let X ⊆Mx be definable. Since X is dense in cl(X),
X is also pseudo-dense in cl(X). As X ∩ fr(X) = ∅, we have dim fr(X) < dimcl(X).
It follows that dimX = dimcl(X), so the frontier inequality holds. �

Pseudo-density does not, in general, imply density. For example, if X ⊆ Mx is an
infinite definable set and p ∈Mx does not lie in cl(X), then X is pseudo-dense in
X∪{p} but not dense in X∪{p}. However, the converse to (2) does hold for certain
definable sets, which we call pure dimensional.

Let X ⊆Mx be definable. Given p ∈ X , we define

dimpX =min{dim(U ∩X) ∶ U is a definable neighborhood of p}.
We say that X is pure dimensional if dimpX = dimX for all p ∈X . Equivalently,
X is pure dimensional if and only if dimU = dimX for all nonempty definable open
subsets of X .
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Lemma 4.3. Suppose X ⊆Mx is definable. Then the following are equivalent:

(1) X is pure dimensional.
(2) If a subset A of Mx is pseudo-dense in X, then A is dense in X.

Proof. Suppose X is not pure dimensional. Let U be a definable nonempty open
subset of X such that dimU < dimX . Then X ∖ U is pseudo-dense in X and not
dense in X .

Suppose X is pure dimensional and A is pseudo-dense in X . Suppose U is a
nonempty open subset of X . Then there is a definable nonempty open subset U ′

of U . Then dimU ′ = dimX , so A intersects U ′. Hence A is dense in X . �

Proposition 4.4 gives another characterization of pure dimensional sets. We will
not use this characterization, so we leave its proof to the reader.

Proposition 4.4. Suppose X ⊆ Mx is definable. If X is pure dimensional, then
there are no definable sets X1 and X2 such that X = X1 ∪X2, X1 and X2 are
closed in X, neither X1 nor X2 contains the other, and dimX1 ≠ dimX2. If M

satisfies the frontier inequality, then the converse holds.

For a definable X ⊆ Mx, we define the essence of X , es(X), and the residue of
X , rs(X):

es(X) = {p ∈X ∶ dimpX = dimX}
rs(X) = {p ∈X ∶ dimpX < dimX}

As Tx admits a definable basis, and T defines dimension, it follows that es(X) and
rs(X) are definable.

We say that M satisfies the residue inequality if

dimrs(X) < dimX for all definable X.

Lemma 4.5. If M satisfies the residue inequality, then for all definable X ⊆Mx,
es(X) is pure dimensional.

Proof. Let p ∈ es(X), and let U be a definable neighborhood of p. We need to show
that dim(U ∩ es(X)) = dimes(X). By the residue inequality, dim rs(X) < dimX .
So dimes(X) = dimX = dim(U ∩X) because p ∈ es(X). Thus,

dimes(X) = dim(U ∩X) = dim((U ∩X)∖ rs(X)) = dim(U ∩ es(X)). �

We will not use Proposition 4.6, but we include it here, since it provides additional
motivation for the residue inequality.

Proposition 4.6. M satisfies the residue inequality if and only if every definable
set is a finite disjoint union of pure dimensional definable sets.

Proof. Suppose first that M satisfies the residue inequality. Let X ⊆ Mx be de-
finable. We argue by induction on dimX . If dimX = −∞, then X = ∅ and
the conclusion holds vacuously. Otherwise, X is the disjoint union of es(X) and
rs(X). By Lemma 4.5, es(X) is pure dimensional, and by the residue inequal-
ity dimrs(X) < dimX , so by induction rs(X) is a finite disjoint union of pure
dimensional definable sets.
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Conversely, for any definable set X , suppose that X is a disjoint union of pure
dimensional definable sets Y1, . . . , Ym. We will show that dim rs(X) < dimX . We
may assume without loss of generality that 1 ≤ j ≤m is such that

dimYk = dimX when k ≤ j and dimYk < dimX when k > j.
Let p ∈ rs(X), and suppose for contradiction that p ∈ Yk for some k ≤ j. Then since
Yk is pure dimensional, dimp Yk = dimYk = dimX , so for any definable neighborhood
U of p,

dimX = dim(U ∩ Yk) ≤ dim(U ∩X) ≤ dimX.

So dimpX = dimX , contradicting the fact that p ∈ rs(X). Thus rs(X) ⊆ ⋃k>j Yk,
and dim rs(X) ≤ dim⋃k>j Yk < dimX . �

We say T is dim-compatible if M satisfies both the frontier inequality and the
residue inequality. Definability of the dimension and the topology ensure that dim-
compatibility is an elementary property, i.e., the topology on any model of T is
dim-compatible.

Proposition 4.7. Suppose T is dim-compatible. Suppose X ⊆Mx is definable and
A ⊆Mx. Then A is pseudo-dense in X if and only if A is dense in es(X).
Proof. Since dim rs(X) < dimX and dimes(X) = dimX , A is pseudo-dense in
X if and only if A is pseudo-dense in es(X). The equivalence then follows from
Lemma 4.2, Lemma 4.3, and Lemma 4.5. �

Proposition 4.8. Suppose T is dim-compatible. Any expansion T ′ of T defines
pseudo-denseness over T .

Proof. Suppose M is a T -model and M
′ is a T ′-model expanding M. Suppose(Xb)b∈My and (X ′c)c∈Mz are families of subsets of Mx, which are M-definable and

M
′-definable, respectively. By Proposition 4.7, X ′c is pseudo-dense in Xb if and

only if X ′c is dense in es(Xb).
Using definability of the topology and dimension, essences of definable sets are

uniformly definable, i.e., there is an M-definable family (Yb)b∈My such that Yb =
es(Xb) for all b ∈My. Thus X ′c is pseudo-dense in Xb if and only if X ′c is dense in
Yb. And using definability of the topology, the set of all (b, c) such that X ′c is dense
in Y b is definable. �

Proposition 4.9. Suppose T is dim-compatible. Suppose M
′ expands M. Then

M
′ has pseudo-closures in M if and only if the closure of any M

′-definable set is
M-definable.

Proof. Suppose that the closure of any M
′-definable set is M-definable. Then for

any M
′-definable X ⊆Mx, cl(X) is a pseudo-closure of X by Lemma 4.2.

Conversely, suppose M
′ has pseudo-closures in M and X ′ ⊆Mx is M

′-definable.
Let X be a pseudo-closure of X ′. We apply induction to the dimension of X . If
dimX = −∞, then X ′ is empty and trivially M-definable. Now suppose dimX ≥ 0.
We have

cl(X ′) = cl(X ′ ∩ es(X))∪ cl(X ′ ∩ rs(X)).
Since X ′ is pseudo-dense in X , X ′ is dense in es(X) by Proposition 4.7. It follows
that cl(X ′ ∩ es(X)) = cl(es(X)), which is M-definable. As (X ′ ∩ rs(X)) ⊆ rs(X),
any pseudo-closure of (X ′ ∩ rs(X)) has dimension at most dim rs(X) < dimX .
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So cl(X ′ ∩ rs(X)) is M-definable by induction. Thus cl(X ′) is a union of two
M-definable sets and is therefore M-definable. �

We conclude this section by giving examples of structures with dim-compatible
definable topologies. In those examples, T and dim are canonical, so we do not
describe them in detail. In each case, existence of pure dimensional decompositions
(and hence the residue inequality, by Proposition 4.6) follows from the appropriate
cell decomposition or “weak cell decomposition”. In different settings, cells (or “weak
cells”) have different definitions, but they are easily seen to be pure dimensional in
each case.

The most familiar case is when M is an o-minimal expansion of a dense linear order,
see [vdD98b]. Similarly, it follows from [SW19, Propositions 4.1 and 4.3] that if
M is a dp-minimal expansion of a divisible ordered abelian group, then the usual
order topology is compatible with dp-rank (and dp-rank agrees with several other
natural notions of dimension [SW19, Proposition 2.4]). This covers the case when
M is an expansion of an ordered abelian group with weakly o-minimal theory. It
is shown in Johnson’s thesis [Joh16] that if M is a dp-minimal, but not strongly
minimal, expansion of a field, then M admits a canonical non-discrete definable
field topology. Taking the product topology on Mn for all n, it is shown in [SW19]
that this topology is compatible with dp-rank. This covers the case of a C-minimal
expansion of an algebraically closed field or a P-minimal expansion of a p-adically
closed field. It was previously shown in [CKDL17] that P-minimal expansions of
p-adically closed fields satisfy the frontier inequality and admit pure dimensional
decompositions.

We say that T is an open core of T ′ if the closure of every T ′-definable set in
every T ′-model M′ is M =M

′∣L definable. Propositions 4.8 and 4.9 together yield
Theorem 4.10, which generalizes Theorem 1.5 from the introduction.

Theorem 4.10. If T∩ admits a definable ordinal dimension dim and a dim-
compatible definable topology, and T∩ is an open core of each Ti, then T ∗∪ exists. In
particular, if T∩ is an o-minimal expansion of a dense linear order or a P-minimal
expansion of a p-adically closed field, and T∩ is an open core of each Ti, then T ∗∪
exists.

We give an application of Theorem 4.10. Suppose T∩ is a complete and model-
complete o-minimal theory extending the theory of ordered abelian groups. For
each i ∈ I, let Ti be the theory of a T -model N equipped with a unary predicate
Ri defining a dense elementary substructure of N. Then Ti is model-complete by
[vdD98a, Thm 1] and T∩ is an open core of Ti [DMS10, Section 5]. Applying
Theorem 4.10, we see that the theory T∪ of a T -model N equipped with a family(Ri)i∈I of unary predicates defining dense elementary substructures of N has a
model companion.

5. ℵ0-stable base

In almost all of the examples from Section 2.3, the base theory T∩ is ℵ0-stable (in
fact, T∩ is almost always interpretable in ACF or the theory of an infinite set). In
this section, we specialize Theorem 3.4 to this setting, where the natural ordinal
dimension is Morley rank, and we obtain pseudo-closures for free.
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We keep the additional notational conventions described at the beginning of Sec-
tion 3. Throughout this section, T is ℵ0-stable, dim is Morley rank, and mult is
Morley degree.

Suppose X1 and X2 are M-definable subsets of Mx. We will say that X1 is almost

a subset of X2 and write X1 ⊆a X
2 if

dim(X1 ∖X2) < dim(X1).
We will say that X1 is almost equal to X2 and write X1 =a X

2 if X1 ⊆a X
2 and

X2 ⊆a X
1. It is easy to see that =a is an equivalence relation. An M-definable

subset X of Mx is almost irreducible if whenever X = X1 ∪X2 for M-definable
X1 and X2, we have X =a X

1 or X =a X
2. Any M-definable set of Morley degree

one is almost irreducible, and the converse holds when Th(M) defines Morley rank
or when M is ℵ0-saturated.

Proposition 5.1 is the main advantage of assuming that T∩ is ℵ0-stable in our setting.

Proposition 5.1. Let M ⊧ T . Every A ⊆Mx has a pseudo-closure. More precisely,
an M-definable set X ⊆Mx is a pseudo-closure of A if and only if A ⊆ X and for
all M-definable X ′ ⊆Mx with A ⊆X ′,

(dimX,multX) ≤Lex (dimX ′,multX ′).
It follows that every expansion of T has pseudo-closures in T .

Proof. By standard properties of Morley rank and degree in ℵ0-stable theories,
for any M-definable X and X ′, if (dimX ′,multX ′) <Lex (dimX,multX), then
dim(X ∖X ′) = dimX . If X ′ ⊆X , then the converse is true.

Let X be a pseudo-closure of A, so A ⊆ X , and suppose for contradiction
that there is some M-definable X ′ ⊆ Mx with A ⊆ X ′ and (dimX ′,multX ′) <Lex(dimX,multX). Then dim(X ∖X ′) = dimX , but A ∩ (X ∖X ′) = ∅, contradicting
the fact that A is pseudo-dense in X .

Conversely, suppose A ⊆X and (dimX,multX) is minimal in the lexicographic
order among M-definable sets containing A. Then for any M-definable X ′ ⊆X with
dimX ′ = dimX , (dim(X ∖X ′),mult(X∖X ′)) <Lex (dimX,multX). It follows that
A /⊆ (X ∖X ′), so A ∩X ′ ≠ ∅. Hence X is a pseudo-closure of A. �

Corollary 5.2 now follows immediately from Proposition 3.2.

Corollary 5.2. If Th(M∩) is ℵ0-stable and dim is Morley rank, then M∪ is inter-
polative if and only it is weakly interpolative.

In Proposition 3.5, we gave a concrete example of an expansion of T = Th(Z;+)
that does not have pseudo-closures in T . It is well known that T is superstable but
not ℵ0-stable, so this demonstrates that superstability is not sufficient for Proposi-
tion 5.1. For the reader who is still looking for a free ride outside of the ℵ0-stable
context, Proposition 5.4 will dash this hope.

If dim1,dim2 are ordinal dimensions on an L♢-theory T ♢ then we say dim1 is
smaller than dim2 if dim1X ≤ dim2X for all definable sets X .

Remark 5.3. The theory T ♢ is ℵ0-stable if and only if it admits an ordinal di-
mension dim such that for every T ♢-model M♢, M

♢-definable set X , and family(Xn)n∈N of pairwise disjoint M
♢-definable subsets of X , we have dimXn < dimX

for some n. If T ♢ is ℵ0-stable, then Morley rank is the smallest ordinal dimension
with this property.
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Proposition 5.4. Suppose L♢ is countable and dim♢ is an ordinal dimension on
a complete L♢-theory T ♢. If T ♢ is not ℵ0-stable, then there is an expansion of T ♢

that does not have pseudo-closures in T ♢.

Proof. Suppose T ♢ is not ℵ0-stable. Applying Remark 5.3, we obtain a T ♢-model
M
♢, an M

♢-definable set X with dim♢X = α, and a sequence (Xn)n∈N of pairwise
disjoint M

♢-definable subsets of X such that dim♢Xn = α for all n. Since X and
each Xn are definable with parameters from a countable elementary submodel, we
may assume M

♢ is countable.
Given S ⊆ N, let AS = ⋃n∈SXn. We show that AS does not have a pseudo-

closure for uncountably many S ⊆ N. Suppose S ⊆ N is nonempty and X ′ is a
pseudo-closure of AS . As AS ⊆ X , we have dim♢X ′ ≤ α. As S is nonempty, we
have Xn ⊆ X ′ for some n, so dim

♢
X ′ ≥ α. Thus any pseudo-closure X ′ of AS has

dim♢X ′ = α.
Now suppose S,S′ ⊆ N are nonempty and S /⊆ S′. We show any pseudo-closure of

AS is not a pseudo-closure of AS′ . Fix n ∈ S∖S′ and suppose X ′ is a pseudo-closure
of AS . Then dim♢X ′ = α, Xn is an M

♢-definable subset of X ′ with dim♢Xn = α,
but Xn is disjoint from AS′ . Thus X ′ is not a pseudo-closure of AS′ .

Let J be an uncountable collection of nonempty subsets of N such that S /⊆ S′
for all distinct S,S′ ∈ J. If S,S′ ∈ J are distinct, then AS and AS′ cannot have
a common pseudo-closure. As M

♢ and L are countable, there are only countably
many M

♢-definable sets, so there are uncountably many S ∈ J such that AS does not
have a pseudo-closure. The expansion of M♢ by a predicate defining any such AS

does not have pseudo-closures in M
♢. It follows that the theory of this expansion

does not have pseudo-closures in T ♢. �

We next give a useful characterization of definability of pseudo-denseness over anℵ0-stable theory. Proposition 5.1 motivates the following definition. Suppose M ′

is a model of T ′, M =M
′∣L, and X ′ ⊆Mx is M

′-definable. Define

dim′X ′ = dimX and mult′X ′ =multX

where X is any pseudo-closure of X ′. Lemma 5.5 is an immediate consequence of
Proposition 5.1.

Lemma 5.5. For A ⊆Mx and M-definable X ⊆Mx, we have the following:

(1) A is pseudo-dense in X if and only if we have both dim′(X ∩A) = dim(X)
and mult

′(X ∩A) =mult(X).
(2) If X is almost irreducible, then A is pseudo-dense in X if and only if

dim′(X ∩A) = dim(X).
In general dim′ might not be an ordinal dimension on T ′, as dim′(X ′) might be
different from dim′(X ′(N′)) where N

′ is an elementary extension of M′. When T

defines Morley rank, we can easily check that dim
′ is an ordinal dimension on T ′,

which we will refer to as the induced dimension on T ′.

We say T defines multiplicity (also known as having the DMP in the literature)
if for all L-formulas ϕ(x, y), ordinals α, and n, there is an L-formula µα,n(y) such
that for all M ⊧ T and b ∈My we have that

M ⊧ µα,n(b) if and only if dimϕ(M, b) = α and mult ϕ(M, b) = n.
In particular, if T defines multiplicity, then T defines Morley rank, and the induced
dimension on T ′ is well-defined.
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Proposition 5.6. Suppose T defines multiplicity. Then T ′ defines pseudo-
denseness over T if and only if T ′ defines induced dimension.

Proof. Suppose T ′ defines pseudo-denseness and ϕ′(x, y) is an L′-formula. Let(X ′b)b∈My be the family of subsets of Mx defined by ϕ′(x, y). Using the assumption
that T ′ defines pseudo-denseness and a standard compactness argument, we obtain
a family (Xc)c∈Mz defined by a formula whose choice might depend on ϕ′(x, y) but
not on M

′, such that for every b ∈My, X ′b has a pseudo-closure that is a member of
the family (Xc)c∈Mz . It follows from Proposition 5.1 that dim′(X ′b) = α for b ∈My

if and only there is c ∈Mz such that X ′b is pseudo-dense in Xc and dim(Xc) = α. As
T defines Morley rank and T ′ defines pseudo-denseness, it follows that T ′ defines
induced dimension.

Now suppose T ′ defines induced dimension. Let C be the collection of almost
irreducible subsets of T -models. Then C is a collection of pseudo-cells for T . As
T defines multiplicity, T defines C-membership. So by Proposition 3.3, it suffices
to show T ′ defines pseudo-denseness over C. Let (X ′b)b∈My and (Xc)c∈Mz be a
families defined by an L′-formula ϕ′(x, y) and an L-formula ϕ(x, z). It follows
from Proposition 5.1 that when Xc is in C, X ′b is pseudo-dense in Xc if and only if
dim′(X ∩X ′) = dim(X). The desired conclusion follows. �

Remark 5.7. If T defines Morley rank, then mult′ is preserved under elementary
extensions, so we may speak of induced multiplicity on T ′. There is also an analogue
of Proposition 5.6 that involves both dim′ and mult′: If T defines Morley rank, then
T ′ defines pseudo-denseness if and only if T ′ defines induced dimension and induced
multiplicity. We do not include it here as we do not have an application in mind.

We get the main result of this section, which is a restatement of Theorem 1.6:

Theorem 5.8. Suppose T∩ is ℵ0-stable and defines multiplicity. If each Ti defines
induced dimension, then T ∗∪ exists.

Proof. This is an immediate consequence of Theorem 3.4, Proposition 5.1, and
Proposition 5.6. �

Remark 5.9. Proposition 5.6 and Theorem 5.8 are mainly of interest because there
are several situations where the natural dimension is induced dimension. Proposi-
tion 5.11 below presents a general class of such situations. In forthcoming work of
the third author and Aschenbrenner it will be shown that T ′ defines induced di-
mension when T is ACF0 and T ′ is either DCF0 or the theory of (C;R) or (Cp;Qp).
The algebraic dimension adim(X) of an M-definable set X is the maximal k
for which there is a = (a1, . . . , ak) in the extension X(M) of X to an ℵ0-saturated
model M such that (after permuting coordinates) a1, . . . , ak are acl-independent
over M . It is well-known that algebraic dimension is an ordinal dimension on
Th(M), which coincides with Morley rank for strongly minimal theories. Fact 5.10
is also well known (see [CP98, Lemma 2.2]).

Fact 5.10. A theory defines algebraic dimension if and only if it eliminates ∃∞.

Proposition 5.11. Suppose T is strongly minimal and acl′ agrees with acl in all
T ′-models. Then T ′ defines induced dimension if and only if T ′ eliminates ∃∞.

Proof. Suppose M
′ ⊧ T ′, and M = M

′∣L. Since T is strongly minimal, dim =
adim. We write dim

′ for the induced dimension on T ′ and adim′ for the algebraic
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dimension in M
′. Using Fact 5.10, both directions of the equivalence will be proved

if we show that dim
′ = adim′.

If X ′ is an arbitrary M
′-definable subset of Mx,

dim
′(X ′) =min{adim(X) ∣X ⊆Mx is M-definable, and X ′ ⊆X}.

As acl′ = acl, whenever a ∈X ′(M′) has k components that are acl′-independent over
M , these components are also acl-independent over M , and we have a ∈X(M′) for
any M-definable X such that X ′ ⊆X . Hence, adim′(X ′) ≤ dim′(X ′).

Conversely, let X ⊆Mx be a pseudo-closure of X ′, and k = adim(X). Then X ′

is not contained in any M-definable set of smaller dimension. Since the set of M-
definable sets of dimension less than k is closed under finite unions, by compactness
there is some a′ ∈X ′(M′) that is not contained in any M-definable set of dimension
less than k. If a′ does not have k components that are acl′-independent over M ,
then since acl

′ = acl, this dependence is witnessed by a′ ∈ Y , where Y is M-definable
and adim(Y ) < k. This contradicts the choice of a′. �

When T is the theory of algebraically closed fields and T ′ is the theory of al-
gebraically closed valued fields, T ′ eliminates ∃∞ and acl′ agrees with acl in all
T ′-models; see [vdD89] for details. Thus, using Proposition 5.11 and Theorem 5.8,
we obtain a new proof of the existence of a model companion for the theory of
algebraically closed fields with multiple valuations.

6. ℵ0-categorical and ℵ0-stable base

In this section, we generalize Winkler’s result [Win75] on model companions of dis-
joint unions of theories to allow T∩ to be any complete ℵ0-stable and ℵ0-categorical
theory with weak elimination of imaginaries. Our generalization applies to several
other examples from Section 2.3, such as the random graph and other combinatorial
Fraïssé limits, and generic Skolemizations.

Throughout, we keep the additional notational conventions described at the be-
ginning of Section 3 and further assume that T is ℵ0-categorical with only infinite
models and ℵ0-stable. We write dim for Morley rank on T and mult for Morley
degree on T .

The ℵ0-stable assumption allows us to make extensive use of Proposition 5.1, which
ensures that every subset of a model of T has a pseudo-closure. It also provides us
with the following “inductive” procedure to check whether a subset is pseudo-dense
in an almost irreducible set. Let M be a model of T . Recall from Section 5 that ⊆a

denotes the almost subset relation, and =a denotes the almost equality relation. A
collection D of almost irreducible subsets of Mx in M ⊧ T is representative if D
contains a (not necessarily unique) representative for each almost equality class.

Lemma 6.1. Suppose X ⊆Mx is almost irreducible, D is a representative collection
of almost irreducible subsets of Mx, and A is a subset of Mx. For α < dimX, let
Dα(A,X) ⊆D consist of all Y ∈D such that:

dimY = α, A is pseudo-dense in Y, and Y ⊆a X.

If Dβ(A,X) = ∅ for all α < β < dimX, then:

(1) If Dα(A,X) is infinite up to almost equality, then A is pseudo-dense in X.
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(2) If Dα(A,X) is finite up to almost equality, X1
α, . . . ,X

n
α are representatives

of the almost equality classes, and

A′ = A ∖ n

⋃
i=1

X i
α,

then Dβ(A′,X) = ∅ for all α ≤ β < dimX, and A is pseudo-dense in X if
and only if A′ is.

Proof. As M is ℵ0-stable, A ∩ X has a pseudo-closure Y that is a subset of X
by Proposition 5.1. Suppose Dβ(A,X) = ∅ for all α < β < dimX . Then either
dimY ≤ α or dimY = dimX . If Dα(A,X) is infinite up to almost equality, then
dimY > α, and so dimY = dimX . The latter implies A is pseudo-dense in X by
Proposition 5.1. Thus we get statement (1).

Now suppose X1
α, . . . ,X

n
α and A′ are as stated in (2). Since A′ is a subset of

A, Dβ(A′,X) is a subset of Dβ(A,X) for all β. So in particular, Dβ(A′,X) = ∅
for all α < β < dimX . Suppose Xα is an element of Dα(A′,X). Then A is also
pseudo-dense in Xα and so Xα =a X

i
α for some i ∈ {1, . . . , n}. As X i

α ∩A′ = ∅, X i
α

and Xα are both almost irreducible, and dimX i
α = dimXα, it follows from Lemma

3.1 that A′ is not pseudo-dense in Xα, which is absurd. Thus,

Dβ(A′,X) = ∅ for all α ≤ β < dimX.

If A′ is pseudo-dense in X , then clearly A is. Suppose A′ is not pseudo-dense in X .
Then A′ ∩X has a pseudo-closure Y ′ with dimY ′ < dimX . It follows that A has a
pseudo-closure Y that is a subset of Y ′ ∪X1

α ∪ . . . ∪Xn
α . Then

dimY ≤max(dimY ′, α) < dimX,

and so A is not pseudo-dense in X . We have thus obtained all the desired conclu-
sions in (2). �

Lemma 6.1 is hardly useful if the purpose is defining pseudo-denseness for a generalℵ0-stable theory. The issue is that many of the objects involved in the previous
lemma are not definable. However, many of them are definable under the additional
assumption of ℵ0-categoricity. We recall a number of facts about ℵ0-categorical andℵ0-stable theories.

Fact 6.2. The first two statements below only require ℵ0-categoricity:

(1) If T has only infinite models, then T is complete.
(2) For all finite x, there are finitely many formula ϕ(x) up to T -equivalence.
(3) T defines multiplicity.
(4) ([CHL85], Theorem 5.1) M has finite Morley rank. That is, for all finite x,

dimMx < ω.
(5) ([CHL85], Theorem 6.3) If x is a finite tuple of variables, and p ∈ Sx(M),

then p is definable over an element of Mx ×Mx.

We now prove a key lemma that does not hold outside of the ℵ0-categorical setting.
An L-formula ψ(x, z) is representative for the tuple of variables x if it defines in
every M ⊧ T a representative collection of almost irreducible sets.

Lemma 6.3. For each finite tuple of variables x, there is a representative formula
ψ(x, z).
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Proof. Fix M ⊧ T and a finite tuple x of variables. We claim that every almost
irreducible subset X of Mx is almost equal to a subset X ′ of Mx such that X ′ is
definable over an element of Mw =Mx ×Mx.

Let p ∈ Sx(M) be the generic type of X and peq the unique element of Sx(M eq)
extending p. Fact 6.2(5), gives us d ∈Mw =Mx ×Mx such that p is definable over
d. Then peq is definable over d and therefore stationary over acleq(d). Hence,

q = peq∣Sx(acleq(d)) has mult(q) = 1.

Let X ′′ ⊆Mx be defined by a formula in q such that X ′′ has minimal Morley rank
and degree. Then X ′′ is Meq-definable over acleq(d) and X ′′ =a X . Let X ′′1 , . . . ,X

′′
k

are the finitely many conjugates of X ′′ by Aut(Meq/d), and set X ′ = ⋂k
i=1X

′′
i . It

is easy to check that X ′ is definable over d and X ′ =a X . This completes the proof
of the claim.

By Fact 6.2(2) there are finitely many formulas ψ1(x,w), . . . , ψl(x,w) such that
every L-formula in variables (x,w) is T -equivalent to one of these. Through routine
manipulation, we can get a finite tuple z of variables and a formula ψ(x, z) and
such that for all i ∈ I and d ∈Mw, there is c ∈Mz with ψi(M, d) = ψ(M, c). Using
the claim, if (Xc)c∈Mz is the family of subsets of Mx defined by ψ(x, z), then every
almost irreducible X is almost equal to Xc for some c ∈Mz.

Finally, by Fact 6.2(3), T defines multiplicity. So we can modify ψ(x, z) to ensure
that every member of the family (Xc)c∈Mz is almost irreducible. The result is a
representative formula for x because by Fact 6.2(1), T is complete. �

A function up-to-permutation from Z ⊆ Mz to Mw is a relation f ⊆ Z ×Mw

satisfying the following two conditions:

(1) For all c ∈ Z, there is d ∈Mw such that (c, d) ∈ f .
(2) If (c, d) and (c, d′) are both in f , then d is a permutation of d′.

A function up-to-permutation f determines an ordinary function f̃ ∶ Z → Mw/ ∼,
where ∼ is the equivalence relation defined by permutations. We are interested in
f instead of f̃ , as it is possible that f is M-definable while f̃ is only M

eq-definable.
For C ⊆ Z, we will write f(Z) for the set

{d ∈Mw ∣ there is c ∈ C such that (c, d) ∈ f}.
It is easy to observe that ∣f̃(Z)∣ ≤ ∣f(Z)∣ ≤ ∣w∣!∣f̃ (Z)∣ with f̃ as above. In particular,

f(Z) is finite if and only if f̃(Z) is.

Recall that T weakly eliminates imaginaries if for all M ⊧ T and all b ∈ Meq,
there exists a ∈ M such that a ∈ acleq(b) and b ∈ dcleq(a). The following Fact 6.4
only uses the assumption that T is complete.

Fact 6.4. Suppose T weakly eliminates imaginaries. For all M ⊧ T , 0-definable
Z ⊆Mz, and 0-definable equivalence relation R ⊆ Z2, there is a tuple w of variables
and a 0-definable function up-to-permutation from Z to Mw such that cRc′ in Z if
and only if f(c) = f(c′). Moreover, the choice of formula defining f can be made
depending only on the choices of L-formulas defining Z and R but not on the choice
of M.

Below is the key proposition for this section. The main geometrical idea of the
proof is already contained in Lemma 6.1, we just need to check that everything can
be carried out definably.
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Proposition 6.5. Suppose T weakly eliminates imaginaries. Then T ′ defines
pseudo-denseness over T if and only if T ′ eliminates ∃∞.

Proof. Let M′ ⊧ T ′ and M =M
′∣L. In this proof, everything will be uniform in M

′:
when we say “definable”, we mean “definable by a formula which does not depend on
the choice of M′”. Alternatively, we can obtain this uniformity for free by working
in a sufficiently saturated model.

For the forward direction, suppose T ′ defines pseudo-denseness. Let (X ′b)b∈My

be a family of subsets of Mx defined by an L′-formula ϕ′(x, y). Our job is to show
that the set {b ∈My ∶ X ′b is infinite}
is definable by an L′-formula.

Using Lemma 6.3, we get a representative formula ψ(x, z) for the tuple of vari-
ables x. Let (Xc)c∈Mz be the family defined by ψ(x, z). Note that X ′b is pseudo-
dense in each of the almost irreducible components of its pseudo-closure. So X ′b is
infinite if and only if there is c ∈Mz such that

X ′b is pseudo-dense in Xc and dimXc > 0.

As T ′ defines pseudo-denseness, the set of pairs (b, c) with X ′b pseudo-dense in Xc

is definable by an L′-formula. By Fact 6.2, T defines Morley rank, so the set of
c ∈ Mz with dimXc > 0 is definable by an L-formula. Hence, we get the desired
conclusion.

For the backward implication, suppose T ′ eliminates ∃∞. Let (X ′b)b∈My and(Xc)c∈Mz be families of subsets of Mx defined by an L′-formula ϕ′(x, y) and and
L-formula ψ(x, z), respectively. Set

P = {(b, c) ∈M (y,z) ∣X ′b is pseudo-dense in Xc}.
We need to show that P is definable by an L′-formula.

We first reduce to the special case where ψ(x, z) is a representative formula for
the tuple of variables x. Using Lemma 6.3, we get a representative formula δ(x,w)
for the tuple of variables x. Let (Xd)d∈Mw be the family of subsets of Mx defined
by δ(x,w). For b ∈My and c ∈Mz, (b, c) ∈ P if and only if X ′b is pseudo-dense in
Xd for all d ∈ Mw with Xd ⊆a Xc and dimXd = dimXc. Again, T defines Morley
rank, so T defines the relation of being almost a subset. Hence, we can deduce the
general case from this special case.

We decompose P into finitely many sets, which we will then show to be definable
using induction. For γ ≤ dimMx, set

P γ = {(b, c) ∈ P ∣ dimXc = γ}.
Then P = ⋃γ≤dimMx P γ . Therefore, as dim(Mx) is finite, it suffices to show that
for all γ, P γ is definable.

We will proceed by induction on γ, uniformly with respect to the choice of the
formula ϕ(x, y). For γ = 0, by Lemma 3.1(1), X ′b is pseudo-dense in a finite set

if and only X ′b contains that finite set. So (b, c) ∈ M (y,z) is in P 0 if and only if
dim(Xc) = 0 and Xc ⊆X ′b. Hence, P 0 is definable by an L′-formula.

Now, assume γ > 0 and we have proven the statement for all smaller values of γ.
Let D = (Xc)c∈Mz be the representative collection of almost irreducible subsets of
Mx defined by ψ(x, z). Toward applying Lemma 6.1, set

Dα,b,c = {d ∈Mz ∣ (b, d) ∈ Pα and Xd ⊆a Xc}
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for each ordinal α and each (b, c) ∈ My ×Mz. In other words, if Dα(X ′b,Xc) is
defined as in Lemma 6.1, then d is in Dα,b,c if and only if Xd is in Dα(X ′b,Xc).
For all α < γ, since T defines Morley rank and Pα is definable by the inductive
hypothesis, the family (Dα,b,c)(b,c)∈M(y,z) is definable by an L′-formula.

For α < γ, set

P γ
α = {(b, c) ∈ P γ ∣Dβ,b,c = ∅ for all α < β < γ}.

Then P γ = P γ
γ−1. Hence, we can get the desired conclusion by showing the stronger

fact that P γ
α is definable by an L′-formula for all α < γ ≤ dimMx.

Now we proceed by an inner induction on α. When α = 0, we get from Lemma
6.1 that (b, c) ∈M (y,z) is in P γ

0 if and only if

dimXc = γ, Dβ,b,c = ∅ for all 0 < β < γ, and X ′b is infinite.

Hence, P γ
0 can be defined by an L′-formula, by the assumption that T ′ eliminates∃∞ and the fact that T defines Morley rank.

Suppose 0 < α < γ and we have shown the statement for all smaller values of
α. As noted above, for all β < γ, the families (Dβ,b,c)(b,c)∈My×Mz are definable by
L′-formulas. Recall that T defines Morley rank and weakly eliminates imaginaries.
By Fact 6.4, there is w and a L-definable function up-to-permutation f from Z to
Mw, such that for all d1 and d2 in Mz,

f(d1) = f(d2) if and only if Xd1
=a Xd2

.

In particular, the family (f(Dα,b,c))(b,c)∈Y ×Zγ
can be defined by an L′-formula. As

T ′ eliminates ∃∞, there is n such that

∣f(Dα,b,c)∣ > n∣w∣! implies f(Dα,b,c) is infinite.

Now let Ỹ be the set of b̃ = (b, c, d1, . . . , dn) in My ×Mz ×Mz × . . . ×Mz such that
the following properties hold:

(1) dimXc = γ and Dβ,b,c = ∅ for all α < β < γ.
(2) f(Dα,b,c) is finite.
(3) dimXdi

= α and X ′b is pseudo-dense in Xdi
for i ∈ {1, . . . , n}.

(4) If dimXd = α andX ′b is pseudo-dense inXd for some d ∈Mz, thenXd =a Xdi

for some i ∈ {1, . . . , n}.
By the inductive hypothesis and the fact that T defines Morley rank, Ỹ is definable
by an L′-formula. For each b̃ ∈ Ỹ , set

X̃ ′
b̃
=X ′b ∖ n

⋃
i=1

Xdi
.

For b̃ ∈ M ỹ ∖ Ỹ , let X̃ ′
b̃

be the empty set. Then, the family (X̃ ′
b̃
)b̃∈M ỹ is definable

by an L′-formula ϕ̃′(x, ỹ). We obtain P̃
γ
α−1 from ϕ̃′(x, ỹ) and ψ(x, z) in the same

fashion as we obtain P
γ
α−1 from ϕ′(x, y) and ψ(x, z). The induction hypothesis,

applied to the formula ϕ̃′(x, ỹ), implies that P̃ γ
α−1 is definable. From Lemma 6.1,(b, c) is in P γ

α if and only if dimXc = γ and Dβ,b,c = ∅ for all α < β < γ and either
of the following hold:

(1) f(Dα,b,c) is infinite.

(2) There are d1, . . . , dn in Mz with b̃ = (b, c, d1, . . . , dn) ∈ Ỹ and (b̃, c) ∈ P̃ γ
α−1.

Thus P γ
α is definable, which completes the proof. �

We get the main result of this section, which is a restatement of Theorem 1.7:



INTERPOLATIVE FUSIONS 31

Theorem 6.6. Suppose T∩ is complete, ℵ0-stable, and ℵ0-categorial. If T∩ weakly
eliminates imaginaries, and each Ti eliminates ∃∞, then T ∗∪ exists. If T eq

i eliminates∃∞ for all i, then T ∗∪ exists.

Proof. The first statement follows from Theorem 3.4, Proposition 5.1, and Propo-
sition 6.5. The second statement then follows from the first statement and Re-
mark 2.5(4): if T eq

i eliminates ∃∞, so does T ∩−eqi , so we may assume T∩ eliminates
imaginaries. �

The conditions of Theorem 6.6 are satisfied when L∩ is the empty one-sorted lan-
guage and T∩ is the theory of infinite sets. So we recover Winkler’s theorem on
disjoint unions of theories [Win75]. Using similar ideas, we recover Winkler’s the-
orem on generic Skolemizations; see Section 2.3.

The assumptions of Corollary 6.7 are very strong, but it is applicable more often
then one might expect. For example, it applies to the random graph and many
other combinatorial Fraïssé limits, as presented in Section 2.3.

Corollary 6.7. Suppose T∩ is complete and each Ti is interpretable in the theory
of infinite sets. Then T ∗∪ exists.

Proof. The theory of infinite sets is ℵ0-stable, ℵ0-categorical, and eliminates ∃∞ in
T eq. Each of these three properties is preserved under interpretations, so if Ti is
interpretable in the theory of infinite sets then T is ℵ0-stable, ℵ0-categorical, and
T

eq

i eliminates ∃∞. So the result follows from Theorem 6.6. �

The theory Tq of vector spaces over a finite field with q elements is ℵ0-stable, ℵ0-
categorical, and weakly eliminates imaginaries. Thus any theory T ′ extending Tq
defines pseudo-denseness if and only if it eliminates ∃∞. This does not generalize
to vector spaces over characteristic zero fields, which are ℵ0-stable and weakly
eliminate imaginaries, but are not ℵ0-categorical. For example, let T be the theory
of torsion-free divisible abelian groups (vector spaces over Q). Let T ′ be ACF0,
note that T ′ is an expansion of T . Then T ′ does not define pseudo-denseness over
T . Suppose M

′ is an ℵ1-saturated model of T ′. Let

L = {(a, b, c) ∈M3 ∣ ab = c}
and consider the definable family {La ∣ a ∈ M} where La = {(b, c) ∈ M2 ∣ ab = c}.
We leave the easy verification of Lemma 6.8 to the reader:

Lemma 6.8. Fix a ∈M. Then La is pseudo-dense in M
2 if and only if a ∉ Q.

As Q is countable and infinite it cannot be a definable set in an ℵ1-saturated struc-
ture. Thus M

′ does not define pseudo-denseness over (M;+). The same argument
shows that any theory expanding T ′ does not define pseudo-denseness over T .

There is a natural rank rk on any ℵ0-categorical theory, described in [Sim18b,
Section 2.3] and [CH03, Section 2.2.1]. This rank is known to agree with thorn
rank on ℵ0-categorical structures, so it is an ordinal rank on rosy ℵ0-categorical
theories. A special case of Theorem 4.10 is that any expansion of the theory DLO
of dense linear orders without endpoints defines pseudo-denseness over DLO with
respect to rk (which agrees with the usual o-minimal dimension over DLO). This
fact, together with Proposition 6.5, and recent groundbreaking work on NIP ℵ0-
categorical structures [Sim18b, Sim18a] motivates Question 6.9.
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Question 6.9. Suppose T is NIP, ℵ0-categorical, and rosy. If T ′ eliminates ∃∞,
then must T ′ define pseudo-denseness over T (with respect to rk)?

Unfortunately, rk does not necessarily agree with Morley rank on ℵ0-stable andℵ0-categorical theories. One might hope that an approach to Question 6.9 would
synthesize the ideas of Section 4 and Section 6.
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