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ABSTRACT. We consider repeated interaction among several producers
of a homogeneous, divisible good, traded at a common market. Demand is
uncertain, and its law is unknown. We explore an adaptive scheme leading
such producers, over time, to face correct demand data. Extensions include
noncooperative games in which strategic interaction is felt via exactly two real
parameters.
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1. INTRODUCTION
This paper considers a fixed, finite set I of producers of a homogenous good, traded
at a common market. FEach individual ¢ € [ is quite competent in regulating his
output ¢; > 0 and also in measuring his marginal cost M C;(q;). But - by assumption
- he is little informed about market demand or strategic interaction. A main issue
naturally emerges in this setting: How can such agents eventually come to identify
salient features of the demand curve?

In analyzing this question our interest coincides with a substantial literature on
bounded rationality and learning, dating back to Simon (1955).! That literature, al-
ready rich, offers new perspectives on equilibrium. In fact, such perspectives are dom-
inant in recent books on game theory, including Weibull (1995), Young (1998), Fuden-
berg and Levine (1998). They are also amply brought out in macro-economic studies
of how learning may converge to rational expectations, see Evans and Honkapohja
(1997) for a survey.

This paper has a similar objective, namely to tell a simple story about the learning
of market demand. The leading question is: how does individual © get to grasp
the appropriate version of his marginal revenue M R;? That entity is, of course,
indispensable for good decision making - and part of his optimality condition

MR; = MCi(q,). (1)
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Presumably, the right hand side MC;(g;) in (1) derives directly, and maybe easily,
from a well known, convex, lower semicontinuous, cost curve ¢;(-). The left hand side,
MR;, of (1) requires, however, insights that are less immediate.? Indeed, we shall
consider instances where ¢ earns random profit

(€, Q, @) = P(§,Q)qi — ci(q:)

and worships maximization of its expected value Em;(,Q,q;). A salient feature here
is that ¢; must be committed in face of demand uncertainty, before the underlying
random variable £ is unveiled or realized. We take each ¢ to be risk neutral and the
game to be repeated time and again. The expectation operator E thus reflects the
main concern with long run average profit. Maximization of average profit is, how-
ever, rendered difficult since the mapping (Q, q) — Em;(§, @, ¢;) hardly is available.
At least two sorts of hurdles explains its unavailability: First, the arguments - the
exogenous variable § or the endogenous aggregate supply @ := > .., ¢; - could be
hard to observe; second, the price curve (§,Q) — P(§,Q) or the distribution of £
might remain unidentified or hidden. Such obstacles certainly make the task of ¢
difficult. How can he optimize when no closed-form, explicitly known objective is
within reach?

To make progress in these matters we posit that m; (&, ¢;+> i Gis ¢;) - Or more gen-
erally, that Em;(&,¢;+ > i Ois ¢;) - be concave with respect to own decision ¢;. Then,
granted appropriate differentiability of the expected market curve @ — EP(,Q),
condition (1), comes in the form

0
M i =
. 0q;

[EP(§,Q)q) € Oci(q:) = MCi(qs), (2)

which is both necessary and sufficient for optimality. The left hand side of (2) is the
partial derivative a%i of expected earnings E P (£, )g;, and the right hand side dc;(¢;)
denotes the generalized (sub-)differential of convex analysis (Rockafellar, 1970). Un-
der fairly innocuous regularity hypotheses on P, we can recast the preceding inclusion
(2) in a more familiar mold

0
EP(,Q) + B P(€.Q)a: € deslar), 3)
which allows us to reiterate the problem more precisely: Suppose each players knows
only his own production and lacks the experience or knowledge needed to execute
E. In particular, suppose no player can observe data pertaining to his rivals, be it
their actions or cost functions. Then, how can such uninformed, unexperienced, or

2To estimate how the price responds to increased supply, producers could let marketing research
provide data from surveys or panel studies, or from benefit-cost studies geared at estimating cus-
tomers’ willingness-to-pay. We assume here that such analyses require too much effort or excessive
outlays.
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uneducated agents eventually succeed in having (3) satisfied for all i? And how can
such satisfaction finally result from non-coordinated, decentralized actions?

A simple observation brings us somewhat forward. Note that the prediction prob-
lem, of each and every firm, reduces to the learning of equilibrium values of merely
two parameters, namely:

the expected price p; := EP(£, Q) and the expected slope py := E%P({, Q). (4)

So, we ask: Can the concerned parties - via an explicit process - finally get to form a
correct, common prevision p = (p1, p2)? If so, then, in the long run, each ¢ € I brings
forth a quantity ¢; = ¢;(p) that satisfies

1+ paqi € 0ci(qi), (5)

and the associated aggregate () = Q(p) := > _ ¢;(p) confirms p as required in (4). Such
a distinguished pair p, embodying rational expectation in the mean, is here called a
steady state. Each steady state p generates an associated Cournot-Nash equilibrium
q(p) := (qi(p))ies of the underlying oligopoly. We shall reasonably assume that there
exists a nonempty, finite set of steady states ( and whence of equilibria).

Our concern is whether and how convergence to that discrete set may obtain in
the long run. Under fairly weak hypotheses Section 2 provides an affirmative and con-
structive answer. We invent and offer there a rather appealing, simple story about
the learning of market demand as characterized at any stage by the prevailing pair
p = (p1,p2). Moreover, we produce a tractable and novel algorithm much akin to so-
called fictitious play, but one which requires little memory, no statistical skills, and
only the capacity to solve (5) repeatedly. Our approach is therefore different from
the adaptive learning processes found in Bray (1982), Thorlund-Petersen (1990), and
Kalai and Lehrer (1995).* The main vehicle will be stochastic approximation theory
(Benaim, 1996) coupled with the Bendixon-Poincaré results on two-dimensional flows
(see e.g. Nemytskii and Stepanov, 1960). The use of stochastic approximation meth-
ods in analyzing convergence of learning heuristics in economic contexts was initiated
by Marcet and Sargent (1989), see also Sargent (1993) and Evans and Honkapohja
(1994).

The rest of the paper is organized as follows. Section 2 presents the adaptive learn-
ing scheme and establishes convergence of repeated updating. Section 3 looks briefly
at three classical market instances: monopoly, Cournot oligopoly, and competitive
behavior. Section 4 concludes.

2. REPEATED MARKET INTERACTION
A few words on notation and technicalities are in order. Any pair p = (p1, p2) must
belong to a nonempty, compact, convex set P C R, x R_ prescribed a priori. The
form and nature of that set shall not occupy us any further.

3Other related studies include Foster and Vohra (1997), and Flam (1998a).
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Recall that each cost function ¢; : R — RU {400} is lower semicontinuous convex.
Let the interval

dome; :={q; € R: ¢;(q;) < +o0}

be its so-called effective domain. Then, for every parameter configuration p; > 0, ps <
0, Eq. () has a unique solution ¢; = ¢;(p) € dome; depending continuously on p. In
the exceptional case when ps = 0, we assume that (5) still has a unique, continuously
dependent solution ¢; = ¢;(p) = ¢;(p1), pr > 0. So, in all circumstances, we write
Q(p) == > ,c;@(p) to denote the aggregate supply generated by p. If individual ¢
solves (5), and ¢;(+) is twice differentiable convex on its effective domain domc;, then

9¢:(p) 94¢;(p)
>0 and
opr — Ops

> 0.

Consequently,

9Q(p) > 0 and 9Q(p)

6p1 apz

>0, (6)

The inequalities (6) are easy to grasp: They simply say that aggregate supply in-
creases as the expected price p; > 0 or the expected slope ps < 0, figuring in (5),
become more favorable.

We are now ready to look at market interaction as a dynamic process. For our
purposes it begins at time 0 and happens thereafter at discrete time periods ¢ =
1,2,.... The agents start with a common, initial belief p° := (p?,p9), determined by
accident or historical factors not discussed here. Generally, the point p' := (p}, p})
has the status of a common belief, or a public prevision, held by everyone just before
decentralized production is undertaken at time ¢. Then, based on p', each individual
i € I produces a quantity ¢ which solves

Pl + phat € 9ei(q)).

In other words, everyone invariably provides a best response to his actual beliefs.
Thereafter the market clears. That is, aggregate demand equals total supply Q' =
> ic1 4t and all producers see the realized pair

= P, QY), %P(ﬁtm , (7)

belonging by assumption to P. (Note that the underlying pair (¢, Q") itself may
well be unobservable or hidden.) Typically, the realized p'defeats the predicted p.
Therefore, the latter must be compromised with the first. So, after market closure,
at the end of period t, all individuals update their belief like a moving average as
follows:

P = (1= A+ A (8)
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Here the weight \; € [0, 1] strikes a balance between the most recently held opinion
p' and the fresh observation p'. To see this learning mechanism more clearly, recall
that Q(p) = > ,.; ¢ (p), with ¢;(p) being the solution of (5). Now define a function

F(p,§) == | P(£,Q(p), 55 P(& Q(p))]

Q
which records the realized price and its slope. Inserting p' = F(p', ') in (8), we get
a first-order, stochastic, typically non-linear, difference equation

P = (1= M)+ AF (0, E). (9)

We stress that the initial belief - and the subsequent learning scheme as well - is
common to all players. Clearly, these assumptions are very restrictive. They are
justified here partly by tractability. Relaxation of either assumption would make
a 2 |[|-dimensional dynamical system replace our simple one having planar habitat
R?. High dimensions make convergence analysis more difficult or less transparent.
Additional justification for the commonality of (9) could be statistical in nature or
refer to available expertise, pointing to p° as the most likely initial guess - and to \;
the most reasonable appropriate weight at stage t.

Anyway, as more experience accumulates, i.e., when many observations have
been incorporated into the prevailing belief, new observations should be assigned
less weight. To account for this feature, and also for the importance of continued
learning, we posit that

D A =+00, and Y A < 400, (10)
=0 =0
In particular, the choice \; = %th would be applicable, most natural, and yield an
_ p0+ﬁ1+“'+ﬁt

empirical average p'*! T which complies with Bayesian updating. Note
that \; — 0. Note also that (9) is accompanied - and driven - by the exogenous
stochastic process &9, &, .... We assume that these variables are independent and
identically distributed.* We now state our main result forthwith:

Theorem 1 (Convergence to beliefs that are confirmed in the mean) Suppose P
is compact convex. Also suppose that the averaged function

0
9Q

4This assumption may be relaxed in terms of so-called mixing conditions (Benaim, 1996). Also,
to capture mutual interdependence between several markets, these possibly being charachterizered
by &, there might exist a Markovian feedback mechanism from p to . If so, one would presume that
each fixed p yields an ergodic Markov chain in £. We shall not elaborate on such generalities; see
Benveniste et al. (1990).

f(p) = EF(p,§) = |EP(,Q(p), E-5P(§ Q(p))
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only has isolated fixed points in P and is continuously differentiable there with diver-
gence

_ 9h(p) N df2(p) <9

Op Op2

divf(p) :

Then, for any initial p° € P, the sequence {p'} converges almost surely to a fived
point p = f(p).

Proof. For the sake of the argument, let 79 := 0 and 7% := Ao + - -+ + Ag_1,
k =1,2,... define a new intrinsic time scale. Observe via (10) that 7, — +oo and
Tk+1 — Tk = Ax — 0. Also observe that (9) can be rewritten in the form

pt+1 _ pt N\ [F(pt7€t) _pt} :

or equivalently, using the notation p(7;,) = p¥, it comes as a difference quotient

p(Tj-;lz :Z;:Tk) = F(p(1),€") — p(mx) = fp(7x)) — p(78) + €x

where f(p) = EF(p,§) is the averaged function, and where
e = F(p(m), %) — f(p(me))

denotes an ”error” or a deviation from the mean value. Thus, in heuristic terms,
when ignoring the error ey, process (9) can be seen as a numerical integration scheme
a la Euler of the ordinary differential equation

() = f(5) ~ . 1)

We next discuss the asymptotic behavior of (11). Note first that any solution tra-
jectory of (11), starting in P, will remain inside that set forever. The simple reason
is that since f(p) € P, the velocity f(p) — p points inwards at every boundary point
p € P. In particular, since P is compact, every orbit must be bounded. The Bendixon-
Poincaré theory of bounded planar flows says that any solution trajectory of (11) must
converge either to a stationary point or to a periodic solution (or a to limit cycle),
cf. Nemytskii and Stepanov (1960) and Katok and Hasselblatt (1995). We see that

div [f(p) — p] = divf(p) — 2 <0,

and hence, by Bendixon’s criterion, (11) has no periodic solution or limit cycle in
the bounded domain P. The upshot is that any solution p(7) of (11) converges to a
steady state as 7 — 400, that is, the system is globally asymptotically stable with
steady states as the only possible limits.

Knowing now the good limit properties of (11), the rest follows from stochastic
approximation theory, Benaim (1996) Theorem 1.2 and Corollary 3.7. That theory
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says that, under our conditions, (9) and (11) have the same asymptotic limit sets. [J

Corollary 1. (Convergence to Cournot-Nash oligopolistic market equilibrium) Sup-
pose %EP(Q,&) <0, and aa—C;EP(Q,ﬁ) <0, and that every cost function c¢; is twice
differentiable convex on dome;. If every individual updates his prevision

[ p1 about the expected price EP(Q,¢),
P=9 py about the expected slope %EP(Q,{)

according to (9), then it follows that each producer’s production converges almost
surely to a long-run Cournot-Nash equilibrium level for the game in which © has

objective EP(, q; + Zj;ﬁi 43)% — ci(qs).
Proof. Simply note via (6) that

N 0Q o 0Q
divf () = 55 BPQ.€)5 5 + 55 BP(Q.€)5 = <0

and invoke Theorem 1. [

Similar arguments are found in Kaniovski and Young (1995) and Flam (1998b).
See also Keenan and Rader (1985) and Corchon and Mas-Colell (1996).

3. EXAMPLES
We shall consider three market instances, ranked in terms of the number || of
oligopoly members.

3.1. Monopoly. An extreme setting has I as a singleton, i.e., |I| = 1, and ¢; = Q.
Then, most likely, the producer already knows, or quickly detects, that he is the only
supplier. Such knowledge is not necessary though. Indeed, he may well believe, for
quite a while or even persistently, that rival agents also supply the market, but he
refrains from exploring that matter. It suffices instead for him to observe (7) at
the end of each time period ¢, and to keep on responding as described above. In
particular, he need not ascertain or record the underlying process (£%, Q).

3.2. Cournot Oligopoly. Now, let |I| > 2. Our scenario then fits repeated play
of a Cournot oligopoly, generalized here to comprise demand uncertainty. Instead of
looking at iterated best responses to observed strategy profiles, we focus on recursive
identification of merely two endogenous parameters, namely the average price and
its slope in equilibrium. When |I| > 2 this is a useful simplification. In fact, we
avoid the divergence that may plague fictitious play of nonzero-sum games. Besides,
the informational requirements are here quite modest. Players may never get to see
each other directly. They all act in front of uncertainty; they all respond to only two
parameters.
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It is instructive to consider briefly the degenerate instance featuring no uncer-
tainty. Even then an individual ¢ cannot easily consider or identify his optimality
condition

0
P(Q) + P(Q)gi € 5 -¢i(4),
in exact numerical form. Instead, not knowing P(-), and possibly not observing
aggregate supply, all producers entertain a belief p = (py, p2) about (P(Q), P'(Q)) and
solve their surrogate optimality conditions (5) for all 7. Alternatively, but somewhat
less appealing, one might say that each producer 7 believes he obtains profit

P2
mi(¢i,p) = (p1+ 55 4i)4i — cids)-
Then his best response satisfies (5).
To solve (5) is often easy. It amounts though, when each ¢; is smooth on dome; =
[0, +00), to solve the system

P +p2% == C;(qz) — Mi’ .
¢, i > 0and g, =0 for alli € I,

i being the Lagrange multiplier associated with the constraint ¢; > 0. To avoid these
multipliers, and to accommodate nonsmooth cost functions, instead of addressing (5),
we use the following alternative procedure:

Solve the stage game as follows: Let t «— t+1 and A «— % Given the actual
common belief p, solve the auxiliary optimization problem

maximize pi Y ;¢ + %2 dier q; — > icr Ci(4:)
subject to ¢; > 0 for all 1.

Let Q :=),.; ¢%(p) be the ensuing total supply.
pr— (1=Xp+AP(Q),
p2— (1 =Np2+AP(Q).

Continue to solve the stage game until convergence.

Update beliefs by setting {

A numerical illustration: To simplify suppose there is no uncertainty. Let
I comprise firms i = 1,...,5, having cost functions c¢;(¢;) = a;q; + 0.1¢? with a; =
2,090 = 4,3 = 5,4 = 7, and a5 = 8, respectively. There is given an ”unknown”
demand curve P(Q) = 1000 — 2Q) and a common initial belief p® = (50, —1). The
game starts at time ¢ = 0 and brings then out

P(Q°) = 626.668 and P'(Q") = —2.
The updated belief becomes p' = (626.688, —2), which in its turn yields the realization

P(Q") = 0 and P/(Q") = 2,
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and the new belief p? = (313.334, —2). The development in supply Q and individual
output ¢; is given in Table 1 below.

In this example, the correct slope is quickly learned whereas identification of the
equilibrium price requires more time. Anyway, as the table shows, convergence comes
fairly quickly, and we choose to stop after 13 iterations. The realized price and slope
are then

P(Q") = 184.590 and P'(Q") = -2,
which form a subsequent belief p'* = (184,590, —2).

Table 1

Development in Qand g;

t\ Q ¢ %2 3 q g5
0 186.666  40.000 38.333  37.500 35.833  35.000
1 1412427 283.940 283.031 282.576 281.667 281.213
2 700.304 141.515 140.606 140.152 139.243 138.788
3 462.929  94.040 93.131  92.677  91.768  91.313
4 386.368  78.728  77.819 77.365 76.455  76.001
5 410.032  83.461  82.552  82.097 81.188  80.734
6 407.882  83.031  82.122  81.667 80.758  80.304
7 407.742  83.003  82.094 81.639 80.730  80.276
8 407.716  82.998  82.089  81.634  80.725  80.270
9 407.709  82.996  82.087 81.633  80.724  80.269
10 407.707 82996 82.087 81.632 80.723  80.269
11 407.706 82.996 82.087 81.632 80.723  80.268
12 407.706 82.996  82.087 81.632 80.723  80.268
13 407.705 82.996 82.086 81.632 80.723  80.268

To check the above result, we can use the method in Murphy et al. (1982): If
Q" =) ,c; ¢ = 407.705 is such that solving the problem

maximize P(Q) > ;c; ¢ + %P/(Q*) Dier q; — > ier Ci@)
subject to >, ;¢ = Q" and ¢; > 0 for all ¢

results in the multiplier p(Q*), associated with the constraint » ,_, ¢; = Q*, being
zero, then (¢j);., must be a Cournot equilibrium. In our example ;(407.705) =
—0.0002, which we deem sufficiently close to zero.

3.3. Price-taking behavior. Suppose all ¢ € I behave as though none of them
affect the price. Accordingly, all firms remain convinced that p, = 0 in any circum-
stance. If so, (5) reduces to

p1 € dci(qi), (12)
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with solution ¢; = ¢;(p1). Learning, therefore, proceeds with respect to the expected
price p1 = EP(&,Q), and the two-dimensional process (9) simplifies to

Piﬂ = (1 - )\t)Pt1 + Ay (Ptp §t) (13)

where

Fi(p1,§) = P(&, Z%(Pl))-

i€l

Convergence now obtains under remarkably mild conditions:

Theorem 2. (Convergence to competitive equilibrium in one market) Suppose the
averaged function

filpr) == EFi(p1,§)

is Lipschitz continuous and has only isolated equilibria. Then (13) converges almost
surely for any initial p? to a fized point p; = fi1(p1) at which all price-taking firms
have maximized their expected profit.

Proof. The differential equation

p1=filp) —p (14)

is asymptotically stable. Indeed, consider the function

p1(7)
L(r) == — /p1(0) [f1(p1) — p1] dpr.

It is Lyapunov because L L(7) = — [f1(p1) — p)? < 0 with strict inequality unless p;
is an equilibrium. Stochastic approximation theory (Benaim, 1996) now shows that
(13) and (14) have the same asymptotic limits. [J

4. EXTENSIONS

We conclude by abstracting from the market context. To simplify we suppress un-
certainty here. This may help to see other applications of the approach used above.

Suppose player i € I obtains payoff 7;(p, x;) - or records marginal payoff m;(p, ;)
- that depends on a two-dimensional parameter p € P and own choice z; € X.
The vector p is endogenous, being the result of strategic interaction. Specifically,
there exists an “aggregation mapping” A that associates to each strategy profile x :=
(2;)ier, in the ambient space X := II;¢;X;, a two-dimensional parameter p = A(z),
belonging to some specified subset P of the Euclidean plane. (Absent uncertainty, in
the above Cournot example we have z; := ¢;, X; := domc;, m;(p, ;) := p1 + pax; —
di(x;), and Aw := [P(},c; @), P'(3 ;e wi)] -) In general let

Bi(p) := arg max 7 (p, x;) (15)
T; €0
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denote the best response of individual ¢ to parameter pair p. Alternatively, suppose
his optimality condition

0 € mi(p, ;) := %WZ(A(ZL'),J}Z) }A(m):p (16)

admits a solution, also called best response x; = B;(p) € X,. Here, as above, ai

denotes the generalized (super-)differential operator of convex analysis (Rockafellarz,
1970). When using (16) it is tacitly assumed that m;(x) = m;(A(x),x;) be concave
with respect to x;. This ensures the optimality of the solution z; to (16). Note that
we say nothing about the nature of the decision spaces X;,7 € I. They can be quite
general, except, of course, that format (16) forces us to let X; be a convex subset of
some topological vector space.

Whatever the specification and the origin of the choice B;(p), whether stemming
from (15) or (16), we assume it fully characterizes optimality, is well defined, and
unique for every ¢ € I and p € P. Also, we tacitly posit, as a behavioral assumption,
that each individual ¢, in producing his best response B;(p), regards p as exogenous
and given. More precisely, he acts at any stage as though he has a firm and seemingly
“rational” belief about p.

A natural concern is then with the learning of justifiable beliefs during repeated
play. Reflecting that concern, p € P should be declared an steady state if and only if
it satisfies the fized point condition

p=AoB(p) =: f(p)

where B := (B;);c; is the entire vector of best responses. The reason for naming the
point p a steady state is that it generates a Nash noncooperative equilibrium x € B(p)
in so far as the best response x to the belief p reproduces that same belief. In other
words, a steady state embodies both confirmed expectations and optimal responses,
these two properties being the defining features of Nash equilibrium.

When focus is on steady states and possible approaches to such distinguished
outcomes, Theorem 1 may sometimes be directly applicable.
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