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Abstract

Ali Enayat had asked whether two halves of Disjunctive Correct-
ness (DC) for the compositional truth predicate are conservative over
Peano Arithmetic. In this article, we show that the principle “every
true disjunction has a true disjunct” is equivalent to bounded induc-
tion for the compositional truth predicate and thus it is not conser-
vative. On the other hand, the converse implication “any disjunction
with a true disjunct is true” can be conservatively added to PA. The
methods introduced here allow us to give a direct nonconservative-
ness proof for DC.

1 Introduction

The area of axiomatic truth theories analyses the concept of truth by study-
ing first-order theories which try to capture various properties of this no-
tion. These theories are formulated as follows: We choose a base theory
strong enough to represent syntax (this is typically Peano Arithmetic, PA).
To this theory, we add a freshpredicateT (x)whose intended reading is “x is
(a code of) a true sentence” together with axioms governing the behaviour
of that predicate. A notable example of such a theory is CT− which stipu-
lates that the truth predicate satisfies Tarski’s compositional conditions for
arithmetical sentences. For instance, a conjunction φ ∧ ψ is true iff both φ
and ψ are true.

If we add to CT− full induction for the formulae containing the truth
predicate, the resulting theory, calledCT, is not conservative over PA, that is,
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it proves arithmetical theorems which cannot be demonstrated in PA itself.
More specifically, we can show by induction on the lengths of proofs that
every sentence provable in PA is true (a principle called global reflection
over PA) and, consequently, that PA is consistent.1 On the other hand, by a
theorem of Kotlarski, Krajewski, and Lachlan (see (Kotlarski et al., 1981))
CT− itself does not prove any new arithmetical theorems.

In (Cieśliński, 2010), it was shown that already CT− extended with a
principle of propositional reflection “sentencesderived in propositional logic
from true premises are true” suffices to prove global reflection over PA. In
other words, an overtly nonconservative principle can be derived without
explicitly assuming induction on a ground of a rather innocuous principle
of overtly truth-theoretic nature. Subsequently, it turned out that a num-
ber of other truth-theoretic principles are not conservative over PA and are
all equivalent to ∆0-induction for the compositional truth predicate (CT−

with∆0-induction is called CT0).
2 The picture that emerged was that there

seems to be a “minimal natural” nonconservative extension of CT−.
The “dividing line” between conservative and nonconservative exten-

sions of PA has been named “Tarski boundary” by Ali Enayat.3 One of the
most striking results onTarski boundarywas obtainedbyEnayat and Pakhomov
(2019). It was shown that among theories equivalent to CT0 is CT

− together
with the principle of disjunctive correctness, DC, which states that any finite
(but possibly nostandard) disjunction is true iff one of the disjuncts is true.
This axiom appears to be a mild, natural, extension of the compositional
clauses and yet turns out to carry the full strength of ∆0-induction.

It was not clear whether this result can be pushed further in the follow-
ing manner: Disjunctive correctness can be naturally split into two halves.
The first half is a principle DC-in saying “a disjunction with true disjunct
is true” and the second is DC-out which says “a true disjunction has a true
disjunct”. It has been asked in (Enayat and Pakhomov, 2019) whether the
second of these principles can be added conservatively to PA.4

In this article, we analyse both of the above principles. We show that
over CT−, DC-in gives rise to a conservative extension of PA while DC-out

1This is one of the basic results of truth theory. A comprehensive introduction to the area,
including this result, can be found in (Halbach, 2011).

2For the proof of nonconservativity of CT0, see (Łełyk and Wcisło, 2017).
3One can find more information on the Tarski boundary in (Cieśliński, 2017). A more

concise discussion is also contained in (Łełyk and Wcisło, 2016) and (Łełyk, 2019).
4See Question 5.3 in (Enayat and Pakhomov, 2019). The conservativity of DC-in was

settled in December 2018 and stated in the formulation of that question, but the proof was
not published.

2



yields∆0-induction. The methods used for the nonconservativeness result
yield a new, direct proof that DC is yet another incarnation of∆0-induction
for the formulae containing the truth predicate.

2 Preliminaries

We consider truth theories over Peano arithmetic, PA, as our base theory.5 It
is an axiomatic theory in a language LPA = {S,+,×, 0} whose axioms con-
sist of inductive definitions of addition and multiplication in terms of the
successor function S togetherwith the full induction scheme. Although this
theory overtly speaks of natural numbers, in fact it is strong enough to cap-
ture objects such as finite sets, finite sequences, or finite graphs. Crucially,
PA is capable of expressing syntactic notions such as “term”, “formula” or
“proof” and proving basic facts about these notions such as “a conjunction
of two formulae is a formula.” We assume that the reader is familiar with
the coding of syntax and the basic metamathematics. This is discussed in
many sources such as (Kaye, 1991), Chapter 9 or (Hájek and Pudlák, 1993),
Chapter I, Section 1(d), pp.50–61. Throughout the article, we will explain
those bits of notation that seem not to explain themselves. We provide a
glossary of all formalised notions we are using throughout the paper in the
appendix.

Convention 1.

• We will often conflate Gödel numbers of syntactic objects with those
objects. We will also use formulae denoting syntactic expressions as
if they were sets. For instance, we will write φ ∈ SentLPA

rather than
SentLPA

(φ), where SentLPA
expresses that φ is (a Gödel code of) an

arithmetical sentence.

• Provably functional formulae will be used as if denoting actual func-
tions. For instance, we will write FV(φ) for the set of free variables of
φ.

• In particular, we will often write the results of syntactic operations
without explicitlymentioning the operations themselves. For instance,
if φ,ψ ∈ FormLPA

, we will freely speak of the conjunction φ∧ψ rather
than “the only z such that z is a conjunction of φ, ψ.”

5The choice is motivated mostly by a certain tradition in the field. However, the results
make sense and still hold true over much weaker theories, say I∆0 + exp.
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The research on Tarski boundary concerns extensions of the composi-
tional truth theory. Let us define it. By writing n, we mean (the Gödel code
of) a numeral denoting the number n, that is,

pS(S . . . S(0) . . .)︸ ︷︷ ︸
“S” repeated n times

q.

If t is (a Gödel code of) a closed arithmetical term, then by t◦ we mean the
value of that term. Thus we have, for instance,

N |= pS0 + S(S(0))q◦ = 3◦ = 3.

Note that a value of an arithmetical term can be computed in a primitive
recursive way and the natural function computing it may be formalised in
PA. Now we can proceed to the actual definition.

Definition 2. ByCT− (Compositional Truth)wemean a theory in the arith-
metical language with a fresh unary predicate T extending PAwith the fol-
lowing axioms:

• ∀x
(
T (x) → SentLPA

(x)
)
.

• ∀s, t ∈ ClTermLPA

(
T (s = t) ≡ s◦ = t◦

)
.

• ∀φ ∈ SentLPA

(
T (¬φ) ≡ ¬Tφ

)
.

• ∀φ,ψ ∈ SentLPA

(
T (φ ∨ ψ) ≡ Tφ ∨ Tψ

)
.

• ∀φ,ψ ∈ SentLPA

(
T (φ ∧ ψ) ≡ Tφ ∧ Tψ

)
.

• ∀φ ∈ FormLPA
∀v ∈ Var

(
SentLPA

(∃vφ) → T (∃vφ) ≡ ∃x Tφ(x)
)
.

• ∀φ ∈ FormLPA
∀v ∈ Var

(
SentLPA

(∀vφ) → T (∀vφ) ≡ ∀x Tφ(x)
)
.

• ∀φ ∈ FormLPA
∀s̄, t̄ ∈ ClTermSeq

LPA

(
s̄◦ = t̄◦ → Tφ(s̄) = Tφ(t̄)

)
.

Above, ClTermSeq
LPA

(x) is a formula expressing “x is a sequence of closed
arithmetical terms.” The rest of the notation should be self-explanatory and,
as we remarked earlier, it is discussed in the appendix.

By CT, we mean CT− with full induction for the extended language. By
CT0, we mean CT− with induction for ∆0 formulae containing the truth
predicate. (Note that already CT− contains full arithmetical induction.)
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The last clause in the above axioms for CT− is called Regularity Axiom,
REG. It is not included among the basic axioms in the standard presenta-
tions of this theory, like (Halbach, 2011) or (Cieśliński, 2017). Theversion of
CT− with REG appears, e.g., in (Enayat et al., 2020) or (Łełyk and Wcisło,
2021). Admittedly, the regularity axiom has a clearly different status than
the rest of the axioms of CT−. We add it mostly for two (admittedly techni-
cal) reasons which we will explain in Section 6.

Although CT− seems to express the crucial properties of the truth pred-
icate, it is not arithmetically stronger than PA. The result was essentially
proved by Kotlarski et al. (1981).6

Theorem 3 (Kotlarski–Krajewski–Lachlan). CT− is conservative over PA, i.e.,
for any sentence φ ∈ LPA if CT− ⊢ φ, then PA ⊢ φ.

The above result contrasts with the situation for CT. By induction on
the length of proofs, we can show that every proof in PA has true conclu-
sion. In other words, we can prove in CT the following principle of Global

Reflection, GRef:

∀φ ∈ SentLPA

(
PrPA(φ) → Tφ

)
.

Notice that CT− + GRef is clearly not conservative over PA, since in partic-
ular ¬T (0 6= 0) is provable in the compositional theory CT− and, by contra-
position ¬PrPA(0 6= 0). The latter is not provable in PA by Gödel’s second
theorem.

As we have already mentioned, a number of seemingly unrelated prin-
ciples turned out to be equivalent to this canonical nonconservative axiom
GRef. One of them is ∆0-induction for the compositional truth predicate.
Another principle which will play an important role in this article is Propo-
sitional Reflection, PropRef, defined as follows:

∀φ ∈ SentLPA

(
PrTProp(φ) → Tφ

)
,

6The original result concerns satisfaction classes over a purely relational language. This
work has been extended in (Kaye, 1991) to languageswith terms and in (Engström, 2002) to
truth classes over languageswith terms. Subsequently, Enayat and Visser (2015) introduced
a new, elegant and flexible method of constructing satisfaction classes which allowed them
to strengthen the previous results in a number of interesting ways. They worked again in
purely relational languages. A version for functional languages can be found in (Cieśliński,
2017). A version of Enayat–Visser construction covering languageswith functional symbols
with the regularity axioms included is discussed in (Łełyk and Wcisło, 2021). A readermay
find a proof of a stronger result also in this article in Section 4.
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where PrTProp(x) means that x is derivable in propositional logic from the
set of premises Γ, such that T (y) holds for each y ∈ Γ. As we have al-
ready noted, Cieśliński (2010) showed that over CT−, PropRef is equivalent
to ∆0 induction for the truth predicate. Subsequently, CT0 was shown by
Łełyk and Wcisło (2017) to be arithmetically equivalent to GRef and then,
in Łełyk (2017), to be exactly the same theory as CT− + GRef. Another
presentation of the last result can be also found in a recent preprint (Łełyk,
2021).

Related to propositional reflection is the following principle of Proposi-
tional Soundness, PropSnd:

∀φ ∈ SentLPA

(
PrProp(φ) → Tφ

)
.

In effect, this axiom expresses that any arithmetical sentence which is a
propositional tautology is true. It is still unknownwhether CT−+PropSnd
is conservative over PA. In the next section, we shall present a partial result
towards this problem.

Now, let us turn to the main subject of our article. If M |= PA and
φ̄ ∈ SentSeq

LPA
(M) is a coded sequence of sentences, we can form their

disjunction
∨
φ̄, which we will also denote by

∨
i≤c φi if the length of φ̄ is

c. We always assume that in “big disjunctions” parentheses are grouped to
the left, so that the following equality holds inM :

∨

i≤c+1

φi =
∨

i≤c

φi ∨ φc+1.

In effect,
∨

i≤c φ denotes the following formula:

(((φ0 ∨ φ1) ∨ . . .) ∨ φc−1) ∨ φc.

The precise definition of how disjunctions over multiple disjuncts are
parenthesised can actually matter in some cases. In the presence of ∆0-
induction for the extended language, one can show that any two disjunc-
tions with the same disjuncts are equivalent, no matter how the disjuncts
are ordered and grouped together. However, this is not the case in pure
CT−. The precise parenthesising can become relevant, since it dictates the
relations between disjunctions over arbitrarilymany disjuncts and the usual
binary disjunctions. We will return to this issue in Section 5.

By Disjunctive Correctness, DC, we mean the following axiom:

∀φ̄ ∈ SentSeq
LPA

(
T
(∨

φ̄
)
≡ ∃i ≤ lh(φ̄) Tφi

)
.
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Therefore, DC states that a finite (but possibly nonstandard) disjunction is
true iff it has a truedisjunct. Very surprisingly,DC is yet another incarnation
of CT0 as shown by Enayat and Pakhomov (2019).

Theorem 4 (Enayat–Pakhomov). CT− +DC and CT0 are equivalent.

As wementioned, CT0 is not conservative over PA. Hence the following
fact easily follows:

Corollary 5 (Enayat–Pakhomov). CT− +DC is not conservative over PA.

Disjunctive correctness can be naturally split into two principles. The
first is DC-out (“a true disjunction has a true disjunct”):

∀φ̄ ∈ SentSeq
LPA

(
T
∨
φ̄→ ∃i ≤ lh(φ̄) Tφi

)
.

The second is DC-in (“a disjunction with a true disjunct is true”):

∀φ̄ ∈ SentSeq
LPA

(
∃i ≤ lh(φ̄) Tφi → T

∨
φ̄
)
.

Aswehavementioned, the status ofDC-outwas not settled in (Enayat and Pakhomov,
2019) and the claim that DC-in is conservative was stated without a proof.
The subsequent parts of this article will be devoted to the analysis of both
principles.

Let us finish this section by summing up the positive results on equiva-
lences of theories of truth relevant for this work:

Theorem 6. The following theories are equivalent:

1. CT0.

2. CT− +GRef.

3. CT− + PropRef.

4. CT− +DC.

3 Yablo sequences and disjunctive correctness

In this section, we prove that DC-out is equivalent to CT0. The argument
is indirectly inspired by the classical Visser–Yablo paradox: 7 Consider the

7See (Yablo, 1993).
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sequence of sentences Yn, n ∈ N, such that Yn says: “some sentence Yk for
k > n is false.” If for some k, Yk is false, then every sentence Yl for l > k is
true. However, if Yl is true, then there is some m > l such that Ym is false
contradicting the assumption. Hence, every sentence in the Yablo sequence
is true. However, if some sequence in the Yablo sequence is true, then some
has to be false, so they cannot be all true. We reach a contradiction.

Using a construction inspired by the Yablo sequence, we will show that
DC-out implies CT0. Wewill actually use two intermediate principleswhich
are overtly related to∆0-induction. By sequential induction, SInd, wemean
the following axiom:8

∀s ∈ FinSeq
(
Ts0 ∧ ∀i < lh(s)− 1

(
Tsi → Tsi+1

)
→ ∀j < lh(s) Tsj

)

The sequential order induction, SOInd, is a natural variant of the above
principle:

∀s ∈ FinSeq
(
∀j < lh(s)

(
(∀i < jTsi) → Tsj

)
→ ∀l < lh(s) Tsl

)
.

Aswe alreadymentioned, SInd and SOInd are clearly related to∆0-induction:

Proposition 7. CT− + SOInd and CT0 are equivalent.

Proof. CT0 clearly entails SOInd. On the other hand, observe that SOInd im-
plies PropRef which by Theorem 6 is equivalent to CT0. Working in CT− +
SOInd, fix a proof (φ0, . . . , φc) in propositional logic from true premises.
We can assume that the proof system is chosen so that for all i, either φi is
an assumption of the proof or φi is obtained by modus ponens from two
formulas appearing earlier in the proof. In particular, for every j, if every
formula φj for j < i is true, then φi is true which, by SOInd, implies that the
conclusion of the proof is true. Thus PropRef holds.

Now, we get to the core argument of the article:

Theorem 8. Over CT−, DC-out implies SInd.

8A related principle of Modus Ponens correctness was introduced earlier by Ali Enayat
in an unpublished note (Enayat, 2014). The principle states that if a conjunction of the im-
plications φi → φi+1 is true for i = 0, 1, . . . , c and φ0 is true, then φc+1 is true. However,
as stated, this principle is conservative over PA. Namely, it holds in any model in which
all conjunctions of nonstandard length are false and by a construction very similar to that
presented in Section 4, for any completion U of PA, we can find models with this property
satisfying U .
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Proof. Working inCT−+DC-out, fix any sequence (φ0, . . . , φc) ∈ SentSeq
LPA

such that Tφ0 holds and for each i, Tφi entails Tφi+1. Let us define a se-
quence ψi, i ≤ c as follows:

ψ0 := φ0

ψj+1 := ¬φj+1 →
∨

i<j+1

¬ψi.

We claim that for all j ≤ c, the sentence ψj is true. Suppose that ¬Tψj

holds for some j. Then j > 0, so we have:

¬Tφj ∧ ¬T
∨

i<j

¬ψi.

By compositional conditions, this is equivalent to:

¬Tφj ∧ ¬T


 ∨

i<j−1

¬ψi


 ∧ Tψj−1.

Expanding the definition of ψj−1, we obtain:

¬Tφj ∧ ¬T


 ∨

i<j−1

¬ψi


 ∧


Tφj−1 ∨ T


 ∨

i<j−1

¬ψi




 .

However, ¬Tφj implies ¬Tφj−1. Therefore, we have the following:

¬Tφj ∧ ¬T


 ∨

i<j−1

¬ψi


 ∧ T


 ∨

i<j−1

¬ψi


 .

This contradiction concludes the proof of the claim. Notice that the proof
of the claim only uses the fact that provably in CT−,

T




∨

i≤j+1

ηi


 ≡ T



∨

i≤j

ηi


 ∨ Tηj+1.

Now, we show that for all j < c, φj is true. Suppose otherwise and fix j
such that ¬Tφj . Since Tψj holds, we have:

T
∨

i<j

¬ψi

ByDC-out, we can fix i < j such that ¬Tψi holds. However, this contradicts
the previous claim.

9



As an application of the above result, we show that DC-out is the same
theory as DC. In particular, CT− +DC-out is not conservative over PA.

Theorem 9. CT− + SInd implies DC-in. Consequently, DC-out and DC are
equivalent over CT−.

Proof. Working in CT− + SInd fix any sequence (α0, . . . , αc) such that αi ∈
SentLPA

for all i ≤ c. Suppose that αj is true for some j ≤ c and notice that
∨

i≤j

αi =
∨

i≤j−1

αi ∨ αj,

hence the disjunction of αi up to and including j has to be true as well.
Moreover, for any k, if

∨
i≤k αi is true, then

∨
i≤k+1

αi is true. Hence by
sequential induction (starting with

∨
i≤j αi), T

∨
i≤c αi holds.

Another application is a more perspicuous proof of nonconservativity
of CT− +DC.

Theorem 10. CT−+DC implies SOInd. Hence,CT−+DC is equivalent toCT0.

Proof. Working in CT−+DC, fix any sequence (φ0, . . . , φc) and suppose that
for any j, if Tφi holds for all i < j, then Tφj holds. By DC, the following
implication holds for all j ≤ c:

T¬
∨

i≤j

¬φi → T¬
∨

i≤j+1

¬φi.

(Of course, these are essentially big conjunctions, but prima facie, disjunc-
tive correctness does not imply conjunctive correctness.) Then, by SInd, we
conclude that

T¬
∨

i≤j

¬φi

holds for each iwhich, again using DC implies that Tφj holds for each j.
By Proposition 7 it follows that CT0 ⊆ CT− + DC. Since DC is easily

provable in CT0, we conclude that CT− +DC is equivalent to CT0.

Remark 11. Themain nonconservativenessproof forDC in (Enayat and Pakhomov,
2019) consists of two parts: it is first shown that over CT−, DC implies the
axiom of internal induction INT, to be defined in the next section, and then
a much more direct proof that DC + INT implies CT0 follows. It is easy to
verify that CT− + SInd entails internal induction and since we know that
CT− + DC implies SInd, we obtain a still different proof that CT− + DC is
equivalent to CT0.
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We can present the above results in a slightly more abstract manner.
This will allow us to obtain a significantly simpler proof of the result from
(Wcisło, 2020) on the strength of certain extensions of Propositional Sound-
ness.

Definition 12. Let U be a theory extending CT−. We say that U has outer
disjunctions if there exists a provably functional formulaD(x, y) such that
for any φ̄ = 〈φ1, . . . , φc〉 ∈ SentSeq

LPA
, we have D(φ̄) ∈ SentLPA

and the
following two properties hold provably in U :

• ∀φ̄ ∈ SentSeq
LPA

∀ψ ∈ SentLPA

(
TD(φ̄ ⌢ 〈ψ〉) ≡ TD(φ̄) ∨ Tψ

)
.

• ∀φ̄ ∈ SentSeq
LPA

(
TD(φ̄) → ∃i ≤ lh(φ̄) Tφi

)
.

We call D as above an outer disjunction of φ1, . . . , φc.

In other words, a theory of truth has outer disjunctions if it has some
uniform construction that behaves like disjunctions in CT− +DC-out.

Proposition 13. Suppose that U has outer disjunctions. Then it satisfies SOInd
and in particular, it contains CT0.

Sketch of the proof. This is literally the same argument as in Theorems 8, 9,
and 10. We only used the fact that CT−+DC-out has outer disjunctions.

By quantifier-free correctness, QFC, we mean the following axiom:

∀φ ∈ qfSent
LPA

(
Tr0(φ) → Tφ

)
.

Let us pause for amoment and explain the notation. The formula qfSent
LPA

(x)
expresses that x is a quantifier-free sentence of LPA, i.e., a Boolean combi-
nation of closed term equations. Peano arithmetic has a canonical way of
deciding whether such (possibly nonstandard) sentences should be true or
false by applying partial arithmetical truth predicates. The formula Tr0 is
such a predicate for ∆0 formulae.9 It can be checked that QFC does not
bring any arithmetical strength to CT−.

Proposition 14. CT− +QFC is conservative over PA.

9For amoredetailed explanation ofwhat partial arithmetical truth predicates are, consult
(Kaye, 1991), Section 9 or (Hájek and Pudlák, 1993), Chapter I, Section 1(d).
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The above proposition follows by a routine application of the methods
introduced by Enayat and Visser, see e.g. (Enayat and Visser, 2015). A
proof of this result in the exact same setting inwhichwework (with regular-
ity axioms included in the definitionof CT−) can be found in (Wcisło, 2020).
In the same article, it was shown with a different argument using a propo-
sitional construction called disjunctions with stopping conditions that QFC
becomes significantly strongerwhen combined with PropSnd. Nowwe can
prove that result with a simpler argument:

Proposition 15. CT− + QFC + PropSnd has outer disjunctions. In particular,
it is equivalent to CT0.

Proof. The “in particular” part follows by Proposition 13 and the fact that
QFC and PropSnd are clearly implied by ∆0-induction. So it is enough to
show that CT− +QFC+ PropSnd has outer disjunctions.

For φ̄ = (φ1, . . . , φc), let

D(φ̄) = ∃x ≤ c
∨

i≤c

i = x ∧ φi.

Let us check that D is an outer disjunction. First, consider the formula
D(φ̄ ⌢ 〈φc+1〉), i.e.

∃x ≤ c+ 1
∨

i≤c+1

i = x ∧ φi.

Wewant to check that it is true iff eitherD(φ̄) is true or φc+1 is true. Suppose
that

T∃x ≤ c+ 1
∨

i≤c+1

i = x ∧ φi.

By the compositional clauses and the definition of big disjunctions, this im-
plies:

∃x ≤ c+ 1 T


∨

i≤c

i = x ∧ φi


 ∨ ∃x ≤ c+ 1 T (c+ 1 = x ∧ φc+1) .

It can be easily checked by compositional clauses that if the second clause
holds, then Tφc+1 holds. So it is enough to check that the first clause in fact
implies

∃x ≤ c T


∨

i≤c

i = x ∧ φi


 .

12



To this end, we have to check that

¬T



∨

i≤c

i = c+ 1 ∧ φi


 .

However, notice that the following implication is an instance of a proposi-
tional tautology:


∧

i≤c

i 6= c+ 1


 → ¬


∨

i≤c

i = c+ 1 ∧ φi


 .

Hence, by PropRef, thewhole implication is true and byQFC the antecedent
is true as well and the conclusion follows by compositionality. This ends the
proof of the implication.

The verification that TD(φ̄) ∨ Tφc+1 implies TD(φ̄ ⌢ 〈φc+1〉) is similar,
but simpler, as it only uses compositional clauses of CT−.

Now, suppose that the following holds:

T∃x ≤ c
∨

i≤c

i = x ∧ φi.

We want to check that for some i ≤ c, Tφi holds. By compositional clauses,
we know that there exists a ≤ c such that:

T
∨

i≤c

i = a ∧ φi.

Again, using QFC and PropSnd, we check that the following holds:

T


¬φa → ¬

∨

i≤c

i = a ∧ φi


 .

Thus we can conclude that Tφa holds which ends the proof.

Remark 16. In the above proof, we could actually show that the formula
D(φ̄) satisfies both directions of DC.

The principle SInd clearly looks very related to ∆0-induction for the
truth predicate. Indeed, it turns out that over CT− the two principles are
equivalent.
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Theorem 17. CT− + SInd has outer disjunctions.

Proof. For a coded sequence (φ1, . . . , φk) of LPA-sentences, let
∧

i≤c φi be
their conjunction with parentheses grouped to the left so that we have:

∧

i≤c+1

φi =
∧

i≤c

φi ∧ φc+1.

Using SInd, we can show that if Tφi holds for every i ≤ c, then T
∧

i≤c φi.
We show this by considering an auxiliary sequence

∧

i≤1

φi,
∧

i≤2

φi, . . . ,
∧

i≤c

φi.

Now, we claim that the formula

D(φ̄) := ¬
∨

i≤c

¬φi

is an outer disjunction. It is easy to verify that over CT−:

TD(φ̄ ⌢ 〈φc+1〉) ≡ TD(φ̄) ∨ Tφc+1.

Weshow thatD satisfies the second conditionof outerdisjunctions (DC-out)
by contraposition. If there is no i ≤ c such that Tφi, then T¬φi holds for ev-
ery i. Consequently, the following conjunction is true:

∧

i≤c

¬φi

which implies that Dφ̄ cannot be true. This shows that D is indeed outer
disjunction provably in CT− + SInd.

Let us summarise the above results:

Corollary 18. The following theories are equivalent:

• CT0

• CT− + SInd.

• CT− + SOInd.

• CT− +DC-out.

14



We conclude this sectionwith some results that clarify the status of SInd
and SOInd. First of all, let us note that SInd and SOInd are really just some
forms of induction axioms and as such they do not require us to assume
CT− to make sense. They both clearly follow from I∆0(T ), the induction
scheme for ∆0-formulae containing the predicate T (which is now treated
just as some arbitrary predicate). It turns out that these principles form a
strict hierarchy.

Theorem 19. Over PA, I∆0(T ) → SOInd → SInd. Moreover, none of the impli-
cation reverses.

Proof. Both implications are straightforward, so let us show that neither re-
verses.

(SOInd 0 I∆0(T )). LetM be a countable nonstandard model of PA. Let
si, i < ω be an enumerationof all coded sequences inM . Wewill inductively
construct a sequence of finite subsets of the standard cut ωM , Ai, Bi, i < ω
such that for all i, Ai ∩Bi = ∅. The sets A are approximations to T , the sets
B are approximations to the complement.

Let A0 = B0 = ∅. For an arbitrary i < ω, we consider two cases: if all
the values of si are elements of Ai, i.e.:

{a ∈M | ∃j < lh(si) a = si(j)} ⊆ Ai,

thenwe setAi+1 = Ai, Bi+1 = Bi. Otherwise, let j be the least element such
that si(j) /∈ Ai (this element exists, since |Ai| is standard, and therefore, Ai

is arithmetically definable). Let b = si(j), let a 6= b be an arbitrary element
in ω \ (Ai ∪Bi) and set:

Ai+1 = Ai ∪ {a}

Bi+1 = Bi ∪ {b}.

Finally, we set T =
⋃

i∈ω Ai. We claim that (M,T ) |= SOInd, but (M,T )
does not satisfy I∆0(T ). The latter claim holds, since by construction T is
an infinite (hence cofinal) subset of the standard cut ω. To check that the
first claim holds, fix any coded sequence s. Pick i < ω such that s = si. By
construction, either all values of si are in Ai, hence in T or there exists an l
such that for all j < l, si(j) ∈ Ai+1, but si(l) ∈ Bi+1 (which means that it is
not in T ). This shows that (M,T ) |= SOInd.

(SInd 0 SOInd)Asbefore, fix an arbitrary countable nonstandardmodel
M |= PA and let si, i < ω be an (external) enumeration of coded sequences
fromM . We inductively construct two sequences of setsAi, Bi such that for
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all i, Ai ∩Bi = ∅, the sets Bi are finite, and the sets Ai contain only finitely
many nonstandard elements ofM .

We construct Ai, Bi as follows: let A0 = ωM (the standard initial cut of
M) and B0 = ∅.

For an arbitrary i, if the set of values of si is (standardly) finite, we set
Ai+1 = Ai, Bi+1 = Bi. Otherwise, we consider two further subcases. Sup-
pose that the set of j such that si(j) ∈ Bi is an initial segment inM (possibly
empty). Let j0 be its supremum (it exists by arithmetical induction, since
Bi is finite; if the considered set is empty, then by definition, its supremum
is 0). On the other hand, the set of values of si is by assumption infinite, so
by overspill there exists j > j0 such that si(j) /∈ Ai. Let a := si(j − 1) and
let b := si(j).

If the set {j < lh(s) | si(j) ∈ Bi} is not an initial segment ofM , then
(again by arithmetical induction and finiteness of Bi) there exists some j
such that si(j) /∈ Bi and si(j + 1) ∈ B. Let a := si(j), b := si(j + 1).

In both cases, set:

Ai+1 = Ai ∪ {a}

Bi+1 = Bi ∪ {b}.

Finally, let T =
⋃

i∈ω Ai. We claim that (M,T ) |= SInd, but not SOInd.
To see that (M,T ) |= SInd, fix any coded sequence s ∈ M . If the set of

values of si has (standard) finite number of elements, then T cannot violate
the sequential induction axiom for s. So suppose that the number of values
of s is nonstandard. Fix i such that s = si in our enumeration. By construc-
tion, there exists j ∈ M such that s(j) ∈ Ai+1 ⊂ T and s(j + 1) ∈ Bi+1 ⊂
M \T . So it is not the case that for all x, T (s(x)) → T (s(x+1)) and thus the
sequential induction axiom for s is satisfied.

On the other hand, (M,T ) does not satisfy SOInd. Indeed, fix any c ∈
M \ ω and consider the identity sequence: s(i) = i for i = 0, 1, . . . , c. We
claim that the sequential order induction fails for this sequence. Let us check
that s is progressive, i.e., if for any j < i s(j) ∈ T , then s(i) ∈ T .

Fix any i ≤ c. If i ∈ ω, then T (i) holds. On the other hand, if i is
nonstandard, then consider the sequence t := s ↾ i. It has nonstandardly
many values, all of which are strictly below i. By construction, there exists
an element b occurring in this sequence which is not in T . This b witnesses
that not all j < i are in T . Hence s is progressive. On the other hand, not
all terms of s are in T which means that SOInd fails.
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4 Conservativeness of DC-in

In the previous section, we have shown that CT− + DC-out is not conser-
vative over PA and that, in fact, it is another incarnation of CT0. Now we
will use methods introduced by Enayat and Visser (2015) to show that the
related principle DC-in is actually conservative over PA. The Enayat–Visser
technique typically allows us to combine various results, so we can show
joint conservativity of several distinct principles. Herewewill illustrate this
point by requiring that the constructed truth predicate additionally satisfies
internal induction. Let us recall that principle. If (M,T ) |= CT−, then each
formula φ ∈ Form≤1

LPA
(M) “defines” a set {x ∈M | φ(x) ∈ T}. Internal in-

duction (INT) expresses that each such set satisfies the induction principle:

∀φ ∈ Form≤1

LPA

(
Tφ(0) ∧ ∀x

(
Tφ(x) → Tφ(x+ 1)

)
→ ∀x Tφ(x)

)
.

It was essentially observed already by Kotlarski et al. (1981) that CT−+INT
is conservative over PA. This result can be also proved using cut elimination
as in (Leigh, 2015) or the methods invented by Enayat and Visser which we
will use in this section in order to show the following theorem:

Theorem 20. CT− +DC-in+ INT is conservative over PA.

The theorem is a direct corollary to the followingmodel-theoretic result:

Theorem 21. LetM |= PA. Then there existsM ′ �M and a T ′ ⊆M ′ such that
(M ′, T ′) |= CT−+INT and for all sequences φ̄ ∈ SentSeq

LPA
(M) of nonstandard

length, the disjunction
∨
φ̄ is in T ′.

In other words, we will construct a model in which every disjunction
with infinitely many disjuncts is true. Such a model clearly satisfies DC-in:
fix any sequence of sentences φ̄ and suppose that there is i ≤ lh(φ̄) such
that T ′φi. If φ̄ has nonstandard length, then

∨
φ̄ ∈ T ′ by assumption. On

the other hand, if the length of φ̄ is standard, then
∨
φ̄ ∈ T ′ directly by the

compositional axioms. So it is enough to prove Theorem 21.
In the proof, we will construct an elementary sequence of modelsMi |=

PA and a sequence of satisfaction classes Si ⊂ M2
i , i < ω such that Si+1

will satisfy compositional clauses for formulae in the modelMi. Let us first
define what a satisfaction class actually is. Below, if s is (a code of) a term
and α is a function whose domain contains the free variables of s (an s-
assignment), by sα we mean the formally computed value of s under the
valuation α. For instance, if α ascribes the value 2 to x and 5 to y, then

N |= pSSx× Syqα = 24.
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If α, β are assignments and v is a variable, then by β ∼v α we mean that
dom(β) ⊇ dom(α) ∪ {v} and β(w) = α(w) for every w ∈ dom(α) \ {v}. In
other words, β is just like α, possibly except for the value β(v) which is not
even required to be defined for α.

Definition 22. LetM |= PA and let φ ∈ FormLPA
(M). By the compositional

clauses forφ, Comp(φ), wemean the disjunction of the following sentences:

1. ∃s, t ∈ TermLPA

(
φ = (s = t) ∧ ∀α ∈ Asn(φ)

(
S(φ, α) ≡ sα = tα

))
.

2. ∃ψ ∈ FormLPA

(
φ = (¬ψ) ∧ ∀α ∈ Asn(φ)

(
S(φ, α) ≡ ¬S(ψ,α)

))
.

3. ∃ψ, η ∈ FormLPA
(M)

(
φ = (ψ∨η)∧∀α ∈ Asn(φ)

(
S(φ, α) ≡ S(ψ,α)∨

S(η, α)
))
.

4. ∃ψ, η ∈ FormLPA
(M)

(
φ = (ψ∧η)∧∀α ∈ Asn(φ)

(
S(φ, α) ≡ S(ψ,α)∧

S(η, α)
))
.

5. ∃ψ ∈ FormLPA
(M)∃v ∈ Var

(
φ = (∃vψ) ∧ ∀α ∈ Asn(φ)

(
S(φ, α) ≡

∃β ∼v αS(ψ, β)
))
.

6. ∃ψ ∈ FormLPA
(M)∃v ∈ Var

(
φ = (∀vψ) ∧ ∀α ∈ Asn(φ)

(
S(φ, α) ≡

∀β ∼v α S(ψ, β)
))
.

We say that S ⊂ M2 is a satisfaction class if there exists a subset D ⊆
FormLPA

(M) such that the following holds:

• If (φ, α) ∈ S, then φ ∈ FormLPA
(M) and α ∈ Asn(φ).

• If (φ, α) ∈ S for some α ∈ Asn(φ), then Comp(φ) holds.

• If (φ, α) ∈ S, then φ ∈ D or φ = ¬ψ for some ψ ∈ D.

• If φ ∈ D, then Comp(φ) holds.

• If φ ∈ D and ψ is a direct subformula of φ, then ψ ∈ D.

• If φ ∈ D, then for all α ∈ Asn(φ), (φ, α) ∈ S or (¬φ, α) ∈ S.
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By the domain of S, dom(S), we mean the maximal set D satisfying the
above conditions (themaximality requirement is needed, as there is a slight
ambiguity in how to count negations of formulae which are not satisfied by
any assignment). A satisfaction class is full iff its domain is the whole set
FormLPA

(M).

The definition of a satisfaction class presented above involves some tech-
nical requirements which might seem to be slightly too restrictive, so let us
briefly explain our motivations. The definition of a satisfaction class com-
pletely agreeswith the usual one in the case of full satisfaction classes. How-
ever, if S is not a full satisfaction class, i.e., if it does not satisfy compositional
conditions for all formulae, it becomes ambiguous whether we should in-
terpret the fact that (φ, α) /∈ S as saying that φ is not satisfied under the
valuation α or that S simply does not decide φ which might be a technical
nuisance in some proofs or statements of results. This includes results and
arguments in this article, though the specific difficulties we overcome with
this definition will not be really visible. Therefore, we essentially require
that for every formula φ we can unambiguously tell whether it is decided
by S or not. This requirement is harmless: Define a pre-satisfaction class on
M as a set S ⊂ M2 such that it satisfies compositional axioms on some set
D of formulae closed under direct subformulae and does not contain any
pair (φ, α) for φ /∈ D. Then for any pre-satisfaction class, we can canonically
define a satisfaction class extending it. Simply take the maximal setD with
the two mentioned properties and extend S with all pairs (¬φ, α) such that
φ ∈ D and (φ, α) /∈ S. One can check that after such a one-step extension,
we obtain a satisfaction class in our sense.

Satisfaction classes and truth predicates satisfying CT− are very closely
related objects. However, the link between them is not as direct as one could
hope (see (Wcisło, 2021) for a discussion of this connection). We have to
introduce a certain technical condition in order to switch between them in
a completely unproblematic manner.

LetM |= PA, φ,ψ ∈ FormLPA
(M), α ∈ Asn(φ), β ∈ Asn(ψ). We say that

the pairs (φ, α), (ψ, β) are extensionally equivalent, (φ, α) ≃ (ψ, β) if there
exists a formula η and two sequences of closed terms s̄, t̄ ∈ ClTermSeq

LPA

of the same length such that the sequences of their values are equal and

φ[α] = η(s̄), ψ[β] = η(t̄),

where φ[α] is a sentence obtained by substituting in φ the numeral α(v) for
each variable v. For instance, let φ = ∃x(x+ y = SS0), ψ = ∃x(x+ u× v =
w + S0), and let α ∈ Asn(φ), β ∈ Asn(ψ) be such that α(y) = 2, β(u) =
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2, β(v) = β(w) = 1. Then (φ, α) ≃ (ψ, β) as witnessed by the formula

η = ∃x(x+ v0 = v1)

and the terms (SS0, SS0), (SS0 × S0, S0 + S0). Finally, we say that a sat-
isfaction class S is regular iff for all pairs (φ, α) ≃ (ψ, β), (φ, α) ∈ S iff
(ψ, β) ∈ S.

Before describing the relation between the interpretations of the truth
predicate and regular satisfaction classes, let us introduce one more defini-
tion.

Definition 23.

• If M |= PA and S ⊂ M2 is a satisfaction class, we say that internal
induction holds for φ ∈ Form≤1

LPA
(M) if for every v ∈ FV(ϕ) and every

α ∈ Asn(φ), the following holds:

(φ, α[0/v]) ∈ S∧∀x
(
(φ, α[x/v]) ∈ S → (φ, α[x+1/v]) ∈ S

)
→ ∀x (φ, α[x/v]) ∈ S.

Above,α[y/v] denotes the assignmentα′ which is identical toα, except
for the fact that α′(v) = y.

• We say that internal induction holds for S if it holds for every φ ∈
Form≤1

LPA
(M).

Notice that the formula φ need not be in the domain of S

The following proposition establishes the link between truth predicates
satisfying CT− (possibly with INT) and regular satisfaction classes (possi-
bly with internal induction). It can be proved via a direct verification.

Proposition 24.

(a) Let (M,T ) |= CT− and let S = {(φ, α) ∈ M2 | φ ∈ FormLPA
(M), α ∈

Asn(φ), φ[α] ∈ T}. Then S is a full regular satisfaction class.

(b) Conversely, let M |= PA, let S ⊂ M2 be a full regular satisfaction class in
M and let T = {φ ∈ SentLPA

(M) | (φ, ∅) ∈ S}. Then (M,T ) |= CT−.

(c) Let (M,T ) |= CT− + INT and let S be defined as in (a). Then S is a full
regular satisfaction class and internal induction holds for S.

(d) Conversely, let S be a full regular satisfaction class inM such that internal
induction holds for S. Let T be defined as in (b). Then (M,T ) |= CT− +
INT.
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Now we are ready to prove Theorem 21.

Proof of Theorem 21, general idea. Let M |= PA. We will find an elementary
extension M � M ′ and a full regular satisfaction class S on M ′ with in-
ternal induction such that for every disjunction φ ∈ SentLPA

(M) with non-
standardly many disjuncts, (φ, ∅) ∈ S. Then by Proposition 24, there exists
T ⊂M ′ such that (M ′, T ) |= CT− + INT and all disjunctions with nonstan-
dardly many disjuncts are in T .

Wewill construct (M ′, S) in stages. Wewill produce a sequence (Mn, Sn)
of models such that:

• M0 := M,S0 = ∅.

• The modelsMi |= PA form an elementary chain.

• Sn+1 ⊂ M2
n+1 is a regular satisfaction class whose domain contains

FormLPA
(Mn).

• For every n, Sn ⊂ Sn+1.

• For every n, the model Mn expanded with all the predicates Sφ, φ ∈
FormLPA

(Mn) defined by Sφ(x) ≡ Sn(φ, x) satisfies the full induction
scheme.

• If φ :=
∨
φi is a disjunction with nonstandardlymany disjuncts and φ

is in the domain of Sn+1, then (φ, α) ∈ Sn+1 for every α ∈ Asn(φ).

Finally, we setM ′ =
⋃
Mn and S =

⋃
Sn. By a straightforward verification,

we check that S is indeed a full regular satisfaction class and it clearly makes
all disjunctions with infinitely many disjuncts true and satisfies internal in-
duction.

To complete the proof, it is enough to check that a sequence (Mn, Sn)
as above can be produced. This will be demonstrated in Lemma 26 which
takes care of the induction step for n > 1 (the existence of (M1, S1) can be
proved with a very similar, slightly simpler argument).

Some care is needed in order to make sure that the satisfaction classes
which we will construct are indeed regular. Before we state and prove the
induction step lemma, we will introduce one more technical notion. (It ap-
peared in the same context earlier, e.g. in (Łełyk and Wcisło, 2021).)

Definition 25. Let φ ∈ FormLPA
. By a syntactic template of φ, we mean the

smallest formula φ̂ such that the following conditions are satisfied:
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1. There exists a sequence of arithmetical terms s̄ (not necessarily closed)

such that φ = φ̂(s̄).

2. No variable occurs in φ̂ both free and bound.

3. No free variable occurs in φ̂more than once.

4. No closed term occurs in φ̂.

5. No complex term containing only free variables occurs in φ̂.

For instance, if φ = ∃x(SSx+ Sy = (z × (y + S0))× x), then

φ̂ = ∃x(SSx+ v0 = v1 × x),

where v0, v1 are chosen so as to minimise the formula.
We say that φ and ψ are syntactically similar if they have the same syn-

tactic template. We denote it with φ ∼ ψ. Notice that if (φ, α) ≃ (ψ, β) for
some α, β, then φ ∼ ψ.

Lemma 26. LetM |= PA, let S ⊂M2 be a regular satisfaction class such that:

• The model (M,Sφ)φ∈M satisfies full induction, where Sφ(x) ≡ S(φ, x).

• If φ is a disjunction with nonstandardly many disjuncts in the domain of S,
then (φ, α) ∈ S for all α ∈ Asn(φ).

Then there exists an elementary extension M � M ′ and a regular satisfaction
class S′ ⊇ S such that (M ′, S′) satisfies the above conditions and dom(S′) ⊇
FormLPA

(M).

Proof. Let M,S be as in the assumptions of the lemma. Let us consider a
theory Θ in a language LPA extended with an additional predicate S′ and
a family of auxiliary predicates S′

φ, φ ∈ M which comprises the following
axioms:

• ElDiag(M), the elementary diagram ofM .

• ∀x S′
φ(x) ≡ S′(φ, x) where φ ∈ FormLPA

(M). (The definition of S′
φ).

• Comp(φ) forS′, whereφ ∈ FormLPA
(M). (Compositionality Scheme).

• S′(φ, α), where (φ, α) ∈ S. (Preservation Scheme).

• ∀φ,ψ ∈ FormLPA
∀α ∈ Asn(φ), β ∈ Asn(ψ)

(
(φ, α) ≃ (ψ, β) → S′(φ, α) ≡

S′(ψ, β)
)
. (Regularity Axiom)
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• The full induction scheme for formulae in the language LPA+S′
φ, φ ∈

FormLPA
(M). (Internal Induction).

• ∀α ∈ Asn(φ)S′(φ, α), whereφ =
∨

i≤c φi for some (φi)i≤c ∈ FormSeq
LPA

(M)
and a nonstandard c. (Disjunction Scheme).

The predicates S′
φ are introduced to concisely express what form of internal

induction we accept. Note that in the Internal induction scheme, we do not
allow formulae containing the predicate S′. Crucially, we are not allowed to
treat φ like a variable. On the other hand, the form of induction we accept
is prima facie stronger than the internal induction condition introduced in
Definition 23.

If (M ′, S′, S′
φ)φ∈M |= Θ, then by restricting S′ to (φ, α) such that φ ∼ φ′

for some φ′ ∈M and ignoring the predicates S′
φ, we obtain a model satisfy-

ing the conclusion of the lemma (note that S′ itself need not be a satisfaction
class, as the compositional conditions may possibly fail badly for formulae
in M ′ \M). Therefore, it is enough to check that Θ is consistent. We will
prove it by compactness. Let Θ0 ⊂ Θ be a finite subtheory. It is enough to
check the consistency of Θ0.

Let φ1, . . . , φn ∈ FormLPA
(M) be all formulae such that the instances of

their compositionality, preservation, and disjunction schemes are inΘ0. We
will define S′ ⊂M2 which satisfies these instances of schemes, as well as all
the other axioms in Θ. Note that ElDiag(M)will be automatically satisfied,
since the interpretation of the relation S′ will be defined inM .

Let us consider the classes [φi]∼, where∼ is the syntactic similarity rela-
tion (seeDefinition 25 and the remark below the definition). Let⊳ be a rela-
tion defined on the classes as follows: [φ]⊳[ψ] iff there exist φ′ ∈ [φ], ψ′ ∈ [ψ]
such that φ′ is a direct subformula of ψ′. We define a sequence of relations
S0, S1, . . . , Sk ⊂ M2 by induction on the rank of classes in the relation ⊳.
We let (φ, α) ∈ S0 if [φ] is minimal in the relation⊳ and one of the following
holds:

• There exist s, t ∈ TermLPA
(M) such that φ = (s = t) and sα = tα.

• (φ, α) ∈ S.

• φ is a disjunction with nonstandardly many disjuncts.

Above, we want to define S0 on all classes minimal with respect to the rela-
tion⊳. If S already holds of φ and α, then we preserve it in S0. If φ happens
to be a disjunction with infinitely many disjuncts, then we make it true un-
der all valuations. Otherwise, we set (φ, α) /∈ S0 for all α, but we do not
have to mention it explicitly.
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We define Si+1 as the union of Si and the pairs (φ, α) such that [φ] has
rank i+ 1 and one of the following holds:

• There exists ψ ∈ FormLPA
(M) such that φ = ¬ψ and (ψ,α) /∈ Si.

• There exist ψ, η ∈ FormLPA
(M) such that φ = ψ ∨ η and (ψ,α) ∈ Si or

(η, α) ∈ Si.

• There exist ψ, η ∈ FormLPA
(M) such that φ = ψ ∧ η and (ψ,α) ∈ Si

and (η, α) ∈ Si.

• There exists ψ ∈ FormLPA
(M), v ∈ Var(M) such that φ = ∃vψ and

(ψ, β) ∈ Si for some β ∼v α.

• There exists ψ ∈ FormLPA
(M), v ∈ Var(M) such that φ = ∀vψ and

(ψ, β) ∈ Si for all β ∼v α.

In otherwords,we extendSi toSi+1 so as to satisfy the compositional clauses.
Finally, since we consider only finitely many classes, they can only attain
some finite rank k. Let S′ = Sk. Let S′

φ, φ ∈ M be defined so that the
definition-axiom of S′

φ is satisfied. We claim that (M,S′, S′
φ)φ∈M |= Θ.

It is obvious that (M,S′) satisfies ElDiag(M). It follows directly by con-
struction that it satisfies the compositional clauses for the formulaeφ1, . . . , φn.
It satisfies the instances of the preservation scheme for these formulae: for
the formulae of minimal rank it follows by the definition of S0, since if a
disjunction with infinitely many disjuncts is in the domain of S, then it is
satisfied under all assignments. For formulae of higher rank, this follows
by construction, since S is compositional on its domain and the composi-
tional clauses uniquely determine the extension of a satisfaction predicate
on a formula, given its extension on the direct subformulae.

Let us verify that S′ satisfies the regularity axiom. For formulae in the
⊳-minimal classes, this follows by construction and the assumption that S
is regular. For formulae in the classes of rank > 0, we can directly check
that compositional clauses preserve regularity and thus show by induction
that all the predicates Si satisfy the regularity axiom.

The model (M,S′
φ)φ∈M satisfies the full induction scheme, since we can

verify by an easy induction on i that Si is arithmetically definable in terms
of Sφi

, i ≤ n, such that the class [φi] is ⊳-minimal and φi ∈ domS. By
assumption, (M,Sφ)φ∈M satisfies the full induction scheme and since S′ is
definable in that structure, it satisfies induction. The conclusion follows.

The predicateS′ satisfies the disjunction scheme for formulae φ1, . . . , φn.
Indeed, if φ is a disjunction with a nonstandard number of disjuncts and [φ]
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is minimal in the relation ⊳, then (φ, α) ∈ S′ by construction. Let us check
by induction that the disjunction scheme is satisfied for formulae whose
classes have higher rank. If the rank of [φ] is i+1, then there exist formulae
ψ, η such thatψ is a disjunctionwith a nonstandardnumber of disjuncts and
φ = ψ ∨ η, where the rank of [ψ] is ≤ i. By induction hypothesis, (ψ,α) ∈ S′

for all α ∈ Asn(ψ), hence by the compositional clauses (ψ∨η, β) ∈ S′ for all
β ∈ Asn(ψ ∨ η). This concludes the proof.

Remark 27. As we have already pointed out, Enayat–Visser methods of
building satisfaction classes typically allow us to combine various conserva-
tiveness results. For instance, in Theorem 21, we could additionally require
that the constructed predicate is correct with respect to blocks of existential
or universal quantifiers.

It might appear that since a class we build in the proof of this theorem
is somewhat pathological, there are certain obvious limits to what truth-
theoretic principles can be additionally satisfied. For instance, if the con-
structed truth predicate makes true all infinite disjunctions, then it cannot
agree with Σn arithmetical truth predicates on sentences from the respec-
tive syntactic classes. However, as pointed out by Ali Enayat, we could still
construct a model in which the truth predicate T agrees with all the usual
partial arithmetical Σn-truth predicates and DC-in is satisfied. It is enough
that in the proof of Lemma 26 we change the definition of S0 so that for a
minimal class [φ], where φ is aΣn-formula for some standard nwhich is not
in the domain of S, S0 agrees with the partial arithmetical satisfaction pred-
icates. An alternative approach, mixing an Enayat–Visser approach and re-
splendence (by building a satisfaction class from recursively saturated par-
tial classes) was proposed in an unpublished note by Enayat (2018).

5 Alternative versions of DC

In our paper, we defined
∨

i≤c φi as ((. . . (φ0 ∨φ1)∨ . . .)∨φc−1)∨φc. This is
not the only possible definition of disjunction (and admittedly not the most
natural one) and one could wonder whether modifying that definition has
some impact on the presented results.

This point has been partially addressed in the definition of outer dis-
junctions: our proof of nonconservativity of CT− +DC-out used the clause

TD(φ1, . . . , φc, φc+1) ≡ TD(φ1, . . . , φc) ∨ Tφc+1. (*)

It turns out that this assumption cannot be weakened much further. Let us
definebalanced disjunctionsof a sequenceof formulaeφ1, . . . , φc,B(φ1, . . . , φc)
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by recursion in the following way:

B(∅) := 0 6= 0

B(φ1) := φ1

B(φ1, . . . , φc) := B(φ1, . . . , φxc/2y) ∨B(φxc/2y+1, . . . , φc).

In otherwords,we are grouping disjunctions of φ1, . . . , φk so that the paren-
theses form a binary tree. Over CT−, balanced disjunctions do not satisfy
the condition * and in fact, if we add an analogue of DC-out for that kind of
disjunctions, we do not gain any arithmetical strength.

Theorem 28. CT− together with the axiom ∀φ̄ ∈ SentSeq
LPA

(
TB(φ̄) → ∃i ≤

lh(φ̄) Tφi
)
is a conservative extension of PA.

Sketch of a proof. Analogously to the proof of Theorem 20, we fix a model
M |= PA and we construct an elementary extensionM ′ � M and T ⊂ M ′

such that any balanced disjunctionof a sequence (φ1, . . . , φc) ∈ SentSeq
LPA

(M ′)
of nonstandard length is false.

It is enough to observe that if φ is a balanced disjunction of nonstan-
dardly many sentences, then there exist φ1, φ2 such that φ = φ1 ∨ φ2 and
φi are themselves such balanced disjunctions, so we can maintain the re-
quirement that all sentences of this form are false throughout the whole
construction.

Notice that in the model produced in the proof of Theorem 20, all bal-
anced disjunctionswith nonstandardlymany disjuncts are in fact true. This
shows that both the analogues of DC-in andDC-out for the balanced formu-
lae are conservative over PA and that in general DC-out is sensitive to the
specific kind of forming disjunctions for which they are formulated. This
leads to a natural question whether some natural forms of disjunction, say,
balanced disjunctions, can satisfy full DC while remaining conservative. It
turns out that DC behaves stably under such varying implementations.

Theorem 29. Suppose that U is a theory extending CT−. Suppose that there
exists a provably functional formula D(x) such that provably in U for any φ̄ =
(φ1, . . . , φc) ∈ SentSeq

LPA
,D(φ̄) is in SentLPA

and the following holds:

TD(φ̄) ≡ ∃i ≤ c Tφi.

Then U extends CT0.
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Proof. Under the assumptions of the theorem, D is an outer disjunction
provably in U . The conclusion follows by Proposition 13.

Remark 30. As we have noted above, the results on DC-out are sensitive to
howwe exactly define disjunctions over finite sets of sentences. One way to
express abstractly what properties of disjunctions are used is the notion of
outer disjunction. Ali Enayat has proposed a further generalisation of this
concept.

Let U be a theory extending CT−. We say that a provably functional for-
mulaD is a selective disjunction if there exists a formula F which provably
in U defines a choice function for finite sets and the following conditions
hold provably in U :

• For any Φ ∈ SentSetLPA
,D(Φ) ∈ SentLPA

.

• TD(Φ) ≡ TF (Φ) ∨ TD(Φ \ {F (φ)}).

One can check that if a theory U has selective disjunctions satisfying the
analogue of DC-out, namely:

TD(Φ) → ∃φ ∈ Φ Tφ,

then U is again equivalent to CT0.

6 The role of the regularity axiom

In Section 2, we briefly mentioned that we have certain technical reasons to
include Regularity, REG among the axioms for the compositional truth. Let
us now explain why we adopt this principle and how this choice affects our
results.

First of all, without REG, we have to be careful about the exact formula-
tion of the compositional axioms for quantifiers. Our basic choice is between
two options. We can require that, say, an existential statement ∃vφ(v) is true
iff some sentence obtained by substituting a numeral in φ(v) is true. This
amounts to adopting quantifier axioms in the form which we have chosen
in this article:

T∃vφ(v) ≡ ∃x Tφ(x).

The second option is to require that an existential statement is true iff a sen-
tence obtained by substituting some closed arithmetical term for the quan-
tified variable is true. Then, the quantifier axioms would have a form:

T∃vφ(v) ≡ ∃t ∈ ClTermLPA
Tφ(t).
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Note that these two versions of the quantifier axiom are not immediately
comparable with respect to their strength. The left-to-right implication is
stronger in the numeral version:

T∃vφ(v) → ∃xTφ(x)

whereas the reverse implication is formally stronger for the term version:

∃t ∈ ClTermLPA
Tφ(t) → T∃vφ(v).

The term version was chosen, for instance, by Halbach (2011). The nu-
meral version appears, e.g., in (Friedman and Sheard, 1987) or (Horsten and Leigh,
2017). This choice, in turn, may have a significant bearing on our results.
Most importantly, we do not know whether adding ∆0-induction to a ver-
sion of CT− whose compositional axioms for quantifiers involve terms re-
sults in a non-conservative extension of PA. So, when regularity is missing,
some of the main results in this article will depend on a technical choice in
the formulation of compositional axioms which may lead to some further
confusions.

Another issue is thatwithout regularity, there is amismatch between the
notion of a truth predicate as discussed in the philosophical literature and
the notion of satisfaction classes, as discussed in the literature on models
of PA (e.g., as in (Kaye, 1991)). There is a direct link between the compo-
sitional truth and satisfaction classes assuming that we include some form
of extensionality conditions in both these cases. (A more comprehensive
discussion of why these kind of assumptions are relevant can be found in
(Wcisło, 2021).) This link is important, as some techniques used in our
proofs are designed towork specifically in the context of satisfaction classes.
Most importantly, the conservativity arguments using the Enayat–Visser
technique which we employ in Section 4 do not really work when directly
applied to truth classes. Therefore, we would most likely need to add reg-
ularity assumptions to statements of some technical lemmas which could
make for a potentially awkward reading.

Finally, let us discuss the impact of REG on the results in this article. The
main results in Section 4, namely Theorems 20 and 21 are also true for CT−

without the regularity axiom, as the latter versions are formallyweaker. The
same applies to Remark 27, Proposition 14, and Theorem 28.

The situation of the results in Section 3 is slightly more complicated. As
we have already mentioned, Theorem 6 is only known to hold if we con-
sider a version of CT− in which the numeral variant of the compositional
quantifier axioms is assumed. In this case, all results from Section 3, still
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hold. Unfortunately, this is not necessarily true for the term variant. Let us
discuss in some detail what can be salvaged in this scenario.

Theorem 8 does not depend at all on quantifier axioms and thus it holds
without assuming regularity in either version of CT−; similarly for Theo-
rem 9. The first part of Theorem 10 and Theorem 17 also hold true. It
is clear that SOInd implies PropRef for CT− in the term version as well.
Moreover, PropRef clearly implies DC using just compositional axioms for
boolean connectives. However, it is unclear whether PropRef and CT0 are
equivalent without assuming REG and with the quantifier axioms in the
term version. Similarly, the first part of Proposition 13 does not depend of
regularity or the quantifier axioms, but we do not know whether such the-
ories contain CT0. Proposition 15 may be entirely false if we do not assume
the numeral version of the quantifier axioms, as the proof relies significantly
on that assumption.

To sum it up: by the results of Section 3, DC-out,DC, SInd, SOInd, and
PropRef are pairwise equivalent over any version of CT− without assuming
regularity. They are equivalent to CT0 and not conservative over PA if we
consider CT− with quantifier axioms for numerals. If we consider CT− with
the term variant of the quantifier axioms, we do not know either whether
DC or PropRef are equivalent to CT0, or whether the latter theory is arith-
metically stronger than PA.

Appendix: a glossary of formalised notions

Throughout the article, we referred to a number of formalised notions and
used some rather technical notation. Let us now gather it in a glossary for
the convenience of the reader.

• α ∼v β means that dom(β) ⊇ dom(α) ∪ {v} and β(w) = α(w) for
every w ∈ dom(α) \ {v}.

• t◦. If t is (a Gödel code of) a closed arithmetical term, then t◦ is the
value of a term (whose Gödel code is) t. We use the same expression
to denote the formalised version of this function.

• tα. If t is (aGödel codeof) an arithmetical term, andα is a t-assignment,
then tα is the value of term t under the assignmentα. We use the same
expression to denote the formalised version of this function.

• t̄◦. If t̄ is a sequence of (Gödel codes of) closed arithmetical terms,
then t̄◦ is the sequence of their values. We also use this expression to
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denote the formalised version of this function.

• x is (a Gödel code of) a canonical numeral denoting the number x.
We also use this expression to denote the formalised version of this
function.

• φ[α]. If φ is a formula and α ∈ Asn(φ), then by φ[α] we mean a sen-
tence obtained by substituting in φ the numeral α(v) for each variable
v. We also use this expression to denote the corresponding formalised
notion.

• Asn(x) is a set of x-assignments, that is, functions whose domain con-
tains the set of free variables of x, where x is a term, a formula, or a
sequence thereof. We also use this expression to denote the corre-
sponding formalised notion.

• ClTermLPA
(x) is a formula expressing “x is (a Gödel code of) a closed

arithmetical term.” (That is, a term with no free variables.)

• ClTermSeq
LPA

(x) is a formula expressing “x is a sequence of (Gödel
codes of) closed arithmetical terms.”

• FinSeq(x) is a formula expressing “x is a finite sequence of numbers.”

• FormLPA
(x) is a formula expressing “x is (a Gödel code of) an arith-

metical formula.”

• Form≤1

LPA
is a formula expressing “x is (a Gödel code of) an arithmeti-

cal formula with at most one free variable.”

• FormSeq
LPA

(x) is a formula expressing “x is a sequence of (Gödel
codes of) arithmetical formulae.”

• lh(s) = x is a formula expressing “s is a sequence and its length is x.”

• PrPA(x) is a formula expressing “x is (a Gödel code of) an arithmetical
sentence provable in PA.”

• PrProp(x) is a formula expressing “x is (a Gödel code of) an arithmeti-
cal sentence which is provable in pure propositional logic.”

• PrTProp(x) is a formula expressing “x is (a Gödel code of) an arithmeti-
cal sentence which is provable in propositional logic from the set of
premises Γ such that T (y) holds for all y ∈ Γ.”
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• qfSent
LPA

(x) is a formula expressing“x is (aGödel codeof) a quantifier-
free arithmetical sentence.”

• SentLPA
(x) is a formula expressing “x is (a Gödel code of) an arith-

metical sentence.”

• SentSeq
LPA

(x) is a formula expressing“x is a sequenceof (Gödel codes
of) arithmetical sentences.”

• SentSetLPA
(x) is a formula expressing “x is a finite set of (Gödel codes

of) arithmetical sentences.”

• TermLPA
(x) is a formula expressing “x is (a Gödel code of) an arith-

metical term.”

• Tr0 is the arithmetical truth predicate for∆0-formulae.

• Var(x) is a formula expressing “x is (a Gödel code of) a first-order
variable.”
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