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ANSWER TO A QUESTION OF ROSŁANOWSKI AND SHELAH

MÁRK POÓR

Abstract. In [15] Rosłanowski and Shelah asked whether every locally com-
pact non-discrete group has a null but non-meager subgroup, and conversely,
whether it is consistent with ZF C that in every locally compact group a mea-
ger subgroup is always null. They gave affirmative answers for both questions
in the case of the Cantor group and the reals. In this paper we give affirmative
answers for the general case.

1. Introduction

We are interested in null, but non-meager, and conversely meager but non-null

subgroups of locally compact groups. Only the non-discrete case is of interest,

since nonempty open sets are of positive measure, thus in a discrete group {e}

has positive measure, and obviously is of second category. It is known that un-

der the Continuum Hypothesis one can construct null, but non-meager and mea-

ger, but non-null subgroups in the Cantor group and R. (In fact the equalities

cov(M) = cof(M) and cov(N ) = cof(N ) are sufficient. Also, in general, it is easy

to see that non(M) < non(N ) implies the existence of a null, non-meager sub-

group in each locally compact Polish group, and similarly, from non(N ) < non(M)

it follows that each locally compact Polish group admits a meager, but non-null

subgroup.) Talagrand proved in ZFC that there exists a null, but non-meager

filter in the Cantor group, that also yields a null, but non-meager subgroup [16]. In

[15], Rosłanowski, and Shelah constructed ZFC examples for null, but non-meager

subgroups of the Cantor group and the reals, and showed that it is consistent with

ZFC that in the two groups every meager subgroup is null. Then they asked two

questions

Problem 5.1 [15]

(1) Does every non-discrete locally compact group (with complete Haar measure)

admit a null non–meager subgroup?

(2) Is it consistent that no non-discrete locally compact group has a meager non–null

subgroup?
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The fact, that the nonexistence of null, non-meager subgroups in the Cantor group is

consistent was known earlier: H.M. Friedman proved that it is consistent with ZFC

that every Fσ set in 2ω × 2ω containing a rectangle of positive outer measure must

contain a measurable rectangle of positive measure. Shelah and Fremlin proved

that this statement implies the nonexistence of meager, non-null subgroups in 2ω

(see [5]).

In the first part of this paper we will construct a null but non-meager subgroup in

the case of the inverse limit of a countable sequence of finite groups, and in arbitrary

second countable Lie-groups, and we show that these cases are sufficiently general.

In the second part, using Friedman’s theorem we prove that it is consistent that in

every locally compact Polish group every meager subgroup is null. Last, by lemmas

from the first part we reduce the case of arbitrary locally compact groups to the

case of the Polish ones, thus conclude that the answer for (2) is affirmative too.

2. Preliminaries and notations

If we state that topological groupsG and H are isomorphic, in symbolsG ≃ H , then

we mean that there is an algebraic isomorphism, which is also a homeomorphism.

Under the symbol ≤ we mean the subgroup relation, i.e. H ≤ G symbols that H

is a subgroup of G, and if we write H ⊳ G, then H is a normal subgroup of G.

All topological groups are assumed to be Hausdorff. (It is known that for a locally

compact Hausdorff topological group G, if C ⊳ G is a compact normal subgroup,

then G/C is locally compact and Hausdorff.)

A topological group G is locally compact if for each g ∈ G, there is a neighborhood

B of g, which is compact (i.e. each point has an open neighborhood which has

compact closure). Since in compact Hausdorff spaces the Baire category theorem is

true (i.e. no nonempty open set can be covered by countably many nowhere dense

sets), it is also true in locally compact Hausdorff spaces.

For any topological space X , B(X) denotes the Borel sets, i.e. the σ-algebra gen-

erated by the open sets.

Recall the following definition of left Haar Borel measure:

Definition 2.1. Let G be a locally compact group, and µ be a Borel measure, i.e.

µ : B(G)→ [0,∞]

such that

• µ is left-invariant, i.e. for every g ∈ G, B ∈ B(G)

µ(gB) = µ(B),

• µ(U) > 0 for each open U 6= ∅,

• µ(K) <∞ for each compact set K,

• µ is inner regular with respect to the compact sets, that is for every Borel

B

µ(B) = sup{µ(K) : K ⊆ B, K is compact}.
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Then µ is called a left Haar Borel measure of G.

It is known that a left Haar Borel measure always exists, and it is unique up to a

positive multiplicative constant.

Under left Haar measure we will mean the completion of a left Haar Borel measure.

Definition 2.2. Let G be a locally compact group. Suppose that ν is a left Haar

Borel measure, and µ is the completion of ν, that is a subset H ⊆ G is measurable

if it differs from a Borel set by (at most) a null Borel set, and then

if (∃B,B′ ∈ B(G) : B △H ⊆ B′ ∧ ν(B′) = 0) then µ(H) := ν(B).

Then µ is a left Haar measure of G.

From now on for a locally compact group G µG will always symbol a left Haar

measure.

It is easy to see (from the inner regularity) that if a measurable set H is locally

null, then it is null, i.e.

(∃ open cover (Uα)α∈I of H : (∀α) µG(H ∩ Uα) = 0) ⇒ µG(H) = 0. (1)

Remark 2.3. There is another definition of Haar Borel measure, namely, instead

of inner regularity wrt. the compact sets we can require

• outer regularity wrt. the open sets:

µ(B) = inf{µ(U) : B ⊆ U, U is open } for every Borel B,

• inner regularity wrt. the compact sets, only in case of open sets:

µ(U) = sup{µ(K) : K ⊆ U, K is compact} for every U open

which also exists and is unique up to a positive multiplicative constant. This

definition results in a different left-invariant Borel measure only in the case of

non-σ-compact groups. The proofs in the first chapter of this paper would also

work with this definition of the Haar measure, but in the second we will make use

of the property (1), and the theorem which we will present is simply not true if

requiring these type of regularity properties, in Example 4.10 we mention a well-

known counterexample.

Definition 2.4. Let (I,�) be a directed partially ordered set (poset), i.e. for every

a, b ∈ I there exists a common upper bound c. And let Ga (a ∈ I) be topological

groups indexed by elements of I, and let ϕa,b : Gb → Ga for each pair a � b be

surjective continuous homomorphisms, such that whenever a � b � c then

ϕa,c = ϕa,b ◦ ϕb,c .

Then this system is called an inverse system, and the inverse limit of the system

((Ga)a∈I , (ϕa,b)a�b) is

lim←−i∈IGi =

{

(xi)i∈I ∈
∏

i∈I

Gi : xa = ϕa,b(xb) (∀a � b ∈ I)

}
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with the topology inherited from the product space, and with the obvious (point-

wise) group structure.

If I = {i}, then we identify lim←−i∈IGi with Gi.

Remark 2.5. By the definition of the product and subspace topology, there is a

sub-base consisting of sets of the form

(

lim←−a∈IGa

)

∩



Ua ×
∏

b∈I\{a}

Gb



 (a ∈ I, Ua ⊆ Ga open).

But if a � d (since (gi)i∈I ∈ lim←−a∈IGa implies ϕa,d(gd) = ga):

(

lim←−i∈IGi

)

∩



Ua ×
∏

b∈I\{a}

Gb



 =
(

lim←−i∈IGi

)

∩



ϕ−1
a,d(Ua)×

∏

b∈I\{d}

Gb



 .

Thus these sets are closed under finite intersection (assume that a, c � d), indeed,




(

lim←−i∈IGi

)

∩



Ua ×
∏

b∈I\{a}

Gb







 ∩





(

lim←−i∈IGi

)

∩



Uc ×
∏

b∈I\{c}

Gb







 =





(

lim←−i∈IGi

)

∩



ϕ−1
a,d(Ua)×

∏

b∈I\{d}

Gb







∩





(

lim←−i∈IGi

)

∩



ϕ−1
c,d(Uc)×

∏

b∈I\{d}

Gb







 =

=
(

lim←−i∈IGi

)

∩





(

ϕ−1
c,d(Uc) ∩ ϕ−1

a,d(Ua)
)

×
∏

b∈I\{d}

Gb



 .

Hence, in fact, this sub-base is a base.

It is known that for any locally compact group the null-ideals of a left Haar measure

and a right Haar measure coincide, thus we can speak about null sets ([8, 442F ]).

From now on N will denote the null-ideal, i.e.

N = {H ⊆ G : µG(H) = 0}.

3. Null, but non-meager subgroups

Using ideas from [15], we will construct a null but non-meager subgroup in inverse

limits of countable many finite groups, and in second countable Lie-groups. First,

from Lemma 3.2 to Lemma 3.17, we will state lemmas so that we can restrict

ourselves to those sufficiently general cases. We will find an appropriate Lie group

or profinite quotient for arbitrary locally compact groups, and we will show that the

pull-back of a null but non-meager subgroup in that quotient is null and non-meager

in the original group.
4



Remark 3.1. Using ideas from [7], in the case of locally compact Polish groups

we could much more easily reduce the general case to the case of Lie groups and

profinite groups. Moreover, if considering only locally compact Abelian Polish

groups, then we only would have to construct null but non-meager subgroups in R,

countable product of finite groups and the p-adic integers.

After that, by Proposition 3.20 the profinite case is handled, and later there will be

a similar construction for the Lie groups (Proposition 3.23). Finally we summarize,

and state our main result, Theorem 3.28.

Recall the following lemma [17, Thm. 1.6.1 ].

Lemma 3.2. (Gleason-Yamabe theorem, stronger version). Let G be a locally

compact group. Then there exists an open subgroup G′ of G such that, for any

open neighborhood U of the identity in G′, there exists a compact normal subgroup

LU ⊆ U of G′ such that G′/LU is a Lie group.

We will also make use of the following lemma [9, Lemma 1.6.].

Lemma 3.3. Let G be a locally compact group. Suppose that N1, N2, . . . , Nk are

closed normal subgroups, such that each for each i, G/Ni is a Lie group. Then

G/(N1 ∩N2 ∩ · · · ∩Nk) is a Lie group.

From now on unless otherwise stated ϕC always denotes the canonical projection

from G onto G/C, where C is a compact normal subgroup.

Definition 3.4. Suppose that G is a topological group. Then Ge denotes the

connected component of the identity.

Lemma 3.5. Let G be a locally compact group, and N,L ⊳ G be compact normal

subgroups, such that G/N , G/L are Lie groups, and assume that G/N has λ-many

connected components, i.e. |G/N : (G/N)e| = λ. Then there is a finite number

k < ω, such that G/(L ∩N) has ≤ kλ-many connected components.

Proof. By Lemma 3.3, G/(L ∩ N) is a Lie group. Now, applying the second

isomorphism theorem for topological groups (see [1, Thm. 1.5.18.]),

(G/(L ∩N)) / (L/(L ∩N)) ≃ G/L,

and

(G/(L ∩N)) / (N/(L ∩N)) ≃ G/N

are Lie groups, thus replacing G by G/(L∩N), (and N ,L by N/(L∩N), L/(L∩N),

respectively) we can assume that L ∩N = {e}.

Since N is a compact subgroup, by Cartan’s theorem [12, Thm. 20.12] it is a

Lie group too. By its compactness, N has only finitely many (say, n) connected

components. We define k = n, and we will show that the open subgroup

H := ϕ−1
N ((G/N)e) ≤ G has at most k connected components. (2)
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(N ⊳ H , and ϕN |H : H → (G/N)e is a surjective open continuous homomorphism,

thus H/N ≃ (G/N)e.) Provided that (2) is true, it can be seen from the following

that we are done. For any surjective homomorphism ψ : G1 → G2 between the

groups G1, G2 and the subgroup X ≤ G2

|G2 : X | = |G1 : ψ−1(X)|,

since the preimage of the disjoint cosets gX , g′X are the disjoint sets ψ−1(gX) =

ψ−1(g)ψ−1(X), ψ−1(g′X) = ψ−1(g′)ψ−1(X), which are cosets of ψ−1(X). Thus

the index of H

|G : H | = |ϕ−1
N (G/N) : ϕ−1

N ((G/N)e)| = |G/N : (G/N)e| = λ.

From which it clearly follows that the index |G : He| = λ · k. But H ≤ G is an

open subgroup of a Lie group, therefore H is the union of some cosets of Ge, and

Ge = He, thus |G : Ge| = λ · k.

Turning to the proof of (2), let ϕ′
N denote the restriction of ϕN to H , i.e. ϕ′

N =

ϕN |H : H → (G/N)e is a surjective open continuous homomorphism. Recall that

H ≤ G is open, thus H is a Lie group itself, thus He is open in H .

It is obvious that NeHe is a connected open subset of H containing He (continuous

image of the connected set Ne×He). Therefore it is the component of the identity,

i.e. NeHe = He. This implies that if N =
⋃

i<k niNe, then

⋃

i<k

niHe =
⋃

i<k

niNeHe =

(

⋃

i<k

niNe

)

He = NHe = (ϕ′
N )−1(ϕ′

N (He)) (3)

and that is a clopen subset of H (the union of left cosets of the open subgroup He),

so is its complement. But NHe is the preimage of the set ϕN (He) = ϕN (NHe)

under ϕN , thus its complement

H \NHe =
(

ϕ′−1
N (H/N)

)

\
(

ϕ′−1
N (ϕ′

N (NHe))
)

= ϕ′−1
N ((H/N) \ (ϕN (NHe))))

is the preimage of (H/N) \ (ϕ′
N (He)). Therefore the clopen sets NHe and its

complement is mapped by ϕ′
N onto the disjoint open sets ϕ′

N (He) ⊆ H/N and its

complement. But H/N ≃ (G/N)e is connected, thus at least one of these images

is empty. Now He 6= ∅, thus ϕ′
N (NHe) 6= ∅, which means that H \ NHe = ∅, i.e.

H = NHe. From this H = NHe =
⋃

i<k niHe, i.e. H is the union of (at most) k

connected open subsets. �

Definition 3.6. We call a locally compact group G an FL-group, if for every

neighborhood U ⊆ G of the identity, there is a compact normal subgroup NU ⊆ U

of G, s.t. G/NU is a Lie group that has finitely many connected components.

Now we can deduce the following.

Lemma 3.7. Let G be a locally compact group. Then there is an open FL subgroup

H.
6



Proof. Choose an arbitrary G′ ≤ G which is given by Lemma 3.2, and let K ⊳ G′

be a compact normal subgroup, such that G′/K is a Lie group. Let ϕK : G′ →

G′/K denote the canonical projection. Then, since G′/K is a Lie group, (G′/K)e

is open, thus H := ϕ−1
K ((G′/K)e) is open in G′. But G′ is open in G, hence H is

open in G.

First, we will check that H satisfies the conclusion of Lemma 3.2 (i.e. for every

open set U (e ∈ U ⊆ H) there exists a compact normal subgroup LU ⊳ H , such

that LU ⊆ U , and H/LU is a Lie group).

Let U ⊆ H be an open neighborhood of the identity. Then there is a compact

normal subgroup LU ⊳ G′, such that LU ⊆ U and G′/LU is a Lie group. Then

LU ⊳ H ≤ G′ is obviously a normal subgroup of H . But if ϕLU
: G′ → G′/LU

denotes the canonical projection, using that H ⊆ G′ is open, and ϕLU
is an open

mapping, ϕLU
(H) = H/LU ≤ G′/LU is an open subgroup of a Lie group, thus

H/LU is a Lie group.

Let NU = K ∩ LU . Then H/(K ∩ LU ) is a Lie group by Lemma 3.3, and since

H/K = (G′/K)e is connected, using Lemma 3.5 we obtain that H/(K ∩ LU ) has

finitely many connected components. Thus choosing NU = K ∩ LU works. �

Our plan is to take the subgroup H given by the previous lemma, and for an

appropriately choosen compact normal subgroup L ⊳ H we will construct a null

but non-meager subgroup S ≤ H/L. Then at first we would like to ensure that

the preimage of S is also non-meager (in H), and hence it is also non-meager in G.

That is what the following lemmas will be about.

We will need lemmas which are stated in terms of inverse limits.

For an arbitrary topological group G, let (C,�) denote the directed system of

compact normal subgroups, with the reversed inclusion relation, that is,

C = {N ⊳ G : N is compact },

M � N ⇐⇒ M ≥ N,

Now consider the following inverse system of topological groups.

({G/N : N ∈ C}, {ϕM,N : G/N → (G/N)/(M/N) ≃ G/M : M � N ∈ C}) .

Definition 3.8. Let Ga (a ∈ I) be an inverse system of topological groups ((I,�)

is a directed set), and let J ⊆ I be a directed subset (wrt. �). Then let πI→J :

lim←−a∈IGa → lim←−a∈JGa denote the natural projection

(xa)a∈I 7→ (xa)a∈J ,

which is obviously a continuous homomorphism. Indeed, if we consider the projec-

tion on the whole product
∏

a∈I Ga, then it is continuous, and πI→J is a restriction

of it to the inverse limit. And clearly

Ker(πI→J ) = (lim←−a∈IGa) ∩





∏

a∈J

{eGa
} ×

∏

a∈I\J

Ga



 .

.
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These projections may not be surjective.

Fix a locally compact FL-group G. Let (N,�) denote the following subsystem of

the system C (of compact normal subgroups of G)

N = {N ⊳ G : N ∈ C ∧G/N is a Lie group with finitely many connected components}

N �M ⇐⇒ N ≥M.

Notice that, by Lemmas 3.3, and 3.5 we obtain the following lemma which we will

make use of later.

Lemma 3.9. Let G be a locally compact group, and assume that there exists a

compact normal subgroup N ≤ G such that G/N is a Lie group with finitely many

connected components. Then N is directed wrt. the reversed inclusion relation.

Lemma 3.10. Let G be a topological group, and let M ⊆ C be a directed subsystem

of compact normal subgroups of G (i.e. for each M,M ′ ∈M there is an M ′′ ∈M

with M,M ′′ ≥M ′′), and set L :=
⋂

M∈M
M . Then

• the mapping

ψ : G→ lim←−M∈MG/M

g 7→ (gM)M∈M

is a surjective open continuous homomorphism, and its kernel is L,

• moreover, the induced mapping ψ : G/L → lim←−M∈MG/M is an isomor-

phism.

Proof. First, ψ is obviously a continuous homomorphism. For the surjectivity, let

(gαMα)Mα∈M ∈ lim←−M∈MG/M . Since the bonding maps G/M → G/M ′ (M ≤M ′)

are the canonical projections, the fact that (gαMα)Mα∈M is in the inverse limit

means that

if Mα ≥Mβ, then gαMα ⊇ gβMβ (4)

From that it can be easily seen that the system {gαMα : Mα ∈ M} ⊆ P(G) of

compact sets has the finite intersection property.

Now, there is an element g ∈
⋂

Mα∈M
gαMα 6= ∅, then it can be easily seen that

ψ(g) = (gMα)Mα∈M = (gαMα)Mα∈M.

The kernel of ψ is L indeed, since

Ker(ψ) = ψ−1((M)M∈M) =
⋂

M∈M

M = L.

For the openness of ψ, since ψ is a homomorphism between topological groups,

we only have to check that for each open set U containing the identity ψ(U) is a

neighborhood of the identity. Let U be an open set containing the identity, and,

since ψ(U) = ψ(UL) (recall that Ker(ψ) = L), we can assume that UL = U (the

set V X is open for arbitrary X ⊆ G if V ⊆ G is open). From UL = U follows

L ⊆ U .
8



Now, using the compactness of the M -s, we will show that at least one of the M -s

must be contained in U . Indeed, if the M \ U -s are nonempty compact sets (for

all M ∈ M), then because of the directedness, the system {M \ U : M ∈ M} of

compact sets has the finite intersection property, thus

∅ 6=
⋂

M∈M

(M \ U) =

(

⋂

M∈M

M

)

\ U = L \ U = ∅.

Thus there is an M0 ∈ M with M0 ⊆ U . Then by some standard compactness

argument, there is an open U ′ with e ∈ U ′ such that

U ′M0 ⊆ U. (5)

Now we will check that the basic open set

B =
(

lim←−M∈MG/M
)

∩



{xM0 : x ∈ U ′} ×
∏

M∈M\{M0}

G/M





is contained in ψ(U). Fix a b ∈ B. By the surjectivity of ψ, b = ψ(g) for some

g ∈ G, so

πM→{M0}(ψ(g)) = gM0 ∈ {xM0 : x ∈ U ′},

and then g ∈ gM0 ⊆ U ′M0 ⊆ U by (5), i.e. g ∈ U . Hence

b = ψ(g) ∈ ψ(U),

and

ψ(U) ⊇ B,

thus ψ is an open mapping.

For our second claim, observe that for any open subset U ⊆ G/L

ψ(U) = ψ(ϕ−1
L (U))

is open by openness of ψ, and the continuity of the canonical projection ϕL : G→

G/L, thus ψ is a topological group isomorphism, indeed.

�

Corollary 3.11. Let G be a locally compact FL group.

(i) Then the mapping

g 7→ (gN)N∈N

is an isomorphism, hence

G ≃ lim←−N∈NG/N.

(ii) For any directed subsystem M of N,

the projection πN→M is a surjective open mapping. (6)
9



Proof.

For (i) We only have to check the conditions of Lemma 3.10:

We need N = {N ⊳ G : N is compact, G/N is a Lie group with finitely many

connected components } to be directed, but (3.9) stated that this is true.
⋂

N∈N
N = {e}:

For any g ∈ G, if g 6= e, then there is an open neighborhood U of the identity

such that g /∈ U . Then G/NU is a Lie group with finitely many components, i.e.

NU ∈ N.

Our second claim (ii) easily follows from that πN→M is the composition of the

inverse of the homeomorphism ϕ : G → lim←−N∈NG/N (g 7→ (gN)N∈N), and the

aforementioned open projection ψM : G→ lim←−M∈MG/M (g 7→ (gM)M∈M):

πN→M = ψM ◦ ϕ
−1.

�

Now, we can turn to a key lemma:

Lemma 3.12. Let ({Gα : α ∈ I}, {ϕα,β : α � β ∈ I}) be an inverse system of

second countable topological groups.

Assume that a countable subset J0 ⊆ I of the indexing poset is given, and let Vk

(k ∈ ω) be dense open sets in lim←−α∈IGα. Assume that for any directed subsystem

H ⊆ I the projection

πI→H : lim←−i∈IGi → lim←−i∈HGi is surjective. (7)

Then there is a countable directed subsystem J ⊆ I, J0 ⊆ J , and a sequence (V ′
k)k∈ω

of dense open sets in lim←−α∈JGα, such that for each k ∈ ω

π−1
I→J (V ′

k) ⊆ Vk. (8)

Remark 3.13. Condition (7) could be easily dropped, but in our applications

this condition will always hold, thus for simplicity, and for avoiding confusions we

assume it.

Proof.

We can assume that J0 6= ∅ (by choosing an arbitrary α ∈ I to be an element of

J0). We will find a countable set J such that J0 ⊆ J ⊆ I, J is directed, and closed

under the following countably many operations. For each α ∈ I fix a countable

base Bα = {Bα
1 , B

α
2 , . . . , } consisting of nonempty open subsets of Gα. Recall that

there is a base of lim←−α∈IGα consisting of sets of the form

Dα
n :=



Bα
n ×

∏

β∈I\{α}

Gβ



 ∩ lim←−γ∈IGγ (n ∈ ω, α ∈ I).

10



(Since Bα
n -s are nonempty open sets, by (7) the Dα

n -s are also nonempty.) Now for

every n,m ∈ ω we define the following operation, which is a choice function.

fn,m : I → I : α 7→ β s.t. ∃k : Dβ
k ⊆ Vn ∩D

α
m

(such a β exists because each Vn is a dense open set). And let g : I × I → I be

another choice function such that α, β � g(α, β), i.e. a subset of I closed under the

function g is a directed subsystem. Then, take the closure J of J0 under the fn,m-s

and g. Then, because J is closed under g, it is a directed system.

Similarly to the Dβ
n-s, we define nonempty basic open sets in the limit lim←−γ∈JGγ

as follows.

Eα
n :=



Bα
n ×

∏

β∈J\{α}

Gβ



 ∩ lim←−γ∈JGγ 6= ∅ (for n ∈ ω, α ∈ J), (9)

which are nonempty because Bα
n -s were nonempty, and using (7) with H = {α} for

each fixed α ∈ J .

We have the directed system J ⊆ I, and for each n,m ∈ ω, and α ∈ J , since J is

closed under the function fn,m, there is a k = kn,m,α ∈ ω, and β = βn,m,α ∈ J such

that

D
βn,m,α

kn,m,α
⊆ Vn ∩D

α
m. (10)

Next we claim that for each n,m ∈ ω, and α ∈ J , if kn,m,α ∈ ω, and βn,m,α ∈ J

are what (10) gives, then

∅ 6= E
βn,m,α

kn,m,α
⊆ Eα

m (11)

and

D
βn,m,α

kn,m,α
= π−1

I→J(E
βn,m,α

kn,m,α
) ⊆ Vn. (12)

For (11) first let k = kn,m,α ∈ ω, and β = βn,m,α ∈ J . E
βn,m,α

kn,m,α
= Ek

β is nonempty

by (9). Reformulating the condition Dβ
k ⊆ D

α
m (following from (10)), we get that

[

(xγ)γ∈I ∈ lim←−γ∈IGγ ∧ xβ ∈ B
β
k

]

⇒ (xγ)γ∈I ∈ D
α
m (⇐⇒ xα ∈ B

α
m ).

Now notice that by our assumptions, the projection πI→J : lim←−γ∈IGγ → lim←−γ∈JGγ

is surjective, thus for a fixed element (xγ)γ∈J in the inverse limit of the smaller

system there is an element (yγ)γ∈I ∈ lim←−γ∈IGγ with (xγ)γ∈J = πI→J ((yγ)γ∈I).

Then

(xγ)γ∈J ∈ E
β
k ⇒ xβ ∈ B

β
k ⇒ yβ ∈ B

β
k ⇒ yα ∈ B

α
m ⇒ xα ∈ B

α
m ⇒ (xγ)γ∈J ∈ E

α
m.

This clearly yields (11), as desired.

For (12), D
βn,m,α

kn,m,α
⊆ Vn is true by (10), we only have to check that D

βn,m,α

kn,m,α
=

π−1
I→J(E

βn,m,α

kn,m,α
). But for arbitrary l ∈ ω and δ ∈ J

Dδ
l = π−1

I→J (Eδ
l ),

since for (xγ)γ∈I ∈ lim←−i∈IGi

(xγ)γ∈I ∈ D
δ
l ⇐⇒ xδ ∈ B

γ
l ⇐⇒

11



⇐⇒ (xγ)γ∈J = πI→J ((xγ)γ∈I) ∈ Eδ
l .

Finally, set V ′
n =

⋃

m∈ω,α∈J E
kn,m,α

βn,m,α
. Since m ranges over ω and α over J , using

(11) V ′
n is a dense open set. From (12)

π−1
I→J (V ′

n) =
⋃

m∈ω,α∈J

π−1
I→J (E

βn,m,α

kn,m,α
) =

⋃

m∈ω,α∈J

D
βn,m,α

kn,m,α
,

and using (10),
⋃

m∈ω,α∈J

D
βn,m,α

kn,m,α
⊆ Vn,

i.e. (8) holds as desired.

�

This lemma has the following consequence.

As before if the locally compact group G is given, for any compact normal subgroup

C ⊳ G, ϕC : G→ G/C denotes the canonical projection.

Lemma 3.14. Assume that G is a locally compact FL group, and let

N = {N ⊳ G : N ∈ C ∧ G/N is a Lie group with finitely many connected components}.

Let a countable set J0 = {Ni : i ∈ ω} ⊆ N be given. Assume that R ⊆ G

is co-meager. Then there exist a countable set J ⊇ J0, J ⊆ N, and a compact

normal subgroup K ′ =
⋂

N∈JN of G, and a co-meager set R′ ⊆ G/K ′, such that

ϕ−1
K′ (R′) ⊆ R, and G/K ′ is an inverse limit of countable many second countable

Lie groups, thus is a Polish group.

Proof.

Recall that by Corollary 3.11, G ≃ lim←−N∈NG/N , where ϕ : G → lim←−N∈NG/N

denotes the canonical isomorphism (i.e. g 7→ (gN)N∈N).

Lemma 3.10 states that for each directed subsystem M ⊆ N the projection πN 7→M

is also surjective, and open.

First, we will work in lim←−N∈NG/N .

Let R̂ = ϕ(R) denote the corresponding co-meager subset of lim←−N∈NG/N . We

know that the G/N -s (N ∈ N) are Lie groups having finitely many connected

components, thus are second countable.

Let (Vm)m∈ω be a sequence of dense open sets in lim←−N∈NG/N such that
⋂

m∈ω Vm ⊆

R̂. We will apply Lemma 3.12 with I = I, J0 = J0 and the sequence (Vm)m∈ω,

for what we only have to check (7). Recall that, by Lemma 3.10, for each directed

subsystem M ⊆ N, the projection πN 7→M is surjective.

Lemma 3.12 gives a countable directed subset J ⊆ I (J0 ⊆ J), set J = J . Also by

Lemma 3.12 there is a sequence (V ′
m)m∈ω of dense open sets in lim←−N∈JG/N such

that

π−1
N→J(V ′

m) ⊆ Vm (∀m ∈ ω).
12



Hence, if we set the co-meager set R̂′ :=
⋂

m∈ω V
′

m then clearly

π−1
N→J(R̂′) = π−1

N→J

(

⋂

m∈ω

V ′
m

)

=
⋂

m∈ω

π−1
N→J(V ′

m) ⊆
⋂

m∈ω

Vm ⊆ R̂.

But lim←−N∈JG/N is a quotient of lim←−N∈NG/N , since we saw that the projection

πN→J is surjective and open. Thus, by the first isomorphism theorem for topological

groups (see [1, Lemma 1.5.13.]) lim←−N∈JG/N is isomorphic to the topological group
(

lim←−N∈NG/N
)

/Ker(πN→J), i.e. it is a quotient of
(

lim←−N∈NG/N
)

. Let L :=

Ker(πN→J), and

τL :
(

lim←−N∈NG/N
)

→
(

lim←−N∈NG/N
)

/L

denote the projection, let ψ :
(

lim←−N∈NG/N
)

/L→ lim←−N∈JG/N denote the isomor-

phism for which

πN→J = ψ ◦ τL. (13)

Now we have a co-meager set R̂′ with π−1
N→J

(R̂′) ⊆ R̂ in lim←−N∈JG/N .

Set R̂′′ = ψ
−1

(R̂′), by (13) that is a co-meager set such that τ−1
L (R̂′′) ⊆ R̂. Now

we have a normal subgroup L = Ker(πN→J) in lim←−N∈NG/N , such that there is a

co-meager R̂′′ in the quotient
(

lim←−N∈NG/N
)

/L, where

τ−1
L (R̂′′) ⊆ R̂ = ϕ(R). (14)

We only have to pull pack this construction to G by ϕ, and check that the normal

subgroup L = Ker(πN→J) is a compact normal subgroup, or equivalently its pull-

back ϕ−1(Ker(πN→J)) is compact.

Since

Ker(πN→J) =





∏

N∈J

{N} ×
∏

N∈N\J

G/N



 ∩ lim←−N∈NG/N,

we have that

ϕ−1(Ker(πN→J)) = ϕ−1





∏

N∈J

{N} ×
∏

N∈N\J

G/N



 =
⋂

N∈J

N,

that is indeed a compact subgroup.

Let K ′ = ϕ−1(Ker(πN→J)) =
⋂

N∈J
N . Now, since ϕ : G → lim←−N∈NG/N is an

isomorphism, which maps K ′ onto L = Ker(πN→J), there is an induced isomor-

phism ϕ : G/K ′ →
(

lim←−N∈NG/N
)

/L. Now it is easy to check that if we set

R′ = ϕ−1(R̂′′), then by (14)

ϕK′(R′) ⊆ R.

Finally, it remains to check that

G/K ′ ≃
(

lim←−N∈NG/N
)

/Ker(πN→J) ≃ lim←−N∈JG/N

13



is an inverse limit of countably many Polish spaces. We know that lim←−N∈JG/N is

an inverse limit of countably many Lie groups, each having finitely many connected

components, from which each G/N is a Polish group. Therefore lim←−N∈JG/N is

an inverse limit of countably many Polish groups, i.e. it is a closed subset of the

product of countably many Polish groups, thus is Polish.

�

Lemma 3.15. Assume that G is a locally compact FL group. Let a countable set

J0 ⊆ N be given which is directed. Set K :=
⋂

N∈J0
N , and let M ⊆ G/K be a

non-meager subset (in the factor topology). Then ϕ−1
K (M) is non-meager in G.

Proof. On the contrary, assume that the set R = G \ϕ−1
K (M) is co-meager. Then

(by Lemma 3.14) there is a compact normal subgroup K ′ ≤ K, and co-meager set

R′ ⊆ G/K ′ , such that G/K ′ is Polish, and

ϕ−1
K′ (R

′) ⊆ R,

i.e.

ϕ−1
K′ (R

′) ∩ ϕ−1
K (M) = ∅.

Then clearly (in G/K ′)

R′ ∩ ϕ−1
K/K′(M) = ∅. (15)

But

ϕK/K′ : G/K ′ → G/K

is a surjective open mapping between Polish spaces (since by Lemma 3.10, G/K ≃

lim←−N∈J0
G/N is the inverse limit of countably many Polish spaces, thus is Pol-

ish), and according to [2, Lemma 2.6 ] it maps a co-meager set onto a co-meager

set. Thus ϕK/K′(R′) ⊆ G/K is co-meager. But clearly (using (15) and G/K ′ =

ϕ−1
K/K′(G/K))

ϕK/K′(R′) ∩M = ∅,

a contradiction. �

We will need that if H ≤ G is an open subgroup, S ≤ H/L (with some compact

L ⊳ H) is null with respect to the Haar measure of H/L, then ϕ−1
L (S) is null in H .

(That would imply that it is null in G, since for an open subgroup H the restriction

of the Haar measure µG|H is a Haar measure of H .)

The following lemma can be found [10, Sec.63, Theorem C ].

Lemma 3.16. Let G be a locally compact group, and µ be a left-invariant Borel

measure on it, which is positive on nonempty open sets, and finite on compact sets,

and let K ⊳ G be a compact normal subgroup. Then the push-forward measure

B 7→ µ(ϕ−1
K (B)) is a left-invariant Borel measure on G/K, which is positive on

nonempty open sets, and finite on compact sets.

The following lemma is well-known, but for the sake of completeness we include a

proof:
14



Lemma 3.17. Let G be a locally compact group, and

µ : B(G)→ [0,∞]

a left Haar Borel measure on it and let K ⊳ G be a compact normal subgroup, ν

a left Haar Borel measure on G/K. Then ν is the same (up to a multiplicative

constant) as the push-forward of µ, i.e. there is a constant c > 0 such that for all

H ⊆ G/K Borel

cν(H) = µ(ϕ−1
K (H)).

Proof. By Lemma 3.16, the push-forward of µ is a left-invariant Borel measure on

G/K, which is positive on nonempty open sets, and finite on compact sets. Because

the left Haar measure is unique up to a positive multiplicative constant, we only

have to check the regularity of µ◦ϕ−1
K . Let B ⊆ G/K be a Borel subset, then, since

taking supremum is monotonic, and continuous image of a compact set is compact,

sup{µ(ϕ−1
K (C)) : C ⊆ B ⊆ G/K, C is compact} ≥

sup{µ(ϕ−1
K (ϕK(D))) : D ⊆ ϕ−1

K (B) ⊆ G is compact} =

sup{µ(DK) : D ⊆ ϕ−1
K (B) ⊆ G is compact} ≥

sup{µ(D) : D ⊆ ϕ−1
K (B) ⊆ G is compact}.

(The first inequality holds, because if D ⊆ ϕ−1
K (B) is compact, then ϕK(D) ⊆ B is

compact, and the equality is by ϕ−1
K (ϕK(D)) = DK.) And

sup{µ(D) : D ⊆ ϕ−1
K (B) ⊆ G is compact} = µ(ϕ−1

K (B))

by the regularity of µ. �

Recall that under a left Haar measure we mean the completion of a left Haar Borel

measure.

Corollary 3.18. Let G be a locally compact group, µ is a left Haar measure on G.

Suppose that K ⊳ G is a compact normal subgroup, ν is a left Haar measure on

G/K. If X ⊆ G/K is null wrt. ν, then ϕ−1
K (X) is null wrt. µ.

Proof. Let B ⊇ X be a null Borel set in G/K. Then, applying Lemma 3.17 for

the Borel measures µ|B(G) and ν|B(G/K) we obtain that (by the continuity of ϕK)

µ|B(G)(ϕ
−1
K (B)) = 0, hence

µ(ϕ−1
K (X)) ≤ µ(ϕ−1

K (B)) = 0.

�

Before the construction for profinite groups, and connected Lie groups, we will need

the following technical lemma about co-meager sets in compact metric spaces (the

lemma uses the idea of the well known characterization of co-meager sets in the

Cantor space, see [3, Thm. 2.2.4 ]).

Before stating the lemma, recall that in a metric space (X, d), the diameter of a

subset S ⊆ X is defined as follows

diam(S) = sup{d(s, s′) : s, s′ ∈ S}.
15



Lemma 3.19. Assume that (X, d) is a compact metric space, and let (Mi)i∈ω be

a sequence of finite sets, let R ⊆ X be a co-meager set.

Assume that the system of compact sets (Cp0p1...pi
)
p0p1p2...pi∈

∏

i

j=0
Mj
, (i ∈ ω) fulfills

the following conditions:

(1) |
⋂

i∈ω Cp0p1...pi
| = 1 for each p0p1 . . . pj · · · ∈

∏

j∈ω Mj,

(2) Cp0p1...pnpn+1
⊆ Cp0p1...pn

for each n ≥ 0 and Cp0p1...pnpn+1
,

(3) int(Cp0p1...pi
) 6= ∅ for each Cp0p1...pi

,

(4) for each Cp0p1...pi

Cp0p1...pi
=

⋃

j∈Mi+1

int(Cp0p1...pij).

Then there is an increasing sequence 0 = n0 < n1 < . . . ni < . . . of integers, and

an infinite sequence

r := (rj)j∈ω ∈
∏

j∈ω

Mj

such that for each sequence s = (sj)j∈ω ∈
∏

j∈ω Mj, if {i ∈ ω : s|[ni,ni+1) =

r|[ni,ni+1)]} is infinite, then
⋂

j∈ω Cs0s1...sj
⊆ R.

Proof. Let
⋂

k∈ω Uk be the intersection of dense open sets such that
⋂

k∈ω Uk ⊆

R. By replacing Uk with U0 ∩ U1 ∩ · · · ∩ Uk we can assume that (Uk)k∈ω is a

decreasing sequence. We construct the sequences (ni)i∈ω and (ri)i∈ω simultaneously

by induction on i as follows. Before the i+ 1-th step the initial segments 0 = n0 <

n1 < n2 < · · · < ni, and r0r1 . . . rni−1 are already defined, and we will choose ni+1,

and rni
rni+1 . . . rni+1−1 such that

Cp0p1...pni−1rni
rni+1rni+2...rni+1−1

⊆ Ui+1

for each p0p1 . . . pni−1 ∈
∏

j<ni
Mj .

(16)

First, we show that we can choose ni+1 and rni
rni+1 . . . rni+1−1 so that (16) holds.

Assume that n0, n1, n2, . . . , ni are defined. Now enumerate the set

{Cp0p1...pni−1
: p0p1 . . . pni−1 ∈

∏

j<ni

Mj} = {D1, D2, . . . , D|M0|·|M1|·|M2|·····|Mni−1|}.

For each Dl define the sequences rl = rl
1r

l
2 . . . r

l
hl

by induction on l, such that if

Dl = Cp0p1...pni−1
, then for the concatenation r1r2 . . . rl of the rj-s (j ≤ l)

Cp0p1...pni−1r1r2...rl ⊆ Ui+1. (17)

Before constructing the rj-s (j ≤ |M0| · |M1| · |M2| · · · · · |Mni−1|), we prove that if

we could manage to choose such rl-s, then setting

• ni+1 = ni + length(r1r2 . . . r|M0|·|M1|·|M2|·····|Mni−1|) , and

• rni
rni+1 . . . rni+1−1 = r1r2 . . . r|M0|·|M1|·|M2|·····|Mni−1|

16



would yield (16). Since for Dl = Cp0p1...pni−1
(2) in the conditions of the lemma

and (17) implies that

C
p0p1...pni−1r1r2...r

|M0|·|M1|·|M2|·····|Mni−1| ⊆ Cp0p1...pni−1r1r2...rl ⊆ Ui+1,

i.e. (16) holds indeed.

Turning to the construction of the rl-s, assume that r1, r2, . . . rl−1 are defined. If

Dl = Cp0p1...pni−1
, then, because

int(Cp0p1...pni−1r1r2...rl−1) 6= ∅

and Ui+1 is a dense open set, there is an x ∈ X , and an open ball

B(x, r) = {y ∈ X : d(x, y) < r} ⊆ Cp0p1...pni−1r1r2...rl−1 ∩ Ui+1.

Now we can use (4) from our assumptions, thus there is an rl
0 such that for the

open set V0 = int(Cp0p1...pni−1r1r2...rl−1rl
0
)

V0 ∩B
(

x,
r

2

)

6= ∅.

Similarly, by (4) of our conditions, there are infinite sequences rl
0, r

l
1, r

l
2, . . . , r

l
k, . . .

and V0, V1, . . . , where Vk = int(Cp0p1...pni−1r1r2...rl−1rl
0

rl
1
...rl

k
) such that

Vk ∩B(x,
r

2
) 6= ∅.

And using (1) (from the lemma) we know that

lim
k→∞

diam(Cp0p1...pni−1r1r2...rl−1rl
0

rl
1
...rl

k
) = 0,

thus there is an index k0 such that

diam(Vk0
) ≤ diam(Cp0p1...pni−1r1r2...rl−1rl

0
rl

1
...rl

k0

) ≤
r

4
,

from which

Cp0p1...pni−1r1r2...rl−1rl
0
rl

1
...rl

k0

⊆ B(x,
3r

4
),

thus

Cp0p1...pni−1r1r2...rl−1rl
0
rl

1
...rl

k0

⊆ B(x, r) ⊆ Ui+1.

This finishes the construction of (ni)i∈ω and (ri)i∈ω.

Now, as the ri-s, and ni-s are already constructed, we only have to check that for

any sequence (sj)j∈ω ∈
∏

j∈ω Mj if {j ∈ ω : r|[nj ,nj+1) = s|[nj ,nj+1)]} is infinite,

then
⋂

i∈ω Cs0s1...si
⊆ R. Fix such a sequence s = (sj)j∈ω .

If k ∈ {j ∈ ω : r|[nj ,nj+1) = s|[nj ,nj+1)]}, then, using (16):

Cs0s1...snk−1rnk
rnk+1rnk+2...rnk+1−1

⊆ Uk+1.

Thus, if x ∈
⋂

i∈ω Cs0s1...si
, k ∈ {j ∈ ω : r|[nj ,nj+1) = s|[nj ,nj+1)]} are fixed, then

x ∈ Cs0s1...snk+1−1
= Cs0s1...snk−1rnk

rnk+1rnk+2...rnk+1−1
⊆ Uk+1,

hence x ∈ Uk+1 for infinitely many k-s. But recall that the Uk-s form a decreasing

sequence, thus

x ∈
⋂

k∈ω

Uk ⊆ R.
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�

Proposition 3.20. Let G be the inverse limit of the following inverse system,

consisting of finite groups.

{Gi, ϕi,j : Gj → Gi, i ≤ j ∈ ω},

i.e.

G = {(gi)i∈ω : ∀j ϕj,j+1(gj+1) = gj} ≤
∏

j∈ω

Gj ,

where each |Gj+1|/|Gj | > 1. Then there exists a subgroup S ≤ G that is null but

non-meager.

Proof.

Let ϕi : G→ Gi denote the canonical projection. Since, by [14, Lemma 1.1.9 ], for

an arbitrary increasing sequence n1 < n2 < . . . of positive integers

lim←−i∈ωGi ≃ lim←−i∈ωGni
, (18)

we can assume that the sequence
(

mi =
|Gi|

|Gi−1|

)

1≤i∈ω

can grow as rapidly as we want. Later we will recursively thin out the sequence of

Gi-s. Another corollary of this lemma is that we can assume that G0 = {e} is the

trivial group. Define m0 = 1, thus from now dom(m) = ω.

For each g ∈ Gi−1 (i ≥ 1) fix an eumeration of the set

ϕ−1
i−1,i(g) = {g(1), g(2), . . . , g(mi)},

so that

e
(1)
Gi−1

= eGi
(19)

holds. For i ≥ 1 let G
(j)
i ⊆ Gi denote the set {g(j) : g ∈ Gi−1}, i.e. for each

g ∈ Gi−1 it contains exactly one element from ϕ−1
i−1,i(g), we have a partition of

Gi = ∪mi

j=1G
(j)
i . For the trivial group G0 define G

(1)
0 = {eG0

}.

Fixing these enumerations, each element of G can be uniquely identified with an

element of
∏

i∈ω{1, 2, . . . ,mi} in the following way. Let ψi : Gi → {1, 2, . . . ,mi}

denote the mapping

g 7→ k iff g ∈ G
(k)
i , (20)

i.e. for i ≥ 1 g = (ϕi−1,i(g))(k). Then consider the product
∏

i∈ω{1, 2, . . . ,mi}

with the product topology, and the mapping

ψ : lim←−i∈ωGi →
∏

i∈ω

{1, 2, . . . ,mi}

(gi)i∈ω 7→ (ψi(gi))i∈ω .

Notice that for eG = (eGi
)i∈ω ∈ G (19) implies

ψ(eG) = (1)i∈ω (21)
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Claim 3.21. The mapping ψ : G→
∏

j∈ω{1, 2, . . . ,mj} is a homeomorphism. Fur-

thermore, considering G with the probability left Haar measure µG (i.e. µG(G) = 1),

and the product space with the canonical measure ν, i.e.

ν({k0} × {k1} × . . . {ki} ×
∏

j>i

{1, 2, . . . ,mj}) =
1

m0
·

1

m1
· · · · ·

1

mi
,

ψ is measure preserving.

Proof. It is straightforward to check that ψ is a bijection.

Fix an element g ∈ Gi of the i-th group and the corresponding basic set

B =



{g} ×
∏

j∈ω,j 6=i

Gj



 ∩ lim←−j∈ωGj

in lim←−j∈ωGj .

Then consider the following sequence

hi = g, hi−1 = ϕi−1,i(g), . . . , h0 = ϕ0,i(g)

from which we can define kj-s (j ≤ i, 1 ≤ kj ≤ mj) such that hj = h
(kj)
j−1 . Then one

can easily see that

ψ(B) = {k0} × {k1} × · · · × {ki} ×
∏

j>i

{1, 2, . . . ,mj}.

As ψ is an open bijection onto a compact set, it is a homeomorphism.

It is left to show that ψ is measure preserving. Recall that ϕi : G = lim←−j∈ωGj → Gi

is the canonical projection. For the basic open set

B = {l0} × {l1} × {l2} × · · · × {li} ×
∏

j>i

{1, 2, . . . ,mj},

let gi ∈ Gi be such that

ψ−1(B) =



{gi} ×
∏

j∈ω, j 6=i

Gj



 ∩ lim←−j∈ωGj = ϕ−1
i (gi).

Now, observe that if gi, hi ∈ Gi, and h ∈ G is such that ϕi(h) = hi, then hϕ−1
i (gi) =

ϕ−1
i (gihi), i.e. sets of the form ϕ−1

i (x) (x ∈ Gi) are translates of each other. Using

this, by the left-invariance of µG

µG(ϕ−1
i (gi)) =

1

|Gi|
=

1

m0
·

1

m1
· · · · ·

1

mi
= ν(B).

Thus, we got that ν and µG ◦ ψ
−1 coincide on sets of the form {k0} × {k1} ×

. . . {ki} ×
∏

j>i{1, 2, . . . ,mj} (i.e. on basic open sets), from which they coincide

on the generated ring, since every finite union can be written as a disjoint union.

Now, from [10, Sec. 13, Thm A ], ν and µG ◦ψ−1 coincide on the generated σ-ring,

that is the σ-algebra of the Borel sets, since the whole product
∏

j∈ω{1, 2, . . . ,mj}

was contained in the ring. �
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For an arbitrary set X , let P(X) denote the power set of X . Now fix an i ∈ ω. We

define the following operations:

Fi : P(Gi)→ P(Gi) : H 7→ HH ∪ (HH)−1

Gi : P(Gi)→ P(Gi) : {g
(j1)
1 , g

(j2)
2 , . . . , g(jn)

n } 7→ {g(jk) : g ∈ Gi−1, k ≤ n}.

So Gi(H) is the minimal cover of H by the union of sets of the form G
(j)
i .

It is obvious that for H ⊆ Gi we have

|Fi(H)| ≤ 2|H |2

and

|Gi(H)| ≤ |H ||Gi−1|,

thus

|Gi ◦ Fi(H)| ≤ 2|H |2|Gi−1|. (22)

From these inequalities it can be easily seen that for each H ⊆ Gi there is an upper

bound for |(Gi ◦ Fi)
j(H)| depending only on |H |, |Gi−1|, and j.

Now, for all i, j we will define sets Bj
i ⊆ {1, 2, . . .mi} such that

if k, k′ ∈ Bj
i ⇒ G

(k)
i ·G

(k′)
i ⊆ ∪{G

(l)
i : l ∈ Bj+1

i } (23)

and

if k ∈ Bj
i ⇒

(

G
(k)
i

)−1

⊆ ∪{G
(l)
i : l ∈ Bj+1

i }. (24)

Let A0
i = Gi({eGi

}) ⊆ Gi, and define Aj
i = (Gi ◦ Fi)

j(A0) for each j ≤ i, and let

Ai+1
i = Gi. For every j, as Aj

i is the union of sets of the form G
(k)
i , let

Bj
i = {k : k ≤ mi, G

(k)
i ⊆ Aj

i} ⊆ {1, 2, . . . ,mi} (25)

(Bi
j stores the information: which elements of the partition Gi = G

(1)
i ∪G

(2)
i ∪· · ·∪

G
(mi)
i are contained in Aj

i , and Bj
i = {1, 2, . . . ,mi} holds for each j > i). By the

construction of the Aj
i -s,

Aj
iA

j
i ⊆ A

j+1
i , (26)

and

(Aj
i )−1 ⊆ Aj+1

i . (27)

Moreover, this and eGi
∈ A0

i implies that for each j we have eGi
∈ Aj

i , hence

Aj
i ⊆ A

j+1
i (j ∈ ω). (28)

Thus it is straightforward to check that (25) implies that Bj
i -s satisfy (23) and (24),

and

Bj
i ⊆ B

j+1
i (j ∈ ω). (29)

Next, we prove that by thinning out the sequence of the groups, we can assume

that

|Bi
i |i

2 ≤ mi. (30)

(Recall that by (18), thinning out the sequence of the groups yields the same

topological group.)
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Claim 3.22. If the ω-type inverse system of finite groups H0 = {e}, H1, H2, . . . is

given (where each Hi is a surjective homomorphic image of Hi+1, |Hi+1|/|Hi| > 1),

then one can construct a subsequence (Gi = Hni
)i∈ω (where n0 = 0), such that

|Bi
i |i

2 ≤ mi holds with the Bj
i -s and mi-s defined for the system (Gi)i∈ω.

Proof. The recursion goes as follows. Let n0 = 0, and if n0, n1, . . . , ni−1 are

defined, then recall that for any j ≤ i there is an upper bound

d ≥ |Aj
i | = |(Gi ◦ Fi)

j({e})|, (31)

where d depends only on |Gi−1| = |Hni−1
| and j, no matter what Gi is (by (22)).

Thus we can choose ni so that

di2 ≤
|Hni
|

|Hni−1
|

(32)

holds. Then, if Gi = Hni
, using (32), (31) and the equality |Ai

i| = |B
i
i ||Gi−1|

mi =
|Gi|

|Gi−1|
=
|Hni
|

|Hni−1
|
≥ di2 ≥ |Ai

i|i
2 ≥ |Bi

i |i
2

thus (30) holds, indeed. �

Now we can construct the desired subgroup. Fix a non-principal ultrafilter U on ω.

Define the subset S′ ⊆
∏

i∈ω{1, 2, . . . ,mi} as follows. For each t ∈
∏

i∈ω{1, 2, . . . ,mi}

t ∈ S′ ⇐⇒ ∃n : {i ∈ ω : ti ∈ B
n
i } ∈ U .

Let S = ψ−1(S′). We have to check that

(i) S is a subgroup.

For g = (gi)i∈ω ∈ S, let s = ψ(g) ∈
∏

i∈ω{1, 2, . . . ,mi} (which means that

g = (gi)i∈ω g
(si+1)
i = gi+1, ∀i ∈ ω

by (20), where we defined the ψi-s). Then obviously

g−1 = (g−1
i )i∈ω ,

and letting s′ = ψ(g−1), again from the definition of ψi-s

(g−1
i−1)(s′

i) = g−1
i . (33)

Choose a positive integer ns such that Us = {i ∈ ω : si ∈ B
ns

i } ∈ U . Now, for

i ∈ ω (using g
(si)
i−1 = gi together with (25), then (26), finally (33) and (25))

i ∈ Us ⇐⇒ si ∈ B
ns

i ⇐⇒ gi ∈ A
ns

i ⇒ g−1
i ∈ Ans+1

i ⇐⇒ s′
i ∈ B

ns+1
i ,

which means that ns + 1 and Us witness that s′ ∈ S′, i.e. g−1 ∈ S.

In order to show that S is closed under multiplication, let h ∈ S be another element,

and t = ψ(h) (i.e. h = (hi)i∈ω, where hi ∈ Gi, h
(ti+1)
i = hi+1), let nt denote a

positive integer for which Ut = {i : ti ∈ Bnt

i } ∈ U , and let n = max{ns, nt},

U = Us ∩ Ut. Suppose that gh = (gihi)i∈ω is represented by the sequence of

integers ψ(gh) = (vi)i∈ω . Then by (28)

Ans

i , Ant

i ⊆ A
n
i ,
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thus for any i ∈ U

gi, hi ∈ A
n
i .

Using (26) we conclude that for i ∈ U gihi ∈ A
n+1
i holds, and hence vi ∈ B

n+1
i .

Thus n+ 1 and U witness that gh ∈ S.

(ii) S is null.

Since the fixed bijection ψ between G and
∏

i∈ω{1, 2, . . . ,mi} is a measure preserv-

ing homeomorphism, we can work in this product space, and it is enough to prove

that S′ is null.

S′ ⊆
⋃

n∈ω

{s : {k ∈ ω : sk ∈ B
n
k } is infinite} =

⋃

n∈ω

⋂

j∈ω

⋃

k≥j

{s : sk ∈ B
n
k }.

By σ-additivity, showing that for abitrary fixed n the set
⋂

j∈ω

⋃

k≥j{s : sk ∈ B
n
k }

is null will suffice.

Recall that if l ≤ l′, then (by (29)) Bl
k ⊆ Bl′

k , and by (30) |Bk
k |k

2 ≤ mk, hence

ν({s : sk ∈ Bk
k}) =

|Bk
k |

mk
≤ 1

k2 . So if k ≥ n, then

ν({s : sk ∈ B
n
k }) ≤

1

k2
.

Then, for arbitrary n, i if i ≥ n,

ν





⋂

j∈ω

⋃

k≥j

{s : sk ∈ B
n
k }



 ≤ ν





⋃

k≥i

{s : sk ∈ B
n
k }



 ≤
∞
∑

k=i

1

k2
.

Thus letting i tend to infinity we obtain

ν





⋂

j∈ω

⋃

k≥j

{s : sk ∈ B
n
k }



 = 0.

(iii) S is not meager.

We work in the product space
∏

i∈ω{1, 2, . . . ,mi} again, i.e. we prove that S′ is

of second category. Let R be a co-meager set in
∏

i∈ω{1, 2, . . . ,mi}, we will prove

that S′ ∩R is nonempty.

Since X =
∏

i∈ω{1, 2, . . . ,mi} is a Polish space, thus there is a compatible complete

metric d. The sets of the form

Cp0p1p2...pi
= {p0} × {p1} × · · · × {pi} ×

∏

j∈ω,j>i

{1, 2, . . . ,mj}

are compact open sets, and for each infinite sequence (pi)i∈ω
⋂

j∈ω

Cp0p1p2...pj
= {(pi)i∈ω},

therefore we can apply Lemma 3.19 for Mj = {1, 2, 3 . . . ,mj} (j ∈ ω): There is an

increasing sequence 0 = n0 < n1 < n2 < . . . , and an r ∈
∏

i∈ω{1, 2, . . . ,mi} such

that for any s ∈
∏

i∈ω{1, 2, . . . ,mi} if

{j : s|[nj ,nj+1) = r|[nj ,nj+1)} is infinite ,
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then

⋂

i∈ω

Cs0s1...si
=
⋂

i∈ω



{s0} × {s1} × · · · × {si} ×
∏

j>i

{1, 2, . . . ,mj}



 ⊆ R

i.e. s = (si)i∈ω ∈ R.

Now one of the following sets:
⋃

j∈ω

[n2j , n2j+1),
⋃

j∈ω

[n2j+1, n2j+2)

is in U , let U denote that set. Then the following sequence

si =

{

1 if i ∈ U

ri if i /∈ U

is obviously in R, because there are infinitely many intervals [nj , nj+1) contained

in ω \U . On the other hand, by (21) we know that ψ(e) is the constant 1 sequence

in
∏

i∈ω{1, 2, . . . ,mi}. Therefore B0
i = {1} for all i, thus

{i : si ∈ B
0
i } ⊇ U ∈ U ,

from which s ∈ S′. We have that S′ is not disjoint from R. �

Now we can turn to the case of Lie groups.

Proposition 3.23. Let G be a second countable Lie group of positive dimension.

Then there is a subgroup S ≤ G that is null, but non-meager.

Proof. Let d > 0 denote the dimension of G. From now on we fix a left Haar

measure µ of G. [0, 1]d denotes the d-dimensional unit cube. Second countable Lie

groups are Lindelöf spaces, thus there are compact sets Qi ⊆ G (i ∈ ω) homeomor-

phic to [0, 1]d (by homeomorphisms ϕi : Qi → [0, 1]d), such that ∪i∈ωϕ
−1
i ((0, 1)d)

covers G. Then also the Qi = dom(ϕi) = ϕ−1
i ([0, 1]d)-s (which may be overlapping)

cover the group. We can assume that

int(Qi) = int(dom(ϕi)) = ϕ−1
i ((0, 1)d), (34)

in particular

int(dom(ϕi)) is dense in dom(ϕi) = Qi (35)

(because (0, 1)d is dense in [0, 1]d and ϕi is a homeomorphism), and

e ∈ ϕ−1
0 ((0, 1)d). (36)

Let Ci = {Ci
1, C

i
2, . . . , C

i
2di} denote the i-th generation dyadic subdivision of the

cube [0, 1]d, i.e. each Ci
j is of the form [k1

2i ,
k1+1

2i ] × [ k2

2i ,
k2+1

2i ] × · · · × [ kd

2i ,
kd+1

2i ],

where each kl ∈ {0, 1, . . .2i − 1}. Recall that for a given set X ⊆ G ϕk[X ] denotes

the image of X under ϕk, i.e.

ϕk[X ] = {ϕk(x) : x ∈ X ∩ dom(ϕk)}.

We will define a strictly increasing sequence (mi)i∈ω , and for each i a sequence

(Di
j)j∈ω of subsets of Cmi , such that for every i ∈ ω
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(i) ∪Di
j ⊆ ∪D

i
j+1 for each j ∈ ω (or equivalently (Di

j)j∈ω is increasing),

(ii) e ∈ ϕ−1
0 (∪Di

0),

(iii) if i > 0 then for each C ∈ Cmi−1 there exists C′ ∈ Di
0 with C′ ⊆ C,

(iv) for each t ≤ i and j ∈ ω

ϕt

[(

i
⋃

k=0

ϕ−1
k (∪Di

j)

)

·

(

i
⋃

k=0

ϕ−1
k (∪Di

j)

)]

⊆ ∪Di
j+1,

in other words, if x ∈ ϕ−1
r (∪Di

j), y ∈ ϕ−1
s (∪Di

j) (r, s ≤ i), and t ≤ i is an

integer for which xy ∈ dom(ϕt), then ϕt(xy) ∈ ∪Di
j+1,

(v) for each t ≤ i, j ∈ ω the following inclusion relation holds

ϕt





(

i
⋃

k=0

ϕ−1
k (∪Di

j)

)−1


 ⊆ ∪Di
j+1

in other words, if r ≤ i, where x ∈ ϕ−1
r (∪Di

j), and t ≤ i is an integer for which

x−1 ∈ dom(ϕt), then ϕt(x
−1) ∈ ∪Di

j+1,

(vi) if i > 0 then for every r ≤ i

µ
(

ϕ−1
r

(

⋃

Di
i

))

≤
1

i2
. (37)

Lemma 3.24. There is a strictly increasing sequence of non-negative integers

(mi)i∈ω and a sequence (Di
j)i∈ω,j∈ω satisfying (i)− (vi),

Proof. Let

m0 = 0, (38)

and D0
j = {[0, 1]d} for every j ∈ ω. Fix i > 0. Assume that m1 < m2 < · · · < mi−1,

and Dk
j ⊆ Cmk (k < i, j ∈ ω) are defined.

Using (36) let x0 = ϕ0(e) ∈ [0, 1]d, and define the finite set A0 ⊆ [0, 1]d by trans-

lating x0 to each C ∈ Cmi−1

A0 =
{

x0 +
( s1

2mi−1
,

s2

2mi−1
, . . . ,

sd

2mi−1

)

: s1, s2, . . . , sd ∈ Z
}

∩ [0, 1]d. (39)

Define B0 =
⋃i

j=0 ϕ
−1
j (A0) ⊆ G. Obviously

A0 ∋ x0 = ϕ0(e) (40)

implies that

e ∈ B0. (41)

Define the following operation F on P(G)

F : P(G)→ P(G),

F(H) = (H ∪H−1) · (H ∪H−1). (42)

Define inductively the sequences Bj , Aj (j ≤ i) by the following procedure. If Bj−1,

Aj−1 are given, then let

Aj =

i
⋃

k=0

ϕk[F(Bj−1)], (43)
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i.e. we choose Aj ⊆ [0, 1]d by taking for each element of F(Bj−1) all corresponding

points in the unit cube according to the ϕk-s (k ≤ i). (Notice that there may be

points in F(Bj−1) which are not contained in dom(ϕk)-s (k ≤ i), thus there are

no corresponding points in Aj .) And Bj will be the set of corresponding group

elements according to the ϕk-s (0 ≤ k ≤ i), that is,

Bj =
i
⋃

k=0

ϕ−1
k (Aj). (44)

By induction on j, we prove that e ∈ Bj . By (41), e ∈ B0, and if e ∈ Bj , then by

(42) e ∈ F(Bj), thus (43) and e ∈ dom(ϕ0) by (36) yield that ϕ0(e) ∈ Aj+1. This

implies that

e ∈
i
⋃

k=0

ϕ−1
k (Aj+1) = Bj+1. (45)

Now by (45) and (42) we get that

Bj ⊆ F(Bj). (46)

We now check that the Bj-s and the Aj-s form an increasing sequence. Indeed, for

each j ∈ ω using (43), (46) and (44)

Aj+1 =

i
⋃

k=0

ϕk[F(Bj)] ⊇
i
⋃

k=0

ϕk[Bj ] =

i
⋃

k=0

(

ϕk

[

i
⋃

l=0

ϕ−1
l (Aj)

])

⊇ Aj ,

and from that

Bj+1 =

i
⋃

k=0

ϕ−1
k (Aj+1) ⊇

i
⋃

k=0

ϕ−1
k (Aj) = Bj .

For each k define

Ck = {C ∈ Ck : Ai ∩ C 6= ∅},

i.e. Ck is a minimal, at most 2d|Ai|-many element subset of Ck such that

Ai ⊆ int[0,1]d(∪Ck) (47)

(where int[0,1]d denotes the interior with respect to the subspace topology of the

cube). Clearly
⋃

Ck ⊇
⋃

Ck+1, and
⋂∞

k=0

⋃

Ck = Ai. This implies that, since ϕr-s

are homeomorphisms
∞
⋂

k=0

ϕ−1
r (
⋃

Ck) = ϕ−1
r (Ai).

This intersection is finite, hence is of measure zero since G is of positive dimension.

Since compact sets have finite measure, and dom(ϕr) is compact, there exists a kr,

such that

µ
(

ϕ−1
r

(

⋃

Ckr

))

≤
1

i2
. (48)

Define

li = max{mi−1 + 1, k0, k1, . . . , ki}.

Let Ei = Cli ⊆ Cli , thus for each r ≤ i

µ
(

ϕ−1
r

(

⋃

Ei

))

≤
1

i2
. (49)
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Now beginning from j = i, and stepping down with j to 0, we will define a sequence

Ej ⊆ Clj for some lj depending only on j and the already defined Ek-s (k > j, k ≤ i),

for which the following holds

• the lj-s are nonincreasing, i.e.

l0 ≥ l1 ≥ · · · ≥ li, (50)

• for each j ≤ i

Ej ⊆ C
lj , (51)

• for each j < i

∪ Ej+1 ⊇ ∪Ej , (52)

• Aj is in the relative interior (i.e. in the cube) of ∪Ej :

int[0,1]d(∪Ej) ⊇ Aj , (53)

• if (for r, s ≤ i) x ∈ ϕ−1
r (∪Ej), y ∈ ϕ−1

s (∪Ej) and t ≤ i is such that xy ∈

dom(ϕk), then ϕt(xy) ∈ ∪Ej+1, in other words

(∀r, s ≤ i, ∀t ≤ i) ϕt[ϕ
−1
r (∪Ej) · ϕ−1

s (∪Ej))] ⊆ ∪Ej+1. (54)

• If x ∈ ϕ−1
r (∪Ej) (r ≤ i), and t ≤ i is such that x−1 ∈ dom(ϕt) then

ϕt(x
−1) ∈ ∪Ej+1, i.e.:

(∀r ≤ i, ∀t ≤ i) ϕt[(ϕ
−1
r (∪Ej))−1] ⊆ ∪Ej+1 (55)

Obviously (by (47) and the definition of Ei) (53) holds for Ei.

Lemma 3.25. If a given Ei ⊆ Cli satisfies (53), then there are sequences l0, l1, . . . li−1

and E0, E1, . . . , Ei−1 such that (50)− (55) hold.

Proof. Suppose that Ej+1 ⊆ Clj+1 , Ej+2 ⊆ Clj+2 , . . . , Ei ⊆ Cli are already defined,

and Aj+1 ⊆ ∪ int[0,1]d(Ej+1), i.e. (53) holds for Ej+1.

For the construction of Ej we will need the following claims.

Claim 3.26. For each x ∈ Aj there are sufficiently small neighborhoods Ux, Vx in

the cube so that whenever y, z ∈ Aj, r, s ≤ i, then for any t ≤ i

ϕt[ϕ
−1
r (Uz) · ϕ−1

s (Vy)] ⊆ ∪Ej+1, (56)

i.e.

p ∈ ϕ−1
r (Uz) · ϕ−1

s (Vy) ∩ dom(ϕt) ⇒ ϕt(p) ∈ ∪Ej+1.

Claim 3.27. For any x ∈ Aj there is a neighborhood Wx ⊆ [0, 1]d such that for

each r, t ≤ i

ϕt[(ϕ
−1
r (Wx))−1] ⊆ ∪Ej+1. (57)

Proof. (Claim 3.26) For defining the Ux-s and Vx-s we will need for any fixed

r, s, t ≤ i, and y, z ∈ Aj neighborhoods U t
r,y,s,z of y, and V t

r,y,s,z of z such that

ϕt[ϕ
−1
r (U t

r,y,s,z)ϕ−1
s (V t

r,y,s,z)] ⊆ ∪Ej+1 (58)
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holds. Let y, z ∈ Aj , r, s, t ≤ i be fixed. Then, if g = ϕ−1
r (y), h = ϕ−1

s (z), then

g, h ∈ Bj (by the definition of the Bk-s, (44)), gh ∈ F(Bj) (by (42)). Now we have

two cases depending on whether gh ∈ dom(ϕt) holds.

First if t ≤ i is such that gh ∈ dom(ϕt): then first, a = ϕt(gh) ∈ Aj+1 (by (43)).

Since Ej+1 was choosen so that Aj+1 ⊆ int[0,1]d(∪Ej+1) by (53), a ∈ int[0,1]d(∪Ej+1).

Moreover ϕt is a homeomorphism, thus ϕ−1
t (int[0,1]d(∪Ej+1)) is relatively open in

dom(ϕt). Therefore there is an open set W in G containing gh, such that

W ∩ dom(ϕt) ⊆ ϕ
−1
t (int[0,1]d(∪Ej+1)). (59)

Then, by the continuity of the multiplication, we have that there are open sets

U, V ⊆ G, g ∈ U , h ∈ V , for which

UV ⊆W. (60)

Applying ϕt to both sides, and using (59) we get that

ϕt [U · V ] ⊆ ϕt[ϕ
−1
t (int[0,1]d(∪Ej+1))] = int[0,1]d(∪Ej+1). (61)

Let U t
r,y,s,z = ϕr [U ] = ϕr [U∩dom(ϕr)] ∋ y, V t

r,y,s,z = ϕs[V ] = ϕs[V ∩dom(ϕs)] ∋ z

relatively open sets in the cube (ϕs, ϕr are homeomorphisms), then (61) implies

that

ϕt

[

ϕ−1
r (U t

r,y,s,z)ϕ−1
s (V t

r,y,s,z)
]

⊆ int[0,1]d(∪Ej+1).

Second, if t is such that gh /∈ dom(ϕt), then (recall that ϕt is a homeomorphism,

thus ϕ−1
t ([0, 1]d) is compact), there are open sets U ∋ g, V ∋ h in G such that

UV ∩ dom(ϕt) = ∅. (62)

Let U t
r,y,s,z = ϕr[U ] ∋ y, V t

r,y,s,z = ϕs[V ] ∋ z be open sets in the cube, then (62)

clearly yields that

ϕ−1
r (U t

r,y,s,z)ϕ−1
s (V t

r,y,s,z) ∩ dom(ϕt) = ∅,

thus

ϕt

[

ϕ−1
r (U t

r,y,s,z)ϕ−1
s (V t

r,y,s,z)
]

= ∅ ⊆ int[0,1]d(∪Ej+1).

We obtain that in both cases (58) holds for the neighborhoods U t
r,y,s,z of y, and

V t
r,y,s,z of z.

Now we can define the Ux-s and Vx-s (x ∈ Aj) as

Ux =
⋂

s,r,t≤i,z∈Aj

U t
r,x,s,z, (63)

and

Vx =
⋂

s,r,t≤i,y∈Aj

V t
r,y,s,x. (64)

Then Ux, Vx ∋ x are relatively open sets in the cube (since Aj is finite), and clearly

for arbitrary r, s, t ≤ i, and y, z ∈ Aj by (63), (64) and (58)

ϕt[ϕ
−1
r (Uy) · ϕ−1

s (Vz)] ⊆ ϕt[ϕ
−1
r (U t

r,y,s,z) · ϕ−1
s (V t

r,y,s,z)] ⊆ ∪Ej+1,

i.e. (56) holds, indeed. �
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We can turn to the proof of our second claim. Proof. (Claim 3.27)

If x ∈ Aj is fixed, for the desired neighborhood Wx we do the following. First for

each x ∈ Aj and r, t ≤ i we would like to define a neighborhood W t
x,r of x in [0, 1]d

such that

ϕt[(ϕ
−1
r (W t

x,r))−1] ⊆ ∪Ej+1. (65)

Let x ∈ Aj and r, t ≤ i be fixed. Set g = ϕ−1
r (x).

If g−1 = (ϕ−1
r (x))−1 ∈ dom(ϕt), then since g ∈ Bj by (44), thus g−1 ∈ F(Bj) (by

(42), and e ∈ Bj). By (43) ϕt(g
−1) ∈ Aj+1. We know that Aj+1 ⊆ int[0,1]d(∪Ej+1),

i.e. ϕt(g
−1) is an element of the open set int[0,1]d(∪Ej+1) ⊆ [0, 1]d, hence g−1 is the

element of the relatively open set ϕ−1
t (int[0,1]d(∪Ej+1)) ⊆ dom(ϕt). From which

there is an open V ⊆ G containing g−1 such that

V ∩ dom(ϕt) ⊆ ϕ
−1
t (int[0,1]d(∪Ej+1)).

Now V −1 ⊆ G is an open neighborhood of g. If we set W t
x,r = ϕr[V −1] = ϕr[V −1∩

dom(ϕr)], then x ∈ W t
x,r and

(ϕ−1
r (W t

x,r))−1 ⊆ (V −1)−1 = V,

from which it follows that

(ϕ−1
r (W t

x,r))−1 ∩ dom(ϕt) ⊆ V ∩ dom(ϕt) ⊆ ϕ
−1
t (int[0,1]d(∪Ej+1)),

i.e.

ϕt[(ϕ
−1
r (W t

x,r))−1] ⊆ int[0,1]d(∪Ej+1) ⊆ ∪Ej+1.

In the other case, when g−1 = (ϕ−1
r (x))−1 /∈ dom(ϕt), then by the compactness of

dom(ϕt), there is an open neighborhood V of g−1 such that V ∩ dom(ϕt) = ∅. But

then V −1 is a neighborhood of g such that (V −1)−1 = V ⊆ G\dom(ϕt). Then, with

W t
x,r = ϕr[V −1] = ϕr[V −1 ∩ dom(ϕr)] clearly x ∈W t

x,r and (ϕ−1
r (W t

x,r))−1 ⊆ V is

disjoint from dom(ϕt), thus

ϕt[(ϕ
−1
r (W t

x,r))−1] = ∅ ⊆ ∪Ej+1.

We conclude that in both cases i.e. independently of whether g−1 ∈ dom(ϕt) (65)

holds.

Now we can define the Wx-s (x ∈ Aj)

Wx =
⋂

r,t≤i

W t
x,r . (66)

Then, fixing x ∈ Aj , for any r, t ≤ i, using (66) and (65)

ϕt[(ϕ
−1
r (Wx))−1] ⊆ ϕt[(ϕ

−1
r (W t

x,r))−1] ⊆ ∪Ej+1,

i.e. (57) holds, indeed.

�
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Now having these claims proven, we are ready to finish the proof of Lemma 3.25.

We have that Aj is contained in the open sets
⋃

x∈Aj
Ux,

⋃

x∈Aj
Vx and

⋃

x∈Aj
Wx.

For each p ≥ lj+1 let Cp
j ⊆ Cp denote

Cp
j = {C ∈ Cp : Aj ∩ C 6= ∅}, (67)

so this is the unique minimal covering of Aj , for which Aj ⊆ int[0,1]d(∪Cp
j ) (hence

|Cp
j | ≤ 2d|Aj |). Furthermore, since Aj-s form an increasing sequence, i.e. Aj ⊆ Aj+1

(by (28)), combining (53), the inequality p ≥ lj+1, and Ej+1 ⊆ Clj+1 (by (51))

∪ Cp
j ⊆ ∪Ej+1. (68)

Now if p ≥ lj+1 is sufficiently large, then

Aj ⊆ ∪C
p
j ⊆





⋃

x∈Aj

Ux



 ∩





⋃

y∈Aj

Vy



 ∩





⋃

x∈Aj

Wx



 . (69)

Fix such a p ≥ lj+1 for which (69) and (68) hold, and let Ej = Cp
j , lj = p. ((50)

obviously holds.)

This clearly implies that (52) and (53) hold, we only have to check that (54) and

(55) hold. First we verify that (54) holds, i.e. for any t ≤ i, r, s ≤ i

ϕt

[

ϕ−1
r (∪Ej)ϕ−1

s (∪Ej)
]

⊆ ∪Ej+1.

Fixing such t, r, s, since ∪Ej ⊆
(

⋃

x∈Aj
Ux

)

, and ∪Ej ⊆
(

⋃

y∈Aj
Vy

)

(by (69) and

the definition of Ej)

ϕt

[

ϕ−1
r (∪Ej)ϕ−1

s (∪Ej)
]

⊆ ϕt



ϕ−1
r





⋃

x∈Aj

Ux



ϕ−1
s





⋃

y∈Aj

Vy







 ,

and using (56)

ϕt



ϕ−1
r





⋃

x∈Aj

Ux



ϕ−1
s





⋃

y∈Aj

Vy







 ⊆
⋃

x,y∈Aj

ϕt

[

ϕ−1
r (Ux)ϕ−1

s (Vy)
]

⊆ ∪Ej+1,

i.e. (54) holds, indeed.

Similarly, since ∪Ej ⊆
(

⋃

x∈Aj
Wx

)

, for any fixed r, t ≤ i

by (69) (and Clj = Ej)

(

ϕ−1
r (∪Ej)

)−1
⊆



ϕ−1
r





⋃

x∈Aj

Wx









−1

=
⋃

x∈Aj

(ϕ−1
r (Wx))−1,

and applying ϕt for this equation, (57) gives that

ϕt

[

(ϕ−1
r (∪Ej))−1

]

⊆ ϕt





⋃

x∈Aj

(ϕ−1
r (Wx))−1



 ⊆ (∪Ej+1).

This ends the proof of Lemma 3.25. �
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Now we finish the proof of Lemma 3.24.

At the point when Ej is already defined for all 0 ≤ j ≤ i, and l0 denotes the fineness

of E0, i.e. E0 ⊆ Cl0 , then we define mi and the Di
j-s (j ∈ ω) as follows. Let mi = l0,

and for each j ≤ i let Di
j ⊆ Cmi be such that

∪ Di
j = ∪Ej , (j ≤ i) (70)

i.e. a subdivision of Ej (which is possible since Ej ⊆ Clj , where lj-s form a decreasing

sequence by (50), and mi = l0). For j > i, let

Di
j = C

mi , (j > i) (71)

i.e. we choose all the 2mi-many small cubes. We only have to check that (i)− (vi)

hold.

(52) implies that (i) holds for j < i, and clearly (71) implies for j ≥ i. Combining

(40) with (53) one can get that e ∈ ∪E0 thus by (70) we obtain (ii).

Now int[0,1]d(∪E0) ⊇ A0 (by (53)) and A0 contains at least one point from each

C ∈ Cmi−1 (by (39)), therefore for each C ∈ Cmi−1 E0 contains a cube C′ with

C′ ⊆ C. Hence from the definition of Di
0 (i.e. ∪Di

0 = ∪E0) Di
0 also contains a cube

C′′ with C′′ ⊆ C. This means that (iii) holds.

Since (54) and (55) hold, and because ∪Ej = ∪Di
j (j ≤ i), (iv) and (v) obviously

hold for the Di
j-s where j < i. If j ≥ i then (71) obviously implies that ∪Di

j+1 =

[0, 1]d, therefore we obtain (iv) and (v).

Finally ∪Ei = ∪Di
i and (49) yield equation (37).

�

Now we return to the proof of Proposition 3.23, and construct the desired subgroup.

For each z ∈ [0, 1]d let Tz denote the set of the those sequences of
∏

i∈ω Cmi whose

intersection is {z}, i.e.

Tz = {(Ci)i∈ω | ∀iCi ∈ C
mi , ∩i∈ωCi = {z}} .

Now choose a non-principal ultrafilter U on ω, and define S′ ⊆ [0, 1]d in the following

way:

S′ =
{

z : ∃l ∃(Ci)i∈ω ∈ Tz {i ∈ ω| Ci ∈ D
i
l} ∈ U

}

Let

S =
∞
⋃

i=0

ϕ−1
i (S′). (72)

Next we will show that S is a subgroup of G, S is null, and is not meager:

(i) S is a subgroup.

First, S is closed under the multiplication.
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Let x, y ∈ S and k1, k2, k3 ∈ ω be such that x ∈ ϕ−1
k1

(S′), y ∈ ϕ−1
k2

(S′), xy ∈

dom(ϕk3
), ϕk1

(x) = x′, ϕk2
(y) = y′ ∈ S′. Let (Cx

i )i∈ω ∈ Tx′ , (Cy
i )i∈ω ∈ Ty′ ,

Ux, Uy ∈ U , lx,ly be such that

{i : Cx
i ∈ D

i
lx
} = Ux, (73)

{i : Cy
i ∈ D

i
ly
} = Uy. (74)

Recall that ∪Di
k ⊆ ∪D

i
k+1 (k ∈ ω) by the construction of the Di

k-s, see (i). Let

l = max{lx, ly} denote the larger one, then if i ∈ Ux ∩ Uy ∈ U , using (73), (74)

x′ = ϕk1
(x) ∈ Cx

i ∈ D
i
lx
⊆ Di

l

and

y′ = ϕk2
(y) ∈ Cy

i ∈ D
i
ly
⊆ Di

l ,

i.e.

{i : Cx
i ∈ D

i
l} ⊇ Ux ⊇ Ux ∩ Uy ∈ U , (75)

{i : Cy
i ∈ D

i
l} ⊇ Uy ⊇ Ux ∩ Uy ∈ U . (76)

From which,

i ∈ Ux ∩ Uy → xy ∈
(

ϕ−1
k1

(∪Di
l) · ϕ

−1
k2

(∪Di
l )
)

∩ dom(ϕk3
).

Now i is such that i ≥ max{k1, k2, k3} =: k, we can use the property (iv) of the

Di
j-s, that implies xy ∈ ϕ−1

k3
(∪Di

l+1), i.e. for each i ∈ Ux ∩ Uy ∩ [k,∞) there is an

C′
i ∈ D

i
l+1, for which

ϕk3
(xy) ∈ C′

i.

This is true for all i ∈ Ux ∩ Uy ∈ U , i ≥ k, thus there is a partial sequence

(C′
i)i∈Ux∩Uy∩[k,∞) for which

ϕk3
(xy) ∈ C′

i (i ∈ Ux ∩ Uy ∩ [k,∞)).

Choosing C′
i-s for the remaining i-s ( ω \ (Ux ∩Uy ∩ [k,∞)) ) so that ϕk3

(xy) ∈ C′
i

hold will yield an appropriate sequence (C′
i)i∈ω from Tϕk3

(xy), i.e.

{ϕk3
(xy)} =

⋂

i∈ω

C′
i,

and

{i ∈ ω : C′
i ∈ D

i
l+1} ⊇ Ux ∩ Uy ∩ [l,∞) ∈ U .

Hence (C′
i)i∈ω , l+ 1, Ux ∩Uy ∩ [k,∞)] witness that ϕk3

(xy) ∈ S′, we can conclude

that

xy ∈ S.

Similarly, for the closedness under taking inverse fix x ∈ S, where ϕk1
(x) = x′ ∈ S′

is witnessed by the aforementioned ((Ci)i∈ω, lx, Ux). Now, if i ∈ Ux:

ϕk1
(x) = x′ ∈ Ci ∈ D

i
lx
.

Fix k such that x−1 ∈ dom(ϕk). Now if i ∈ Ux ∩ [kx,∞) ∩ [k,∞) then (v) implies

ϕk(x−1) ∈ ∪Di
lx+1,
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so there is an C′
i ∈ D

i
lx+1 for which ϕk(x−1) ∈ C′

i. Again, this is true for each

i ∈ Ux ∩ [max{kx, k},∞), i.e. we have a sequence (C′
i)i∈ω from Tϕk(x−1), such that

for all i ∈ Ux if i ≥ k, kx, then C′
i ∈ D

i
lx+1. Since Ux ∩ [k,∞) ∩ [kx,∞) ∈ U , this

verifies that ϕk(x−1) ∈ S′, hence x−1 ∈ S.

(ii) S is null.

By the σ-additivity, it is enough to show that µ(ϕ−1
p (S′)) = 0 for each p ∈ ω. And

since

S′ =
⋃

l∈ω

{z ∈ [0, 1]d| ∃(Ci)i∈ω ∈ Tz {i ∈ ω| Ci ∈ D
i
l} ∈ U}

it is sufficient to show that for each l, p ∈ ω

µ
(

ϕ−1
p

(

{z ∈ [0, 1]d| ∃(Ci)i∈ω ∈ Tz {i ∈ ω| Ci ∈ D
i
l} ∈ U}

))

= 0.

But
{

z ∈ [0, 1]d| ∃(Ci)i∈ω ∈ Tz {i ∈ ω| Ci ∈ Di
l} ∈ U } ⊆

{

z ∈ [0, 1]d| ∃(Ci)i∈ω ∈ Tz {i ∈ ω| Ci ∈ Di
i} ∈ U } ⊆

since for fixed l, Di
l ⊆ D

i
i is true for all but finitely many i-s, and U is non-principal.

Moreover, using the nonprincipality of U again (i.e. U only contains infinite subsets

of ω) the latter set is contained in a larger one

Z :=
{

z ∈ [0, 1]d| ∃(Ci)i∈ω ∈ Tz {i ∈ ω| Ci ∈ D
i
i} ∈ U } ⊆

{

z ∈ [0, 1]d| ∃(Ci)i∈ω ∈ Tz |{i ∈ ω| Ci ∈ D
i
i}| =∞ } .

Then, if z and (Ci)i∈ω are such that ∩i∈ωCi = {z} (i.e. (Ci)i∈ω ∈ Tz), and Ci ∈ D
i
i

for infinitely many i-s, what obviously implies that (for this fixed z) for infinitely

many i-s there are sets C′
i ∋ z, C′

i ∈ D
i
i. Therefore

Z ⊆
∞
⋂

k=1

∞
⋃

n=k

{z ∈ [0, 1]d| ∃C′
n ∋ z : C′

n ∈ D
n
n} =

∞
⋂

k=1

∞
⋃

n=k

∪Dn
n .

Considering its preimage under the homeomorphism ϕp we obtain that for any

r ∈ ω

ϕ−1
p

(

∞
⋂

k=1

∞
⋃

n=k

∪Dn
n

)

⊆ ϕ−1
p

(

∞
⋃

n=r

∪Dn
n

)

,

and applying (37) (i.e. t ≥ p implies that µ(ϕ−1
p (∪Dt

t)) ≤
1
t2 ), for a fixed r ≥ p,

µ
(

ϕ−1
p (
{

z ∈ [0, 1]d| ∃(Ci)i∈ω ∈ Tz : {i ∈ ω| Ci ∈ D
i
l} ∈ U

}

)
)

≤

≤ µ

(

ϕ−1
p

(

∞
⋂

k=1

∞
⋃

n=k

∪Dn
n

))

≤ µ

(

ϕ−1
p

(

∞
⋃

n=r

∪Dn
n

))

≤
∞
∑

n=r

1

n2

which upper bound tends to 0 as r tends to ∞.

(iii) S is not meager.
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Let R ⊆ G be co-meager, then it can be easily seen that R∩ dom(ϕ0) is co-meager

in dom(ϕ0). By (72) it suffices to show that ϕ0[R] ∩ S′ 6= ∅.

Since ϕ0 is a homeomorphism, the image ϕ0[R] ⊆ [0, 1]d of R ∩ dom(ϕ0) is co-

meager. We will apply Lemma 3.19 in [0, 1]d , for the co-meager set ϕ0[R], with

the compact sets in
⋃

i∈ω Cmi in the following way. First, recall that for k ∈ ω

Ck consists of the 2dk-many cubes of sidelength 1
2k with (pairwise disjoint interior

and) ∪Ck = [0, 1]d. In particular Cm0 = C0 = {[0, 1]d} by (38). Define M0 = {1},

and Mi+1 = {1, 2, . . . , 2(mi+1−mi)d}. Let C1 = [0, 1]d ∈ Cm0 , and suppose that

the compact sets (Cp0p1...pj
)p0p1...pj∈

∏

k≤j
Mk

(j ≤ i) are defined and satisfy the

conditions in Lemma 3.19 (where Cp0p1...pj
∈ Cmj ). Then for a fixed set Cp0p1...pi

∈

Cmi as

|Mi+1| = 2(mi+1−mi)d = |{C ∈ C
mi+1 | C ⊆ Cp0p1...pi

}|

we can define the Cp0p1...pik-s (k ∈ Mi+1) to be different elements of the set {C ∈

Cmi+1 | C ⊆ Cp0p1...pi
}. This implies that the assumptions of Lemma 3.19 hold.

Note that for each i ∈ ω

{Cp0p1...pi
| p0p1 . . . pi ∈

∏

j≤i

Mj} = C
mi , (77)

and for each p0p1 . . . pi ∈
∏

j≤i Mj

⋃

k∈Mi+1

Cp0p1...pik = Cp0p1...pi
. (78)

The lemma gives a strictly increasing sequence (nj)j∈ω , and a sequence (rj)j∈ω ,

(rj ∈Mj), such that for any infinite sequence (sj)j∈ω (sj ∈Mj)

if the set {l : r|[nl,nl+1) = s|nl,nl+1)} is infinite ⇒
⋂

j∈ω

Cs0s1...sj
⊆ ϕ0[R]. (79)

Clearly, exactly one of the following sets is in U :
⋃

j∈ω

[n2j , n2j+1) and
⋃

j∈ω

[n2j+1, n2j+2).

Let U denote that element of U . Next, we will define a sequence (ti)i∈ω (ti ∈ Mi)

by induction on i so that the following holds

i /∈ U → ti = ri,

i ∈ U → Ct0t1...ti
∈ Di

0.
(80)

Let t0 = 1. Assume that t0, t1, . . . , ti−1 are already defined. If i /∈ U , then let

ti = ri. Otherwise, first recall that by (iii), for all C ∈ Cmk there is an element

C′ ∈ Dk+1
0 ⊆ Cmk+1 for which C′ ⊆ C. Now using (77) and (78) let ti be such that

Ct0t1...ti−1ti
∈ Di

0.

Now as (Ct0t1...ti
)i∈ω ∈

∏

i∈ω Cmi , that is a decreasing sequence by (78), then if

{z} =
⋂

i∈ω Ct0t1...ti
, then z ∈ S′, because by (80)

{i : Ct0t1...ti
∈ Di

0} ⊇ U ∈ U .
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But z ∈ ϕ0[R] also, since ω \ U contains infinitely many intervals of the form

[nl, nl+1), hence t|[nl,nl+1) = r|[nl,nl+1) for infinitely many l-s, thus by (79),

{z} =
⋂

i∈ω

Ct0t1...ti
⊆ ϕ0[R].

This verifies that ϕ0[R] ∩ S′ 6= ∅.

�

Now we are ready to state our first main theorem.

Theorem 3.28. If G is a locally compact group that is non-discrete, and µ is a

left Haar measure then there is a subgroup S ≤ G for which µ(S) = 0, but S is

non-meager.

Proof. Using Lemma 3.7, there is an open FL-subgroup H ≤ G, i.e. for each

neighborhood U ⊆ H of the identity, there is a compact normal subgroup NU ⊆ U

of H such that H/NU is a Lie group having finitely many connected components

(fix this operation U 7→ NU ). Thus, using Corollary 3.11, H is an inverse limit of

Lie groups all of which have finitely many connected components. Now we define a

compact normal subgroup K ⊳ H such that H/K is a second countable Lie group

of positive dimension, or an inverse limit of a countably infinite sequence of finite

groups, where the size of the groups form a strictly increasing sequence, thus (by

Proposition 3.20 and 3.23) there is a null, but non-meager subgroup in H/K. Now,

if there is an

N ∈ NH = {N ⊳ H : H/N is a Lie group

with finitely many connected components}

for which H/N is a Lie group of positive dimension, then we are done.

Otherwise, each H/N (N ∈ NH) is a finite group. Recall that, using Lemma

3.9 NH is closed under finite intersection. First, then there cannot exists a least

N0 ∈ NH (wrt. the inclusion), because the mapping g 7→ (gN)N∈NH
(which

maps H to lim←−N∈NH
H/N) is an isomorpism by Corollary 3.11, thus its kernel is

{e} =
⋂

N∈NH
N = N0 (by Lemma 3.10). This would imply that H = H/N0 is a

finite discrete group. But H was an open subgoup of G, thus G is discrete, which

is a contradiction.

Then there cannot exists a minimal N ∈ NH either, because that would be a least

element, since NH is closed under finite intersection. Therefore, one can construct

a strictly decreasing sequence

N0  N1  N2  · · ·  Nk  . . .

in NH , hence each finite group G/Ni is a nontrivial homomorphic image of G/Ni+1

(i ∈ ω). Then let K =
⋂

i∈ω Ni, and using Lemma 3.10 for the group H with

M = {Ni : i ∈ ω} we obtain

H/K ≃ lim←−i∈ωH/Ni.
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We have a quotient H/K of H which is an inverse limit of an infinite sequence of

finite groups, where the size of the groups is a strictly increasing sequence. Let

S′ ≤ H/K be a null but non-meager subgroup (such an S′ exists by Proposition

3.20, or 3.23). Let S be the preimage of S′ under the canonical projection ϕK :

H → H/K

S = ϕ−1
K (S′) ≤ H.

Using Corollary 3.18, S is null in H , but then since H is an open subgroup of G,

S is null in G (the restriction of a Haar measure of G to an open subgroup H is a

Haar measure of H , that is unique up to a positive multiplicative constant).

Then we can apply Lemma 3.15, i.e. S is not meager in the open subgroup H , thus

is non-meager in G. �

4. Meager but non-null subgroups

The following theorem due to Friedman can be found in [5] and [13]:

Theorem 4.1. In the Cohen model (i.e. adding ω2 Cohen reals to a model of

ZFC +CH) every Fσ subset of 2ω × 2ω which contains a non-null rectangle must

contain a measurable non-null rectangle, i.e.

∀H ⊆ 2ω × 2ω, if H is Fσ :

(∃C ×D ⊆ H, C ×D /∈ N )⇒ (∃A×B ⊆ H measurable : µ(A×B) > 0)

(81)

Next we prove that if this property holds in a locally compact Polish group G then

every meager subgroup of G is of measure zero, this lemma is also from [5] (stating

it only for G = 2ω, but the proof is the same).

Lemma 4.2. Let G be a locally compact Polish group. Assume that every Fσ subset

of G×G which contains a non-null rectangle contains a Haar-measurable non-null

rectangle too, i.e.

∀H ⊆ G×G, if H is Fσ :

(∃C ×D ⊆ H, C ×D /∈ N )⇒ (∃A×B ⊆ H measurable : µ(A×B) > 0)
(82)

Then every meager subgroup of G is null.

Remark 4.3. If X is a Polish space, and µ is a σ-finite Borel measure, then for

any rectangle C ×D ⊆ X ×X , it is non-null (wrt. the product measure µ× µ) iff

C /∈ Nµ and D /∈ Nµ.

Proof. Let S ≤ G be a meager subgroup, assume on the contrary that S is non-

null. Let (Hi)i∈ω be nowhere dense closed subsets such that
⋃

i∈ω Hi ⊇ S. Now, if

m : G ×G → G denotes the multiplication function, then m−1(
⋃

i∈ω Hi) is an Fσ

set, containing S × S, which is non-null. But then there is a measurable rectangle

A × B ⊆ m−1(
⋃

i∈ω Hi), which is of positive measure, thus by our Remark 4.3,

µ(A), µ(B) > 0. Then, due to a Steinhaus type theorem [4], AB = m(A× B) has
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nonempty interior. But AB ⊆
⋃

i∈ω Hi which is meager, a contradiction (by the

Baire category theorem). �

First (in Lemma 4.5) we show that if every Fσ set H ⊆ 2ω × 2ω containing a

rectangle of positive outer measure contains a measurable rectangle of positive

measure, then this holds for arbitrary locally compact Polish groups. This yields

that it is consistent with ZFC that in a locally compact Polish group meager

subgroups are always null.

Later in Theorem 4.7 we reduce the general locally compact case to the case of

Polish locally compact groups, by showing that if in locally compact Polish groups

meager subgroups are null, then this is true in every locally compact group.

Remark 4.4. If X is a Polish space, ν is a σ-finite Borel measure on X , then for

every measurable set H there exists a Borel B such that H △B is null (wrt. ν).

Lemma 4.5. Assume that condition (82) holds in 2ω (i.e. every Fσ subset of

2ω×2ω which contains a non-null rectangle must contain a measurable Haar-positive

rectangle). Then (82) holds in every non-discrete locally compact Polish group G.

Proof. Let µ denote the left Haar measure on G, and let ν denote the Haar measure

on 2ω. Since locally compact Polish groups are σ-compact, the Haar measure is

σ-finite.

Claim 4.6. There is a sequence of pairwise disjoint compact sets Ci (i ∈ ω) in

2ω, for which ν(2ω \
⋃

i∈ω Ci) = 0, and similarly a sequence of pairwise disjoint

compact sets Ki (i ∈ ω) in G with µ(Ki) > 0 and µ(G \
⋃

i∈ω Ki) = 0, and there

exist homeomorphisms fi : Ci → Ki, and positive constants ri such that

∀B ⊆ Ci Borel : ν(B) = riµ(fi(B)).

Proof. First, using the inner regularity, and the σ-compactness of G, let Ei (i ∈ ω)

be a sequence of pairwise disjoint compact sets in G, for which µ(Ej) > 0, and

µ(G \
⋃

i∈ω Ei) = 0. Similarly, let Fi be a sequence of pairwise disjoint compact

subsets of 2ω such that ν(2ω \
⋃

i∈ω Fi) = 0, and ν(Fi) > 0 for all i.

Now, since G is non-discrete, every open set is infinite in G, and an open set U

with compact closure is thus an infinite set. But compact sets have finite measure.

Then, by the invariance of the measure, every point has the same measure, that

must be 0 because there exists infinite sets with finite measure, thus we obtain that

µ is a continuous measure. We can apply the isomorphism theorem for measures

[11, Thm 17.41.]. Let gi : Fi → Ei be a Borel isomorphism (a bijection which is

Borel, and so is its inverse), for which there exists ri > 0 such that

ν(H) = riµ(fi(H)) (H ⊆ Fi Borel)

Now, by Lusin’s theorem (see [11, Thm 17.12] ) for every measurable set H ⊆ Fi

and ε > 0, the function gi|H is continous on a compact subset H ′ ⊆ H with

ν(H ′) > ν(H)− ε. Using this, there are pairwise disjoint compact subsets (F j
i )j∈ω

in Fi, such that gi|F j

i

is continuous, and ν(Fi \
⋃

j∈ω F
j
i ) = 0. Let the sequence Ci
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(i ∈ ω) be the enumeration of the F j
i -s in type ω, and let fi = gj

k, if Ci = F j
k , then

choosing Ki to be fi(Ci) works. �

Let C =
⋃

i∈ω Ci ⊆ 2ω, K =
⋃

i∈ω Ki ⊆ G, f =
⋃

i∈ω fi, then

f : C → K

is a bijection which is almost everywhere defined in 2ω, and

• for each S ⊆ C ⊆ 2ω, if ν(S) = 0, then µ(f(S)) = 0,

• if S is measurable, ν(S) > 0, then f(S) is measurable, µ(f(S)) > 0 (by our

Remark 4.4, S differs from a Borel by a null set, f−1 is a Borel function,

and f maps a null set to a null set),

• for every Fσ set H ⊆ G, f−1(H) is also Fσ (in 2ω).

Now let H ⊆ G×G be an Fσ subset, and D×E ⊆ H be a rectangle of positive outer

measure. Then H ∩ (K ×K) is still an Fσ set, and by Remark 4.3, (D×E)∩ (K×

K) = (D∩K)×(E∩K) is of positive outer measure, since µ(G\K) = 0. Thus from

now on, we can assume that H ⊆ K × K: it suffices to find measurable non-null

rectangles in suchH-s. But (f×f)−1(H) is Fσ, since f×f = (
⋃

i∈ω fi)×(
⋃

i∈ω fi) =
⋃

i,j∈ω fi×fj where the fi-s are homeomorphisms between compact sets, so are the

fi×fj-s. And (f×f)−1(D×E) = f−1(D)×f−1(E) is a product of sets of positive

outer measure, since f maps a nullset to a nullset. But then (f×f)−1(H) ⊆ 2ω×2ω,

that contains (f × f)−1(D×E) contains a measurable A×B with ν(A), ν(B) > 0.

Now, using that f maps a positive, measurable set to a positive, measurable set, we

obtain that µ(f(A)), µ(f(B)) > 0, f(A)× f(B) ⊆ H , hence H contains a non-null

measurable rectangle, indeed. �

Theorem 4.7. If in every non-discrete locally compact Polish group meager sub-

groups are null, then this is true in non-discrete locally compact groups as well.

Proof.

Let S be a meager subgroup of G. Then, applying Lemma 3.7, we get an open FL

subgroup H ≤ G.

Then, since H is open, S ∩H ≤ H is clearly meager (in H).

Thus we can apply Lemma 3.14 for the co-meager set R = H \ S in H and J0 = ∅,

yielding a compact normal subgroup K ′ ⊳ H , and a co-meager set R′ ⊆ H/K ′, for

which H/K ′ is a Polish space, and ϕ−1
K′ (R′) ⊆ R, (ϕK′ : H → H/K ′). Thus

ϕ−1
K′ (R

′) ∩ (S ∩H) = ∅,

therefore

S ∩H ⊆ H \ ϕ−1
K′ (R

′) = ϕ−1
K′ ((H/K

′) \R′),

thus projecting S ∩H to H/K ′ yields a subgroup in H/K ′ that is disjoint from the

co-meager set R′.

We obtain that ϕK′(S ∩ H) ≤ H/K ′ is a meager subgroup in a locally compact

Polish group. Since in a discrete space a nowhere dense set must be empty, but we
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found a meager subgroup (eH/K′ ∈ ϕK′(S ∩H)), thus H/K ′ can not be discrete.

Then ϕK′(S ∩H) ≤ H/K ′ is null by our assumptions (wrt. the Haar measure of

H/K ′). But then, by Corollary 3.18, the pull-back of ϕK′(S ∩H) is also null in H

µH(ϕ−1
K′ (ϕK′(S ∩H))) = 0,

and S ∩H ⊆ ϕ−1
K′ (ϕK′(S ∩H)), thus µH(S ∩H) = 0.

Since H is an open subgroup of G, S ∩H is null with respect to the Haar measure

of G. Let L ⊆ G be a set containing exactly one point from each left coset of H :

G =
⋃

l∈L lH (i.e. it is a partition of G into pairwise disjoint open subsets). Now

from each left coset lH if lH ∩ S 6= ∅ then pick sl ∈ lH ∩ S. It is easy to see that

for such a left coset lH of H

lH ∩ S = sl · (H ∩ S).

Hence, by the left-invariance of µG, (lH) ∩ S is null, thus S is locally null. Now,

from the fact that the Haar measure is inner regular wrt. compact sets, we can

conclude that S is null in G.

�

Corollary 4.8. It is consistent with ZFC that there are no meager subgroups of

positive outer measure in locally compact groups.

Remark 4.9. The existence of a meager, non-null subgroup in a locally compact

Polish group G implies that there is such a group if extend G by a compact group,

formally, if G ≃ G′/K, where K ⊳ G′, then the preimage of a meager, non-null

subgroup under the canonical projection is meager and non-null.

Example 4.10. In the case of large, non-σ-compact locally compact groups, requir-

ing outer regularity with respect to open sets, but the inner regularity with respect

to compact sets holds only for open sets may result in a different measure than what

we used. Consider the following example: take the reals with the discrete topology

(Rd), and with the euclidean topology (R), then in Rd × R:

S = R × {0} is a meager subgroup (it is nowhere dense, since there is a base

consisting of sets of the form {r} × U , U ⊆ R open). But any open U covering of

S can be partitionated into continuum many pairwise disjoint nonempty open sets:

U =
⋃

r∈R U ∩ ({r} × R), thus U is of infinite measure (recall that open sets have

positive measure). Now, from the outer regularity wrt. open sets, S is of infinite

measure.

Due to Christensen we can extend the notion of the null ideal to every (not neces-

sarily locally compact) Polish group. The following is still open.

Question 4.11. What can we say about small-large subgroups of non-locally com-

pact Polish groups, replacing "null wrt. the Haar measure" by "Haar-null" in the
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sense of Christensen? Do (always) exist Haar-null but non-meager, and meager

but non-Haar-null subgroups in non-locally compact Polish groups? (A subset X of

a Polish group is Haar-null, if there is a Borel probability measure µ on G, and a

Borel set B ⊇ X, such that for each g, h ∈ G µ(gBh) = 0 [6].)

Since the model of Rosłanowski and Shelah [15] was obtained by an ωω-bounding

forcing (thus no Cohen reals added), it is also worth to consider whether the rectan-

gle inclusion property also holds, or at least whether meager subgroups in all locally

compact Polish groups are automatically null there. It would also be interesting

to consider whether the non-existence of meager, but non-null subgroups in locally

compact Polish groups imply (81), the rectangle inclusion property.
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