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1 Introduction

A well known result in Young (1985) states that no core solution concept with
respect to transferable utility (TU) games satisfies coalitional monotonicity
(in the sense that if the worth of a coalition increases ceteris paribus, no
member of the coalition should receive a decreasing payoff).

This trade-off between coalitional stability, in terms of core constraints,
and coalitional monotonicity is unfortunate as illustrated very clearly for the
case of cost sharing games.

When cost sharing rules are used in organizations it is important that
they are coalitional monotonic since otherwise (some) agents do not have
incentives to reduce costs, cf. e.g. Shubik (1962) and Young (1994). More-
over, coalitional stability with respect to cost sharing games is equivalent
to the well known stand-alone cost principle stating that no coalition will
accept to pay more than their stand-alone cost. Hence, a trade-off between
monotonicity and coalitional stability seems difficult to accept.

Moreover, it has long been recognized that population monotonicity is
another important monotonicity property, see e.g. Thomson (1995). A so-
lution fails to be population monotonic, if (some) agents have incentives to
block the introduction of new agents. In other words, if insiders are able
to block the inclusion of new agents, population monotonicity ensures that
no agents will exploit such a power irrespectively of the contribution of the
outsiders.

In the particular case of convex games, it is well known that (both types
of) monotonicity and stability can be compatible as demonstrated by the
Shapley value, see Shapley (1971), Sprumont (1990) and Rosenthal (1990).
On the other hand, certainly not all core solutions satisfy both types of
monotonicity. On the class of convex games the well known core solution the
nucleolus fails to satisfy both coalitional- and population monotonicity, see
Hokari (2000a) and Sénmez (1994).

In the present paper we consider the Dutta-Ray solution (or Egalitarian
solution, cf. Dutta and Ray (1989)) which on the class of convex games
coincides with the Lorenz maximal imputation in the core, see also Hougaard,
Peleg and Thorlund-Petersen (2001). As such the Dutta-Ray solution is
a core selection rule that explicitly relates to a fairness criterion in terms
of equality. Contrary to the nucleolus, it has been shown that the Dutta-
Ray solution is indeed population monotonic (Dutta (1990)) and coalitional



monotonic (Hokari (2000b)) on the class of convex games. We extend these
results by proving that a generalized Lorenz solution concept also satisfies
coalitional- as well as population monotonicity.

Subject to the core constraints the generalized Lorenz solution maximizes
a social utility function defined as the sum of individual utilities. Each indi-
vidual utility function is assumed to be strictly concave and it depends only
on the agents own payoff (in monetary terms). Therefore, compared to the
Dutta-Ray solution (where all agents are supposed to have the same indi-
vidual utility function) the generalization opens up for asymmetry in terms
of individual utilities. Such an asymmetric treatment of players may seem
reasonable in cases where, for example, the players differ in wealth prior to
the game or, by some other standards, need ‘positive’ discrimination subject
to economic efficiency in terms of the core constraints. Hence, the use of
generalized Lorenz solutions follows the same line of argument that underlies
the use of weighted Shapley values, asymmetric Nash bargaining solutions
etc. (see e.g. Kalai and Samet (1988) and Peters (1992)).

Finally, we notice that Hokari (2002) also introduces a generalization of
the Dutta-Ray solution on the class of convex games called a monotone-path
Dutta-Ray solution. He claims that our generalized Lorenz solution can be
defined as a monotone-path solution. This claim, however, is incorrect and
consequently our results below cannot be inferred from his analysis. For
example, the monotone-path in his Example 2 iii) is not well defined and
his condition iv) is in general not satisfied using our definition. This can be
demonstrated by simple examples.

2 Definitions and notation

Assume that there is an infinite set of potential players (agents) indexed
by N, the set of natural numbers. Let N be the class of non-empty, finite
subsets of N. A coalitional game (with transferable utility) is a pair (N, v),
N € N where v is a function that associates a real number v(S) with each
subset S of N. As usual v(()) = 0. We write v instead of (NN, v), when the set
of players is fixed and can be omitted for notational simplicity.

Let R” denote the set of all functions from N to R. A member x of RY
is called a payoff vector. If z € RY and S C N we write z(S) = >;cq -
Clearly, z(() = 0.



A game v is conver if, for all coalitions S, T
v(S)+ou(T) <v(SUT)+v(SNT).
Denote by I'V, the class of convex games v for N € N.
The core of v, C(v), is defined by

C(v) = {zx € RY | 2(S) > v(S) for all S C N and z(N) = v(N)}.
For v € TV, C(v) # 0 (cf. Shapley 1971).

A solution of a game v is a function ¢ which allocates v(N) among all
the players, i.e. ¢(v) = x where z(N) = v(N).

Let u; : R — R, 7 € N be strictly concave differentiable functions. Now,
let v € I'N and define the generalized Lorenz solution as

¢“L(v) = argmax{>_ u;(z;) | € C(v)}.

iEN

The solution ¢“*(v) is well defined because u;, i € N are strictly concave
and C'(v) is compact.

By Theorem 2 in Hougaard, Peleg and Thorlund-Petersen (2001) the
generalized Lorenz solution coincides with the Lorenz-mazimal imputation
in the core of a game v € 'V if u;(z;) = u(x;), for all i € N. Note also
that for convex games the Lorenz-maximal imputation in the core of a game
v coincides with the Fgalitarian solution of Dutta and Ray (1989) — the
Dutta-Ray solution.

A solution ¢ satisfies coalitional monotonicity if for all coalitions S and
all + € S that,

[0(S) < w(S), v(T) =w(T), S#T|= ¢i(v) < di(w).

Denote by G = {(N,v)|(N,v) € T'N} the class of convex games with a
finite set of players. Let x € R and v € T'V. For S C N, let z° be the
restriction of z to S, and let vjg be the restriction of v to S. Clearly, vs is
convex, 1.e. vjg € .

A solution ¢ satisfies population monotonicity if for all S, N € N with
S C N, that ¢;(v)s) < ¢;(v) for all i € S.
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3 Coalitional monotonicity

Using the algorithm provided in Dutta and Ray (1989) it is simple to show
that the Dutta-Ray solution is coalitional monotonic, see also Hokari (2000b).
In this section we will, more surprisingly, demonstrate that the generalized
Lorenz solution is coalitional monotonic as well.

Let I'V be the set of all convex games on a fixed set of players N, and
let u; : R — R be strictly concave differentiable functions. Consider the
generalized Lorenz solution

¢GL(U) = argmax{z ui(z;) | z € C(v)}.

ieN
First we observe the following result.

Lemma 1 ¢“L(v) is a continuous function of v.

Proof: The core C(v) is a continuous correspondence. Hence, by the The-
orem of the Maximum (see Mas-Colell, Whinston and Green (1995)) ¢“L(v)
is upper hemicontinuous. As ¢“* is a function it is, in fact, continuous. O

Let v € TV and let z = ¢“L(v). Write i ~, j if uj(x;) = u)(x;). Let
P =P(x)={P,..., P} be the partition induced by ~,. We always assume

(3.1) [i € Py, j € P, and h <] = uj(x;) < uy(x;).

Thus, P is actually an ordered partition. We also denote the set of zero-
excess coalitions

(3.2) Z(x) ={S S N [ 2(5) = v(9)}.

By Shapley (1971) Z(zx) is a ring, that is, it is closed under union and
intersection.

Lemma 2 Let v € TV, let x = ¢“L(v), and let P(z) = {Py,..., P} be the
partition associated with x. Then PyU...U P, € Z(x) for h=1,... k.

Proof: Let i € P, and j € F; where h < [. Then uj(x;) < uj(z;). As
z = ¢“L(v), there exists S;; € Z(z) such that i € S;; and j € S;; (no transfer
of money from i to j is possible). Let

Si=({Si | 7 = wj(ws) < wjz;)}.
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Then S; € Z(z) and S; C Py U...U Py,. Thus, for 1 < h <k,

PU...UP,=|[{Sili€e AAU...UPB,} € Z(x).

Letve N, SCN,S#0,and t > 0. For 0 <t <t define

(33)  w(T)= { z%+ t f;; gf

We assume that wy € T'V. Hence, w; € TV for 0 < t < ¢ (by convexity of
I'V). We shall prove that ¢&L(wz) > ¢&L (v)(= ¢F (wp)) for all i € S. First,
however, we prove a local version of coalitional monotonicity.

Lemma 3 Let v € TV let S C N, S # 0, let t > 0 and let wy € TV (see
(3.8)). Then there exists 0 < & <t such that ¢S (w;) > ¢¥L(v), for alli € S
and 0 <t <e.

Proof: Let y(t) = ¢“*(w,). Thus, y(0) = ¢“*(wo) = ¢“*(v). If e 1:(0) >
v(S), then S # N and we may choose € = Y ;c5¥:(0) — v(S). Thus, let

(3.4) >ies ¥i(0) = v(S).

As ¢%L(w,) is a continuous function of ¢, we may choose 0 < & < # such
that

(3.5) ui(yi(0)) > ui(y;(0)) = wi(yi(t)) > uj(y;(t)), for all i,5 €
N, 0<t<g

(3.6) Yier %i(0) > v(T) = Tieryi(t) >o(T), TCN, 0<t<e
Now, let 0 <t < ¢, let y(t) =y, and y(0) = z. Denote by
Q={1eN|y <z},

the set of players who are worse off in the game w;. We shall prove that
QNS = 0. (Thus if S = N then Q = (). Let P = (P,...,P;) be the
ordered partition induced by x, let

(3.7) [ =max{h | QN P, #0},
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and let P = (P, ..., P,) be the partition induced by y. Then, by (3.5), P
is a refinement of P, and we shall use this fact in connection with Lemma 2
repeatedly in the following.

Now, if T" = PyU...UP,, then z(T") = v(T"), and y(T") = w,(T") > v(T")
by Lemma 2. Hence y(1") > x(1"). Let

T=PU...UB\(PNQ).
Clearly, y(T"\ T) < x(T"\ T'), implying that
y(T) = y(T") —y(I'\T) > 2(T") = 2(T"\ T) = =(T).

Moreover, as P is a refinement of P (see (3.5)) we have that P, N Q =
P;, U...UP;,. Hence, by Lemma 2, y(T) = w;(T) and by (3.6), z(T) = v(T).
Now, we distinguish between two cases:

(i) S = N. As y(T) = w(T) > z(T) = v(T') we have reached a contradi-
tion (if @ # 0).

(i) S C N, S # 0,N. As w,(T) > v(T), we obtain that 7" = S. Thus
SNQNPF = (. If Il = 1, then the proof is complete. If [ > 1, then
we will show that Q N P, = 0, h = 1,...,1 — 1. Indeed, assume on the
contrary that b <l and QN P, # 0. Then QN P, = P;, U...U P;_ by (3.5).
Denote T, = PLU...UP, and let T = T, \ (P, N Q). Then, by Lemma 2,
y(T) = v(T). Hence, by (3.6), z(T) = v(T). Also, clearly, z(T,) = v(T}).
Thus, y(7T%) = w(T) > v(T,) = z(T,). However,

y(T.) = y(T) +y(T\T) < 2(T) + 2(T.\T) = 2(T5).
Thus we have reached the desired contradiction. |

We are now able to prove coalitional monotonicity when the utility func-
tions are differentiable.

Theorem 1 Let u; : R — R, i € N be strictly concave differentiable func-
tions. Then ¢“F(v) is coalitional monotonic on T'V.

Proof: Let v € TV, let S C N, S # (), and let £ > 0. Assume that wy is
convex (see (3.3)). Let I =[0,¢]. Consider the following subset L of I

L={tecl|for0<7<t ¢ (w,)> ¢ (v) forall i € S}.
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L is non-empty (0 € L), and it is closed by Lemma 1. By Lemma 3, L is
open. Hence, L = I because [ is connected. O

Remark 1: Using the generalized Lorenz solution suitable choice of util-
ity functions u; may select any imputation in the core. Thus, Theorem 1
indirectly verifies that the core also satisfies coalitional montonicity on the
class of convex games. (See e.g. Megiddo (1974) for a precise definition of
coalitional monotonicity for set valued functions).

4 Population monotonicity

Proving population monotonicity, we proceed with a number of intermediate
lemmata. The first result demonstrates a very useful property of convex
games.

Lemma 4 Letv € I'N and S C N, z = (2%,2V\9) € C(v), y° € C(vs) and
z(S) = y(S). Then (y°,zN\%) € C(v).

Proof: First note that since z(S) = y(S) = v(5), S is a zero-excess
coalition at x in v. Assume that there exists a coalition ) that is a zero-
excess coalition in v at  with QNS # ) and Q\ S # ). Since Q is zero-excess,
QNS is a zero excess coalition in v at z and thereby y°(Q N S) > z°(Q N 9)
since y° € C(v)g). Therefore

(4.1) 0(Q) < Y@M S) +2M5(Q)\ 5).

Now, let z7 =ty + (1 — t)2%, ¢t € [0,1], and 2z = (27, 2V\%). We now
show that z, € C(v) for all t € [0,1]. Let L = {t € [0,1] | 2 € C(v)}. L is
nonempty (0 € L) and closed. Moreover, L is open: If ¢, € L choose € > 0
such that

2to(T) > v(T) = 2(T) > v(T)

foralltg—e <t <ty+eforall T C N. Asv(Q) < 27 (QNS)+2M5(Q\ S)
if @ is a zero-excess for z;, by (4.1), we may conclude that ¢ € L and we get
L = [0, 1] because [0, 1] is connected. O

Corollary 1 Letz = ¢%*(v). For S C N if (S) = v(S) then 2% = ¢ ().



Proof: It is clear that 2 € C(vjg). Assume that z° # ¢ (vs) = y°.
Then Yegui(z;) < Yiesui(yi). By Lemma 4, y* 2M\9) € C(v). Since
Yies Ui(Ti) + Ciems i) < Tiesui(yf) + Tiems ui(xs), it is a contra-
diction that z = ¢%L(v). O

For n € N let ¢¢(v) = argmax{> ;cn ui(z;) + cx, | x € C(v)}, ¢ € R.
Lemma 5 ¢°(v) is a continuous function of c.

Proof: Let ¢, k = 1,2,3..., be a convergent sequence, ¢, — c. Assume
that ¢%(v) 4 ¢°(v). Since C(v) is compact, there exists a subsequence
Crp), P = 1,2,3..., where ¢%® (v) is convergent, yet ¢*®(v) /A ¢°(v) .
Let ¢%*® (v) = 2FP) — 2 and ¢¢(v) = y. Note that Y;cn ui(yi) + cyn —
>ien Wi(x;) — cxyn, > 0. Since

Ji (3 (o) + et = X (el - et o,
iEN

€N

and lim, (ZieN wi(Yi) + cyn — Dien wi(ys) — ck(p)yn) = 0, for p sufficiently
large (cx(p) sufficiently close to ¢), Yien wi(¥i) + Chp)¥n — Yien wi(zF®)) —
ck(p)xﬁ(p) > 0, contradicting that z*®) = arg max{>;cy us(z;) + Ch(p)Tn | T €

C(v)}. O
Lemma 6 If ¢ is sufficiently high, ¢S (v) = v(N) — v(N\n).

Proof: Since C(v) is compact, and wu; is differentiable on R for all i,
sup{X>icn ui(z;) | € C(v)} is finite. On the other hand, cz,, — cyn, Tn, > Yn,
goes towards infinity as ¢ — oo. It is thereby clear that if ¢ is sufficiently

large then ¢S (v) = max{z, | x € C(v)}. By Shapley’s (1971) completeness
characterization of the core this solution is given by v(N) — v(N\n). a

Corollary 2 If c is sufficiently high, ¢¢(v) = (¢GL(U|N\H), v(N) — U(N\n)) :

Proof: Follows directly from Lemma 6 and Corollary 1. |

Lemma 7 Let ¢ > d. Then ¢%(v) > ¢%(v).



Proof: Let x = ¢°(v) and let y = ¢?(v). Now assume that x, < y,. Since

> wi(w) + day < D wiy:) + dyn,

1EN 1EN

and since ¢ > d, then also

> i) + cxn <> wi(yi) + cyn,

ieN ieN
contradicting that z = ¢°(v). O

Note that Lemmata 1,5 and 7 do not hinge on convexity and apply to all
balanced games v.

Lemma 8 There erists ¢ > 0 such that ¢¢(v) < ¢ " (v) fori € N\ n and
0<t<e.

Proof: Let x = ¢°(v) and let y(t) = ¢°~*(v). Let P = {4, ..., P} be the
ordered partition induced by x. As ¢°(v) is a continuous function of ¢, we
may, by differentiability of u; for i € N, choose € such that

i) > () = ug(yi(t) > uj(y;(1)),

foralli,j e N0 <t<e.

Now we shall prove that ¢f(v) < ¢{~*(v) fori € N\n, 0 <t <e. Let
y(t) =y, and let P = {P, ..., F;} be the partition induced by y. Note that
P is a refinement of P.

Let n € P. The coalition |J,_}, P, is a zero-excess coalition at x and
at y. Thus, by Corollary 1, z; = y; for i € U} P,. Moreover, we shall
prove that x; = y; for i € UE:ZH P,. Assume that x; # y; for some ¢ €
UF i1 Pr Let ¢°(v) = (xuitzlph,xulfi:urlph),¢C*t(y) = (y%zlph,yulﬁzmph)
where g =117 £ yYi=i1Ph By Lemma 4, (2910 yYh=1174) € C(v). Thus

YicUk_,, Py wi(x;) > YieUk_,, Py u;(y;) since © = ¢°(v). Furthermore, by

Lemma 4, (yYi—1Fn, %=1 € C(v). Thus

Yoo wlm) < YD wily)

; k ; k
7,€Uh:l+1ph leuh:l+1ph
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since y = ¢° *(v) and a contradiction is obtained. To sum up, z; = y; for
i ¢ P.

Consider now the coalition F,. Let {]3]-1, ...,ﬁjr}be the partition of P
induced by y. Assume for some player i’ € P,,i’ # n, that xy > ys. Let
i’ € P;,. Now consider a player i’ € J;_, P, such that z, # yu. If i’ =n
then, by Lemma 7, x;» > y;r. If i # n then x;» > y;r since ul, (xy) = wly (z0)
and ), (ys) < tly(ysn). Therefore z; > y; for all i € U;_,, P;,. Thus m > 2,
and (U5 P;,) < y(Urs! P;,) contradicting that {U,_, P, \ Us_,, P;, } is a
zero-excess coalition at y. O

Lemma 9 Let ¢ > d. Then ¢¢(v) < ¢2(v) for alli € N\ n.

Proof: Let z = ¢°(v) and let y = ¢%(v). Let I = [d,c]. Consider the
following subset of

L={tel|t<t <c¢(v)<¢l(v),ieN\n}.

L is non-empty (¢ € L), and it is closed by Lemma 5. By Lemma 8, L is
open. Hence, L = I because [ is connected. O

With the preceding lemmata in place, we are able to prove that the gen-
eralized Lorenz solution satisfies population monotonicity when the utility
functions are differentiable.

Theorem 2 The generalized Lorenz solution ¢S (v) = arg max{>,c v ui(;) |
x € C(v)} satisfies population monotonicity on the class of conver games G.

Proof: Let v € T'V. We shall verify that ¢F*(vn,) < ¢5(v) for all
i € N\n. By Corollary 2, there exists € > 0 such that ¢S (vn,) = ¢5(v) for
all i € N\n. By Lemma 9, ¢$(v) < ¢2(v) = ¢ (v) for all i € N\n and we
are done. a
5 Extensions

Theorem 1 has the following bounded version. Let a,b € R and let

I'(a,b) ={v eI |a <w(i), i € N and v(N) < b}.

11



Theorem 3 Let u; : [a,b*] — R, i € N, where b* = b — (n — 1)a, be
strictly concave and differentiable functions. Then ¢“*(v) is continuous and
coalitional monotonic on TN (a,b).

The proof of Theorem 3 is similar to that of Theorem 1. The following
result is an important generalization of Theorem 1 as it states that coalitional
monotonicity of the generalized Lorenz solution does not rest on differentia-
bility of the individual utility functions.

Theorem 4 Let u; : R — R, i € N be strictly concave functions. For v €
N define ¢(v) = argmax{>;cy ui(z;) | € C(v)}. Then ¢(v) is continuous
and coalitional monotonic.

Clearly, we only have to prove coalitional monotonicity. Also, it is suf-
ficient to prove coalitional monotonicity on I'V(a,b) for arbitrary a,b. The
proof in this case relies on the following result.

Lemma 10 Let u : [a,b] — R, be a continuous concave function. Then
there exists a sequence u® : [a,b] — R, k = 1,2,..., such that u* is strictly
concave and differentiable, and u* — wu uniformly on [a,b].

The proof of Lemma 10 is left to the reader.
We shall now prove Theorem 4.

Proof (of Theorem 4): Let v € T'V(a,b), let t > 0, let S C N, S # 0,
and let w; € TV (a,b) (see (3.3)). For each i € N we choose a sequence of
strictly concave and differentiable functions uf on [a,b*], k = 1,2,..., such
that u¥ — w; uniformly on [a, b*]. Let

o (v,) = argmax{z uf(z;) | v € Cv,)}, v, € TN(a,b).

ieN
Then ¢*(v) — ¢(v), ¢ (wr) — ¢(w), and ¢f(v) < ¢f(w;) for all i € S (by
Theorem 3). Hence, ¢;(v) < ¢;(w,) for all i € S. O

Now turning towards an extension of Theorem 2, let a,b € R. Denote by
G(a,b) the bounded class of convex games

G(a,b) = {(N,v) | (N,v) € TV(a,b)}.

As in the case of Theorem 3 we can obtain a bounded version of Theorem 2.

12



Theorem 5 Let u; : [a,b*] — R, for all i, where b* = b — (n — 1)a, be
strictly concave and differentiable functions. The generalized Lorenz solution
¢l (v) = argmax{Y ey ui(z;) | ¥ € C(v)} satisfies population monotonicity

on G(a,b).

Proof: Since uj(a) < oo, u;(b*) > —oo there exists a strictly concave and
differentiable extension uw; : R — R of u; for all 7. Replace u; by @, for all ¢
and apply Theorem 2. O

We are then able to prove that Theorem 2 does not hinge on the differ-
entiability of the individual utility functions.

Theorem 6 Let u; : R — R be strictly concave functions for all i. The gen-
eralized Lorenz solution ¢%F(v) = argmax{Y ey ui(zi) | © € C(v)} satisfies
population monotonicity on the class of convex games G.

Proof: It is sufficient to prove population monotonicity on G(a,b) for
arbitrary a,b. Let v € I'V(a,b). We shall verify that ¢ (vnn) < @5 (v)
for all i € N\n. For each i € N we can choose a sequence of strictly concave
and differentiable functions u¥ on [a,b*], k = 1,2, ..., such that uf — wu;
uniformly on [a, b*]. Let

¢"(v,) = argmax{>_ uf(z;) | z € C(vi)},vs € TV (a,b).

€N

Then ¢"(v) — ¢““(v), ¢"(vwin) = ¢ (vma), and ¢f(vw,) < @f(v) for
all i € N\n (by Theorem 5). Hence, ¢{%(vjnn) < ¢§E(v) for all i € N\n.O

6 Counter examples

To demonstrate that separability of the social welfare function is essential
for Theorems 1-6, we provide the following example:

Example 1: Let N = {1,2,3}, and consider the following convex game v:
v(i) =0, fori =1,2,3, v(1,3) = v(2,3) = 1/3, v(1,2) = ¢, 0 < e < 1/3, and
v(N) = 1. Likewise, define another convex game w as w(1,2) = 1/3 > v(1,2)
and w(S) = v(S) otherwise.

13



Let x = (x1, 22, x3) be a vector of payoffs and let ¢(v) = argmax{u(x) |
z € C(v)} be a solution w.r.t. the following social welfare function

U(ZC) = \/ZC1+04$3+5+\/£C2+’Y+5\/T3,

where a, 3,7,6 > 0. Choose «, (3,7 such that

1 1
Va+p \/1/3—1—204/34—5 \/_

implying that o > 1. Then, there exists € > 0 sufficiently small such that

1
1_5 \/€—|—

That is ¢(v) = (0,e,1 — €) whereas ¢(w) = (1/3,0,2/3) contradicting coali-
tional monotonicity. Moreover, ¢1(v|f1,23) > 0 = ¢ (v) contradicting popula-
tion monotonicity. O

To demonstrate that convexity is essential for Theorem 1-6, we provide
the following example (note that in Young (1985) the counter example con-
cerns a five player game; in Housman and Clark (1998) a four player game):

Example 2: Let N = {1,2,3} and consider the following totally bal-
anced game: v(1) = v(2) = 0, v(3) = 2, v(1,2) = v(1,3) = 2, and
v(2,3) = v(N) = 4. Clearly, the game v is not convex as for instance
v(1,2) +v(2,3) > v(N) + v(2). Now, let = (x1, 22, x3) be a pay-off vec-
tor and let ¢“*(v) = argmax{u(z) | # € C(v)} be the generalized Lorenz
solution w.r.t. the following social welfare function

u(z) = /71 + 2\/x2 + 10\/23.

We find that ¢“L(v) = (0,2, 2).

Now, define a new (non-convex) game w(N) =5 > v(N), and w(S) =
v(S) otherwise. Here ¢“L(w) = (2/5,8/5,3) contradicting coalitional mono-
tonicity. Furthermore, ¢5%(vjr2,31) > 2 = ¢5%(v) contradicting population
monotonicity O
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