
GENERIC EXPANSIONS BY A REDUCT

CHRISTIAN D’ELBÉE

Abstract. Consider the expansion TS of a theory T by a predicate for a submodel of a
reduct T0 of T . We present a setup in which this expansion admits a model companion
TS. We show that the nice features of the theory T transfer to TS. In particular, we
study conditions for which this expansion preserves the NSOP1-ness, the simplicity or
the stability of the starting theory T . We give concrete examples of new NSOP1 not
simple theories obtained by this process, among them the expansion of a perfect ω-free
PAC field of positive characteristic by generic additive subgroups, and the expansion of
an algebraically closed field of any characteristic by a generic multiplicative subgroup.
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2 CHRISTIAN D’ELBÉE

Introduction

Existentially closed models of a theory have in general some randomness — or generic —
aspect, resulting from their definition, that allows a reasonable description of their algebra
of definable sets. Informally, we will call generic a theory (or a model of such theory) that
axiomatises structures that are existentially closed in a reasonable class of extension.

Let T be a theory in a language L . Let T0 be a reduct of T . Let LS = L ∪ {S}, for S a
new unary predicate symbol, and TS be the LS-theory whose models (M ,M0) consist in a
model M of T in which S is a predicate for a model M0 of T0 which is a substructure of M .
In this paper we present a setting for an axiomatisation of generic models of TS , this ax-
iomatisation is denoted by TS, it is most of the time the model-companion of the theory TS .

This generic expansion produces numerous examples (Section 5) of new theories that are,
in general, not simple, not even when T is strongly minimal (see for instance the theory
ACFG in Example 5.21). However, most of these new theories turn out to be NSOP1.

NSOP1 theories, for “not strong order property 1”, were defined by Džamonja and Shelah
in [20] (together with NSOP2) as an extension of the (NSOPn)n≥3 hierarchy. In [35] Shelah
and Usvyatsov proved that T ∗feq (the model completion of the theory of infinitely many
independent parametrized equivalence relations) is NSOP1 and not simple. For the past
three years, NSOP1 theories have been intensively studied.

A first breakthrough in the study of NSOP1 theories was made by Chernikov and Ramsey
in [15]. They proved a Kim-Pillay style result [15] which states that a theory is NSOP1

provided there exists an independence relation satisfying some specific properties. This
result turned out to be a very useful tool to prove that a theory is NSOP1. The ω-free PAC
fields case is a good example. A PAC field is simple if [11] and only if [8] it is bounded.
Nonetheless, in her work [9] on ω-free PAC fields (which are unbounded), Chatzidakis de-
fined a weak notion of independence and showed that it satisfied some nice properties, in
particular, the so-called independence theorem. It turned out that almost all the proper-
ties of the criterion [15] were proved at that time. Chernikov and Ramsey used this weak
independence to deduce that the theory of ω-free PAC fields is NSOP1. They also showed
that Granger’s example of generic bilinear form over an infinite dimensional vector space
over an algebraically closed field is NSOP1 (see [22] or [15, Example 6.1]), as well as the
combinatorial example of a generalised parametrized structure (see [15, Example 6.3]).

A second breakthrough was the development of Kim-independence by Kaplan and Ramsey
in [25]. They introduced analogues of forking and dividing –Kim-forking and Kim-dividing–
which behave nicely in NSOP1 theories. Kim-dividing is defined as dividing with respect
to some particular indiscernible sequences, namely sequences in a global invariant type.
Numerous properties of forking in simple theories appear for Kim-forking in NSOP1 the-
ories. For instance, a theory is NSOP1 if and only if Kim-independence is symmetric.
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Kaplan and Ramsey also completed the Kim-Pillay style criterion in [15] to get a charac-
terisation of Kim-independence in terms of properties of a ternary relation, similarly to the
Kim-Pillay classical result. Using this tool, they identified Kim-independence in various
NSOP1 theories. Chatzidakis’ weak independence in ω-free PAC fields turned out to be
Kim-independence.

In Sections 3, starting from an independence relation |T^ in T , we define independence rela-
tions in TS and identify which properties of |T^ are transferred to those new independence
relations in TS, and under which conditions. This allows us to exhibit hypotheses under
which the expansion from T to TS preserves NSOP1, simplicity or stability (Section 4).
We also give a general description of Kim-independence in TS in that context.

Finally in Section 5, we prove the existence of new generic theories and show that most
of them are NSOP1. The existence is based on definability results in the theory T . For
the expansion of a perfect ω-free PACp-field of positive characteristic by a generic additive
subgroup, the elimination of ∃∞ is enough. However, for the expansion of an algebraically
closed field (of any characteristic) by a generic multiplicative subgroup, it relies on the
definability of the freeness1 of a family of parametrized affine variety (Subsection 5.4). By
contrast, if proving that the latter theory is NSOP1 is relatively straightforward using the
results of Section 4, proving that the expansion of a perfect ω-free PACp-field of positive
characteristic by a generic additive subgroup is NSOP1 is more difficult (Subsection 5.3).

We end Section 5 with an example where the model-companion TS does not exist: the
expansion of a field of characteristic zero by a predicate for an additive subgroup. In the
generic expansion of any field by an additive subgroup, the multiplicative stabiliser is always
definable and of fixed cardinality, it is the prime ring, so either a finite field or Z. In the
multiplicative case (Subsection 5.4) we do not have this dichotomy on the characteristic
since the “exponential” stabiliser is not definable.

1 Let W ⊂ Kn \ {(0, · · · , 0)} be an affine irreducible algebraic variety in an algebraically closed field K
of characteristic p ≥ 0. We say that W is free if it is not contained in any translate of a proper algebraic
subgroup of the torus Gn

m(K).
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Conventions and notations. Capital letters A,B,C stands for sets whereas small latin
letters a, b, c designate either singletons, finite or infinite tuples. For a given theory T , we
use standard model-theoretic notations, such as tpT (a/C), a ≡TC a′, aclT , etc. . .

We often identify tuples and sets when dealing with independence relations, for some
tuple a = a1, . . . then c |̂

C
a has the same meaning as c |̂

C
{a1, . . .}. Here is a list of

properties for a ternary relation |̂ defined over small subsets of M a big model of some
countable theory T .

• Invariance. If ABC ≡ A′B′C ′ then A |̂
C
B if and only if A′ |̂

C′
B′.

• Finite Character. If a |̂
C
B for all finite a ⊆ A, then A |̂

C
B.

• Symmetry. If A |̂
C
B then B |̂

C
A.

• Closure A |̂
C
B if and only if A |̂

acl(C)
acl(BC).

• Monotonicity. If A |̂
C
BD then A |̂

C
B.

• Base Monotonicity. If A |̂
C
BD then A |̂

CD
B.

• Transitivity. If A |̂
CB

D and B |̂
C
D then AB |̂

C
D.

• Existence. For any C and A we have A |̂
C
C.

• Full Existence. For all A,B and C there exists A′ ≡C A such that A′ |̂
C
B.

• Extension. If A |̂
C
B, then for all D there exists A′ ≡CB A and A′ |̂

C
BD.

• Local Character. For all finite tuple a and infinite B there exists B0 ⊂ B with
|B0| ≤ ℵ0 and a |̂

B0
B.

• Strong Finite Character over E. If a 6 |̂
E
b, then there is a formula Λ(x, b, e) ∈

tp(a/Eb) such that for all a′, if a′ |= Λ(x, b, e) then a′ 6 |̂
E
b.

• |̂ ′-amalgamation over E. If there exists tuples c1, c2 and sets A,B such that
– c1 ≡E c2

– A |̂ ′
E
B

– c1 |̂ E A and c2 |̂ C B
then there exists c |̂

E
A,B such that c ≡A c1, c ≡B c2, A |a^Ec

B, c |a^EA
B and

c |a^EB
A.

• Stationnarity over E. If c1 ≡E c2 and c1 |̂ E A, c2 |̂ E A then c1 ≡EA c2.
• Witnessing. Let a, b be tuples, M a model and assume that a 6 |̂

M
b. Then there

exists a formula Λ(x, b) ∈ tp(a/M b) such that for any global extension q(x) of
tp(b/M ) finitely satisfiable in M and for any (bi)i<ω such that for all i < ω we
have bi |= q � M b<i, the set {Λ(x, bi) | i < ω} is inconsistent.

If A |̂
C
B, the set C is called the base set. For two ternary relations |̂ and |̂ ′, the

notation |̂ → |̂ ′ means that for all A,B,C, if A |̂
C
B then A |̂ ′

C
B. The independence

relation |a^ is defined by A |a^C
B ⇐⇒ aclT (AC) ∩ aclT (BC) = aclT (C), with respect to

some theory T .
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1. The generic expansion by a predicate for a reduct

Let T be an L -theory. Let L0 ⊆ L and let T0 be a reduct of T in the language L0.
Let S be a new unary predicate symbol and set LS = L ∪ {S}. We denote by TS the LS-
theory of LS-structures (M ,M0) where M |= T and S(M ) = M0 |= T0 is a substructure
of M � L0. We aim to describe a favorable context for the existence of a theory TS that
axiomatises generic models of TS .

We denote by acl0 the algebraic closure in the sense of T0. Assume that T0 is pregeomet-
ric (i.e. acl0 satisfies exchange), there is an associated independence relation |0^ (see for
instance |cl^ in [36, C1]). It is defined over every subset of any model of T0 and satisfies the
properties Finite Character, Symmetry, Closure, Monotonicity, Base Mono-
tonicity, Transitivity. In particular, |0^ is defined over every subset of any model of
T , and we will only use it over small subsets of some monster model M of T . The property
Symmetry of |0^ will be tacitly used throughout this chapter.

Definition 1.1. Let t be a single variable and x, y two tuples of variables. We say that
a formula ψ(t, y) is n-algebraic in t (or just algebraic in t) if for all tuple b the number of
realisations of ψ(t, b) is at most n. In that context we say that a formula ψ(t, x, y) is strict
in y if whenever b is an |0^ -independent tuple over a, the set of realisations of ψ(t, a, b) is
in acl0(a, b) \ acl0(a).

If ψ(t, b) is an L0-algebraic formula, there exists an L0-formula ψ̃(t, x) algebraic in t

such that ψ(M , b) ⊆ ψ̃(M , b), for all M |= T0.

Example 1.2. In the language of vector spaces, the formula t = λx + µy is strict in y if
and only if µ 6= 0.

Lemma 1.3. Assume that T0 is pregeometric. Then for u a singleton and tuples a and b,
if u ∈ acl0(a, b) \ acl0(a), there exists an L0-formula τ(t, x, y) algebraic in t and strict in y
such that u |= τ(t, a, b).

Proof. Assume that b = b1, . . . , bn. By hypothesis and using exchange, we may assume
that b1 ∈ acl0(u, a, b2, . . . , bn). Let τ1(t, a, b) be an L0-formula algebraic in t isolating the
type tpT0(u/ab) and τ2(y1, u, a, b2, . . . , bn) algebraic in y1 isolating tpT0(b1/u, a, b2, . . . , bn).
Then τ(t, x, y) = τ1(t, x, y) ∧ τ2(y1, t, x, y2, . . . , yn) is strict in y. Indeed assume that for
some independent tuple b′ over a′, and singleton u′ we have |= τ(u′, a′, b′). It follows that
u′ ∈ acl0(a′b′) and b′1 ∈ acl0(u′, a′, b′2 . . . , b

′
n). If u′ ∈ acl0(a′) then b′1 ∈ acl0(a′, b′2, . . . , b

′
n)

contradicting that b′ is |0^ -independent over a′, so u′ /∈ acl0(a′). �

Definition 1.4. An expansion (M ,M0) ⊆ (N ,N0) is strong if N0 |0^M0
M .

Theorem 1.5. Assume that the following holds:
(H1) T is model complete;
(H2) T0 is model complete and for all infinite A, acl0(A) |= T0;
(H3) T0 is pregeometric;
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(H4) for all L -formula φ(x, y) there exists an L -formula θφ(y) such that for b ∈M |= T ,

M |= θφ(b) ⇐⇒ there exists N �M and a ∈ N such that

φ(a, b) and a is an |0^ -independent tuple over M .

Then there exists a theory TS containing TS such that

• every model of TS has a strong extension which is a model of TS;
• if (M ,M0) |= TS and (N ,N0) |= TS is a strong extension of (M ,M0) then

(M ,M0) is existentially closed in (N ,N0).

An axiomatization of TS is given by adding to TS the following axiom scheme: for each
tuple of variables x = x0x1, for L -formula φ(x, y), and L0-formulae (τi(t, x, y))i<k which
are algebraic in t and strict in x1,

∀y(θφ(y)→ (∃xφ(x, y) ∧ x0 ⊆ S ∧
∧
i<k

∀t (τi(t, x, y)→ t /∈ S))).

Proof. We prove the first assertion. Let (M ,M0) be a model of TS , φ(x, y) an L -formula
and a partition x = x0x1. Assume that for some tuple b from M we have θφ(b). We
show that the conclusion of the axiom can be satisfied in a strong extension (N ,N0) with
N �M . Then the result will follow by taking the union of a chain of models of TS , which
is again a model of TS because it is an elementary chain of models of T with a predicate for
models of T0 which is inductive, by model-completeness. The fact that the union of a chain
of strong extensions is again strong follows from Finite Character and Transitivity
of |0^ , and the model-completeness of T0.

By (H4) there exists an extension N �M , and a tuple a ∈ N satisfying φ(x, b) and such
that a is |0^ -independent over M . Set N0 = acl0(M0a

0). Then using Monotonicity,
Base Monotonicity and Closure of |0^ , a0M0 |0^M0

M . This means that the extension
(M ,M0) ⊆ (N ,N0) is strong. Now clearly a0 ⊆ S. Using Base Monotonicity and
Closure, it follows that ab |0^ a0b

M0a
0. Take any L0-formula τ(t, x, y) algebraic in t

and strict in x1, and assume that u ∈ N satisfies τ(t, a, b). As τ is strict in x1 and
a1 is |0^ -independent over ba0, we have u ∈ acl0(ab) \ acl0(a0b). If u ∈ N0 then it
belongs to acl0(ab) ∩ acl0(M0a

0) ⊆ acl0(a0b), a contradiction, hence u /∈ S. It follows that
(N ,N0) |= φ(a, b) ∧ a0 ⊆ S ∧

∧
i<k ∀t (τi(t, a, b)→ t /∈ S))).

We now prove the second assertion.
Let (M ,M0) |= TS and (N ,N0) |= TS , a strong extension of (M ,M0). Take finite

tuples a ∈ N and b ∈ M . To understand the quantifier-free LS-type of a over b, it is
sufficient to deal with formulae of the form

ψ(x, b) ∧
∧
i∈I

xi ∈ S ∧
∧
j∈J

xj /∈ S

with ψ(x, y) an L -formula. The reduction to formulae of this form is done by increasing the
length of x (replacing L -terms by variables), which may be greater than |a|. We assume
that a satisfies the formula above.
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Claim. There exists an |0^ -independent tuple a′ = a0′a1′ such that acl0(M a) = acl0(M a′)
with

(1) a′ |0^ M ;
(2) acl0(a′) ∩N0 = acl0(a0′);
(3) N0 ∩ acl0(M , a′) = acl0(M0, a

0′).

Proof of the claim. Take a tuple a0′ in N0∩acl0(M , a) maximal |0^ -independent over M0.
We have a0′ |0^ M0, and as the extension is strong we also have a0′ |0^ M by Transitivity.
Now take a tuple a1′ in acl0(M a) maximal |0^ -independent over acl0(M a0′). We have
a1′ |0^ M a0′ and so a0′a1′ |0^ M . Set a′ = a0′a1′ and the claim holds. �

Now as a ⊆ acl0(M , a′) there exists a finite tuple m1 from M |0^ -independent over
M0a

′ such that a ⊆ acl0(M0m
1a′). Similarly there exists a finite tuple m0 from M0 with

m0 |0^ m1a′ such that a ⊆ acl0(m0m1a′).
If i ∈ I, using (3), we have ai ∈ acl0(M0a

0′)∩ acl0(m0m1a′) = acl0(m0a0′). Hence there
is an L0-formula τi(t, a0′,m0) algebraic in t such that ai |= τi(t, a

0′,m0).
Let J1 be the set of indices j ∈ J such that aj ∈ acl0(a0′,m0,m1). As aj /∈ S, by

Lemma 1.3 there is an L0-formula τj(t, x0, y, z) algebraic in t and strict in z such that
aj |= τj(t, a

0′,m0,m1).
Let J2 = J \J1. Then for j ∈ J2, we have aj /∈ acl0(a0′,m0,m1) so there is an L0-formula

τj(t, x
0, x1, y, z) algebraic in t and strict in x1 such that aj |= τj(t, a

0′, a1′,m0,m1).
We now set b′ = bm0m1 and set φ(a′, b′) to be the following formula

∃vψ(v, b) ∧
∧
i∈I

τi(vi, a
0′,m0)

∧
∧
j∈J1

τj(vj , a
0′,m0,m1)

∧
∧
j∈J2

τj(vj , a
0′, a1′,m0,m1).

Step (?). By model-completeness we have that N � M . As a′ is |0^ independent
over M it follows that M |= θφ(b′). Using one instance of the axiom scheme, there exists
d′ ∈ M such that d′ |= φ(x, b′) with d0′ ⊆ M0 and for all j ∈ J2, all the realizations
of τj(t, d′,m) are not in M0. Let d be the tuple whose existence is stated in φ(d′, b′), in
particular M |= ψ(d, b). For i ∈ I, we have di ∈ acl0(d0′m0) ⊆M0. For j ∈ J2 we already
saw that dj /∈ M0. For j ∈ J1, as τj(t, d0′,m0,m1) is strict in the variable of m1 and m1

is |0^ -independent over M0, we have that dj /∈ acl0(d0′,m0). Recall that m1 |0^ M0, so
m1 |0^ d0′,m0 M0 hence acl0(d0′,m0,m1) ∩M0 = acl0(d0′,m0), so dj cannot belong to M0.
We conclude that

(M ,M0) |= ψ(d, b) ∧
∧
i∈I

di ∈ S ∧
∧
j∈J

dj /∈ S

which proves that (M ,M0) is existentially closed in (N ,N0). �
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Remark 1.6. Notice that if we consider L0 = {=}, the previous Theorem gives nothing
more than the generic predicate (see [11]). The hypothesis (H4) becomes equivalent to
elimination of ∃∞ in that case. Note also that if T0 is strongly minimal and has quantifier
elimination in L0, the conditions (H2) and (H3) are satisfied.

We can forget hypothesis (H1) to get this adapted version of Theorem 1.5.

Proposition 1.7. Assume that the following holds.
(H2) T0 is model complete and for all A infinite, acl0(A) |= T0;
(H3) T0 is pregeometric;
(H4) for all L -formula φ(x, y) there exists an L -formula θφ(y) such that for b ∈M |= T

M |= θφ(b) ⇐⇒ there exists N �M and a ∈ N such that

φ(a, b) and a is an |0^ -independent tuple over M

Then there exists a theory TS containing TS such that
• every model (M ,M0) of TS has a strong extension (M ′,M ′

0) which is a model of
TS, such that M ≺M ′;
• assume that (M ,M0) |= TS and (N ,N0) is a model of TS which is a strong exten-
sion of (M ,M0). If M is existentially closed in N then (M ,M0) is existentially
closed in (N ,N0).

An axiomatization of TS is given by adding to TS the following axioms, for each tuple
of variables x = x0x1, for L -formula φ(x, y), and L0-formulae (τi(t, x, y))i<k which are
algebraic in t and strict in x1,

∀y(θφ(y)→ (∃xφ(x, y) ∧ x0 ⊆ S ∧
∧
i<k

∀t (τi(t, x, y)→ t /∈ S))).

Proof. The same proof as for Theorem 1.5 works. In the proof of Theorem 1.5, the model-
completeness of T was used to ensure that given any model N of T extending M , then M
is existentially closed in N , which is now part of the second bullet. In the first bullet, the
model M ′ of T extending M is the union of an elementary chain of extensions hence is an
elementary extension of M , this condition does not use the model-completeness of T . �

Remark 1.8 (A weak version of (H4)). Assume that T, T0 satisfies (H1), (H2) and (H3). As-
sume that there is a class C of L -formula such that for all M |= T , for all L -formula φ(x, b)
with parameters in M , there exists a tuple c from M and formulae ϑ1(x, z), · · · , ϑn(x, z) ∈
C such that

φ(M , b) = ϑ1(M , c) ∪ · · · ∪ ϑn(M , c).

Assume that condition (H4) holds only for formulae ϑ(x, z) ∈ C . Then the conclusion
of Theorem 1.5 applies, with the axiom-scheme restricted to formulae in C . It is clear
that the proof of the first assertion works similarly, considering only formulae in C . For
the second assertion, the proof changes at Step (?), we need to show that there exists a
realisation of φ(x, b′) that satisfies the right properties using the axioms. By assumption
φ(M , b′) = ϑ1(M , c)∪ · · · ∪ ϑn(M , c) for some ϑ1(x, z), · · · , ϑn(x, z) ∈ C and tuple c from
M . This decomposition holds also in N by model-completeness of T . Now as a′ |= φ(x, b′),
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there is some i ≤ n such that a′ |= ϑi(x, c) hence M |= θϑi(c). Using one instance of the
axiom, there exists d′ in M satisfying ϑi(x, c), hence also φ(x, b′), and that satisfies the
adequat repartition of its coordinate in or out of S, and the end of the proof is similar. The
main example for the class C is the class of quasi-affine varieties in the theory ACF, see
Theorem 5.27.

Remark 1.9 (A weak converse for Theorem 1.5). It is possible to prove a weak converse
of Theorem 1.5, using the same method as in [11, 2.11. Proposition]. It can be stated as
follows: if (H1), (H2) and (H3) are satisfied and if TS exists as in Theorem 1.5 then:
for all L -formula φ(x, y) and all 1 ≤ k ≤ |x|, there exists an L -formula θkφ(y) such that

for all tuple b in an ℵ0-saturated model M of T ,

M |= θkφ(b) ⇐⇒ there exists some realisation a of φ(x, b) in M such that
ak /∈ acl0(aclT (b), a1, . . . , ak−1, ak+1, · · · , a|x|).

In particular T eliminates ∃∞. A question one might ask is wether elimination of ∃∞ is
a sufficient condition for the existence of the theory TS. The answer is no, the theory
ACF0 eliminates ∃∞ but the model companion of the theory of algebraically closed fields of
characteristic 0 with a predicate for an additive subgroup is not first order axiomatisable,
see Proposition 5.32. On the other hand, the existence of TS under the reduction of the
hypothesis (H4) to formulae φ(x, y) with |x| = 2 would be a good improvement, as it would
be much easier to check. A full converse is not reasonnable to ask, in view of the example of
Subsection 5.4, where the model-companion exists without having the full (H4) hypothesis.

Definition 1.10. We say that a triple (T, T0,L0) is suitable if it satisfies the following
(H1) T is model complete;
(H2) T0 is model complete and for all infinite A, acl0(A) |= T0;

(H+
3 ) acl0 defines a modular pregeometry;

(H4) for all L -formula φ(x, y) there exists an L -formula θφ(y) such that for b ∈M |= T

M |= θφ(b) ⇐⇒ there exists N �M and a ∈ N such that
φ(a, b) and a is |0^ -independent over M .

Hypothesis (H+
3 ) makes obsolete the notion of strong extension. As a consequence, the

theory TS, if it exists, is the model-companion of the theory TS .

Remark 1.11. Let (T, T0,L0) be a suitable triple. By [2, Proposition 1.5], in T , the relation
|a^ defined by A |a^C

B if and only if aclT (AC) ∩ aclT (BC) = aclT (C) satisfies Full
Existence, so for all A,B,C subsets of M there exists A′ ≡TC A such that aclT (A′C) ∩
aclT (BC) = aclT (C). As acl0 is modular, it follows that aclT (A′C) |0^ aclT (C)

aclT (BC).

From Theorem 1.5, we immediately get the following.

Proposition 1.12. Let (T, T0,L0) be a suitable triple. Then TS exists and is the model-
companion of the theory TS.

Remark 1.13. In the sense of [27], the theory TS is the interpolative fusion of T with the
theory of generic pairs of models of T0.
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Lemma 1.14. Let (M ,M0) and (N ,N0) are two models of TS, such that M0 |0^ N0
N

and N0 |0^M0
M . Then, there exists a model (K ,K0) of TS extending both (M ,M0) and

(N ,N0). If furthermore (M ,M0) and (N ,N0) are models of TS, then (K ,K0) is an
elementary extension of both (M ,M0) and (N ,N0).

Proof. Let K ′ be a model of T extending M and N . Now set K ′
0 = acl0(M0,N0). Clearly

(K ′,K ′
0 ) is a model of TS . By hypothesis we have K ′

0 |0^M0
M and K ′

0 |0^N0
N . Using

Theorem 1.5, there is a model (K ,K0) of TS extending (K ′,K ′
0 ), (M ,M0) and (N ,N0).

We conclude by model-completeness. �

Proposition 1.15. Let (T, T0,L0) be an adapted triple.
(1) Let (M ,M0) and (N ,N0) be two models of TS and A be a common subset of M

and N . Then we have

(M ,M0) ≡TSA (N ,N0) ⇐⇒ there exists f : aclT (A)→ aclT (A)

T -elementary bijection over A,
such that f(M0 ∩ aclT (A)) = N0 ∩ aclT (A).

(2) For any a, b, A in a monster model of TS

a ≡TSA b ⇐⇒ there exists f : aclT (Aa)→ aclT (Ab)

a T -elementary bijection over A with f(a) = b,
such that f(S(aclT (Aa))) = S(aclT (Ab))..

We call such a function a T -elementary LS-isomorphism between
(aclT (Aa), S(aclT (Aa)) and (aclT (Ab), S(aclT (Ab)).

(3) The completions of TS are given by the T -elementary LS-isomorphism types of

(aclT (∅), S(aclT (∅))).
(4) For all A, aclTS(A) = aclT (A).

Proof. (1) The left to right implication is standard. From right to left. Note that, under
hypotheses, we may assume that A = aclT (A) is a subset of both M and N and that
M0 ∩A = N0 ∩A. By Remark 1.11, there exists M ′ ≡TA M such that M ′ |0^A

N . There
is an L -isomorphism g between M ′ and M that fixes A, so we may define M ′

0 = g−1(M0)
and turn (M ′,M ′

0) into a model of TS. By Monotonicity and Base Monotonicity
we have M ′

0 |0^N0
N . Similarly we have N0 |0^M ′

0

M ′ hence by Lemma 1.14 there exists
a model (K ,K0) of TS that is an elementary extension of both (M ′,M ′

0) and (N ,N0),
hence (M ′,M ′

0) ≡TSA (K ,K0) ≡TSA (N ,N0).
(2) This is similar to (1).
(3) This is an obvious application of (1).
(4) We only need to show that aclTS(A) ⊆ aclT (A). Assume that b /∈ aclT (A). Let

(M ,M0) be a model of TS containing b. There exists a model N of T and a T -isomorphism
f : N → M over A such that N |0^ aclT (A)

M . Consider N0 = f−1(M0), then (N ,N0)

and (M ,M0) are LS-isomorphic. Now set b′ = f−1(b), we have b′ ≡TSA b and b 6= b′



GENERIC EXPANSIONS BY A REDUCT 11

because b |0^ aclT (A)
b′ and b /∈ aclT (A). Since N |0^ aclT (A)

M , we may do as in (1) and find
a model of TS extending both M and N in which the condition (3) is satisfied. Similarly
we can produce as many conjugates of b over A as we want inside some bigger model so
b /∈ aclTS(A). �

Proposition 1.16. Let M be a monster model of T . Let M ≺ M and M0 ⊆ M such
that (M ,M0) is a model of TS. Let B ⊂ M , and X a small subset of M. Let SXB ⊆
aclT (XB) ⊂M be some acl0-closed set containing S(aclT (B)) and such that:

(1) SXB ∩M = S(aclT (B))
(2) aclT (XB) ∩M = aclT (B).

Then the type (over B) associated to the T -elementary LS-isomorphism type of (aclT (XB), SXB)
is consistent in Th(M ,M0).

Proof. Let M′0 = acl0(M0, SXB). We have that (M,M′0) is a model of TS and an extension
of (M ,M0). Indeed, M′0∩M = acl0(M0, SXB)∩M = acl0(M0, SXB ∩M ) by modularity.
By hypothesis (1), SXB ∩M = S(aclT (B) ⊆M0 hence M′0 ∩M = M0. By Theorem 1.5
there exists a model (N ,N0) of TS extending (M,M′0) which is an elementary extension
of (M ,M0). Now

aclT (XB) ∩N0 = aclT (XB) ∩M0

= aclT (XB) ∩ acl0(M0, SXB)

= acl0(SXB, aclT (XB) ∩M0) by modularity
= acl0(SXB, aclT (B) ∩M0) by (2)
= acl0(SXB, S(aclT (B)))

= SXB.

It follows that in (N ,N0), tpTS(X/B) is given by the T -elementary LS-isomorphism type
of (aclT (XB), SXB). �

2. Iterating the construction

Let T be an L -theory, L1, · · · ,Ln be sublanguages of L and let Ti = T � Li. Let
S1, · · · , Sn be new unary predicate and let LS1...Sn be the language L ∪{S1, · · · , Sn}. Let
TS1...Sn be the LS1...Sn-theory which models are models M of T in which Mi := Si(M ) is
an Li-substructure of M and a model of Ti. The following give a condition for the existence
of a model companion for TS1...Sn .

Proposition 2.1. Assume inductively that (TS1 . . . Si, Ti+1,Li+1) is a suitable triple for
i = 0, · · · , n−1, and let TS1 . . . Si+1 be the model companion of the theory TS1, . . . , SiSi+1

of
models of TS1, . . . , Si with a predicate Si+1 for an Li+1 submodel of Ti+1. Then TS1 · · ·Sn
is the model-companion of the theory TS1...Sn.

Proof. We show the following:
(1) every model (M ,M1, . . .Mn) of TS1...Sn can be extended to a model (N ,N1, · · · ,Nn)

of TS1 . . . Sn;
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(2) every model (N ,N1, . . . ,Nn) of TS1 . . . Sn is existentially closed in an extension
(M ,M1, . . . ,Mn) model of TS1,...Sn .

(1) Start by extending (M ,M1) to a model (N 1,N 1
1 ) of TS1. Then (N 1,N 1

1 ,M2) is
a model of TS1S2

so can be extended to a model (N 2,N 2
1 ,N

2
2 ) of TS1S2. The structure

(N 2,N 2
1 ,N

2
2 ) is also an extension of (M ,M1,M2). We iterate this process to end with

a model (N n,N n
1 , · · · ,N n

n ) of TS1 · · ·Sn extending (M ,M1, · · · ,Mn).
(2) Let (N ,N1, · · · ,Nn) be a model of TS1 · · ·Sn and (M ,M1, · · · ,Mn) be a model of
TS1...Sn extending it. By (1) there exists a model (M ′,M ′

1, · · · ,M ′
n) of TS1 · · ·Sn extend-

ing (M ,M1, · · · ,Mn). As (N ,N1, · · · ,Nn) is a model of TS1 · · ·Sn it is existentially
closed in any model of TS1 · · ·Sn−1Sn

extending it, in particular, it is existentially closed
in (M ′,M ′

1, · · · ,M ′
n) and hence also in (M ,M1, . . . ,Mn). �

In a model of TS1 · · ·Sn, the relations between the Si are very generic. For example, it
is not possible that Si ⊆ Sj for some i, j, since one can always extend the predicate Si by
a new element which is not in Sj . In a sense, those generic predicates are invisible from
one another. A way to impose relations between the Si, is by considering, for instance, a
slightly stronger version of the generic expansion by a reduct –analogously to the generic
predicate in [11]. Consider a suitable triple (T, T0,L0) and P a 0-definable predicate in T
such that in any model M of T , P is a model of T0 which is a substructure of M . One
may do the construction of the generic expansion by a substructure S inside P . In that
case, assume that Ti = Tj for all i, j ≤ n. One may construct TS1 then add a generic
substructure S2 inside S1 and iterate. This would be the model companion of the theory
TS1...Sn ∪ {S1 ⊇ S2 ⊇ · · · ⊇ Sn}. One may also consider the case in which Ti is not the
theory of a substructure but of a structure 0-definable in T .

3. Independence relations in T and TS

We set up the context for this section and Section 4. Let (T, T0,L0) be a suitable triple
(see Definition 1.10 and Proposition 1.12). We work in a monster model (M,M0) of TS
such that M is a monster model of T . In particular we fix some completion of TS. All
small sets A,B,C, . . . or models M ,N of T , or models (M ,M0), (N ,N0) of TS are seen
as subsets of M, respectively elementary substructures of M or elementary substructures of
(M,M0). For instance we have S(M ) = M ∩ S(M) = M ∩M0 = M0. We will start with
a ternary relation ( |T^ ) defined over subsets of M and construct from it a ternary relation
( |w^ ) taking into account the predicate S(M) = M0.

We denote by A the set aclT (A) which, as we saw, equals aclTS(A).

Assumption. There exists a ternary relation |T^ defined over subsets of M, such that
|T^ → |a^ , where A |a^C

B ⇐⇒ AC ∩BC = C.

In particular, if A |T^C
B then aclT (AC) |0^ aclT (C)

aclT (BC), by modularity.
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Definition 3.1. We call weak independence the relation |w^ defined by

A |w^
C

B ⇐⇒ A |T^
C

B and S(acl0(AC,BC)) = acl0(S(AC), S(BC)).

We call strong independence the relation |st^ defined by

A |st^
C

B ⇐⇒ A |T^
C

B and S(ABC) = acl0(S(AC), S(BC)).

Obviously |st^ → |w^ .

We will show that if |T^ satisfies most of the properties listed above relatively to the
theory T , then so does |w^ relatively to the theory TS. The property Symmetry of |0^ ,
|T^ and |w^ will be tacitly used throughout this chapter.

Lemma 3.2. If |T^ satisfies Invariance, Closure, Symmetry, Existence and Monotonicity,
then so does |w^ .

Proof. Invariance is clear because S(acl0(AC,BC)) = acl0(S(AC), S(BC)) is an LS-
invariant condition. Closure, Symmetry and Existence are trivial.

For Monotonicity, let A,B,C,D such that A |w^C
BD. By hypothese, A |T^C

B. Now

S(acl0(AC,BC)) = S(acl0(AC,BCD)) ∩ acl0(AC,BC)

= acl0(S(AC), S(BCD)) ∩ acl0(AC,BC).

Since S(AC) ⊆ acl0(AC,BC), we have by modularity

acl0(S(AC), S(BCD)) ∩ acl0(AC,BC) = acl0(S(AC), S(BCD) ∩ acl0(AC,BC)).

Using that |T^ → |a^ , it follows from the hypotheses that AC |0^C
BCD hence by Base

Monotonicity of |0^ we have BCD ∩ acl0(AB,BC) = BC hence

S(BCD) ∩ acl0(AC,BC) = S(BC).

It follows that S(acl0(AC,BCD)) = acl0(S(AC), S(BC)) and so A |w^C
B. �

Lemma 3.3. If |T^ satisfies Full Existence, then |st^ and |w^ satisfy Full Existence.

Proof. We show that |st^ satisfies Full Existence. Let A,B,C be contained in some
model (M ,M0) of TS. By Full Existence for |T^ , there exists A′ ≡TC A with A′ |T^C

M ,
in particular A′C ∩BC = C. Using Full Existence of |a^ we may assume that A′BC ∩
M = BC. Let f : A′C → AC be a T -elementary isomorphism over C and SA′C :=
f−1(S(AC)). Let SA′BC = acl0(SA′C , S(BC)). It is easy to see that

• SA′BC ∩M = SA′BC ∩BC = S(BC)
• SA′BC ∩A′C = SA′C

UsingA′BC∩M = BC and the first item, the type overBC defined by the pair (A′BC,SA′BC)
is consistent (see Proposition 1.16). We may assume that A′ ⊆ M realizes this type.
From the second item, we have that A′ ≡TSC A, and it is clear that S(A′BC) is equal to
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acl0(S(A′C), S(BC)) so A′ |st^C
B. We conclude that Full Existence is satisfied by |st^ .

As |st^ → |w^ , Full Existence is also satisfied by |w^ . �

Lemma 3.4. If |T^ satisfies Strong Finite Character over algebraically closed sets,
then the relation |w^ satisfies Strong Finite Character over algebraically closed sets.

Proof. Assume that a 6 |w^C
b and C = C. If a 6 |T^C

b, we have a formula witnessing Strong
Finite Character over C by hypothesis. Otherwise, assume that a |T^C

b, set A = Ca,
B = Cb and assume that there exists s ∈ S(acl0(A,B))\acl0(S(A), S(B)). Let u ∈ A\S(A)
and v ∈ B \ S(B) be such that s ∈ acl0(u, v). There exists LS-formulae ψu(y, a, c) and
ψv(z, b, c) isolating respectively tpTS(u/Ca) and tpTS(v/Cb) for some tuple c in C. There is
also an L0-formula φ(t, y, z) algebraic in t, strict in y and strict in z, such that s |= φ(t, u, v).

Claim. v /∈ acl0(S(B), C).

Proof of the claim. Assuming otherwise, by modularity there exists singletons sb ∈ S(B)
and c ∈ C such that v ∈ acl0(sb, c) and so s ∈ acl0(sb, c, u). As cu ⊆ A, by modularity there
exists a singleton u′ ∈ A such that s ∈ acl0(sb, u

′) and by Exchange u′ ∈ acl0(sb, s) ∩ A ⊆
S(A), this contradicts the hypothesis on s. �

In particular for any other realisation v′ of ψv(z, b, c) we have v′ /∈ acl0(S(B), C). Now
let Λ(x, b, c) be the following formula

∃y∃z∃tψu(y, x, c) ∧ ψv(z, b, c) ∧ φ(t, y, z) ∧ t ∈ S.
We have that Λ(x, b, c) ∈ tpTS(a/bC). Assume that a′ |= Λ(x, b, c). If a′ 6 |T^C

b then
we are done, so we may assume that a′ |T^C

b, in particular Ca′ ∩ B = C as C is alge-
braically closed. There exists u′ ∈ Ca′ and v′ ∈ B \ acl0(S(B), C) such that there is
s′ ∈ acl0(u′, v′) ∩ S. In particular v′ ∈ acl0(s′, u′) as φ(t, y, z) is strict in z. Now assume
that s′ ∈ acl0(S(B), S(Ca′)), then v′ ∈ acl0(Ca′, S(B)) and also v′ ∈ B. By modularity,

acl0(S(B), Ca′) ∩B = acl0(S(B), Ca′ ∩B) = acl0(S(B), C)

so v′ ∈ acl0(S(B), C), a contradiction. We conclude that

s′ ∈ S(acl0(Ca′, B)) \ acl0(S(Ca′), S(B))

so a′ 6 |w^C
B. �

Theorem 3.5. Assume that |T^ satisfies the hypotheses of Lemmas 3.2. Assume that for
some subset E of M, the following two properties hold:

(A1) |̂ ′-amalgamation over E for some |̂ ′ → |a^ , |̂ ′ satisfying Monotonicity,
Symmetry and Closure;

(A2) For all A,B,C algebraically closed containing E, if C |T^ E
A,B and A |̂ ′

E
B then

(AC,BC) |0^
A,B

AB.
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Then |w^ satisfies |̂ ′-amalgamation over E.

Proof. Let c1, c2, A,B be in a (M ,M0) ≺ (M,M0) such that
• c1 ≡TSE c2

• A |̂ ′
E
B

• c1 |w^E
A and c2 |w^E

B

As |̂ ′ satisfies Symmetry, Closure and Monotonicity, we have that A |̂ ′
E
B ⇐⇒

AE |̂ ′
E
BE, hence we may assume that A,B are algebraically closed and contain E. By

hypothesis there is a T -elementary LS-isomorphism h : Ec1 → Ec2 over E sending c1 to c2.
Let C1 be an enumeration of Ec1 and let C2 be the enumeration h(C1). We have C1 ≡TE C2.

We have C1 |T^E
A, C2 |T^E

B and C1 ≡TE C2. By (A1), there exists C such that C ≡TA
C1, C ≡TB C2 with C |T^E

AB, A |a^C
B, C |a^B

A and C |a^A
B. We may assume that

ABC ∩M = AB using Full Existence of |a^ . There exists two T -elementary bijections
f : AC → AC1 over A and g : BC → BC2 over B such that g � C = h ◦ (f � C).

We define SAC = f−1(S(AC1)) ⊆ AC and SBC = g−1(S(BC2)) ⊆ BC, and set SABC =
acl0(SAB, SAC , SBC), with SAB = S(AB). The following is easy to check, it uses that
A |a^C

B, C |a^B
A and C |a^A

B:

• SAB ∩ SAC = SAB ∩A = SAC ∩A = S(A) =: SA;
• SAB ∩ SBC = SAB ∩B = SBC ∩B = S(B) =: SB;
• SAC ∩ SBC = SAC ∩ C = SBC ∩ C = f−1(S(C1)) = g−1(S(C2)) =: SC .

Furthermore, with S−AB = SAB ∩ acl0(A,B), S−AC = SAC ∩ acl0(A,C) and S−BC = SBC ∩
acl0(B,C), it follows from c1 |w^E

A and c2 |w^E
B that

(1) S−AC = acl0(SA, SC);
(2) S−BC = acl0(SB, SC).

Claim. We have the following
• SABC ∩AB = SAB;
• SABC ∩AC = SAC ;
• SABC ∩BC = SBC .

Proof of the claim. AsA |a^C
B, C |a^B

A and C |a^A
B, we have thatAC |0^C

BC, BC |0^B
AB

and AC |0^A
AB. By hypothesis (A2) and Transitivity of |0^ we have the following:

• (AC,BC) |0^A,B
AB;

• (AB,BC) |0^A,C
AC;

• (AC,AB) |0^B,C
BC.

In order to prove the first item of the claim, by modularity, it suffices to show that
acl0(SAC , SBC) ∩AB ⊆ SAB. We will in fact show that

acl0(SAC , SBC) ∩AB = S−AB.
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We have that (AB,BC) |0^A,C
AC. Since S−AC = SAC ∩ acl0(A,C) and SBC ⊆ BC we

deduce SAC |0^ S−AC

AB,SBC . Now since S−AC = acl0(SA, SC) we can use Base Mono-

tonicity of |0^ and the fact that SC ⊆ SBC to get

SAC |0^
SA,SB ,SBC

AB.

On the other hand, BC ∩ AB = B so SBC |0^ SB
AB. Using Base Monotonicity

of |0^ we also have that SBC |0^ SA,SB
AB so using Transitivity of |0^ it follows that

(SAC , SBC) |0^ SA,SB
AB.

For the second item, it is sufficient to prove that acl0(SAB, SBC) ∩ AC ⊆ SAC . We do
similarly as before paying attention to the fact that SAB and SAC do not play a symmetric
role. We get first that SBC |0^ S−BC

(AC,SAB) using (AC,AB) |0^B,C
BC. Now S−BC =

acl0(SB, SC), so we deduce SBC |0^ SC ,SB
(AC,SAB) and by Base Monotonicity of |0^

and the fact that SB, SA ⊆ SAB we deduce

SBC |0^
SC ,SA,SAB

AC.

Now by Base Monotonicity of |0^ , we have SAB |0^ SA,SC
AC. We conclude using

Transitivity of |0^ that (SAB, SBC) |0^ SA,SC
AC. The proof of the last assertion is

similar. �

We know that ABC∩M = AB. Moreover, it follows from the first point of the claim that
SABC ∩M = SABC ∩AB = SAB. Consequently, by Proposition 1.16, the type in the sense
of the theory TS defined by the pair (ABC,SABC) is consistent, so we may consider that
it is realised in (M,M0), by say C. It follows that C = Ec with c such that c ≡TSA c1 and
c ≡TSB c2. What remains to show is that C |w^E

A,B. We already have that C |T^E
A,B so

we will prove that
S(acl0(C,AB)) = acl0(S(C), S(AB)).

By modularity, it suffices to show that acl0(SAC , SBC)∩ acl0(C,AB) ⊆ acl0(SC , SAB). We
in fact prove that (SAC , SBC) |0^ SA,SB ,SC

(AB,C). As before, using (AB,BC) |0^A,C
AC

we have that SAC |0^ S−AC

(AB,BC), so as S−AC = acl0(SA, SC) we have

SAC |0^
SA,SC

(AB,SBC , C).

Using Base Monotonicity of |0^ , we have

SAC |0^
SA,SB ,SC ,SBC

(AB,C).

On the other hand, from (AC,AB) |0^B,C
BC and Monotonicity of |0^ , we have that

BC |0^B,C
(AB,C). It follows that SBC∩acl0(AB,C) ⊆ S−BC = acl0(SB, SC) so SBC |0^ SB ,SC

(AB,C).
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Using Base Monotonicity of |0^ we have

SBC |0^
SB ,SA,SC

(AB,C).

Now using Transitivity of |0^ , we get (SAC , SBC) |0^ SA,SB ,SC
(AB,C). �

Lemma 3.6. Assume that a 6 |w^ C
b and a |T^ C

b with C = C. Then there is a formula
Λ(x, b, c) ∈ tp(a/Cb) such that for all sequence (bi)i<ω such that

(1) bi ≡TSC b for all i < ω,
(2) bi |a^ C

bj and S(acl0(Cbi, Cbj)) = acl0(S(Cbi), S(Cbj)) for all i, j < ω,

the partial type {Λ(x, bi, c) | i < ω} is inconsistent.

Proof. Let A = Ca, B = Cb. As a 6 |w^C
b there exists s ∈ S(acl0(A,B)) \ acl0(S(A), S(B)).

As we saw in the proof of Lemma 3.4, there exist u ∈ A \ S(A), v ∈ B \ S(B) and LS(C)-
formulae ψu(y, a) algebraic in y and ψv(z, b) algebraic in z, satisfied respectively by u and
v. There is also an L0-formula φ(t, y, z) algebraic in t, strict in y and strict in z, such that
s |= φ(t, u, v). Again, as v /∈ acl0(S(B), C) and ψv(z, b) isolates the type tpTS(v/Cb), every
v′ satisfying ψv(z, b) will satisfy v′ /∈ acl0(S(B), C). Let Λ(x, b, c) ∈ tpTS(a/Cb) be the
following formula, for a tuple c from C

∃y∃z∃tψu(y, x) ∧ ψv(z, b) ∧ φ(t, y, z) ∧ t ∈ S.
As we saw in the proof of Lemma 3.4, it witnesses Strong Finite Character over C.
Note that if b′ ≡TSC b, then no realization of ψv(y, b′) is in acl0(S(Cb′), C).

Now let (bi)i<ω be as in the hypothesis. By contradiction, assume that {Λ(x, bi, c) | i < ω}
is consistent, and realised by some a′. Assume that ψu(t, a′) does not have more than k
distinct realisations. As ∧

i<k+1

Λ(a′, bi, c)

is consistent, there is u′ ∈ Ca′ and i < j < k + 1 such that vi, vj are two realisations of
ψv(z, bi) and ψv(z, bj) respectively –we assume i = 1, j = 2 for convenience– and such that
there exist s1 ∈ acl0(u′, v1)∩S and s2 ∈ acl0(u′, v2)∩S. As v2 /∈ acl0(S(Cb2), C) it follows
that v2 /∈ acl0(u′), hence u′ ∈ acl0(s2, v2) so s1 ∈ acl0(s2, v1, v2). By modularity, it means
that there is some w ∈ acl0(v1, v2) such that s1 ∈ acl0(s2, w). We have that w ∈ acl0(s1, s2),
so w ∈ acl0(v1, v2)∩ S. As S(acl0(Cb1), acl0(Cb2)) = acl0(S(acl0(Cb1), S(acl0(Cb2))) there
is some sb1 ∈ S(Cb1) and sb2 ∈ S(Cb2) such that w ∈ acl0(sb1, s

b
2). Now, as v1 /∈ C, it

follows that v1 /∈ acl0(v2) hence v1 ∈ acl0(w, v2), and so v1 ∈ acl0(sb1, s
b
2, v2). So there is

v′2 ∈ acl0(sb2, v2) ⊆ Cb2 such that v1 ∈ acl0(sb1, v
′
2). It follows that v′2 ∈ acl0(sb1, v1) so v′2 ∈

Cb1 ∩ Cb2 = C, hence v′2 ∈ C. Now v1 ∈ acl0(S(Cb1), C) and this is a contradiction. �

Lemma 3.7. Let |̂ be a relation satisfying Symmetry, Monotonicity, Existence
and Strong Finite Character over C. If tpT (a/Cb) is finitely satisfiable in C then
a |̂

C
b.
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Proof. Indeed, assume a 6 |̂
C
b then by Strong Finite Character there is a formula

φ(x, b) ∈ tpT (a/Cb) such that if a′ |= φ(x, b) then a′ 6 |̂
C
b. As tpT (a/Cb) is finitely

satisfiable in C there is c ∈ C such that c |= φ(x, b), so c 6 |̂
C
b, so by Symmetry and

Monotonicity b 6 |̂
C
C which contradicts Existence. �

Lemma 3.8. Assume that |T^ satisfies the hypothesis of Lemma 3.2 and 3.4. If |T^ satisfies
Witnessing, then so does |w^ .

Proof. Assume that a 6 |w^M
b, and let Λ(x, b,m) be as in Lemma 3.6 and set p(x) =

tpTS(a/M b), pL = p � L = tpT (a/M b). Let q(x) be a global extension of tpTS(b/M )
finitely satisfiable in M , qL = q � L . It is clear that qL is finitely satisfiable in
M . Let (bi)i<ω be a sequence in M such that bi |= q � M b<i for all i < ω. Ob-
serve that for j < i we have tpTS(bi/M bj) is finitely satisfiable in M . By hypothesis,
|w^ satisfies in particular Symmetry, Monotonicity, Existence, and Strong Finite

Character over models, hence by Lemma 3.7, bi |w^M
bj . In particular bi |a^M

bj and
S(acl0(M bi,M bj)) = acl0(S(M bi), S(M bj)) for all i, j < ω. If {Λ(x, bi,m) | i < ω} is
inconsistent, we conclude. If {Λ(x, bi,m) | i < ω} is consistent, by Lemma 3.6 we have
a 6 |T^M

b. Now also bi |= qL � M b<i, hence as |T^ satisfies Witnessing, we conclude. �

Lemma 3.9. Assume that |T^ satisfies Base Monotonicity. The following are equiva-
lent.

(1) |w^ satisfies Base Monotonicity;
(2) For all algebraically closed sets A,B,C,D such that A,B,D contain C and A |T^ C

BD,
the following holds

acl0(A,BD) ∪AD = acl0(AD,BD).

In particular if acl0 is trivial or if acl0 = aclT then |w^ satisfies Base Monotonicity.

Proof. Assume that there exist A,B,C,D that do not satisfy (2). Let w ∈ acl0(AD,BD) \
(acl0(A,BD)∪AD), and S0 := S(aclT (∅)). We define SABD = acl0(S0, w). The type (over
∅) defined by the pair (ABD,SABD) is consistent. As SABD ∩ acl0(A,BD) = SABD ∩A =
SABD∩BD = S0 and A |T^C

BD we have that A |w^C
BD. Now w ∈ SABD∩acl0(AD,BD)

whereas SABD ∩AD = SABD ∩BD = S0, hence

S0 = acl0(SABD ∩AD,SABD ∩BD) ( SABD ∩ acl0(AD,BD).

It follows that A 6 |w^D
B, so |w^ doesn’t satisfies Base Monotonicity.

Conversely if |w^ doesn’t satisfies Base Monotonicity, it means that there exist
A,B,C,D such that A |w^C

BD and A 6 |w^CD
B. We may assume that A,B,D are al-

gebraically closed and contains C. As |T^ satisfies Base Monotonicity we have that

S(acl0(AD,BD)) ) acl0(S(AD), S(BD)).

Let w be in S(acl0(AD,BD)) \ acl0(S(AD), S(BD)). As w ∈ S we have that w /∈ AD and
w /∈ BD. It remains to show that w /∈ acl0(A,BD). Assume that w ∈ acl0(A,BD). As
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w ∈ S we have that w ∈ S(acl0(A,BD)). From A |w^C
BD we have that S(acl0(A,BD)) =

acl0(S(A), S(BD)) so w ∈ acl0(S(A), S(BD)) which contradicts that w /∈ acl0(S(AD), S(BD)).
So it follows that w ∈ acl0(AD,BD) \ (acl0(A,BD) ∪AD). �

Lemma 3.10. Assume that |T^ satisfies Invariance, Finite Character, Symmetry,
Closure, Monotonicity, Base Monotonicity,Transitivity, Full Existence then
so does |st^ . Furthermore, for any E = E, if |T^ satisfies Stationnarity over E = E, so
does |st^ .

Proof. Invariance, Finite Character, Symmetry, Closure are trivial. Full Ex-
istence is Lemma 3.3. It remains to show Monotonicity, Base Monotonicity,
Transitivity and Stationnarity over algebraically closed sets.

Monotonicity. Assume that A |st^C
BD. We only need to check that S(ABC) =

acl0(S(AC), S(BC). We have

S(ABC) = acl0(S(AC), S(BCD)) ∩ABC
= acl0(S(AC), S(BCD) ∩ABC (by modularity)

= acl0(S(AC), S(BC)) as BCD ∩ABC = BC ( |T^ → |a^ ).

Base Monotonicity. If A |st^C
BD then by Base Monotonicity of |T^ we have

A |T^CD
B. As S(ABCD) = acl0(S(CA), S(CBD), in particular

S(ABCD) ⊆ acl0(S(ACD), S(BCD)) ⊆ S(ABCD)

so A |st^CD
B.

Transitivity. Assume that A |st^CB
D and B |st^C

D. By Closure, we may as-
sume that A = ABC,B = BC,D = CD. By Monotonicity, it is sufficient to show
that A |st^C

D. We have A |T^C
D by Transitivity of |T^ . We show that S(AD) =

acl0(S(A), S(D). By A |st^B
D we have S(AD) = acl0(S(A), S(BD)). By B |st^C

D,
S(BD) = acl0(S(B), S(D)) hence S(AD) = acl0(S(A), S(B), S(D)) = acl0(S(A), S(D).

Stationnarity. Assume that c1 |st^E
A and c2 |st^E

A and c1 ≡TSE c2. We may as-
sume that A is algebraically closed and contains E. There is a T -elementary S-preserving
map f : Ec1 → Ec2 over E. By Stationnarity over E, we can extend f to f̃ :
Ac1 → Ac2 T -elementary over A. But as S(Ac1)) = acl0(S(Ec1), S(A)) and S(Ac2) =

acl0(S(Ec2), S(A)), f̃ preserves S, so c1 ≡TSB c2. �

4. Preservation of NSOP1, simplicity and stability

In this section, we use the results of the previous section to prove that if T is NSOP1 and
T satisfies an additional hypothesis then TS is also NSOP1. This additional hypothesis
(namely (A) below) translates how |0^ in the reduct T0 is controlled by |T^ in T . We work
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in the same context as the previous section, with small sets and small models in a monster
model for TS, when (T,L0, T0) is a suitable triple.
Theorem 4.1. Assume that (T,L0, T0) is a suitable triple. Assume that T is NSOP1 and
that |T^ is the Kim-independence relation in T . If

(A) all M |= T and A,B,C algebraically closed containing M , if C |T^M
A,B and

A |T^M
B then

(AC,BC) |0^
A,B

AB.

Then TS is NSOP1 and the Kim-independence relation in TS is given by |w^ , i.e. the
relation

A |T^
M

B and S(acl0(AM , BM )) = acl0(S(AM ), S(BM )).

Proof. From [25], if T is NSOP1 the Kim-independence |T^ satisfies Invariance, Symmetry,
Monotonicity, Existence and Strong Finite Character all over models. Further-
more, by [26, Theorem 2.21], it also satisfies |T^ -amalgamation over models. By Lem-
mas 3.2, 3.4 and Theorem 3.5, all these properties are also satisfied over models by |w^
(relatively to the theory TS). By Proposition 5.3 in [15], TS is NSOP1. As |T^ satisfies
Witnessing, so does |w^ by Lemma 3.8. Using [25, Theorem 9.1] (and [25, Remark 9.2]),
it follows that |w^ and Kim-independence in TS coincide over models. �

The results of the previous section give more than the previous Theorem. Indeed, most of
the nice features that may happen in T for |T^ are preserved when expanding T to TS. For
instance, if |T^ is defined over every small base set, so is |w^ . If the independence theorem
in T is satisfied by |T^ not only over models but over a wider class of small sets then the
same holds in TS for |w^ . We summarize these features in the next result.

Theorem 4.2. Assume that (T,L0, T0) is a suitable triple. Assume that there is a ternary
relation |T^ over small sets of a monster model of T that satisfies

• Invariance;
• Symmetry;
• Closure;
• Monotonicity;
• Existence;
• Full Existence;
• Strong Finite Character over E for E = E;
• |̂ ′-amalgamation over E for E = E, where |̂ ′ is such that |T^ → |̂ ′ → |a^
and |̂ ′ satisfies Monotonicity, Symmetry and Closure;

(A) For E = E and A,B,C algebraically closed containing E, if C |T^ E
A,B and

A |T^ E
B then AC |0^ C

BC and

(AC,BC) |0^
A,B

AB;



GENERIC EXPANSIONS BY A REDUCT 21

• Witnessing.
(In particular T is NSOP1, and |T^ coincide with Kim-independence over models of T ,
by [15, Proposition 5.3] and [25, Theorem 9.1]).

Then any completion of TS is NSOP1 and |w^ and the Kim-forking independence relation
in TS coincide over models. Furthermore |w^ satisfies all these properties, relatively to the
theory TS.

Finally, using [25, Proposition 8.8] we give a condition on (T, T0,L0) that characterizes
the simplicity of TS, assuming that T satisfies the hypotheses of Theorem 4.2.

Corollary 4.3. Let (T,L0, T0) be a suitable triple satisfying all the assumptions of Theo-
rem 4.2. The following are equivalent.

(1) Any completion of TS is not simple
(2) T is not simple or there exist algebraically closed sets A,B,C,D such that A,B,D

contain C and A |T^ C
BD, and such that

acl0(A,BD) ∪AD 6= acl0(AD,BD).

In particular if acl0 is trivial or if acl0 = aclT the theory TS is simple if and only if T is
simple. If TS is simple, |w^ is forking independence over models.

Proof. From Theorem 4.2, we know that the relation |w^ is Kim-independence over models.
By [25, Proposition 8.8], TS is simple if and only if |w^ satisfies Base Monotonicity.
The equivalence follows from Lemma 3.9. The fact that Kim-independence and forking
independence coincide is [25, Proposition 8.4]. �

Corollary 4.4. Assume that T is a complete L -theory and L1, . . . ,Ln are sublanguages
of L . Let T1 = T � L1, . . . , Tn = T � Ln such that (TS1 . . . Si, Ti+1,Li+1) is a suitable
triple for each i = 0, · · · , n− 1. By Proposition 2.1, let TS1 . . . Sn be the model companion
of the theory of models of T with a predicate Si for an Li substructure.

(1) Assume that T is NSOP1, with Kim-independence |T^ in T and that for all i we
have (for A,B,C algebraically closed containing M |= T )

if C |T^M
A,B and A |T^M

B then (AC,BC) |i^ A,B
AB.

Then TS1 . . . Sn is NSOP1 and Kim-independence in TS is given by

A |T^
M

B and for all i ≤ n Si(acli(AM , BM )) = acli(Si(AM ), Si(BM ))

(for acli, |i^ the algebraic closure and independence in the sense of the pregeometric
theory Ti).

(2) If there exists |T^ that satisfies the hypotheses of Theorem 4.2 (relatively to each
theory Ti), then TS1 . . . Sn is NSOP1 and the relation

A |T^
C

B and for all i ≤ n Si(acli(AC,BC)) = acli(Si(AC), Si(BC))
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agrees with Kim-independence over models. Furthermore this relation satisfies all
the properties listed in Theorem 4.2.

Proposition 4.5. If T is stable and acl0 = aclT , then the theory TS is stable.

Proof. By Corollary 4.3, TS is simple and |w^ is the forking independence. As aclT = acl0
it follows that |st^ = |w^ , hence as |T^ is stationnary over models, so is |w^ by Lemma 3.10.
The stability of TS follows since forking independence is stationnary over models. �

Remark 4.6. Assume that T is stable and that acl0 is trivial, then TS is not necessary stable.
From Corollary 4.3, TS is simple and |w^ is forking independence. As acl0 is trivial, we have
|w^ = |T^ , (with |T^ forking independence in T ) which is not likely to be stationnary. The

easiest example of a reduct T0 for which acl0 is trivial is the particular case of L0 = {=}.
Then TS is the theory of the generic predicate on T (see Remark 1.6 and [11]), which does
not preserve stability. Indeed [11, (2.10) Proposition, Errata] gives a sufficient condition
on T so that TS have the independence property (hence is unstable): there exists a model
M of T and two elements a and b such that b |u^M

a and M ab 6= M a ∪M b. It follows
that adding a generic predicate to an algebraically closed field result in a simple unstable
theory (take a and b two generics independent over M ).

Remark 4.7 (Mock stability). A theory T is mock stable if there is a relation satisfy-
ing Invariance, Finite Character, Closure, Symmetry, Monotonicity, Base
Monotonicity, Transitivity, Full Existence, Stationnarity over models. In the
original definition of mock stability [1], Adler asks for slightly different properties but it is
an easy exercice to check that our set of properties is equivalent to the one in [1]. Using
Lemma 3.10, if T is mock stable then so is TS.

5. Examples of generic expansions by a reduct

5.1. Generic vector subspace over a finite field. Let Fq be a finite field. In this
subsection, we let L0 =

{
(λα)α∈Fq ,+, 0

}
, and L a language containing L0. We let T

be a complete L -theory which contains the L0-theory T0 of infinite-dimensional Fq-vector
spaces. For A a subset of a model of T , the set acl0(A) is the vector space spanned by
A, and we denote it by 〈A〉. Let LV = L ∪ {V }, with V a unary predicate and TV the
LV -theory whose models are the models of T in which V is an infinite vector subspace.
Definability and notations. For α = α1, . . . , αn ∈ Fq and any n-tuple x of variables

let λα(x) be the term
λα1(x1) + · · ·+ λαn(xn).

Let z be a tuple of variables of length s = qn− 1 and z′ = z0z a tuple of length s+ 1 = qn.
Let ψ(t) be any LV -formula, t a single variable. We fix an enumeration α1, . . . , αs of
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(Fq)n \ (0, . . . , 0). We denote by

z = 〈x〉0 the formula
∧

i=1,...,s

zi = λαi(x)

z′ = 〈x〉 the formula z0 = 0 ∧ z = 〈x〉0

t ∈ 〈x〉 the formula ∀z′
(
z′ = 〈x〉 →

s∨
i=0

t = zi

)
t ∈ 〈xy〉 \ 〈y〉 the formula t ∈ 〈xy〉 ∧ ¬t ∈ 〈y〉
〈x〉 ∩ ψ = 〈y〉 the formula ∀t (t ∈ 〈x〉 ∧ ψ(t)↔ t ∈ 〈y〉) .

The formulae above have the obvious meaning, for instance, for any a, b in a model of T , if
M |= b = 〈a〉0 then b is an enumeration of all non-trivial Fq-linear combinations of a.

The following is [11, Lemma 2.3]:

Fact 5.1. Assume that T is a theory that eliminates the quantifier ∃∞. Then for any
formula φ(x, y) there is a formula θφ(y) such that in any ℵ0-saturated model M of T the
set θφ(M ) consists of tuples b from M such that there exists a realisation a of φ(x, b) with
ai /∈ aclT (b) for all i.

Theorem 5.2. If T is model complete and eliminates the quantifier ∃∞, then (T, T0,L0) is
a suitable triple. It follows that the theory TV admits a model companion, which we denote
by TV .

Proof. We have to show that the triple (T, T0,L0) is suitable, the existence of the model-
companion then follows from Proposition 1.12. We check the conditions of Definition 1.10:

(H1) T is model complete;
(H2) T0 model complete and for all infinite A, 〈A〉 |= T0;
(H+

3 ) 〈·〉 defines a modular pregeometry;
(H4) for all L -formula φ(x, y) there exists an L -formula θφ(y) such that for b ∈M |= T

M |= θφ(b) ⇐⇒ there exists a saturated N �M and a ∈ N such that
φ(a, b) and a is |0^ -independent over M .

Condition (H1) holds by hypothesis. Conditions (H2) and (H+
3 ) are also clear, these are

basic properties of the theory of infinite dimensional vector spaces. As A is infinite, 〈A〉 is
an infinite dimensional Fq-vector space.

We prove condition (H4). Let φ(x, y) be an L -formula. For some tuple of variables z of
suitable length, let φ̃(z, y) be the following formula

∃x z = 〈x〉0 ∧ φ(x, y).

Now apply Fact 5.1 with φ̃(z, y). We get a formula θφ̃(y) such that for any ℵ0-saturated
model N of T and b ∈ N we have that N |= θφ̃(b) if and only if there exist tuples a and c
in N such that φ(a, b) holds, c = 〈a〉0 and for all i, ci /∈ aclT (b). Equivalently N |= θφ̃(b)

if and only if there exists a tuple a from N such that a is Fq-linearly independent over
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aclT (b) and N |= φ(a, b). Using Full Existence of |a^ , it is an easy exercise to prove
that this condition is equivalent to (H4), hence the triple (T, T0,L0) is suitable. �

Lemma 5.3. Let ψ(x, y) be an LV -formula. Assume that in a saturated model (M , V ) of
TV the following holds for some tuple b from M , for all L -formula φ(x, y):

θφ(b)→ ∃xφ(x, b) ∧ ψ(x, b).

Then for all φ(x, y), if M |= θφ(b) then there exists a realisation a of φ(x, b)∧ψ(x, b) such
that a is linearly independent over aclT (b).

Proof. Let Σ(x, y) be the partial type expressing “x is linearly independent over aclT (y)”.
We claim that {φ(x, b) ∧ ψ(x, b)} ∪ Σ(x, b) is consistent. Indeed, let Λ(x, b) be a finite
conjunction of formulae in Σ(x, b). As θφ(b) holds, there exists a realisation a of φ(x, b)
which is Fq-linearly independent over aclT (b), hence in particular a satisfies φ(x, b)∧Λ(x, b),
hence M |= θφ∧Λ(b). By hypothesis, the formula φ(x, b) ∧ Λ(x, b) ∧ ψ(x, b) is consistent,
hence we conclude by compactness. �

Proposition 5.4 (Axioms for TV ). The theory TV is axiomatised by adding to TV the
following LV -sentences, for all tuples of variable yV ⊂ y, xV ⊂ x and L -formula φ(x, y)

(A1) ∀y(〈y〉 ∩ V = 〈yV 〉 ∧ θφ(y))→ (∃xφ(x, y) ∧ 〈xy〉 ∩ V = 〈xV yV 〉).
Equivalently, the theory TV is axiomatised by adding to TV the following LV -sentences, for
all tuples of variable y1 ⊆ y, xV ⊂ x and L -formula φ(x, y)

(A2) ∀y(〈y1〉 ∩ V = {0} ∧ θφ(y))→ (∃xφ(x, y) ∧ 〈xy1〉 ∩ V = 〈xV 〉).

Proof. It is clear that the system of axioms (A1) is equivalent to the one given in Theo-
rem 1.5. It is also clear that the system of axioms (A1) implies the system of axioms (A2).
We show that the two systems are equivalent. Assume that the system (A2) is satisfied in
an ℵ0 saturated model (M , V ) of TV . Let φ(x, y) be given, and subtuples yV of y and xV of
x. We show that (M , V ) satisfies the axiom of the form (A1) given by yV ⊂ y, xV ⊂ x and
φ(x, y). Assume that for some tuple b from M , the formula 〈b〉∩V = 〈bV 〉∧θφ(b) holds. Let
b1 be a subtuple of b which is a basis of 〈b〉 over 〈bV 〉. We have 〈b1〉∩V = {0} hence using an
instance of an axiom (A2), there exists a realisation a of φ(x, b) such that 〈ab1〉∩V = 〈aV 〉.
Since bV ⊆ V , it follows from Base Monotonicity that 〈ab〉 ∩ V = 〈aV bV 〉. �

Lemma 5.5. Assume that T is model complete and eliminates the quantifier ∃∞. Then
TV eliminates the quantifier ∃∞, so (TV, T0,L0) is also a suitable triple.

Proof. Assume that |x| = 1. From the description of types (see Proposition 1.15), types in
TS are obtained by adding to the types in T the description of V on the algebraic closure.
By compactness, every LV -formula φ(x, y) is equivalent to a disjunction of formulae of the
form

∃zψ(x, z, y) ∧ 〈xz〉 ∩ V = 〈zV 〉
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where ψ(x, z, y) is an L -formula (not necessarily quantifier-free) and zV a subtuple of
variables of z2. In order to prove elimination of ∃∞, by the pigeonhole principle , we may
assume that φ(x, y) is equivalent to such a formula. Now let u, v be two tuples of variables
such that |u|+ |v| ≤ |z|+ 1, and let uV ⊂ u, vV ⊂ v be two subtuples. Let ΓuvuV vV (u, yv) be
the following L -formula

∃xzψ(x, z, y) ∧ 〈xz〉 = 〈uv〉 ∧ 〈zv〉 = 〈uV vV 〉 ∧ x ∈ 〈uv〉 \ 〈v〉.
Let Λ(y) be the formula ∨

|uv|≤|z|+1,uV ⊆u,vV ⊆v,|u|≥1

∃v(〈v〉 ∩ V = 〈vV 〉 ∧ θΓuv
uV vV

(yv)).

Claim: For all tuple b from a saturated model (M , V ) of TV , (M , V ) |= Λ(b) if and only
if there exists a ∈M such that (M , V ) |= φ(a, b) and a /∈ aclT (b).

From left to right. If Λ(b) holds for some b, there exists a formula Γ = ΓuvuV vV and some
tuple e from M and a subtuple eV of e such that V ∩〈e〉 = 〈eV 〉 and M |= θΓ(be). Using one
instance of the axioms (A1) (Proposition 5.4) and Lemma 5.3, there exists a realisation d of
Γ(u, be) such that 〈dbe〉∩V = 〈dV bV eV 〉, for dV the subtuple associated to the variables uV
and such that d is linearly independent over aclT (be). Using that d is linearly independent
over 〈de〉, we obtain that 〈de〉 ∩ V = 〈dV eV 〉. As (M , V ) |= Γ(d, be), there exists a and a
tuple c from M such that

• M |= ψ(a, c, b)
• 〈ac〉 = 〈de〉
• 〈cV 〉 = 〈dV eV 〉
• a ∈ 〈de〉 \ 〈e〉.

Now as 〈de〉 ∩ V = 〈dV eV 〉 we have 〈ac〉 ∩ V = 〈cV 〉 so (M , V ) |= φ(a, b). Now as d is
linearly independent over aclT (be) and a ∈ 〈de〉 \ 〈e〉 we have a /∈ aclT (be) so a /∈ aclT (b).

From right to left. Assume that (M , V ) |= φ(a, b) and a /∈ aclT (b). Let c be such that
c |= ψ(a, z, b) and 〈ac〉 ∩ V = 〈cV 〉. Let eV be a basis of aclT (b) ∩ V ∩ 〈ac〉, and complete
it in a basis e of aclT (b) ∩ 〈ac〉. Let dV be a basis of a complement of 〈eV 〉 inside 〈ac〉 ∩ V
and complete it in a basis d of a complement of 〈edV 〉 inside 〈ac〉. As a ∈ 〈de〉 \ aclT (b)
we have a ∈ 〈de〉 \ 〈e〉. It is clear that (M , V ) |= ΓuvuV vV (d, be) for the appropriate choice of
subtuple of variables uV ⊆ u and vV ⊆ v. Furthermore, as d is linearly independent over
aclT (b) = aclT (be), we have θΓ(be), and so Λ(b) holds. �

Corollary 5.6. Assume that T is model-complete and eliminates ∃∞. Let TV1...Vn be the
theory whose models are models of T in which Vi is a predicate for a vector subspace over
Fq. Then TV1...Vn admits a model companion TV1 . . . Vn.

Proof. This is an immediate consequence of Lemma 5.5 and Proposition 2.1. �

2Actually we might assume that every realisation of z in ψ is algebraic over the realisations of x, y in ψ,
but we don’t need this fact here. Also, we may replace the condition 〈xz〉 ∩ V = 〈zV 〉 by 〈z〉 ∩ V = 〈zV 〉,
but we assume that the formula gives a description of V on 〈xz〉 in order to simplify the proof.
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Example 5.7 (Generic vector subspace of a vector space). Consider the theory T of infinite
Fq-vector spaces in the language L =

{
(λα)α∈Fq ,+, 0

}
. Applying Corollary 5.6 the theory

TV1...Vn admits a model companion TV1 . . . Vn. Proposition 4.5 gives us inductively that
TV1 · · ·Vn is stable for all n ∈ N. It is easy to check that TV1 is the theory of belles paires
(see [32]) of the theory T .

5.2. Field of positive characteristic with generic vector subspaces. Let p > 0 be
a prime number. Let L = {+,−, ·, 0, 1, . . .} and T an L -theory of an infinite field of
characteristic p. Let Fq1 , · · · ,Fqn be finite subfields in any model of T . Consider the theory
T ′ obtained by adding to the language a constant symbol for each element of Fq1 ∪· · ·∪Fqn .
Then T and T ′ have the same models. It follows that for each i we may consider that the
theory of infinite Fqi-vector space in the language Li =

{
+, 0, (λα)α∈Fqi

}
is a reduct of T .

Proposition 5.8. Let L ⊇ Lring and T an L -theory of an infinite field of characteristic
p. Let Fq1 , · · · ,Fqn be finite subfields in any model of T . Assume that

(1) T is model-complete;
(2) T eliminates ∃∞.

Let TV1...Vn be the theory whose models are models of T in which each Vi is a predicate for
an Fqi-vector subspace. By Corollary 5.6 the theory TV1...Vn admits a model-companion.

An additive subgroup of a field of characteristic p is an Fp-vector space, hence Proposi-
tion 5.8 translates as follows.

Proposition 5.9. Let L ⊇ Lring and T an L -theory of an infinite field of characteristic
p. Assume that

(1) T is model-complete;
(2) T eliminates ∃∞.

Let TG1...Gn be the theory whose models are models of T in which each Gi is a predicate
for an additive subgroup. By Corollary 5.6 the theory TG1...Gn admits a model-companion,
which we denote by TG1 . . . Gn.

Example 5.10. The hypotheses of Propositions 5.8 and 5.9 are satisfied by the following
theories:

• ACFp, SCFp,e for e finite or infinite, Psfc,
• ACFAp, DCFp.

All these theories are model-complete. Concerning the elimination of ∃∞, all perfect PAC
fields are algebraically bounded [13], which implies the elimination of ∃∞ for ACFp and
Psfp. Elimination of ∃∞ for SCFp,e follows from [18, Proposition 61.]. The theory ACFAp

eliminates ∃∞ in all characteristic, this follows easily from the definability of the σ-degree
(see [10, Section 7]). For all p prime or 0, the theory DCFp eliminates the quantifier ∃∞,
this follows from the proof of this result in [29, Theorem 2.13, p51], although it was proved
in the characteristic 0 case, the proof works in all characteristics.

Example 5.11 (ACFV1 · · ·Vn and ACFG). Let Fq1 , · · · ,Fqn be any finite fields of charac-
teristic p. We denote by ACFV1 · · ·Vn and ACFG respectively the theories ACFpV1 · · ·Vn
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and ACFpG. [17] is dedicated to a detailed study of the theory ACFG, which is NSOP1

and not simple (see also Example 5.21).

Recall that a pseudo-algebraically closed field is a field K which is existentially closed
in every regular extension. The theory PAC is incomplete but eliminates ∃∞ if the field is
perfect.

Proposition 5.12. Let PACpG be the theory whose models are perfect PACp-fields in Lring

with a predicate G for an additive subgroup. Then there exists a theory PACpG such that
(1) every model (F,G′) of PACpG extends to a model (K,G) of PACpG such that K is

a regular extension of F ;
(2) every model (K,G) of PACpG is existentially closed in every extension (F,G′) such

that F is a regular extension of K.
Let T be a theory of perfect PACp-fields in a language containing Lring such that T is
model-complete, and TG1···Gn be the theory whose models are models of T with predicates Gi
for additive subgroups. Then TG1···Gn admits a model-companion, TG1 · · ·Gn.

Proof. Perfect PACp-fields in Lring satisfies (H4), the proof of this in Theorem 5.2 does not
use the model-completeness of the theory T , so the first statement follows from Proposi-
tion 1.7. The second statement is Corollary 5.6. �

Remark 5.13. Note that the perfect assumption is only here to ensure that the fields elim-
inate the quantifier ∃∞. It should be true that all PAC fields eliminate the quantifier ∃∞
although we did not find any reference in the literature.

5.3. NSOP1 fields of positive characteristic with generic vector subspaces. Now we
give some condition under which the theory obtained in Proposition 5.8 is NSOP1. In this
subsection, for A in some field, we denote by aclT the model-theoretic algebraic closure, As
the separable closure and A the field theoretic algebraic closure. For three subsets A,B,C
of some field, the notation A |ld^C

B stands for “the field spanned by A and B are linearly
disjoint over the field spanned by C”. Recall that a field extension A ⊆ B (which we will
denote B/A) is regular if B |ld^A

A.
We denote by Lring = {+,−, ·, 0, 1} the language of rings. By an arbitrary theory of

fields T , we mean a theory of field in a language L ⊇ Lring.

Fact 5.14. (1) Let T be an arbitrary theory of fields. Let F |= T and A ⊆ F . Then
F/aclT (A) is a regular extension [8, (1.17)].

(2) Let E ⊂ K ∩ L be three fields. If K/E, L/E are regular and K |ld^ E
L then

Ks |ld^ Es L
s [8, Lemma 3.1 (1)].

(3) Assume that A,B,C are separably closed subfields of a separably closed field F such
that C ⊆ A ∩B. If A |ld^ C

B and F/AB is separable, then tpSCFp,e(A/B) does not
fork over C [9, Remark after (1.2)].

The following gives a behaviour of the Kim-independence in any theory of fields.
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Fact 5.15 ( [25, Proposition 9.28], [8, Theorem 3.5]). Let T be an arbitrary theory of fields,
and E ≺ F |= T . Let A,B be aclT -closed subsets of F containing E, such that A |K^ E

B.
Then

(1) A |ld^ E
B;

(2) F/AB is a separable extension;
(3) aclT (AB) ∩AsBs = AB.

Lemma 5.16. Let T be an arbitrary theory of fields, and F |= T . Let A,B,C,D be subsets
of F , containing some set k ⊆ F , and such that A,B ⊆ D. Assume that A and B are aclT -
closed and that tpT (D/C) is finitely satisfiable in k. Then we have the following results.

(1) (F ∩ (AC)s + F ∩ (BC)s) ∩D = A+B;
(2) [(F ∩AC) · (F ∩BC))] ∩D = A ·B (where U · V = {u · v | u ∈ U, v ∈ V }).

Proof. We prove (1), the other is proved by a similar argument. Let v1 ∈ F ∩ (AC)s,
v2 ∈ F ∩ (BC)s and u ∈ D be such that u = v1 + v2. There exist nontrivial separable
polynomials P (X, a, c) and Q(X, b, c′) with leading coefficients 1 such that v1 is a root of
P (X, a, c) and v2 is a root of Q(X, b, c′), a a tuple in A, b a tuple in B. The formula
φ(z1, z2, z3, c, c

′)

∃x∃y x+ y = z1 ∧ P (x, z2, c) = 0 ∧Q(y, z3, c
′) = 0

is in tpT (u, a, b/C), which is finitely satisfiable in k. Hence, there exists d, d′ ∈ k such that
φ(z1, z2, z3, d, d

′) ∈ tpT (u, a, b/k) and so u ∈ A+B as A and B are aclT -closed. �

Lemma 5.17. Let A,B be two extensions of some field E, such that AB/E is regular and
A |ld^ E

B. Then (As +Bs) ∩AB = A+B.

Proof. First, observe that AsB ∩ Bs = EsB. Indeed A/E and B/E are regular so by
Fact 5.14 (2), we have that As |ld^Es B

s hence AsB |ld^EsB
Bs and so AsB ∩ Bs = EsB.

Symmetrically, we have ABs ∩ As = EsA. If v ∈ AB is such that v = α + β for α ∈ As
and β ∈ Bs, then α = v − β ∈ ABs ∩ As = EsA. Similarly β ∈ EsB. Let L be a finite
extension of E inside Es such that α ∈ AL and β ∈ BL. We can complete {1} to a basis
{1, u2, . . . , un} of the E-vector space L. As AB |ld^E

L, it is also a basis of the AB-vector
space LAB. As AB |ld^A

LA and AB |ld^B
LB, it is also a basis of the A-vector space LA

and of the B-vector space LB. Now the coordinates of v ∈ AB in the AB-vector space
LAB are (v, 0, . . . , 0) as v = v+ 0u2 + · · ·+ 0un. Let (a1, . . . , an) (respectively (b1, . . . , bn))
be the coordinates of α with respect to the basis (1, u2, . . . , un) of the A-vector space LA
(respectively of β in this basis of the B-vector space LB). As v = α+ β, we have, looking
at the first coordinate that v = a1 + b1, so v ∈ A+B. �

Theorem 5.18. Let T be an arbitrary theory of fields which is model-complete, NSOP1,
and eliminates ∃∞. Let Fq1 , · · · ,Fqn be subfields. Assume that T satisfies the following
assumption for all aclT -closed A,B and E |= T contained in A and B:

if A |T^ E
B then aclT (AB) ⊆ AB.
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Then TV1 . . . Vn is NSOP1 and Kim-independence in TV1 . . . Vn is given by

A |w^
E

B ⇐⇒ A |T^
E

B and for all i ≤ n Vi(A+B) = Vi(A) + Vi(B)

(for A,B,C aclT -closed, A,B containing E, E |= T ).

Proof. We prove that |T^ satisfies the conditions of Corollary 4.4. Let |i^ the independence
in the sense of Fqi-vector space, we want to show that for all i = 1, . . . , n,

(A) for all model E of T and A,B,C algebraically closed containing E, if C |T^E
A,B

and A |T^E
B then

(aclT (AC), aclT (BC)) |i^
A,B

aclT (AB).

Let F |= T , let E ≺ F and A,B,C in F containing E, with C |T^E
A,B and A |T^E

B. For
all i = 1, · · · , n, the condition (aclT (AC), aclT (BC)) |i^A,B

aclT (AB) is equivalent to

(aclT (AC) + aclT (BC)) ∩ aclT (AB) = A+B.

From Fact 5.15 (2), F/AB, F/BC and F/AC are separable extension. By our assumptions
on T and A,B and C we have that aclT (AB) ⊆ (AB)s, aclT (AC) ⊆ (AC)s and aclT (BC) ⊆
(BC)s, so

(aclT (AC) + aclT (BC)) ∩ aclT (AB) ⊆ ((AC)s + (BC)s) ∩ (AB)s.

Claim. ((AC)s + (BC)s) ∩ (AB)s = As +Bs

Proof of the claim. First, observe that as fields, Es is an elementary substructure of
F s. Indeed, by model completeness of Th(Es) (which is SCFp,e for some e ≤ ∞) we have
to check that they have the same imperfection degree (which is clear as F � E) and that
F s/Es is separable (the later follows from the fact that F/E is a regular extension). Now by
Fact 5.15 (1) we have C |ld^E

AB. As E is a model, C/E and AB/E are regular extensions3,
by Fact 5.14 (2) we have that

Cs |ld^
Es

(AB)s. (∗)

Moreover F s/ABC is separable, (as so are F s/F and F/ABC, the latter using Fact 5.15
(2)) and so is Cs(AB)s/ABC. It follows that the following extension is separable

F s/Cs(AB)s. (∗∗)
From (∗) and (∗∗), using Fact 5.14 (3) we have that tpSCF(Cs/(AB)s) does not fork over
Es. By stability, as Es is an elementary submodel of the ambiant model F s of SCFp,e,
tpSCF(Cs/(AB)s) is a coheir of tpSCF(Cs/Es). From Lemma 5.16, it follows that ((AC)s +
(BC)s) ∩ (AB)s = As +Bs.

By the claim (aclT (AC) + aclT (BC)) ∩ aclT (AB) ⊆ (As + Bs) ∩ aclT (AB). Now by
Fact 5.15 (3), we have that AsBs∩aclT (AB) = AB so (As+Bs)∩aclT (AB) ⊆ (As+Bs)∩

3In fact here we only use that E = aclT (E), and Fact 5.14 (1).
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AB. Finally, by Lemma 5.17, as AB/E is regular and A |ld^E
B, we have (As+Bs)∩AB =

A+B. �

I am grateful to Michel Matignon for pointing out to me this nice proof of the following
simple fact.

Lemma 5.19. Let K be a field and K(X,Y ) be a rational function field in two variables.
Then

XY /∈ K(X) +K(Y );

X + Y /∈ K(X) ·K(Y );

where K(X) ·K(Y ) = {uv | u ∈ K(X), v ∈ K(Y )}.

Proof. There exists a derivative D : K(X,Y ) → K(X,Y ) such that D(K(Y )) = {0} and
D extends the canonical derivation on K(X) (namely the partial derivative with respect
to X, see [30, Proposition 23.11]). Let u ∈ K(X) and v ∈ K(Y ). If XY = u + v then
applying D we get Y = Du ∈ K(X) a contradiction. If X + Y = uv then applying D we
get 1 = vDu hence, as Du ∈ K(X), v ∈ K(X) ∩K(Y ) = K. Now Y = uv −X ∈ K(X) a
contradiction. �

Proposition 5.20. Let T be an arbitrary theory of fields satisfying the same hypotheses as
Theorem 5.18. Then TV1 · · ·Vn is not simple.

Proof. To prove that TV1 · · ·Vn is not simple, it is sufficient to prove that TV is not simple.
Let E ≺ F be models of T and a, b, d elements of F be such that a |T^E

b, d and b |T^E
d.

We show that

ad+ b ∈ [aclT (Ead) + aclT (Ebd)] \ [(aclT (Ea) + aclT (Ebd)) ∪ aclT (Ead)] ,

then TV is not simple, by Corollary 4.3. Since b /∈ aclT (Ead), it is clear that ad + b /∈
aclT (Ead). Assume that ad+ b ∈ aclT (Ea) + aclT (Ebd). Then ad ∈ aclT (Ea) + aclT (Ebd),
let u ∈ aclT (Ea) and v ∈ aclT (Ebd) be such that ad = u + v. From Fact 5.15, we
have that aclT (Ea) |ld^E

aclT (Ebd), hence aclT (Ea)(d) |ld^E(d)
aclT (Ebd) so aclT (Ea)(d) ∩

aclT (Ebd) = E(d). Similarly, aclT (Ebd)(a) ∩ aclT (Ea) = E(a). It follows that

u = ad− v ∈ aclT (Ebd)(a) ∩ aclT (Ea) = E(a)

v = ad− u ∈ aclT (Ea)(d) ∩ aclT (Ebd) = E(d)

hence ad ∈ E(a) + E(d), which contradicts Lemma 5.19. �

Example 5.21 (The theories ACFV1 . . .Vn and ACFG). Let ACFV1 . . .Vn and ACFG
be the theories as in Example 5.11. By Theorem 5.18 and Proposition 5.20 those theories
are NSOP1 not simple. In ACFV1 . . .Vn, Kim-independence agrees with the relation

A |w^
C

B ⇐⇒ A |ACF
^
C

B and for all i ≤ n, Vi(AC +BC) = Vi(AC) + Vi(BC).

Furthermore, |w^ satisfies
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• Strong Finite Character over algebraically closed sets. For alge-
braically closed E, if a 6 |w^E

b, then there is a formula φ(x, b, e) ∈ tpACFV1...Vn(a/bE)

such that for all a′, if a′ |= φ(x, b, e) then a′ 6 |w^E
b.

• |a^ -amalgamation over algebraically closed sets. For algebraically closed
set E if there exists tuples c1, c2 and sets A,B such that
– c1 ≡ACFV1...VnE c2

– AE ∩BE = E
– c1 |w^E

A and c2 |w^E
B

then there exists c |w^E
A,B such that c ≡ACFV1...VnA c1, c ≡ACFV1...VnB c2, A |a^Ec

B,
c |a^EA

B and c |a^EB
A.

This is Theorem 4.2, knowing that |ACF
^ is stationary over algebraically closed sets hence

satisfies the independence theorem over algebraically closed sets without any assumption
on the parameters.

Example 5.22. Perfect ω-free PACp fields are NSOP1, furthermore, as they are alge-
braically bounded, the condition on the algebraic closure in Theorem 5.18 is satisfied. If T
is a theory of a perfect ω-free PACp-field in an expansion of the language Lring such that
T is model-complete, then TG1 · · ·Gn (Proposition 5.12) is NSOP1. This holds of course
for any NSOP1 perfect PACp field.

5.4. Algebraically closed fields with a generic multiplicative subgroup. We are
now interested in using Theorem 1.5 to prove that the theory of algebraically closed fields
of fixed arbitrary characteristic with a predicate for a multiplicative subgroup admits a
model companion. Consider Lfield =

{
+,−, ·,−1 , 0, 1

}
and L0 =

{
·,−1 , 1

}
⊆ Lfield.

The pure multiplicative group of any field is an ℵ1-categorical abelian group, its model
theory is described in [28], see also [14, Chapter VI].

Fix p a prime or 0. Consider the theory ACFp. The theory ACFp � L0 is complete and
we will identify it with the theory of the multiplicative group of an algebraically closed field
of characteristic p, denoted by Tp. The theory Tp is axiomatised by adding to the theory
of abelian groups the following sets of axiom:

• If p > 0: {∀x ∃=ny yn = x | n ∈ N \ pN} ∪
{
∀x∃=1y yp = x

}
• If p = 0: {∀x ∃=ny yn = x | n ∈ N \ {0}} .

Proposition 5.23. The theory Tp has quantifier elimination in the language L0. It is
strongly minimal hence ℵ1-categorical. Furthermore for any subset A of a model M of Tp,
the algebraic closure is given by

aclp(A) := {u ∈M,un ∈ 〈A〉 for some n ∈ N \ {0}}
where 〈A〉 is the group spanned by A. Every aclp-closed set is a model of Tp. Furthermore
aclp defines a pregeometry which is modular and the associated independence relation in Tp
is given by

A |p^
C

B :⇐⇒ aclp(AC) ∩ aclp(BC) = aclp(C).
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Lemma 5.24. Let K |= ACF, V ⊂ Kn an affine (irreducible) variety, O ⊂ Kn a Zariski
open set. The following are equivalent:

(1) for all k1, . . . , kn ∈ N, c ∈ K the quasi affine variety V ∩ O is not included in the
zero set of xk11 · · · · · xknn = c

(2) for all k1, . . . , kn ∈ N, c ∈ K the variety V is not included in the zero set of
xk11 · · · · · xknn = c

(3) there exist L � K and a tuple a which is multiplicatively independent over K and
with a ∈ (V ∩ O)(L)

Proof. (1) implies (2) is trivial. We show that (2) implies (3). Assume that (3) does not
hold. Take a generic a over K of the variety V in some L � K. We have a ∈ O. Then
there exists k1, . . . , kn ∈ N such that ak11 · · · · · aknn = c for some c ∈ K. By genericity of a,
it follows that V is included in the zero set of xk11 · · · · · xknn = c, hence (2) does not hold.
(3) implies (1) follows easily from the fact that V and O are definable over K. �

The following fact was first observed in the proof of Theorem 1.2 in [4], it is also Corollary
3.12 in [37].

Fact 5.25. Let p be a prime number or 0. Let φ(x, y) an Lfield-formula such that for all
tuple b in a model of ACFp, φ(x, b) defines an affine variety. Then there exists an Lfield-
formula θφ(y) such that for any model K of ACFp and tuple b from K, we have K |= θφ(b)
if and only if for all k1, . . . , kn ∈ N, c ∈ K, the set φ(K, b) is not included in the zero set
of xk11 · · · · · xknn = c.

It is standard that every definable set in ACFp can be written as a finite union of quasi-
affine varieties. Furthermore, by [37, Lemma 3.10], given any Lring-formula ϑ(x, z), the
set of c such that ϑ(x, c) is a quasi-affine variety is a definable set. Let C be the class
of formulae ϑ(x, z) such that for all K |= ACFp and c tuple from K, the set ϑ(K, c) is a
quasi-affine variety.

Lemma 5.26. Let p be a prime number or 0. For any ϑ(x, z) ∈ C there exists an Lfield-
formula θϑ(z) such that for any model K of ACFp and tuple c from K, we have K |= θϑ(c)
if and only if there exists a such that |= ϑ(a, c) and a is |p^ -independent over K.

Proof. Let K |= ACFp and ϑ(x, z) ∈ C . Using [24, Theorem 10.2.1], there exists a formula
ϑ̃(x, z) such that for all tuple c fromK, the set ϑ̃(K, c) is the Zariski closure of ϑ(K, c). Now
by Fact 5.25, there exists a formula θ(z) such that K |= θ(c) if and only if ϑ̃(K, c) is not
included in the zero set of xk11 · · · · ·xknn = d, for all d ∈ K, k1, · · · , kn ∈ N. By Lemma 5.24,
K |= θ(c) if and only if there exist L � K and a tuple a which is multiplicatively independent
over K and with a |= ϑ(x, c). �

If G× is a symbol for a unary predicate, we denote by ACFG× the theory in the language
Lring ∪ {G×} whose models are algebraically closed fields of characteristic p in which the
predicate G× consists of a multiplicative subgroup.

Theorem 5.27. The theory ACFG× admits a model companion, which we denote by ACFG×.
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Proof. We check the conditions of Definition 1.10

(H1) ACFp is model complete;
(H2) Tp is model-complete and for all infinite A, aclp(A) |= Tp;

(H+
3 ) aclp defines a modular pregeometry;

(H4) for all Lfield-formula φ(x, y) there exists an Lfield-formula θφ(y) such that for b ∈
K |= ACFp

M |= θφ(b) ⇐⇒ there exists L � K and a ∈ L such that
φ(a, b) and a is |p^ -independent over K.

ACFp is model complete by quantifier elimination. Conditions (H2) and (H+
3 ) follow from

Proposition 5.23. We don’t have condition (H4) for all formulae, but only for the formulae in
C (Lemma 5.26), which is enough for the existence of the model-companion by Remark 1.8.

�

Let ACFG× be the theory obtained in Theorem 5.27. We denote by A · B the product
set {a · b | a ∈ A, b ∈ B}.

Theorem 5.28. Any completion of ACFG× is NSOP1 and not simple. Furthermore, Kim-
independence coincide over models with the relation

A |w^
C

B ⇐⇒ A |ACF
^
C

B and G×(AC ·BC) = G×(AC) ·G×(BC).

Furthermore, |w^ satisfies

• Strong Finite Character over algebraically closed sets. For alge-
braically closed E, if a 6 |w^ E

b, then there is a formula φ(x, b, e) ∈ tpACFG×(a/bE)

such that for all a′, if a′ |= φ(x, b, e) then a′ 6 |w^ E
b.

• |a^ -amalgamation over algebraically closed sets. For algebraically closed
set E if there exists tuples c1, c2 and sets A,B such that

– c1 ≡ACFG×
E c2

– AE ∩BE = E
– c1 |w^ E

A and c2 |w^ E
B

then there exists c |w^ E
A,B such that c ≡ACFG×

A c1, c ≡ACFG×
B c2, A |a^ Ec

B,
c |a^ EA

B and c |a^ EB
A.

Proof. Using Theorem 4.1, it is enough to show that for E algebraically closed and A,B,C
algebraically closed containing E, if C |ACF

^E
A,B and A |ACF

^E
B then

AC ·BC ∩AB = A ·B.
This easily follows from the fact that tpACF(C/AB)) is finitely satisfiable in E, as in the
proof of Theorem 5.18. The rest is Theorem 4.2, knowing that |ACF

^ is stationnary over
algebraically closed sets, similarly to Example 5.21. To prove that ACFG× is not simple,
we use Corollary 4.3, as in the proof of Proposition 5.20. Let E be a model of ACFp and
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a, b, d in an extension be such that a |ACF
^E

b, d and b |ACF
^E

d. We claim that

(a+ d)b ∈
[
Ead · Ebd

]
\
[
(Ea · Ebd) ∪ Ead

]
.

Since b /∈ Ead, it is clear that (a + d)b /∈ Ead. Assume that (a + d)b ∈ Ea · Ebd. Then
a+d ∈ Ea·Ebd, let u ∈ Ea and v ∈ Ebd be such that a+d = uv. We have that Ea |ld^E

Ebd,
hence Ea(d) |ld^E(d)

Ebd so Ea(d)∩Ebd = E(d). Similarly, Ebd(a)∩Ea = E(a). It follows
that

u = (a+ d)v−1 ∈ Ebd(a) ∩ Ea = E(a) and

v = (a+ d)u−1 ∈ Ea(d) ∩ Ebd = E(d)

hence a+ d ∈ E(a) · E(d), which contradicts Lemma 5.19. �

5.5. Pairs of geometric structures. Let T be a pregeometric theory in a language L
with monster M, b a tuple from M and φ(x, b) a formula. By dim(φ(x, b)) we mean the
maximum dimension (in the sense of the pregeometry) of acl(cb) over acl(b), for realisations
c of φ(x, b).

Fact 5.29. Let T be a geometric theory and M a monster model for T . Then for all
formula φ(x, y) there exists a formula θφ(y) such that θφ(b) holds if and only if there exists
a realisation a of φ(x, b) which is an independent tuple over aclT (b).

Proof. From [21, Fact 2.4], for each k ≤ |x| there exists a formula θk(y) such that θk(b) if
and only if dim(φ(M, b)) = k. The formula θ|x|(y) holds if and only if there is a realisation
a of φ(x, b) such that dim(acl(ab)/acl(b)) = |x|, hence a is independent over aclT (b). �

Let LS be the expansion of L by a unary predicate S. A pair of models of T is an
LS-structure (M ,M0), where M |= T and S(M ) = M0 is a substructure of M model of
T . We call TS the theory of the pairs of models of T .

Proposition 5.30. Let T be a model-complete geometric theory in a language L . Assume
that every aclT -closed set is a model of T . Then there exists an LS-theory TS containing
TS such that:

(1) every model (N ,N0) of TS has a strong extension which is a model of TS;
(2) every model of TS is existentially closed in every strong extension model of TS.

Furthermore, TS satisfies the conclusions of Proposition 1.15. Finally, if T is stable, then
so is TS.

Proof. We check that T, T0,L0 satisfies the hypotheses of Theorem 1.5. (H1), (H2) and
(H3) are clear, and (H4) is Fact 5.29. The last assertion is Proposition 4.5. �

We call this theory the weak model companion of the pairs of models of T . If the prege-
ometry is modular, it is the model-companion.

Example 5.31. The theory of pairs of any strongly minimal theory with quantifier elim-
ination admits a weak model companion. For instance, the weak model companion of the
theory of pairs of algebraically closed fields is the theory of proper pairs of algebraically
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closed fields and coincides with the theory of belle paires of algebraically closed fields
(see [19], [32]). The theory RCF also satisfies the hypotheses of Proposition 5.30, hence
the theory of pairs of real closed fields admits a weak model-companion. Connections with
lovely pairs of geometric structures [7] could be made, although we did not investigate.

5.6. A non-example: the expansion of a field of characteristic 0 by an additive
subgroup.

Proposition 5.32. Let T be the theory of a field of characteristic 0 in a language L
containing Lring, such that T is inductive. Let LG = L ∪{G} and let TG be the LG-theory
of models of T in which G is a predicate for an additive subgroup of the field. Let (K,G)
be an existentially closed model of TG. Then

SK(G) := {a ∈ K | aG ⊆ G} = Z.
In particular, the theory TG does not admit a model-companion.

Proof. The right to left inclusion is trivial. Assume that a ∈ K \ Z, let L be a proper
elementary extension of K and t ∈ L \K. Then (L,G+Z t

a) is an LG-extension of (K,G).
Furthermore, as a /∈ Z, we have t /∈ G + Z t

a . Then t
a ∈ G + Z t

a and a ta /∈ G + Z t
a . As

(K,G) is existentially closed in (L,G+ Z t
a), we have that

(K,G) |= ∃x(x ∈ G ∧ ax /∈ G)

hence a /∈ SK(G). The class of existentially closed models of TG is not axiomatisable as the
definable infinite set SL(G) is of fixed cardinality. As TG is inductive, this is equivalent to
saying that TG does not admit a model-companion. �

Remark 5.33. Let T be the theory of a field of characteristic 0 in a language L containing
Lring, such that T is inductive. Let LD = L ∪{D} and let TD be the LD-theory of models
of T in which D is a predicate for a divisible additive subgroup of the field. Let (K,D) be an
existentially closed model of TD. A similar argument yields that {a ∈ K | aD = D} = Q,
so TD does not admits a model-companion either.

Remark 5.34. Let K = C (or R). Using Remark 5.33 and compactness arguments, one
deduces that there exist k, l ∈ N and a constructible set if K = C (or a semialgebraic set
if K = R) V ⊆ Kk ×K l such that for all polynomials P (X,Y ) ∈ K[X,Y ] with |X| = 1,
|Y | = l and for all n ∈ N and all q1, . . . qn, s1, . . . , sk ∈ Q there exists b ∈ K l such that for
all a ∈ Kk, if (a, b) ∈ V then

(1) a is not Q-linearly independent over Q(b) ∩K;
(2)

∑k
i=1 siai /∈ q1R+ · · ·+ qnR for R the set of roots of P (X, b) in K.

Remark 5.35. Recent work from Haykazyan and Kirby [23], highlights a new source of
NSOP1 theories, in the sense of positive logic. They study the class of existentially closed
exponential fields (an exponential field is a field with a group homomorphism from the
additive group to the multiplicative group of the field). Haykazyan and Kirby [23] adapted
the result of Chernikov and Ramsey [15] to prove that the class of existentially closed
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exponential fields is NSOP1 in the sense of positive logic, using the existence of a well-
behaved independence relation. It is likely that the theory developed by Haykazyan and
Kirby can be used to show that the class of algebraically closed fields of characteristic 0
with a generic additive subgroup is NSOP1 in the sense of positive logic.
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