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Abstract
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1 Introduction

Probably the most frequent source for two person bargaining problems are object division

problems. Two agents are entitled to divide a set of objects among themselves. Examples are

easily found in divorce cases or the division of real estate among two heirs. Although seemingly

different, the scenario in which two parties bargain over different issues, each of which can be

solved by choosing one option, also falls in the class of problems we want to study.

The literature offers a couple of solution procedures to solve this kind of conflict. Thereby,

different procedures implement solutions that exhibit different properties. For example, the

“Adjusted Winner” Procedure as discussed in Brams & Taylor (1996) yields an equitable and

envy-free solution. It implements the axiomatic bargaining solution introduced by Kalai &

Smorodinsky (1975).

While most existing procedures start with an allocation of objects that is modified during the

course of the procedure, the aim in this paper is to determine allocations by means of a market

procedure. Roughly spoken, this means that we want to resolve the object division conflict by

letting both agents choose their bundle of objects separately. For this, we attach prices to the

different objects, endow agents with initial income and then let them spend their incomes on

the different items. the advantage is that once prices are fixed, the agents do not have to enter

another round of negotiation. In fact, there is a decentralization of the conflict through prices.

The final allocation is simply achieved after a utility maximization exercise.

Clearly, the first question to be asked is how to set the prices that this procedure works. Here

it turns out that object prices have to satisfy a simple condition that ensures that there will be

no further conflict about who will receive which item. In other words, such prices constitute

Walrasian equilibrium prices in a derived market. And, since the allocation that prevails will

be a Walrasian equilibrium, it constitutes an efficient allocation of the objects.

A second goal in the paper is to use this market procedure to implement known axiomatic

bargaining solutions. This can be accomplished by choosing the right prices and applying the

procedure. As we will see, this may involve iteration. But still, once an object is allocated to

some party, it will stay there during the course of action. We are able to provide implementation

results for the Kalai-Smorodinsky solution, the discrete Raiffa solution and the solution by

Perles & Maschler (1981b). The latter is axiomatized by the superadditivity axiom, which has

an appealing interpretation in our context. It says that neither of the parties is willing to split

the whole set of objects into smaller ones and proceed over each of them separately, since there

will be no benefits for neither one. So, the superadditivity notion removes one potential source

of conflict, i.e. the question how to proceed. Surprisingly, this solution is implementable by

applying the market procedure only once.



3

The paper is organized as follows: Section 2 provides the basic framework and discusses demand

correspondences. In Section 3 we discuss the condition that ensures existence of Walrasian

equilibria. The basic market procedure as well as three of its specifications are presented in

Section 4. Here implementation results appear. Section 5 concludes.

2 The Framework

We consider a fair division problem in which two agents may divide a finite list of (desirable)

objects (goods) among themselves. Denote by K := {1, . . . K} the set of objects. Although

we think of the objects as indivisible ones, we will assume that they are perfectly divisible.

However, it is well known, that in our setup any efficient division of K involves a split of at

most one object.

Therefore, we will also consider the set X
K

:= [0, 1]K of assignments to an agent. Furthermore,

we assume that preferences over (complete) objects can be represented by vNM utility functions

ui : K −→ R (i = 1, 2) and that both agents have linear utilities over divisions of an object.

Finally, we want to assume that utility functions are additively separable across goods. These

assumptions determine agents utility functions on X
K
, which should be expressed by mappings

U i : X
K −→ R (i = 1, 2) with U i(xi) :=

∑
k∈K u

i(k)xi
k (xi ∈ X

K
), which reflect i’s utility

over assignments.

An allocation is a pair (x1, x2) ∈ X
K × X

K
of assignments such that

∑
i=1,2 x

i
k = 1 for each

k ∈ K holds true. Let ∆ denote the set of price systems p ∈ RK
+ satisfying

∑
k∈K pk = 1. Then

the value of an assignment xi under price system p is the inner product p · x.

We start with agent i’s demand correspondence which is defined by ϕ : ∆× R+ =⇒ X
K

with

ϕi(p,m) = arg max

{∑
k∈K

ui(k)xi
k |xi ∈ XK

, p · xi ≤ m

}
(i = 1, 2),

where m corresponds to the agent’s endowment in “money / value”. In the present context,

agent i’s maximization problem is solved by first ordering the objects in K by their ratios

ui(k)/pk, which reflect “utility per dollar”. Then agent 1 demands the objects according to

such an order until his budget is exhausted. Here linearity guarantees that an agent prefers to

obtain an object entirely, before he wants to have (fractions of another one).

Denote by SK the set of all permutations of goods, i.e. all bijective mappings from K onto K.
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Let

Πi(p) :=

{
π ∈ SK |

ui(π−1(j))

pπ−1(j)

≥ ui(π−1(j + 1))

pπ−1(j+1)

(j = 1, . . . , K − 1)

}
be the set of permutations, such that agent i’s utilities per dollar at prices p are ordered non-

increasingly. Note that Πi(p) contains more than one element, if there are at least two goods

with equal ratios. Yet, any two elements π, π′ ∈ Πi(p) are equivalent in the sense that they

satisfy the condition

ui(π−1(j))

pπ−1(j)

>
ui(π−1(k))

pπ−1(k)

⇐⇒ ui(π′−1(j))

pπ′−1(j)

>
ui(π′−1(k))

pπ′−1(k)

for all j, k ∈ K.

To compute agent i’s demand along the order π ∈ Πi(p) with budget m, one can determine

the maximal number Jπ such that
∑Jπ

j=1 pπ−1(j) · 1 ≤ m is satisfied. That is, agent i can afford

objects π−1(1) to π−1(Jπ) and will spend the remaining money to buy a fraction of object

π−1(Jπ + 1). So, his demand for each object k ∈ K at order π is given by

(1) (ϕi,π(p,m))k = 1{π−1(1),...,π−1(Jπ)}(k) +

m−
Jπ∑
j=1

pπ−1(j)

pπ−1(Jπ+1)

· 1{π−1(Jπ+1)}(k) (k ∈ K).

Since Πi(p) is not necessarily single valued, we have as demand correspondence

ϕi(p,m) =
{
ϕi,π(p,m) |π ∈ Πi(p)

}
.

Any object division problem generates a two-person bargaining problem in the following way:

Status quo points will always be the origin. For k ∈ K let V k := compH(cvH({(u1(k), 0), (0, u2(k))}))
be the set of possible utility allocations arising from the division of good k. This includes the

possibility of free disposal. With additive separability of utilities, the bargaining problem aris-

ing from an object division problem is represented by the sum V =
∑

k∈K V
k. We will denote

the class of associated bargaining problems by U . Note that the class of bargaining problems

generated by object division problems is the class of compactly generated polyhedral games.

See, for example, Perles & Maschler (1981b) or Rosenmüller (2000). Conversely, any polyhedral

bargaining game canonically corresponds to a market, in which no two goods j and k admit

of the same ratio, i.e., ui(j)
ui(k)

= u3−i(j)
u3−i(k)

. This market shall be called standard representation (of

V ∈ U).

We will call a mapping ϕ : U −→ R2 a bargaining solution on U , if for every V ∈ U the point

ϕ(V ) is Pareto efficient and individual rational (i.e. here, ϕ(V ) ≥ 0). Moreover ϕ is supposed

to satisfy the symmetry axiom and be covariant with affine transformations of utility.1

1For a discussion of these axioms see,e.g., Peters (1992).
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3 Walrasian Equilibria

To analyze the object division problem, we set up a two-agent Walrasian exchange economy E
for the objects in K. Thus, the commodity space is X

K
. Agents’ preferences are represented by

the utility functions U i (i = 1, 2). Initial endowments are denoted by (ω1, ω2) ∈ [0, 1]K× [0, 1]K .

Thus, the tuple E = (K, U1, U2, ω1, ω2) describes the economy.

Note that existence of Walrasian equilibria in E is guaranteed, since utility functions are in par-

ticular concave. Moreover, due to monotonicity of utility functions, any Walrasian equilibrium

is efficient according to the First Welfare Theorem.

Define an operation ∗ : SK −→ SK by π 7→ π∗ with π∗(l) := K + 1 − π(l). This operation

simply “reverses the order” in π. By straightforward computations, one checks π∗−1(q) =

π−1(K + 1− q).

The market clearing condition in equilibrium can be established for all price systems, such that

the orders according to which agents demand goods are inverse to each other. Such a price will

then establish an equilibrium price, which is independent of the initial endowment.

To make this precise, we introduce the following condition:

Definition 1

(i) For i = 1, 2, j, k ∈ K with ui(k) 6= 0 denote by si
jk := ui(j)

ui(k)
agent i’s substitution rate

between objects j and k.

(ii) We say p ∈ ∆ satisfies the reversed order condition (REVORD), if

(2)
pj

pk

∈
[
min

(
s1

jk, s
2
jk

)
,max

(
s1

jk, s
2
jk

)]
holds for all j, k ∈ K with pk, u

1(k), u2(k) 6= 0.

Then we can show that REVORD induces reversed orders.

Lemma 1

A price system p̄ ∈ ∆ satisfies REVORD if and only if there exists a pair (π1, π2) ∈ Π1(p̄)×Π2(p̄)

with π1 = (π2)∗.

Proof:

Step 1 Necessity: If p̄ = λui(k) ∈ ∆ for all k ∈ K, appropriate λ > 0 and some i then
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the assertion is obvious, since here Πi(p̄) = SK holds. Suppose that this is not the case and

Assume there is no such pair as claimed. Then for every π ∈ Π1(p̄) there exist j′, k′ ∈ K with

π∗(j′) > π∗(k′) and

(3)
u2(j′)

u2(k′)
= s2

j′k′ >
p̄j′

p̄k′
,

u1(j′)

u1(k′)
= s1

j′k′ >
p̄j′

p̄k′

holds. The assumption p̄ 6= λui(·) guarantees that strict inequality holds for some π ∈ Π1(p̄).

The two inequalities imply
p̄j′

p̄k′
< min

(
s1

j′k′ , s
2
j′k′

)
which contradicts REVORD.

Step 2: Suppose REVORD is not satisfied. Then there exist ĵ, k̂ ∈ K with

(i)
p̄ĵ

p̄k̂

< s1
ĵk̂

=
u1(ĵ)

u1(k̂)
, (ii)

p̄ĵ

p̄k̂

< s2
ĵk̂

=
u2(ĵ)

u2(k̂)

(or analogously with both strict inequalities in the reverse direction). For π ∈ Π1(p̄), (i) implies

π(ĵ) < π(k̂). Hence, π∗(ĵ) = K + 1 − π(ĵ) > K + 1 − π(k̂) = π∗(k̂) follows, which in view of

(ii) shows π∗ 6∈ Π2(p̄). This shows that there is no pair (π, π∗) ∈ Π1(p̄)× Π2(p̄). 2

Lemma 1 states that the orders according to which agents demand their objects are inverse, if

and only if price ratios are always located between the agents’ substitution rates. By “inverse”

we mean that we could line up the objects and agent 1 starts to demand on the left whereas

agent 2’s demand goes from right to left. Thus, there is (up to indifferences) no contradiction

on how to distribute the objects in an exchange economy.

Theorem 1

Let E be an exchange economy as above and let p̄ ∈ ∆ satisfy REVORD.

Then for any initial endowment (ω1, ω2) there exists an allocation x̄ in E such that x̄i ∈
ϕi(p̄, p̄ ωi). Hence, the pair (x̄, p̄) constitutes a Walrasian equilibrium. In particular, p̄ is an

equilibrium price vector, independent of initial endowments.

Proof:

Let p̄ satisfy REVORD. Take an arbitrary π ∈ Π1(p̄) with π∗ ∈ Π2(p̄). We show that markets

are cleared under prices p̄ and along orders (π, π∗) (cf. (1)). According to (π, π∗) the aggregate
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demand (for all goods) is2

ϕ1,π(p̄, p̄ ω1) + ϕ2,π∗(p̄, p̄ ω2)

=
Jπ∑
j=1

eπ−1(j) +

p̄ ω1 −
Jπ∑
j=1

p̄π−1(j)

p̄π−1(Jπ+1)

eπ−1(Jπ+1) +
Nπ∑
l=1

eπ∗−1(l) +

p̄ ω2 −
Nπ∑
l=1

p̄π∗−1(l)

p̄π∗−1(Nπ+1)

eπ∗−1(Nπ+1)

=
Jπ∑
j=1

eπ−1(j) +
K∑

l=K+1−Nπ

eπ−1(l) +

p̄ ω1 −
Jπ∑
j=1

p̄π−1(j)

p̄π−1(Jπ+1)

eπ−1(Jπ+1) +

p̄ ω2 −
K∑

l=K+1−Nπ

p̄π−1(l)

p̄π−1(K−Nπ)

eπ−1(K−Nπ).

So, agent 1 demands goods π−1(1), . . . , π−1(Jπ) completely and spends his remaining income

on object π−1(Jπ + 1). Analogously, Nπ is given for the second agent. We have to show that

either Jπ +Nπ = |K| (in case p̄ ω1 −
Jπ∑
j=1

p̄π−1(j) = p̄ ω2 −
Nπ∑
l=1

p̄π−1(l) = 0) or Jπ +Nπ = |K| − 1

(in the remaining case) holds true3.

Suppose to the contrary Jπ +Nπ > K. Then ϕ1,π(p̄, p̄ ω1) + ϕ2,π∗(p̄, p̄ ω2) > (1, . . . , 1) (strictly

at least in coordinate Jπ). Therefore, p̄
(
ϕ1,π(p̄, p̄ ω1) + ϕ2,π∗(p̄, p̄ ω2)

)
> p̄ (ω1 + ω2) which

contradicts at least one budget constraint.

The remaining cases can be excluded using similar arguments. Observe that for any π ∈ Π1(p̄)

(with π∗ ∈ Π2(p̄)) the allocation x̄ =
(
ϕ1,π(p̄, p̄ ω1), ϕ2,π∗(p̄, p̄ ω2)

)
is an equilibrium allocation.

2

Clearly, a converse of Theorem 1 in the sense that for given ω only REVORD prices constitute

equilibrium prices is not true. According to Lemma 1 condition REVORD is equivalent to

obtaining orders of demand that are inverse to each other. Yet, excess demand (which depends

on p) is zero as long as there are no inconsistencies in the orders up to the place, where budgets

are spent. For those objects that are not demanded due to budget constraints, a consistency of

the ordering is not required. Thus, condition REVORD can be violated without losing existence

of equilibria.

Although there are possibly multiple equilibrium allocations attached to the same equilibrium

price system, utility allocations in equilibrium only depend on the price system. Also, the

chosen order in Πi(p̄) does not alter resulting utilities.

2er denotes the r-th unit vector in RK .
3In the first case, none of the objects has to be split.
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Lemma 2

Let p ∈ ∆, i ∈ {1, 2} and π, π̄ be in Πi(p). Then for any initial allocation (ω1, ω2), we obtain

U i(ϕi,π(p, p ωi)) =
∑
k∈K

(ϕi,π(p, p ωi))k u
i(k) =

∑
k∈K

(ϕi,π̄(p, p ωi))k u
i(k) = U i(ϕi,π̄(p, p ωi)).

The straightforward proof is omitted.

4 Market Procedures

In this section we use a market mechanism to solve the objects division problem. The basic idea

is to determine a price system that satisfies the REVORD condition. Both agents are initially

endowed with either fractions of objects or, equivalently, income. By maximizing individual

utility with given prices an equilibrium allocation prevails. We will see that specific prices will

result in equilibrium allocations that implement specific bargaining solutions. Thus, we get a

decentralization of the conflict and a perspective bargaining solution through prices.

The basic procedure to solve the division conflict is as follows:

The Market Procedure (basic version):

Step 1: Assign to each object k a price pk, so that the price system p satisfies condition

REVORD.

Step 2: Compute the total value (at prices p) of the set of objects, i.e. M :=
∑

k∈K pk · 1.

Divide the total amount M among the agents as income m1 and m2, respectively.

Step 3: Let each agent “buy” goods according to prices p until no money is left over.

By Theorem 1 we know that the final allocation of objects will be an equilibrium allocation

of the corresponding market. Therefore, the outcome of this procedure will be an efficient

allocation of the goods in K.

In the following, we will use this procedure to provide implementation results for three bar-

gaining solutions: the Perles-Maschler, Kalai-Smorodinsky and discrete Raiffa solution. For

the Perles-Maschler solution, we have to apply the above procedure once, whereas the latter

bargaining solutions are obtained by iterating the procedure finitely many often.
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4.1 The Perles-Maschler Procedure

The bargaining solution introduced by Perles & Maschler (1981b) (hereafter PM solution)

is known to be the only superadditive bargaining solution for two person bargaining games.

Superadditivity roughly says that the bargaining solution of a sum of bargaining problems gives

each party at least as much utility as the sum of solutions will provide for him. Perles (1982)

showed that the superadditivity axiom is incompatible with the presence of more than two

persons.4

For the class of object division problems, we can get an implementation result for the PM

solution by using the above discussed basic market procedure. For this, we will examine a

specific price system pPM ∈ ∆. Clearly, in order to satisfy condition REVORD, the price of

an object has to be between the agents’ valuations. We define pPM
k to be the (normalized)

geometric mean of agents’ valuations.

Lemma 3

The price system pPM ∈ ∆ defined by pPM
k :=

√
u1(k) u2(k)∑

j∈K

√
u1(j) u2(j)

(k ∈ K) satisfies REVORD.

Proof:

Take arbitrary π ∈ Π1(pPM). We show π∗ ∈ Π2(pPM). Since π ∈ Π1(pPM) we have for j, k ∈ K

π∗(k) > π∗(j) ⇐⇒ π(k) < π(j) ⇐⇒ u1(k)

pk

≥ u1(j)

pj

⇐⇒ u1(k)√
u1(k)u2(k)

≥ u1(j)√
u1(j)u2(j)

⇐⇒
√
u1(k)u2(k)

u2(k)
≥
√
u1(j)u2(j)

u2(j)
⇐⇒ u2(k)

pk

≤ u2(j)

pj

,

which shows π∗ ∈ Π2. The remaining implication runs analogously. 2

From Lemma 1 and Theorem 1 we know that pPM constitutes an equilibrium price system.

Hence, we get a solution for the division problem. What are the properties of this solution? It

is obvious that the allocation is efficient and gives both agents a higher utility than the initial

allocation.

Yet, conflicts may arise when parties do not want to bargain over the whole set of objects but

want to split it into several smaller sets and reach an agreement for each set separately. It is well

known that the resulting division is in general not Pareto efficient. Moreover, certain solution

4He showed that there is no superadditive solution on the whole class of compactly generated bargaining
problems.
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concepts or procedures may favor one of the agents. For example, by using the “Adjusted Win-

ner” procedure (cf. Brams & Taylor (1996)) or equivalently the Kalai-Smorodinsky bargaining

solution (cf. Kalai & Smorodinsky (1975)), some agent prefers to determine the solution of the

whole problem, whereas the other prefers to split the problem. However, our procedure with

prices pPM will avoid such a conflict. In fact, the solution concept generated by our procedure

satisfies the superadditivity property.

Let E be a market with object set K and let
{
K1, . . . , KL

}
be a partition of K into L nonempty

subsets. By E l we denote the sub-market for objects Kl. Utility functions, denoted U i,l, are

corresponding restrictions of U i. Initial endowments are also split canonically, i.e. ω1,l
k = ω1

k for

k ∈ Kl.

Theorem 2

Let E be a market for objects in K.

(i) Let E l (l ∈ L) be sub-markets of E for objects in Kl. Then we obtain for i = 1, 2 and

π ∈ Πi(pPM)

(4) U i(ϕi,π(pPM , pPM ωi)) ≥
L∑

l=i

U i,l(ϕi,π(pPM , pPM ωi,l)).

(ii) Let V E denote the bargaining problem arising from E and let ω̄1 = ω̄2 =
(

1
2
, . . . 1

2

)
∈ RK

be equal initial endowment. Then
(
U1(ϕ1,π(pPM , pPM ω̄1), U2(ϕ2,π(pPM , pPM ω̄2)

)
∈ R2

coincides with the Perles-Maschler bargaining solution of V E .

Proof:

By Lemma 2 it suffices to show (4) for some πΠi(pPM). Note that the allocations in the sub

market form an allocation in E , since
∑

i=1,2

∑L
l=1 ϕ

i,l,π(pPM , pPM ωi,l) =
∑

i=1,2 ω
i. Therefore,

we only have to show that this allocation is affordable for both agents. Observe that for a good

k ∈ Kl we obtain

pPM
k =

√
u1(k) · u2(k)∑

j∈K

√
u1(j) · u2(j)

=

∑
j∈Kl

√
u1(j) · u2(j)∑

j∈K

√
u1(j) · u2(j)

·
√
u1(k) · u2(k)∑

j∈Kl

√
u1(j) · u2(j)

=: T l · pPM,l
k .

Now, we compute

pPM

(
L∑

l=1

ϕi,l,π(pPM,l, pPM,lωi,l)

)
=

L∑
l=1

T lpPM,lϕi,l,π(pPM,l, pPM,lωi,l) =
L∑

l=1

T lpPM,lωi,l = pPMωi.
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Because pPM is an equilibrium price, ϕi,π(pPM , pPM ωi) maximizes agent i’s utility in his budget

set and since utilities are additively separable, this shows (4).

We now show the second part. For the market E let µ(E) be the utility allocation in equilibrium

with identical endowments and relative to prices pPM . It is straightforward to see, that for two

markets E , E ′ with V E = V E ′ we obtain µ(E) = µ(E ′) =: µ̃(V E). Hence, µ depends only on the

associated bargaining problem (take the standard representation). µ(E) is feasible, individual

rational and Pareto optimal in V E . Moreover, it is symmetric, since the price system pPM is

invariant under relabelings the agents’ names. Finally, any positive linear transformation of

utility functions does not alter equilibrium allocations. Linearity of utility functions on X
K

implies that µ̃ is covariant with (affine) linear transformations of utility. Hence, µ̃ constitutes

a bargaining solutions on U . To show superadditivity of µ̃ take V E ∈ U . Any decomposition of

V E into V 1, V 2 ∈ U with V 1 + V 2 = V E can be associated with a subdivision of E into E1 and

E2 such that V i = V Ei
(i = 1, 2) holds (take as E i, e.g., the standard market arising from V 1).

The first part shows superadditivity of µ̃ on U , i.e. µ̃(V E) ≥ µ̃(V E1
) + µ̃(V E2

). Therefore, µ̃

has to coincide with the only superadditive solution on U , namely the Perles-Maschler solution.

Note that partitioning K into sub-bundles may involve splitting of goods. 2

Indeed, inequality (4) shows the following. Consider any finite set of object markets with

object sets, say
{
K1, . . . KL

}
. Let ψ(Kl) be the utility allocation, arising from application of

the market procedure on the set Kl at prices pPM and equal endowments. Clearly, ψ(Kl) is a

Pareto efficient point in the induced bargaining problem V l. Then (4) says that the inequality

ψ(
⋃L

l=1K
l) ≥

∑L
l=1 ψ(Kl) has to hold. Hence, the bargaining solution ψ has to obey the

superadditivity axiom and therefore coincides with the PM solution.

In case there is an agreement on dividing the objects by using prices pPM , then the superaddi-

tivity property guarantees that neither of the parties would want to split the whole bundle of

objects and proceed with the sub-bundles separately by using pPM prices.

Example 1

Suppose agents’ evaluations are as follows:

Good u1
k u2

k pk
u1

k

pk

u2
k

pk
Ranks 1 Ranks 2

A 4 1 2 2 1
2

1 5

B 9 4 6 3
2

2
3

2 4

C 3 3 3 1 1 3,4 2,3

D 5 5 5 1 1 3,4 2,3

E 2 8 4 1
2

2 5 1

2
6

5

4

3 PM Solution

0

associated
bargaining problem

utility agent 2

C

D

B

A

E
utility

agent1
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Here M = 20 and with equal division of M agent 1 receives goods 1, 2 and 2
3

of good 3, whereas

agent 2 receives goods 5, 4 and 1
3

of good 3. This is precisely the Perles-Maschler solution of

the associated bargaining problem. 2

4.2 The Discrete Raiffa Procedure

Considering the equilibrium price condition REVORD once again, the simplest way to fulfill

it is to set prices by either p̂1
k := u1(k)/(

∑
j u

1(j)) or p̂2
k := u2(k)/(

∑
j u

2(j)). In this case the

utility per dollar always equals one for some agent and the equilibrium allocation is basically

determined by the other agent’s demand. Moreover, we can determine agent i’s utility in

equilibrium at prices p̂i.

Lemma 4

In the outcome of the market procedure with prices p̂i and initial incomes m1,m2 the utility

allocation for agent i is m1

m1+m2 ·
∑

k∈K u
i(k).

Proof:

Use the fact that agent i’s ratio ui(k)

p̂i
k

is constant across objects and equals 1. 2

The following procedure runs in different rounds. After each round a subset of objects is

allocated to the two agents, which remains in their possession during the course of the procedure.

However, this could involve splitting an object and allocating a fraction of, say λ, it to an agent.

The remaining fraction will be allocated in subsequent rounds. Therefore, we want to view this

remaining fraction of an object as a (complete) object: this is done by multiplying agents’

utilities for this object by 1− λ.

As we will now see, the market procedure with likewise prices p̂1 and p̂2 allows us to determine

the discrete Raiffa solution, which was introduced in Raiffa (1953)5. For this, consider following

iterative market procedure:

The Discrete Raiffa Procedure:

Step 0: Define K0 := K and z0,1 = z0,2 := 0 ∈ XK0

.

We describe how to proceed in round r+1 assuming that the set of objects Kr is “on the

table”.

5An approximative implementation of the discrete Raiffa Solution can be found in Myerson (1991). Trockel
(2004) gives an axiomatization of this bargaining solution
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Step r+1 a: Define quantities M r,i :=
∑

k∈Kr ui(k) for i = 1, 2. Apply the Market Procedure

to Kr with prices p̂1 and initial endowments m1 = m2 = 1
2
M r,1. This results in an

allocation (xr,1, xr,2).

Step r+1 b: Run the Market Procedure with interchanged roles resulting in an allocation

(yr,1, yr,2).

Step r+1 c: Assign to agent i all (fractions of) objects in Kr that he receives in xi and in yi,

i.e., assign zr+1,1 := xr+1,i ∧ yr+1,i (i = 1, 2).

Denote the remaining set of objects by Kr+1 and start with step r + 2, if Kr+1 is not

empty. Otherwise the procedure is finished.

Theorem 3

The outcome of the discrete Raiffa procedure is well defined. Moreover, the utility allocation

in its outcome coincides with the symmetric discrete Raiffa bargaining solution.

Proof:

By Lemma 4, the bundle that is assigned to agent i in Step 1 exactly gives him one half of what

he thinks the whole setK is worth. Denote the resulting utilities by wi = U i(z1,i) (i = 1, 2). The

bargaining problem arising fromK1 after Step 1, is given by the set V 1 := compH(V K−w)∩R2
+).

Now the previous step is applied to K1, resp. V 1. This exactly mimics the construction of the

discrete Raiffa solution (in utility space). Therefore, the outcome in utility is well-defined,

i.e., the sequence ((U1(
∑r

s=1 z
s,1), U2(

∑r
s=1 z

s,2)))r=0,1,2,... converges (for r → ∞) to a Pareto

efficient point in V E . 2

Note that it could happen, that the discrete Raiffa solution is not achievable in a finite number

of steps. However, a closer look reveals that this is only the case, when there is a symmetric

two objects problem left over, which means Kr = {j, k} and ui(j) = u3−i(k) (i = 1, 2). In that

case the procedure could be stopped immediately by assigning and either of the objects should

be assigned to that agent that values it most. This means, we could extend the description of

the procedure, so that it always runs through at most finitely many rounds.

4.3 The Kalai-Smorodinsky Procedure

In the discrete Raiffa procedure, the solution is reached by iteratively assigning bundles to the

agents, so that each gets a half share (in utility) of the present object set. In terms of the

markets behind, this is achieved by assigning half split of the total value as incomes. Thereby,
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the ratio of agent 2’s utility gain to agent 1’s utility gain does in general differ from round to

round.

In the Kalai-Smorodinsky bargaining solution (see Kalai & Smorodinsky (1975) as well as

Raiffa (1953)) the ratio of assigned utilities equals the ratio of maximal possible utilities. This

ratio occurs (in general) only in the first step of the discrete Raiffa procedure. However, with

appropriate adjustments of income during the course of the procedure, we can end up with the

Kalai-Smorodinsky solution.

The Kalai-Smorodinsky Procedure:

Step 0: Define K0 := K and z0,1 = z0,2 := 0 ∈ XK0

.

Again, we describe how to proceed in round r + 1 assuming that the set of objects Kr is

“on the table”.

Step r+1 a: Define quantities M r,i :=
∑

k∈Kr ui(k) for i = 1, 2 and denote by γ the ration

γ := M0,2

M0,1 . Apply the Market Procedure to Kr with prices p̂1 and initial endowments

m1 = Mr,2

γ Mr,1+Mr,2M
r,1 and m2 := M r,1 −m1. This results in an allocation (xr,1, xr,2).

Step r+1 b: Run the Market Procedure with interchanged roles resulting in an allocation

(yr,1, yr,2). Initial incomes are here m2 := γ Mr,1

γ Mr,1+Mr,2M
r,2 and m1 := M r,2 −m2.

Step r+1 c: Assign to agent i all (fractions of) objects in Kr that he receives in xi and in yi,

i.e., assign zr+1,1 := xr+1,i ∧ yr+1,i (i = 1, 2).

Denote the remaining set of objects by Kr+1 and start with step r + 2, if Kr+1 is not

empty. Otherwise the procedure is finished.

Theorem 4

The Kalai-Smorodinsky procedure is well defined. Moreover, the utility allocation in its out-

come coincides with the Kalai-Smorodinsky bargaining solution of the underlying bargaining

problem.

Proof:

Similar to the proof of Theorem 3 the procedure mimics one way to construct the KS solution.

Therefore we have to show that the ratio of utility gains in each round is constant and equals

the ratio M0,2

M0,1 . To see this, consider the object division problem in Step r+1. According to

Lemma 4, agent 1’s additional utility is exactly m1 as specified in Step r+1 a, whereas player

2’s utility gain is m2 as specified in Step r+1 b. Therefore, the gain ratio amounts to

m2

m1
=

γ Mr,1

γ Mr,1+Mr,2M
r,2

Mr,2

γ Mr,1+Mr,2M r,1
= γ =

M0,2

M0,1
.
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This means, the ratio of utility gains in each step is constant and equals the ratio of maximal

possible utilities in V E . Therefore, all intermediate utility allocation (and hence the one in the

outcome of the procedure) exhibit a ratio of M0,2

M0,1 , which shows that the final utility allocation

coincides with the Kalai-Smorodinsky solution. Note that the sequence of aggregated utility

allocations (U i(
∑r

s=1 z
r,i))r=0,1,2... (i = 1, 2) is strictly monotonic (in R2) and therefore has to

converge to a Pareto efficient point in V E . 2

Like the discrete Raiffa procedure, this procedure may not converge in finitely many steps.

Again, this only happens, when the final solution does not involve splitting of a good. In

that case, similar symmetries hold for the last two goods, i.e., Kr = {i, j} with u2(j)/u1(j) <

u2(k)/u1(k) and u2(k) = γ u1(j). Here we can terminate the procedure immediately by assign-

ing good j to agent 1 and good k to agent 2. Hence, the Kalai-Smorodinsky procedure only

requires finitely many steps.

5 Conclusions

The assumption that agents’ utilities over fractions of objects are linear can be further weakened.

For an object one can specify a number of possible splits and then treat these splits separately.

For example, an agent may live in an apartment only for a couple of months a year. In the rest

of the year the other agent may move in. Then agents shall announce their utility of having the

object for k months. Equivalently we can view this as having created 12 objects instead of one.

The new objects are titled having the apartment for one, two, three, ... months. Application

of the market procedure may then result in sharing the apartment by 5 to 7 months. However,

in the new structure, this is not considered as splitting the apartment (one has not split one of

the new objects).

In the same way we can solve decision processes over finitely many issues, for each of which an

option has to be chosen. A discussion on the structure of such problems is found in Raith &

Welzel (1998).

Asymmetries among the agents can be incorporated in the procedure in two ways. First,

the assigned income (or initial endowment) can be unequally distributed, so that the market

procedure itself will apparently benefit one agent. Second, the chosen price system may reflect

an asymmetry among the agents. Obviously, the price systems p̂1, which was used to implement

the discrete Raiffa and the Kalai-Smorodinsky solution, will not yield a symmetric solution.

This means the choice of object prices is not independent of the agents’ labels. This is not the

case for the price system pPM and hence we obtain a symmetric bargaining solution. Another

choice for a “symmetric price” would be pk := min(u1(k), u2(k)), which satisfies REVORD and
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therefore results in a symmetric solution on U .

A simple consideration shows, that all outcomes of the market procedure with equal endowments

satisfy the envy-freeness property. Each agent is endowed with what he thinks is worth half of

the whole set of objects. In equilibrium, he will be at least as good off as his initial endowment,

hence he does not want to change his assignment with the one of his counterpart. In terms of

bargaining solutions, this is exactly the midpoint domination property. Each agent receives at

least one half of his maximal possible utility.

The case of bargaining problems that are represented as a finite sum of arbitrary6 bargaining

problems is treated in Ervig & Haake (2003). Here a notion of bargaining weight that can be

traded is established. In the present context this directly translates into shares of a good that

can be traded on the market. There it turns out that the Perles-Maschler solution is the only

bargaining solution being consistent with decentralized trade of weights.

Last, one can regard (equilibrium) prices as valuation of an object. Because to each object

there is an associated bargaining problem that is generated by a “triangle” in R2, we may think

of generating a measure on the class of triangular bargaining problems and hence on U as it is

generated by triangular bargaining problems. Clearly, the “price”, or “measure” of an object

should not depend on how the whole set of objects looks like. The normalization problem (here

the sum of prices have to be 1) can be solved by adding an extra object, which is valued 1 by

both agents, and the price of which is normalized to 1. So the unit simplex serves as reference

bargaining problem. Having such a measure, say ψ, on U , one can define a bargaining solution

(w.r.t. ψ) as the unique point on the boundary, for which the “bargaining problem above this

point” has the same measure as the one “below”. Desirable properties for bargaining solutions

then translate in properties the measure (or price) has to satisfy. The price pPM does satisfy all

properties for a defining a bargaining solution in this way, namely the Perles-Maschler solution.

In this spirit, we may consider the market approach discussed in this paper as a justification

for the measure used to construct the PM solution.
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