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Abstract

This paper is concerned with the question of how to de�ne the core

when cooperation takes place in a dynamic setting. The focus is on

dynamic cooperative games in which the players face a �nite sequence

of exogenously speci�ed TU-games. Three di�erent core concepts are

presented: the classical core, the strong sequential core and the weak

sequential core. The di�erences between the concepts arise from dif-

ferent interpretations of pro�table deviations by coalitions. SuÆcient

conditions are given for nonemptiness of the classical core in general

and of the weak sequential core for the case of two players. Sim-

plifying characterizations of the weak and strong sequential core are

provided. Examples highlight the essential di�erence between these

core concepts.
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1 Introduction

The canonical representation of a cooperative game, the characteristic func-

tion, describes the payo�s available to each coalition of players. The simplest

and most common interpretation of such a game is that it pertains to a sin-

gle interaction among the players. However, many, if not most, cooperative

endeavors occur more than once or even repeatedly over time.

A few papers have begun to lay the foundation for a theory of coopera-

tive games played in dynamic settings, or dynamic cooperative games. The

e�ort to develop a general theory of such games is complicated by the fact

that various new issues arise in a dynamic context, and each may require

a somewhat di�erent treatment. In particular, whereas a standard, static,

game speci�es the set of players and the characteristic function, in a dynamic

setting the population of players might change over time, or, given the set

of players, the characteristic function might change either as a result of ex-

ogenous or endogenous forces.1 Typically, a solution to a dynamic game will

exploit intertemporal linkages rather than simply apply a standard solution

at each point in time. Moreover, the game itself may depend on the solution

at each stage.

Rather than attempt to develop a single, overarching framework that

would encompass all possibilities, the strategy adopted in this paper is to

present a particular class of dynamic cooperative games and to focus on the

extension of a particular solution concept, namely, the core. However, in

contrast to static games it is not obvious how to de�ne the core in a dynamic

setting. Speci�cally, there are various ways in which one might formulate

the notion of a \pro�table deviation." Here we explore three di�erent inter-

pretations, each of which gives rise to a di�erent notion of the core. After

introducing the alternative core concepts, we investigate conditions ensuring

their nonemptiness, and we consider the relationship between the various

concepts.

Before discussing the core concepts, we briey describe some of the key

elements of a dynamic cooperative game. First, we will abstract from changes

in the player set. Instead, our focus will be on �nite horizon games in which at

1Rosenthal (1990a,1990b) considered the possibility of changing the player set over

time, while keeping the worths of the original coalitions �xed. His study focuses on the

monotonicity of solutions, that is, whether all of the original players gain with the inclusion

of additional players.
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every stage the same players face an exogenously speci�ed cooperative game

with transferable utility. Typically, a solution to the dynamic model will

specify a stream of payo�s for each player. This might involve exactly solving

each stage game or, if it is possible to trade or transfer payo�s across periods,

then it may be possible to relax the instantaneous resource constraints. In

either case, it is essential that players have the means to evaluate payo�s at

di�erent points in time. Hence, included in the speci�cation of a dynamic

game will be the players' intertemporal preferences or utility.

Another important aspect of dynamic games is that the (stage) game

and/or solution at any point in time might depend on the history of play

up to that point, that is, they may be subject to endogenous inuences.

This was the subject of a recent paper by Filar and Petrosjan (2000), who

considered dynamic cooperative games where each stage game may depend

on the payo�s obtained in earlier periods. The focus of their study was on

the issue of \time consistency" of solutions to the stage games.2 However, as

mentioned above, here we abstract from endogenous inuences and take the

sequence of stage games to be given.

In addition to the papers cited above, various authors have addressed

these or related issues often in the context of economic examples. For in-

stance, Gale (1978), Becker and Chakrabarty (1995), and Koutsogeras (1998)

considered core concepts for certain intertemporal economies. Predtechen-

ski et al. (2001) considered both time and uncertainty in their study of the

core of two-period economies with incomplete information. Finally, Munro

(1979) considered Nash bargaining and the core in a dynamic model of op-

timal resource management, and Shalev (1995) formulated a repeated Nash

bargaining model to explain loss aversion.

Turning back to the de�nition of the core, intuitively, in this context the

core should capture those situations in which at each stage the grand coalition

is formed, its worth is distributed among the players and no coalition has

a pro�table deviation. But in determining a pro�table deviation, should

coalitions be required to deviate at the start of the game and for all time, or

can they deviate at a later stage? Should such a deviation itself be stable or

are unstable deviations also to be considered? The three concepts we discuss

provide di�erent answers to these questions.

The �rst concept, termed the classical core, assumes that coalitions plan-

2Strotz (1955).
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ning to split o�, do so from the beginning. It is not possible, therefore,

for coalitions to separate from the grand coalition after having cooperated

during the �rst stages. The classical core may thus be viewed as a static

concept since it does not really depend on the time structure in the game.

This is reected by the fact that the classical core coincides with the core of

an induced static cooperative game with nontransferable utility.

In the strong sequential core coalitions are allowed to deviate at any stage

of the game, but done so in one period, they must do so in all remaining

stages as well. The papers by Gale (1978) and Becker and Chakrabarti

(1995), mentioned above, present similar core concepts for the special case of

a monetary economy and a capital accumulation model, respectively. Also

Koutsougeras (1998) presents a core concept in this spirit in a two-period

economy with asset markets and di�erential information. For two-period

economies with uncertainty and possibly asset markets, Predtechenski et al.

(2001) study the strong sequential core.

In both the classical and strong sequential cores, deviations are not re-

quired to be stable. In other words, a coalition can deviate from the grand

coalition and propose a distribution of its worth at each stage which, in turn,

could be blocked by some subcoalition in the future. It is known that for

static cooperative games this di�erence is inessential (Ray, 1989), since al-

lowing only \credible" deviations (i.e. deviations which cannot be blocked

by any subcoalition) does not enlarge the set of core allocations. In a dy-

namic setup, however, the focus on credible deviations does have an impact

on the core concept. Payo� streams which distribute the worth of the grand

coalition at every stage are said to be in the weak sequential core if they are

robust against all credible deviations. Clearly, the strong sequential core is

contained in both the classical core and the weak sequential core. It is shown

by an example that there is no such logical relationship between the classical

and weak sequential core: both cores may be nonempty but have an empty

intersection.

With these di�erent core concepts in hand, we then turn to two important

issues. Can we �nd conditions on the stage games and the players' preferences

which guarantee a nonempty core? And, is there an easy way to characterize

core allocations, at least in some special cases? The last question is especially

relevant for the weak sequential core, since its recursive de�nition of credible

deviations makes it somewhat hard to handle.

The outline of the paper is as follows. In Section 2 we provide basic de�-
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nitions. Section 3 introduces the classical core concept and provides suÆcient

conditions on the stage games and preferences to ensure its nonemptiness.

In brief, balancedness of the stage games together with quasiconcavity of

preferences guarantee that the classical core is nonempty. An example shows

that this condition is not necessary. In Section 4 we �rst describe the strong

and weak sequential core concepts; we provide a characterization of weak se-

quential core allocations|which is used to prove an existence result for the

two-player case|and we illustrate the concepts by examples. In the last part

of this section, we investigate the di�erent core concepts for two special pref-

erence classes: symmetric linear preferences and lexicographic preferences.

Section 5 contains brief concluding remarks.

2 Preliminaries

In this section we provide preliminary de�nitions as well as some well known

facts about the core. In addition we de�ne the notion of a dynamic transfer-

able utility game.

2.1 TU-games

A game with transferable utility or briey a TU-game is a pair (N; v), where

N := f1; 2; : : : ; ng is the set of players and v : 2N ! IR+ assigns to each

coalition S � N3 its nonnegative worth v(S), with the convention that v(;) =
0, and such that v(S) > 0 for at least one coalition S. Usually we simply

write v instead of (N; v). The central question in a TU-game is how to

distribute the worth v(S) among the members of S if the coalition is formed.

Such a distribution is also called a (payo� ) allocation. For convenience we

consider only nonnegative games, but allocations, in general, may contain

negative components. The core of a TU-game v is the set

C(v) := fx 2 IRN : x(N) = v(N) and x(S) � v(S) for all S 2 2Nnf;gg,
where x(S) denotes the sum

P
i2S xi.

A collection of coalitions B � 2Nnf;g is balanced if there are positive real

numbers �S for every S 2 B such that
P

S2B:i2S �S = 1 for every i 2 N . A

3The symbol � means `inclusion' and the symbol � means `strict inclusion'. Vector

inequalities are denoted �, >, and �, <.
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TU-game v is balanced if
P

S2B �Sv(S) � v(N) for every balanced collection

B. According to the well known result of Bondareva (1963) and Shapley

(1967), a TU-game has a nonempty core if and only if it is balanced.

2.2 NTU-games

A game without transferable utility or briey an NTU-game is a pair (N; V )

where V (S) � IRN for each coalition S, and V (;) = ;. Usually we write V

instead of (N; V ). Often the following additional conditions are imposed on

an NTU-game V :

(N.1) for all S 6= ;, V (S) is nonempty and closed,

(N.2) if x 2 V (S) and yi � xi for all i 2 S, then y 2 V (S),

(N.3) for every i 2 N there is an mi 2 IR with V (fig) = fx 2 IRN : xi � mig,
and V (N) \ fx 2 IRN : xi � mi for all i 2 Ng is compact.

The core of an NTU-game V , denoted by C(V ), is the set V (N)n[S�N intV (S).

(Here `int' denotes `interior'.) An NTU-game V is balanced if \S2BV (S) �
V (N) for every balanced collection B. Scarf (1967) proved that if V satis�es

(N.1){(N.3) and is balanced then it has a nonempty core (see also Kannai,

1992).

2.3 Dynamic TU-games

Let T be a natural number and let v = (v1; v2; : : : ; vT ) be a sequence of

TU-games with the same set of players. Let u = (ui)i2N be a pro�le of

utility functions for the players. Here, ui : IR
T ! IR is a function assigning

to every payo� stream xi = (x1i ; : : : ; x
T
i ) for player i some utility ui(xi).

Unless explicitly stated otherwise, we assume that the utility functions ui
are continuous and strictly increasing in each coordinate, and that each ui is

time separable (Koopmans, 1960). The last assumption means that for every

stage t, every pair (x1; : : : ; xt�1); (~x1; : : : ; ~xt�1) and every pair (yt; : : : ; yT );

(~yt; : : : ; ~yT ) we have:

ui(x
1; : : : ; xt�1; yt; : : : ; yT ) � ui(x

1; : : : ; xt�1; ~yt; : : : ; ~yT )
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if and only if

ui(~x
1; : : : ; ~xt�1; yt; : : : ; yT ) � ui(~x

1; : : : ; ~xt�1; ~yt; : : : ; ~yT ):

In words, the evaluation of future allocation streams does not depend on the

history up to that point. Time separability will enable us to de�ne utility

functions from any moment t = 1; : : : ; T on, independent of the preceding

allocation stream (see Section 4.1).

Not all of these assumptions are needed for every result in the sequel. The

assumption of time separability will be needed when we discuss the weak and

strong sequential cores in Section 4.

One simple way to interpret the utility function ui is to think of the

payo�s in a static TU-game as money: then ui represents the evaluation of

streams of money. Alternative interpretations are possible, depending on the

situation. E.g., utility might be additive|possibly with discounting|over

time.

The pair � = (v; u) is called a dynamic TU-game. A feasible allocation

stream for a coalition S in � is a sequence yS = (y1; : : : ; yT ) 2 IRS�T such

that yt(S) = vt(S) for every t = 1; : : : ; T . (Note that bold-face symbols

denote time indexed vectors.) For S = N , we omit the `N ' and write y

rather than yN . Let Z�(S) denote the set of feasible allocation streams for

S in �. Also, for yS 2 Z�(S), we write u(yS) in place of (ui(yi))i2S.

For a dynamic TU-game � = (v; u) and a nonempty coalition S, we de�ne

the set V�(S) by

V�(S) := fx 2 IRN : for some yS 2 Z�(S), x � u(yS)g:
With V�(;) := ;, the pair (N; V�) is an NTU-game satisfying conditions

(N.1), (N.2) and (N.3). We refer to V� as the NTU-game associated with �.

V� represents the situation where coalitions cooperate in every stage of the

game.

3 The classical core

The classical core of a dynamic TU-game � = (v; u), denoted by C(�) or

C(v; u), consists of those allocation streams that generate utility pro�les in

the core of the associated NTU-game V�, that is,

C(�) := fy = (y1; : : : ; yT ) 2 IRN�T : y 2 Z�(N) and u(y) 2 C(V�)g:
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In this section we investigate conditions under which the classical core is

non-empty. Here, the speci�c time structure does not play a role, and all

results would obviously hold without the assumption of time separability.4

In our �rst result we establish directly that the classical core is nonempty

provided the core of each stage game is nonempty as well. The proof as-

sociates a dynamic TU-game with an intertemporal exchange economy in

which the worth of the grand coalition must be allocated in each period.

Nonemptiness of the classical core follows from the existence of a competi-

tive equilibrium in such a context. It is interesting to note that, whereas the

core of an exchange economy results from an application of game theory to

economics, here we solve a game theoretic problem by employing tools from

economics.

Theorem 1 Let � = (v; u) be a dynamic TU-game satisfying:

(i) C(vt) 6= ; for every t = 1; : : : ; T ,

(ii) ui is quasiconcave for every i 2 N .

Then C(�) 6= ;.
Proof. First, we construct an arti�cial \exchange economy" in which the

vector v(N) = (v1(N); : : : ; vT (N)) is to be allocated among the n agents,

and the preferences of the agents are represented by their respective util-

ity functions ui(yi). We then identify a suitable \initial allocation," and

show that a \competitive equilibrium" from the initial allocation is in C(�).

Speci�cally, we claim that any y 2 C(v1)�� � ��C(vT ) � IRN�T would serve

as a suitable initial allocation.

Let yÆ denote such an allocation. Under the assumptions on ui, a compet-

itive equilibrium from y
Æ exists: recall that the utility functions are strictly

increasing, and since by assumption vt(S) > 0 for some S � N and C(vt) 6= ;,
vt(N) > 0. Let y� 2 IRN�T denote an equilibrium allocation and p� the sup-

porting prices. Note that p� > 0. We need only show that y� 2 C(�).

By way of contradiction, suppose y� =2 C(�). Then there exists S � N

and some yS 2 Z�(S) such that ui(yi) > ui(y
�
i ) for all i 2 S, and

P
i2S

yi =

4If the speci�c time structure does not play a role, then an alternative formal interpre-

tation of the periods 1; : : : ; T is as states of nature. With this interpretation, the classical

core corresponds to the ex ante core, i.e., before the uncertainty is resolved.
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v(S). Since the utility functions are strictly increasing, it must be the case

that for all i 2 S, p� �yi > p
� �y�i . Hence, p��

P
i2S

yi = p
� �v(S) > p

�� P
i2S

y
�
i .

However, since y� is an equilibrium allocation, p� � y�i = p
� � yÆi for all i 2 S.

Summing over S, p�� P
i2S

y
�
i = p

�� P
i2S

y
Æ
i . Since yÆ 2 C(v1) � � � � � C(vT ),

P
i2S

y
Æ
i � v(S). Hence, p�� P

i2S

y
�
i � p

� � v(S), which is a contradiction. 2

Our second existence result is slightly more general. We establish that under

the same conditions as in Theorem 1 the NTU-game associated with � is

balanced. Nonemptiness of the core then follows by the result of Scarf (1967)

since this NTU-game satis�es conditions (N1){(N3).

Theorem 2 Let � = (v; u) be a dynamic TU-game satisfying:

(i) C(vt) 6= ; for every t = 1; : : : ; T ,

(ii) ui is quasiconcave for every i 2 N .

Then V� is balanced.

Proof. Let B be a balanced collection with weights �S for every S 2 B. Let
x 2 TS2B V�(S). It is suÆcient to show that x 2 V�(N). For every S 2 B
take vectors yS = (y1;S; : : : ; yT;S) (t = 1; : : : ; T ) as in the de�nition of V�(S)

in Section 2. De�ne Y 2 IRN�T by

Yi :=
X

S2B:i2S

�S(y
1;S
i ; : : : ; y

T;S
i ),

for every i 2 N . By the quasiconcavity of ui, we have xi � ui(Yi) for all

i. Hence, it suÆces to show that Y = (Y1; : : : ;Yn) is feasible for the grand

coalition. Now
X

i2N

Yi = (
X

S2B

�S
X

i2S

y
1;S
i ; : : : ;

X

S2B

�S
X

i2S

y
T;S
i )

= (
X

S2B

�Sv
1(S); : : : ;

X

S2B

�Sv
T (S))

� (v1(N); : : : ; vT (N));
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where the inequality follows from balancedness (Bondareva-Shapley) of the

TU-games vt. This shows that Y is feasible for the grand coalition and,

hence, x 2 V�(N). 2

The following example illustrates that, while it is suÆcient that the stage

games have nonempty cores, this is by no means necessary for the dynamic

game to have a nonempty core.

Example 1 Let T = 2, N = f1; 2g, v1(f1g) = v2(f2g) = 2, v1(f2g) =

v2(f1g) = 5, and v1(f1; 2g) = v2(f1; 2g) = 6:5. Then C(v1) = C(v2) = ;.
Let ui(x

1
i ; x

2
i ) = x1ix

2
i for i = 1; 2, and � = (v; u).5 Then C(�) 6= ; and it is

given by

C(�) = f((x11; x21); (x12; x22)) : x11 = x21; x
1
2 = x22 = 6:5� x11;p

10 � x11 � 6:5�
p
10g:

2

The fact that in Example 1 and in many other examples (see below) the

classical core of the dynamic game is nonempty in spite of the fact that

the stage TU-games have empty cores is caused by the possibility of implicit

utility transfers between periods. In order to capture this idea we will present

another existence result on the classical core in which these utility transfers

are formalized in a speci�c sense.

Let � = (v; u) be a dynamic TU-game. For every nonempty coalition S

and every � 2 IR de�ne

V �
u (S) := fx 2 IRN : for every i 2 S there is a yi = (y1i ; : : : ; y

T
i )

2 IRT such that
P

i2S

PT

t=1 y
t
i = � and xi � ui(yi)

for every i 2 Sg.
Note that V �

u (S) does not depend on v, but it does depend on u. It consists

of the set of those utility allocations that can be obtained by distributing

the amount � among the players in S. Let �(v(S)) be the minimal value of

5These utility functions satisfy all of our assumptions only for positive allocations,

which are the only ones that are relevant in this example. Alternatively, one may take for

instance utility functions ui(x
1

i
; x2

i
) = �e�x

1

i � e�x
2

i , which satisfy all of our assumptions

for all possible allocations but are slightly less easy to work with.
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� for which V �
u (S) � V�(S). Note that �(v(S)) �

PT

t=1 v
t(S). For possible

reference we state the following observation as a theorem. In this theorem

we de�ne an NTU-game ~V such that for the grand coalition the individually

rational part of the feasible set is contained in that of V�, and for each smaller

coalition the feasible set contains that of V�. This is done in a tight way by

distributing �xed amounts among the coalitions. These �xed amounts are

at most equal to what each coalition could generate if it had the possibility

to pool its worth over all time periods. Thus, it tries to capture the idea of

transfers between periods.

Theorem 3 Let � = (v; u) be a dynamic TU-game. De�ne the NTU-game
~V by ~V (S) := V

�(v(S))
u (S) for S 6= N and ~V (N) := V ~�

u (N), where

~� := maxf� : 8x 2 IRN [x 2 V �
u (N) and x =2 int(V�(fig) 8i 2 N

) x 2 V�(N)]g:
Then C( ~V ) 6= ; implies C(�) 6= ;.

Proof. By de�nition, ~V (S) = V
�(v(S))
u (S) � V�(S) for S 6= N , while ~V (N)\

fx 2 IRN : 8i 2 N [x =2intV�(fig)]g � V�(N). From this the theorem follows.

2

For this result to be useful one has to know when the NTU-game ~V has a

nonempty core. More generally, let �0 = (w; u) be a `trivial' dynamic game,

i.e., T = 1. Then the assumption of strictly increasing utility functions

implies C(�0) = C(w).

Example 2 Consider again the game in Example 1. In this case

�(v(f1g)) = �(v(f2g)) = 2
p
10, ~� = 13. The resulting game ~V is the game

V�0 where �0 = (w; u) with w(f1g) = w(f2g) = 2
p
10 and w(f1; 2g) = 13.

Thus, C(�0) = C(w) 6= ;, and therefore by Theorem 3 C(�) 6= ;. 2

Example 3 Consider the two-period three-player game � = (v; u) de�ned

by v1(f1; 2g) = 4, v1(f2; 3g) = 2, v2(f1; 2g) = 2, v2(f2; 3g) = 4, v1(N) =

v2(N) = 2:9, and v1(S) = v2(S) = 0 otherwise; and ui(x
1
i ; x

2
i ) = x1ix

2
i for

i = 1; 2; 3 (cf. footnote 5). Then v1 and v2 are not balanced (and neither is

v1 + v2). In this case �(v(S)) = 2
p
8 for S = f1; 2g and S = f2; 3g, and

~� = 5:8. The game ~V is derived from the TU-game w with w(f1; 2g) =

11



w(f2; 3g) = 2
p
8, w(N) = 5:8, and v(S) = 0 otherwise. The game w is

balanced, hence (w; u) has a nonempty core, and by Theorem 3 the dynamic

game � = (v; u) has a nonempty classical core. 2

4 The weak and the strong sequential core

First, de�nitions of core concepts will be proposed that capture the time

structure of a dynamic game. An alternative description of one of these,

the weak sequential core, is provided by Lemma 1. Theorem 4 provides

an existence result for the weak sequential core in the case of two players.

In Section 4.2 relationships between the three core concepts or the absence

thereof are illustrated by examples. The last two sections are devoted to

special cases where preferences are linear and symmetric, or lexicographic,

respectively.

4.1 De�nitions

Since every utility function ui is assumed to be time separable, there is

a utility function uti : IRT�t+1 ! IR for each stage t such that for every

(x1; : : : ; xt�1) and every pair (yt; : : : ; yT ); (~yt; : : : ; ~yT ) we have:

ui(x
1; : : : ; xt�1; yt; : : : ; yT ) � ui(x

1; : : : ; xt�1; ~yt; : : : ; ~yT )

if and only if

uti(y
t; : : : ; yT ) � uti(~y

t; : : : ; ~yT ):

It is therefore possible to de�ne the core of subgames. The subgame starting

at stage t is the dynamic cooperative game �t = v
t := ((vt; : : : ; vT ); (uti)i2N):

The core of the subgame �t is de�ned as the classical core of the dynamic

cooperative game �t:

Let � = (v; u) be a dynamic TU-game and let x be an allocation stream.

By xt we denote the allocation stream from time t on, i.e., xt = (xt; : : : ; xT ).

More generally, xt may denote an allocation stream from time t on.

De�nition 1 A deviation by S � N at time t from x is a feasible allocation

stream y
t = (yt; : : : ; yT ) 2 (IRS)T�t+1 for the coalition S such that uti(y

t
i) >

uti(x
t
i) for all i 2 S.

12



Note that by de�ning a deviation in this way we implicitly assume that a

coalition, once it deviates, it deviates for the rest of the time.

De�nition 2 The strong sequential core of � = (v; u) is the set of feasible

allocation streams x for the grand coalition from which no coalition ever has

a deviation.

Remark 1 Note that x is in the strong sequential core of � = (v; u) if, and

only if, at every stage t; the continuation stream x
t = (xt; : : : ; xT ) is in the

(classical) core of the subgame �t = ((vt; : : : ; vT ); (uti)i2N). Therefore, the

existence of a strong sequential core allocation implies the nonemptiness of

all these classical cores.

We denote the strong sequential core by SSC(�): In its de�nition, we allow

coalitions S to deviate by allocation streams yt which, themselves, can be

improved upon in the future by subcoalitions of S. The following de�nitions

lead to a weakening of this core concept by putting an additional requirement

on deviations.

De�nition 3 A deviation yt as in De�nition 1 is credible if there is no S 0 � S

and a time t0 � t such that S 0 has a deviation at t0 from y
t, i.e., a feasible

allocation stream (y0t
0

; : : : ; y0T ) for S 0 with ut
0

i (y
0t

0

i ) > ut
0

i (y
t0

i ) for all i 2 S 0.

De�nition 4 The weak sequential core of � = (v; u) is the set of feasible

allocation streams x for the grand coalition from which no coalition ever has

a credible deviation.

We denote the weak sequential core by WSC(�). Obviously, the strong

sequential core is always a subset of the weak sequential core. One might

argue that the de�nition of the weak sequential core is too restrictive, since

it would be natural to require a deviation by a coalition S 0 as in De�nition

3 to be credible at its turn. It is easy to show, however, that existence of a

deviation by S 0 implies the existence of a credible deviation. For suppose that

S 0 at t0 has a deviation y0t
0

from y
t that is not credible. We may assume that

S 0 itself does not have a deviation from this deviation (otherwise continue

with a deviation from which S 0 itself does not have a deviation). Then there

is a coalition S 00 � S 0 that has at time t00 � t0 a deviation y
00t

00

from y
0t

0

.

If this deviation is credible then it is obviously also a credible deviation

13



from x. Otherwise we can repeat the argument, possibly until we end up at

one-person coalitions, which always have a credible deviation if they have a

deviation. Thus, for the weak sequential core it does not make a di�erence

if we would add this additional requirement.6

The weak sequential core can be characterized in a simple way. For a

TU-game (N; v) and a coalition S � N the restriction of v to S is denoted

by (S; v). For a dynamic game v the notation (S;v) similarly denotes the

restriction of the game to S at every moment t.

Lemma 1 Let v be a dynamic game, and x a feasible allocation stream for

N . Then the following two statements are equivalent.

(a) x = (x1; x2; : : : ; xT ) 2 WSC(v),

(b) x
2 = (x2; : : : ; xT ) 2 WSC(v2) and there are no S � N and alloca-

tion stream (y1; y2; : : : ; yT ) such that y1(S) = v1(S), (y2; : : : ; yT ) 2
WSC(S;v2) and ui(yi) > ui(xi) for all i 2 S.

Proof. For the implication (a))(b) we only still have to show that if an

allocation stream (y1; y2; : : : ; yT ) as in (b) would exist, then there would also

exist a credible deviation, thus contradicting (a). But this is obvious be-

cause if (y1; y2; : : : ; yT ) is itself not credible, then we can always �nd another

credible deviation at t = 1, by an argument analogous to the one following

De�nition 4. For the implication (b))(a) we similarly only have to show

that there is no credible deviation at t = 1, but this is immediate. 2

Note that this lemma clari�es the essentially recursive nature of the weak

sequential core. This will be seen again in the examples that follow below.

First we provide an existence result for the weak sequential core in the case

of two players. For this result we use the following observation.

Lemma 2 Let (v; u) be a dynamic cooperative game and for every t 2
f1; : : : ; Tg let uti be the induced utility function for allocation streams in the

subgame vt: Then for all xt = (xt;xt+1) and yt = (yt;yt+1) with with xti � yti
and ut+1

i (xt+1
i ) � ut+1

i (yt+1
i ) it holds that uti(x

t
i) � uti(y

t
i).

6This is analogous to equality of core and so-called modi�ed core as shown in Ray

(1989).
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Proof. Follows directly from the time separability and monotonicity of the

utility functions. 2

Theorem 4 Let � = (v; u) be a dynamic cooperative game with two players

and with C(vt) 6= ; for every t = 1; : : : ; T . Then WSC(�) 6= ;.

Proof. For every t 2 f1; : : : ; Tg; let IR(vt) be the set of those alloca-

tion streams xt in v
t that are feasible for the grand coalition and for which

uti(x
t
i) � uti(v

t(fig); : : : ; vT (fig)) for both players i. Let X t = f(xt1; xt2) 2
IR2 : xt1 + xt2 = vt(N)g be the set of feasible allocations for the grand coali-

tion at stage t: For every set A of allocation streams in v
t, let PO(A) be

the set of Pareto optimal allocation streams in A: By Lemma 1, it may be

veri�ed easily that

WSC(vT ) = C(vT );

WSC(vt) = IR(vt) \ PO(X t �WSC(vt+1))

for all t < T . We show by induction on t that WSC(vt) is nonempty and

compact for all t:

By assumption, C(vT ) is nonempty. Since C(vT ) is also compact, we have

that WSC(vT ) is nonempty and compact.

Now, let t < T; and assume that WSC(vt+1) is nonempty and com-

pact. By continuity of the utility functions, we know that IR(vt) and

PO(X t � WSC(vt+1)) are both compact, and hence it remains to show

that IR(vt) \ PO(X t �WSC(vt+1)) is nonempty. Let yt+1 2 WSC(vt+1)

be arbitrary. Let yt = ((vt(f1g); vt(N)� vt(f1g));yt+1) 2 X t�WSC(vt+1).

Let zt 2 X t � WSC(vt+1) be such that ut1(z
t
1) � ut1(y

t
1) and ut2(z

t
2) =

max(fut2(xt2) : xt 2 X t � WSC(vt+1) and ut1(x
t
1) � ut1(y

t
1)g: Then, by

construction, zt 2 PO(X t � WSC(vt+1)): We prove that z
t 2 IR(vt):

By construction, ut1(z
t
1) � ut1(y

t
1): By de�nition, yt = ((vt(f1g); vt(N) �

vt(f1g));yt+1) with y
t+1 2 WSC(vt+1) � IR(vt+1) and hence ut+1

1 (yt+1
1 ) �

ut+1
1 ((vt+1(f1g); : : : ; vT (f1g):

By Lemma 2, ut1(z
t
1) � ut1((v

t(f1g); : : : ; vT (f1g)):
On the other hand, ut2(z

t
2) � ut2(y

t
2). By de�nition, y

t = ((vt(f1g); vt(N)�
vt(f1g));yt+1): Since C(vt) is nonempty, it holds that vt(N) � vt(f1g) �
vt(f2g): By construction, yt+1 2 WSC(vt+1) � IR(vt+1) and hence

ut+1
2 (yt+1

2 ) � ut+1
2 ((vt+1(f2g); : : : ; vT (f2g): By Lemma 2,

it follows that ut2(y
t
2) � ut2((v

t(f2g); : : : ; vT (f2g):We may thus conclude that
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ut2(z
t
2) � ut2(v

t(f2g); : : : ; vT (f2g)), and hence

z
t 2 IR(vt)\PO(X t�WSC(vt+1)) =WSC(vt): This completes the proof.

2

Example 5 below shows that Theorem 4 does not hold for more than two

players.

4.2 Examples

From the de�nition, it is clear that the strong sequential core is always con-

tained in the classical core. Moreover, the strong sequential core is always a

subset of the weak sequential core, since the former allows for a more gen-

eral class of deviations and is therefore more restrictive. Between the weak

sequential core and the classical core, there is no logical relationship. It is

even possible for both sets to be non-empty but disjoint, as is illustrated by

the following example.

Example 4 Let N = f1; 2g and T = 2. Let the stage games be given by

v1(f1g) = 8; v1(2) = 2; v1(f1; 2g) = 10;

v2(f1g) = 2; v2(2) = 8; v2(f1; 2g) = 10:

Let the utility functions be

ui(x
1
i ; x

2
i ) = x1ix

2
i

for both i (cf. footnote 5).

This dynamic game can be represented by an Edgeworth box, in which

the axes correspond with the two stages t = 1; 2 and at each stage, a total

amount of 10 is distributed between the two agents (Figure 1). Although in

principle allocations with negative amounts are allowed these do not play a

role here.

Classical core. The classical core corresponds with the eÆcient and in-

dividually rational allocation streams in the Edgeworth box. The eÆcient

allocation streams are the streams x = ((x11; 10 � x11); (x
2
1; 10 � x21)) with

x11 = x21; represented by the diagonal line in Figure 1. The individual ratio-

nality constraints are given by

x11x
2
1 � 16 and (10� x11)(10� x21) � 16;
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Figure 1: The Edgeworth box in Example 4

represented by the indi�erence curves in Figure 1. Therefore,

C(�) = f((x; 10� x); (x; 10� x)) : 4 � x � 6g:
Weak sequential core. Every allocation stream x = ((x11; x

1
2); (x

2
1; x

2
2))

in the weak sequential core has the property that (x21; x
2
2) = (2; 8); since

otherwise, either coalition f1g or coalition f2g could credibly deviate at the

last stage. But then, also (x11; x
1
2) = (8; 2); since otherwise either coalition

f1g or coalition f2g could credibly deviate from x at the �rst stage. For

instance, if x11 < 8; then player 1 can credibly deviate at stage 1 since he can

obtain (8; 2) by himself at stage 1 and 2 respectively, which is better than

(x11; 2) obtained in x. Hence, the only candidate for a weak sequential core

allocation is ((8; 2); (2; 8)).

We show that x = ((8; 2); (2; 8)) is indeed in the weak sequential core. It

is clear that there is no credible deviation at the last stage. Suppose that

there would be a credible deviation at the �rst stage. Since players 1 and

2 on their own can never improve upon x; the only possibility remaining is

that f1; 2g could credibly deviate at stage 1. Let y = ((y11; y
1
2); (y

2
1; y

2
2)) be

such a credible deviation. Then, (y21; y
2
2) = (2; 8); since otherwise either f1g
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or f2g could credibly deviate from y at the last stage. However, this implies

that y cannot Pareto dominate x, contradicting the fact that y is a credible

deviation for f1; 2g: Hence,
WSC(�) = f((8; 2); (2; 8))g:

In particular, the classical core and the weak sequential core are both nonempty,

but have an empty intersection.

Strong sequential core. Since the strong sequential core is contained in

both the classical core and the sequential core, the strong sequential core is

empty. 2

Example 5 For the classical core we have seen that, if the stage games all

have a nonempty core and the utility functions are nicely behaved, then the

classical core of the dynamic TU-game is nonempty. In this example we show

that this result is no longer true for the weak sequential core (and therefore

neither for the strong sequential core). Let N = f1; 2; 3g and let T = 2: Let

the stage games be given by

v1(fig) = 0 for i = 1; 2; 3; v1(fi; jg) = 2 for i 6= j; v1(f1; 2; 3g) = 3;

v2 = v1:

Let the utility functions be given by

u1(a; b) = ab;

u2(a; b) = ab;

u3(a; b) = ab2:

Hence, both stage games have a nonempty core and Theorem 2 applies (cf.

footnote 5.) We show, however, that the weak sequential core is empty.

Suppose that x = (x1; x2) would be a weak sequential core element.

Then, x2 = (1; 1; 1); since otherwise some two-person coalition would ob-

tain less than 2; and this coalition could then credibly deviate at the last

stage. But then, necessarily, x1 = (1; 1; 1); since otherwise, some two-

person coalition would obtain less than 2 at the �rst stage, and this coalition

could then credibly deviate at stage 1. However, f1; 3g can credibly deviate

from ((1; 1; 1); (1; 1; 1)) at stage 1 by choosing a Pareto optimal allocation

((y11; y
1
3); (y

2
1; y

2
3)) dominating ((1; 1); (1; 1)). Hence, the weak sequential core

is empty. 2
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4.3 Symmetric linear preferences

In this subsection, the preferences are assumed to be symmetric and linear.

Speci�cally, every player i attaches utility x1i + � � � + xTi to a payo� stream

xi = (x1i ; : : : ; x
T
i ). A dynamic TU-game can therefore be denoted by � = v.

In this case, for the classical core of �, we simply have C(�) = C(v),

where v is the TU-game v =
PT

t=1 v
t.

Before continuing we introduce a few notations. For a collection of coali-

tions B � 2Nnf;g, a coalition S � N and a game (N; v) let

CB(S; v) := fx 2 IRS
+ : x(S) = v(S) and x(T ) � v(T )

for every T � S with T 2 Bg:
For a dynamic game v and t = 2; : : : ; T de�ne

Bt := fS 2 2Nnf;g :WSC(S;vt) 6= ;g:
The following lemma characterizes the weak sequential core of a game v.

Lemma 3 Let v be a dynamic game and let x = (x1; : : : ; xT ) be a feasible

allocation stream for the grand coalition N . Then x 2 WSC(v) if and only

if xt+1 2 WSC(vt+1) and xt + � � �+ xT 2 CBt+1(N; vt + � � � + vT ) for every

t = 1; : : : ; T � 1.

Proof. First suppose x 2 WSC(v). By de�nition of the weak sequential

core it follows that xt+1 2 WSC(vt+1) for every t = 1; : : : ; T � 1 (cf. Lemma

1). Let t 2 f1; : : : ; T � 1g �xed and suppose, contrary to what we wish to

prove, that xt(S) + � � � + xT (S) < vt(S) + � � � + vT (S) for some S 2 Bt+1.

Choose an arbitrary allocation stream (yt+1; : : : ; yT ) 2 WSC(S;vt+1). For

every i 2 S de�ne yti := xti +
PT

s=t+1(x
s
i � ysi ) + � where � is chosen such

that yt(S) = vt(S), hence �jSj = PT

s=t y
s(S) �PT

s=t x
s(S) =

PT

s=t v
s(S)�PT

s=t x
s(S) > 0. If yt = (yt; : : : ; yT ) is a credible deviation for S at stage t,

then we are done because this contradicts x 2 WSC(v). Otherwise, there is

a coalition S 0 � S which can credibly deviate from y
t through an allocation

stream z
t. Since

PT

s=t z
s
i �
PT

s=t y
s
i >
PT

s=t x
s
i for all i 2 S 0 the coalition

S 0 would have a credible deviation from x
t as well, again a contradiction (cf.

Lemma 1).

Next, suppose that the allocation stream x satis�es the conditions in the

lemma. Then a credible deviation can only be possible at t = 1 for a coalition
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S for which WSC(S;v2) 6= ;, i.e., S 2 B2. For such a coalition, however,

x1(S) + � � �+ xT (S) � v1(S) + � � �+ vT (S), implying that by deviating this

coalition can never improve. Therefore x 2 WSC(v). 2

The allocation yt for coalition S constructed in the proof of Lemma 3 may

have negative components: some players may accept a negative momentary

payo� at time t because they are compensated later.

Direct reference to the weak sequential cores of subgames can be avoided,

as follows.

Theorem 5 Let v be a dynamic game and let x = (x1; : : : ; xT ) be a feasible

allocation stream for the grand coalition N . Then x 2 WSC(v) if and only

if xT 2 C(vT ) and xt + � � � + xT 2 CBt+1(N; vt + � � � + vT ) for every t =

1; : : : ; T � 1.

Proof. Every condition of the form x
t 2 WSC(vt) occurring in Lemma 3

can, by the same lemma, be unraveled into the conditions xs 2 WSC(vs) for

every s = t + 1; : : : ; T together with xt + � � �+ xT 2 CBt+1(N; vt + � � �+ vT ).

By this the theorem follows. 2

The following lemma provides a recursive de�nition of the collection Bt (t =

2; : : : ; T ) which, moreover, avoids reference to the weak sequential core.

Lemma 4 Let v be a dynamic game. Then for every t = 2; : : : ; T � 1:

Bt = fS 2 Bt+1 : CBt+1(S; vt + � � �+ vT ) 6= ;g;
and

BT = fS 2 2Nnf;g : C(S; vT ) 6= ;g:

Proof. The statement about BT is obvious. For t = 2; : : : ; T � 1 denote by

X t(S) the set of allocations that are feasible for coalition S at time t. We

�rst prove the following

Claim: fS 2 2Nnf;g : there exists (xt : : : ; xT ) 2 X t(S)�WSC(S;vt+1) withPT

�=t x
� 2 CBt+1(S; vt + � � �+ vT )g = fS 2 Bt+1 : CBt+1(S; vt+� � �+vT ) 6= ;g.

Proof of Claim: The inclusion from left to right is obvious. Now suppose that

CBt+1(S; vt+ � � �+ vT ) 6= ; and WSC(S;vt+1) 6= ;. Choose x 2 CBt+1(S; vt+

20



� � �+vT ) and ~yt+1 2 WSC(S;vt+1). Let ~yt+1 = (yt+1; : : : ; yT ). Then y� (S) =

v� (S) for all � � t + 1, hence
PT

�=t+1 y
�(S) =

PT

�=t+1 v
� (S). On the other

hand, x(S) =
PT

�=t
vt(S), so that x(S) �PT

�=t+1 y
�(S) = vt(S). Let ~x =

(x�PT

�=t+1 y
� ; yt+1; : : : ; yT ) 2 X t(S)�WSC(S;vt+1). Then

PT

�=t ~x
�
i = xi

so that
PT

�=t ~x
� 2 CBt+1(S; vt + � � � + vT ). This completes the proof of the

claim.

Now

Bt = fS 2 2Nnf;g : WSC(S;vt) 6= ;g
= fS 2 2Nnf;g : there exists (xt : : : ; xT ) 2

X t(S)�WSC(S;vt+1) with
PT

�=t x
� 2 CBt+1(S; vt + � � �+ vT )g

= fS 2 Bt+1 : CBt+1(S; vt + � � �+ vT ) 6= ;g
where the �rst and last equalities are by de�nition and the second equality

follows from the Claim. 2

The following theorem presents a description of the strong sequential core.

The simple (cf. Remark 1) proof is omitted.

Theorem 6 Let v be a dynamic TU-game and let x be an allocation stream.

Then x 2 SSC(v) if, and only if, xt + � � �+ xT 2 C(vt + � � �+ vT ) for every

t = 1; : : : ; T .

4.4 Lexicographic preferences

In this subsection for simplicity we con�ne ourselves to the case T = 2 and

we assume that the players have lexicographic preferences. More precisely,

we assume that every player i either prefers the �rst or the second period. If

he prefers the �rst period then he prefers (x1; x2) to (y1; y2) if either x1i > y1i
or x1i = y1i and x2i � y2i . The preference of a player i who prefers the second

period is de�ned similarly, with the roles of the two periods reversed. These

preferences are not even representable by utility functions but nevertheless

the de�nitions of classical and strong and weak sequential cores should be

obvious.

We assume in this subsection that only nonnegative allocations are pos-

sible. Without this assumption (or at least an assumption that allocations
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are bounded from below) the classical core would be empty if both types of

players are present: in period one we can have unlimited transfers from play-

ers who prefer period two to players who prefer period one, provided we have

the reverse transfers in period two. Hence, any allocation can be blocked

by a better one. By a similar argument it might also be the case that the

number of credible deviations is reduced but, in general, the consequences of

allowing unbounded allocations for the weak sequential core are less clear.

Assume that (v1; v2) is a two-period dynamic TU-game with lexicographic

preferences. For every coalition S write S = S1 [ S2 where Si consists of

those players that prefer period i. Let (x1; x2) be a feasible allocation stream

for the grand coalition N . Then we have:

Theorem 7 The following two statements are equivalent:

(a) (x1; x2) 2 WSC(v1; v2),

(b) x2 2 C(v2) and for all coalitions S = S1 [ S2 and all y2 2 C(S; v2), if

y2i � x2i for all i 2 S2, then
P

i2S2:y2
i
=x2

i

x1i � v1(S)� x1(S1).

Proof. First assume (x1; x2) 2 WSC(v1; v2). Then x2 2 C(v2) (cf. Lemma

1). Suppose S = S1 [ S2 and y2 2 C(S; v2) with y2i � x2i for all i 2
S2. Then consider any feasible allocation (z1; y2) for S with z1i > x1i for

all i 2 S1. By Lemma 1 it must be the case that at least one player in

S2 is worse o� than at (x1; x2). This implies the condition in (b), viz.,P
i2S2:y2

i
=x2

i

x1i � v1(S)� x1(S1). For the implication (b))(a), if x2 2 C(v2)

and x1(S1) � v1(S) for all S, then (a) follows by Lemma 1. If x1(S1) < v1(S)

for some S then any improvement for S1 must distribute at least x1(S1) in

v1 among the players of S1, but then in any element in C(S; v2), by the

implication in (b) at least one player in S2 must be worse o�. 2

The classical core of the two-stage game with lexicographic preferences is

characterized in the following theorem. The proof is left to the reader.

Theorem 8 The following two statements are equivalent:

(a) (x1; x2) 2 C(v1; v2),

(b) for all coalitions S = S1 [ S2 we have
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(i) either x1(S1) > v1(S)

(ii) or x1(S1) = v1(S) and x2(S) � v2(S)

(iii) or x1(S1) < v1(S) and x2(S2) > v2(S)

(iv) or x1(S1) < v1(S) and x2(S2) = v2(S) and x1(S) � v1(S).

As usual (cf. Remark 1) the strong sequential core is the subset of the (clas-

sical) core consisting of those (x1; x2) with x2 2 C(v2).

This part is conluded with a simple example.

Example 6 Let N = f1; 2g and let v1 = v2 be given by v1(fig) = v2(fig) =
1 for i = 1; 2 and v1(N) = v2(N) = 10. Suppose player 1 prefers t = 1 and

player 2 prefers t = 2. Then C(v1; v2) = f(10; 0); (0; 10)g, and
WSC(v1; v2) = f(x1; x2) � 0 : x11 + x12 = 10; x21 + x22 = 10; and

either x21 = 1 and x11 � 1 or 1 < x21 < 9 and x11 = 10g:
From this (or directly) it follows that the strong sequential core of this game

is empty. 2

5 Concluding remarks

In this paper we have proposed several core concepts for dynamic cooperative

�nite horizon games, where at each moment a transferable utility game is

played. For the strong and weak sequential cores of such games the emphasis

was on the de�nitions and examples as well as special cases, since it is not

obvious whether general and useful existence results can be derived. One

interesting avenue for continued research is the application of, in particular,

the weak sequential core concept to other models. Gale (1978, footnote 9), for

example, hints at such an application without further exploring the subject.

The appropriateness of a particular core concept for a dynamic coopera-

tive game depends on the nature of the contracts that can be written in that

particular situation. Roughly, the classical core is appropriate in a situation

where at the beginning of the game a complete contract on the allocation

stream is possible. In a world of more or less incomplete contract possibilities

other concepts such as the sequential cores may be more appropriate.
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This paper is part of a more general research project that aims at de-

veloping solution concepts for dynamic cooperative games. Other work may

concentrate on value-like solutions, such as the Shapley value. A further

interesting avenue in this project deals with the situation where the stage

cooperative game depends on the history of play, as studied in Filar and

Petrosjan (2000). These topics will be subject of future research.
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