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Abstract

A Cephoid is an algebraic (“Minkowski”) sum of finitely many
prisms in R"”. A cephoidal game is an NTU game the feasible
sets of which are cephoids. We provide a version of the Shapley

NTU value for such games based on the bargaining solution of
Maschler—Perles.
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1 Introduction

We wish to develop a solution concept for NTU-games based essentially on
the axiom of conditional additivity. Our treatment will contain bargaining
solutions as well as solutions for n—person cooperative NTU-games (“values)”.
Let us start out by defining these notions.

A bargaining problem is a pair (z,U) where £ € R"} and U is a compact,
convex, and comprehensive subset of R" containing . U is the feasible set
and z is the status quo point. Predominantly we assume case £ = 0, hence
it suffices to consider U while x is suppressed.

A (cooperative) NTU-game is a triple(I, P, V). I ={1,...,n} is the “set
of players”, P = {S|S C I} = ®P(I) is the “system of coalitions”, and
V = P — P(R") assigns to any coalition a closed, convex and comprehen-
sive set of “utility vectors” V' (S) C R% which are “feasible for the members of
S”. V obeys certain regularity conditions, see e.g. Definition 1.3, Section 1,
Chapter 4 in [14] and also Section 5. As I and P remain fixed, we frequently
refer to V' as to “a game”.

A bargaining problem can be seen as an NTU-game: Given (z,U) , let V/(S)
be the comprehensive hull of zg (S € P) and V(I) =U.

A walue is a Pareto efficient, symmetric mapping ¢ from a class of games
into R” that respects affine transformations of utility (a.t.u.). (V) reflects
the distribution of utility considered to “solve” the game. We write ¢ to
emphasize that we are dealing with bargaining problems. In this case we use
also the term solution.

A lottery is a probability distribution over games with finite carrier. E.g., a
lottery involving two bargaining problems U! and U? is given by a probability
p = (p1,p2); p1 +p2 = 1. The expected utility vectors are then given by
E,(U*) = piU' + poU?; the definition involves the algebraic sum and the
multiple of a subset of R”, i.e., tU := {tx|x € U} and

U+ U? = {z' +2*|=' €U, 2* € U?} .

Generally, for any lottery p, the definition of the “expected game” [E,V* runs
analogously.

The combined effects of lotteries on values are reflected in the axiomatic
treatment of solution concepts. SHAPLEY [16] characterizes the value (for
TU-games) — among other axioms — by additivity, which (given the con-
cept to be positively homogeneous) is equivalent to “risk neutrality”, i.e.,
p(E(V*)) = E¢(V*®). There is no discussion of this concept in SHAPLEY’S
generalization of the value to NTU-games [17].

MASCHLER-PERLES(see [12],[7]) require their solution for bargaining prob-
lems to be superadditive. That is

P(U+U") > o(U) + (U
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holds true for pairs of bargaining problems. Equivalently one has
e(EpU*) 2 Epp(U*) .

Thus, superadditivity is interpreted to consistently favor contracting ez ante,
thereby increasing expected utility (see [7] or [13|, p.562, for a detailed dis-
cussion).

For a further interpretation not involving chance mechanisms see [9]. The
story involves two players (corporations, governments) engaged in two “re-
mote” bargaining problems U and U’ simultaneously. Initially, these prob-
lems (to be treated on lower corporate levels) are considered to be separate
affairs. Thus, there is a tendency to settle for ¢(U) and ¢(U’) separately.
Later on ranking officials in the corporations realize that combining both bar-
gaining projects could be advantageous. The solution being superadditive,
it turns out that both players/corporations profit from a quid quo pro.

The Maschler Perles solution works for two players only. PERLES|11] showed
that for more that two players, a superadditive solution for bargaining prob-
lems does not exist. The solution presented in [9] generalizes the Maschler—
Perles procedure (see also CALVO—GUTIERREZ [3]) and exhibits a class of
games for which superadditivity prevails.

AUMANN’g[1] axiomatization of SHAPLEY’S NTU-value introduces the idea
of a conditionally additive value. As SHAPLEY and others (see HART
[5], DE CLIPPEL), he considers correspondences; the condition rephrased for
functions requires that

P(EpU*) = Eyp(U*) .

holds whenever the right hand term Ep@(U®) is Pareto efficient in E,U®.
Equivalent is the version as follows.

Definition 1.1. A value v is conditionally additive if, for any two games
V and W such that (V') + (W) is Pareto efficient in V(I) + W (I), it
follows that

(1.1) Y(V)+ (W) =4V + W)

For two players conditional additivity is equivalent to superadditivity in order
to characterize the Maschler—Perles solution . This follows easily from the
construction given in [12], see also the discussion in [15].

AUMANN’S concept is based on games with smooth surfaces of each V' (S)
while MASCHLER and PERLES start out from a polyhedral setup. More
recently, DE CLIPPEL ET AL. elaborate on the problem imposed by choosing
the domain of definition for the axiomatic treatment of a value. It is obvious
that in 2 dimensions conditional additivity and the IIA axiom characterizing
the Nash solution are not compatible.
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Within this paper we discuss a (single valued) solution concept x for NTU
games. We provide an axiomatization of this value. The value is character-
ized without any version of ITA, its existence does not rely on a fixed point
theorem, and it can be computed in a straightforward manner.

We focus on a particular class of polyhedral games called “cephoidal”. A
cephoid is a sum of “prisms”.

To be more precise, let @ = (a1,...,a,) > 0 € R" be a positive vector and
let €' denote the i unit vector. Write @’ := a;e’ (i € I :={1,...,n}) and
let I1* := convH ({0,a',...,a"}). We call TI* a prism. The Pareto surface
OT* is the simplex A* := convH ({a',...,a"}) (we wish to distinguish

the two concepts). A prism represents a “primitive bargaining” problem.
There is actually transferable utility in the model though depending on a
“transfer rate” (the normal of A%). Consider an algebraic sum of prisms, i.e.,

let a®* = (a®)K | = (a™®)ick be a family of positive vectors. Then
K

(1.2) n=10 .=y = >
k=1 keK

is called a cephoid. Cephoids have been introduced in [8], see also [10], [9].
Throughout this paper we assume that a cephoid is nondegenerate, see [§|
for the details. This assumption ensures that the normals of the A®" (and
of their boundary simplices) do not coincide. The result is a standardized
structure of the Pareto surface of a cephoid. The set of (nondegenerate)
cephoids in R™ is denoted by €".

A bargaining problem is cephoidal if the feasible set U is a cephoid. A game
is cephoidal if, for every S € P the feasible set V(S) is a cephoid, i.e., for

every S € P, there is a family (aS’(k))keKS such that

(1.3) vis) = Yoo = Y ns®

ke Kg ke Kg

holds true. We restrict the discussion to feasible sets in R, of cephoidal
character, and affine transformation of utility (“a.t.u.”) refers to positive
dilatation of the axes.

Cephoids should be considered whenever conditional additivity is an issue.
In R?, actually all polyhedra are cephoidal. In R™ this is not true.

Assume that players are involved in several (“primitive”) bargaining prob-
lems. There is either a lottery over these choosing one of them or we imagine
(following the interpretation suggested in [9]) that bargaining takes place si-
multaneously in separate environments (countries or states). To keep both
interpretations at hand, we refer to the different bargaining problems as to
“states”.

Each state k refers to a (primitive) bargaining problem 112", Now, bargain-
ing takes place ex ante with respect to feasible utility assignments in each
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state, so players may consider giving in by an ¢ with respect to state k for
obtaining a ¢ in state [. The final utility a player obtains is the expectation
or (equivalently) the sum of the utilities he receives from his shares in each
state. Hence, the resulting (“expected” or “global”) bargaining problem is
represented by the cephoid

m= Y m

keK
Assignment of utility should involve Pareto efficient allocations only. De-
scribing the shape of the Pareto surface amounts to indicating the maximal
faces of the polyhedron II. The general theory for the maximal faces of a
cephoid can be found in [8].

A g = Ae2

Figure 1.1: The sum of 2 prisms

Figure 1.1 describes a simple but non trivial example. We observe the sum
of two prisms in R? (the original prisms appear in dotted lines). PERLES
formulates his counterexample in terms of similar objects.

Figure 1.2: The canonical representation

The example represents a situation with three players and two states. The
Pareto surface OII of this bargaining problem shows three maximal faces,
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two of them are translates of a summand by an extremal vector of the other
summand. The third maximal face is the sum of two line segments each one
taken from a summand.

The structure of the Pareto surface can be visualized by the “canonical rep-
resentation”; see [9]. This representation is provided by a bijective mapping
of the Pareto surface of II onto the simplex 2A¢€ as indicated by Figure 1.2.

Figure 1.3 shows a cephoidal bargaining problem that is the sum of 4 prisms.
Thus, we have three players bargaining in four states.

Figure 1.3: The sum of 4 prisms

For 2 dimensions (i.e., bargaining problems with 2 players) a cephoid which
is a sum of 5 prisms (hence represents 5 states) is indicated by Figure 1.4;
the right hand side shows the corresponding canonical representation.

g oA A

— A

5A°

Aa(l) \
— —

Figure 1.4: A 2 dimensional cephoidal bargaining problem

Consider the Maschler—Perles solution ([12]) in 2 dimensions. Due to the
superadditivity axiom, this solution evaluates concessions of the players along
maximal faces (i.e., line segments) according to the area of the triangles
(prisms) corresponding to line segments (simplices). We are led to assign a
new length measurement (“surface measure”) to a maximal face which is (in
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two dimensions) the square root of the area of the corresponding prism. E.g.,
if the feasible set in Figure 1.4 is the cephoid

1= 25: I
k=1

then the surface measure of (translate of) the line segment (simplex) A®" is

i = ea(AY) = \/agk)agk) (see Figure 1.5).

A Aa®

Figure 1.5: The M-P solution as the inverse image of the center point

The concession of player 1 when he moves from his bliss point ! to 2 along
A2 is considered to be equal to the concession of player 2 to move from
y! to y? along A?” if and only if 71 = 75 holds true. This results in a
distribution of utility at the Maschler—Perles solution at which both players
have made equal over all concessions.

In order to construct the solution, the total sum 7 := Zizl T determines
the size of a new simplex 7A€. Each line segment A2 g bijectively mapped
onto a copy in 7A€, the size of this copy is the surface measure 7, of the line
segment. This way a bijective mapping &y of the Pareto surface OIl onto
a multiple of the unit simplex (the space of adjusted commodity) appears.
With respect to this representation, concessions of players along the Pareto
surface a measured by Lebesgue measure. Hence the midpoint 1 of T7A®
generates the Maschler—Perles solution g as the inverse image in OII, i.e.,

po= kg (A).
Note that the construction is completely determined by the axiomatic of the
Maschler Perles solution. Superadditivity or conditional additivity of the

solution dictates the evaluation of concessions via the area (“volume”) of the
prisms involved.

Our program is to present this rationale in an axiomatic way for n players.
Actually, a generalized Maschler Perles solution has been defined in [9]. How-
ever for n players, superadditivity is, at least in full generality, not achievable
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(PERLES’ result [11]). The axiomatization will therefore rely on conditional
additivity and on the surface measure.

The “surface measure” for cephoids in n dimensions is basically determined by
a further consistency requirement. If two players regard line segments with
equal area of the corresponding triangles as equal concessions (with respect
to the construction of the solution), then for three players the relation of any
two of them determines a surface measure for a three dimensional cephoid.

Consider again Figure 1.1 and Figure 1.2. Pareto efficient trade off, say in
state 2, is reflected by A2 Here a util sacrificed by player 1 is returned
to player 2 via the transfer rate (the normal of the simplex). Evaluation of
concessions involves the surface measure.

For a mixed state, Pareto efficient trade off involving the two states 1 and 2
takes place in the diamond of Figure 1.2. The corresponding face is denoted
by A2Ve® o the Pareto surface in 1.1.

Along the boundary lines of this diamond with a simplex (i.e., a copy of a
primitive situations) the utility measurement regarding concessions should be
consistent — i.e., the length of the boundary segments should be determined
by the length measurement in the primitive situations. As a diamond has
two linear boundary segments (determined by two simplices), this induces
the requirement that the area should be defined by the area in the simplices.

e’

Figure 1.6: The adjusted commodity space for 3 players

The results in [9] show that one can arrange for a “measure preserving repre-
sentation”. This consists of a suitable multiple 7A€ of the unit simplex plus a
bijective mapping that preserves the partial ordering of maximal faces. The
mapping transports the surface measure into the Lebesgue measure.

The result may look as in Figure 1.6. Accordingly, the generalized Maschler—
Perles solution is the inverse image of the center point under the identifying
bijection.

For a cephoidal NTU-game we have to imagine that each V() is a cephoid
in s = |S| dimensions. In the context of games we wish to study NTU-values.
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We shall present an axiomatic approach to the (generalized) Maschler—Perles
solution as well as to a corresponding Shapley NTU-value.

2 The Surface Measure
and the Conditionally Additive Solution

Within this section we recall the definition of the surface measure and discuss
the solution concept presented in [9]. We exhibit the conditional additivity
of the concept.

For a € R} and J C I we write
(2.1) PS = []a-
ied
For any prism I1? the adjustment factor is
(2.2) Tne == Tq = 1/ (P9).

This notion is extended to cephoids by additivity, that is, for a cephoid
I1 = T1*" we define the adjustment factor to be

(2.3) T ‘= Z Trik) -

ke K

Now we turn to the surface measure of a cephoidal face. We start out
with prisms. For positive a € R’} the surface measure assigned to A% is

(2.4) ta(A%) = {/(Pg)n-t. = oL
In particular, the unit simplex A€ receives surface measure 1.

Next, let F' be a maximal face of a cephoid II. Then there is a system
J=(JW, ..., J%) of subsets of I (the “reference system”) such that

1 K
(2.5) F=A) +...+a0)
holds true. The numbers j;, := |J®)| satisfy
(2.6) Giy—D4...4Gxk—1)=n—1,

meaning that the dimensions of the sub-simplices involved in the construction
of F add up to the dimension of F' (see [8]). Let ¢ denote the “normalizing
coefficient”, i.e., quotient of the volume of Aﬁ(l) +.. .+A3(K) and the volume
of A€ (see |9]). We can define the surface measure of F'.

Definition 2.1. Let IT1 = I1%* be a cephoid and let F be a mazimal face with
reference system J. Then the surface measure of F is given by

(2.7) La(F) = CFK/[P‘(Il)]jI—l . [P(IK)]?'K—I

with PV = P2 (k € K).
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The measure preserving representation of the surface 911 consists of the
multiple A := 71A® of the unit simplex and a bijective, piecewise linear
mapping k = Ky of Il onto A. k carries the vertices of JII into a set of
grid points on A in a way that preserves the partial ordering of faces. In
addition, the Lebesgue measure of the image of a maximal face F' of OII is
the surface measure of F'. Compare Figures 1.1 and 1.6

To be more precise, let II = I1*" be a cephoid. For every k= 1,..., K let

(2.8) a® = r e , A®.=AGY)
such that for £k € K
(2.9) ba(A®)) = g5 (A®)
is satisfied. Define
A~ K A~
(2.10) A=Y AW = ryAc
k=1

We define the mapping Ky first on vertices OIl and then extend it to maximal
faces by (“piecewise”) convexity. Compare the more detailed exposition in [9].

By non-degeneracy every vertex of OIl is a unique sum of vertices of the
simplices A®) involved. Thus, for every vertex w of OII, there is a mapping
i, : K — I such that u can be written via

(2.11) u=a"*=>) a®i.

keK

Definition 2.2. 1. Let u be a vertex on OIl and let i, be the corresponding
mapping given by (2.11). Then

(2.12) i o= kp(u) = » @ = Y r e

keK keK

2. For a mazimal face F of OIl, the mapping kn is extended by affine
linearity using the vertices of F. Hence we obtain the mapping

(2.13) kg @ Ol — 7pA® = A,

which constitutes a piecewise linear isomorphism. The (simplex A to-
gether with) the mapping Ky is called the measure preserving rep-
resentation of OII.

Remark 2.3. For n = 2, the surface measure coincides up to a constant with the
standard travelling time along the Pareto surface as introduced by Perles—-Maschler
[7, 12], see also [13] for a textbook version. The travelers starting from both bliss
points on the Pareto surface 0l meet at the Maschler—Perles solution after having
spent equal time during the voyage. That is, in terms of the surface measure, the
Perles—Maschler solution is the inverse image of the midpoint or barycenter of A
under ky;. This has been used in [9] for a generalization of the Maschler—Perles
solution as follows.
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Now we define our solution concept which, at this stage, is a function on
cephoids. A cephoid II stands for the bargaining problem (0, II) or for the
corresponding NTU-game V as explained in SECTION 1. We use the notation
po=1(1,...,1) = leeR"

n

Definition 2.4. The conditionally additive solution (the c.a. solution)
for cephoidal bargaining problems is the mapping p : €" — R"™ given by

I pne = th = L(1,...,1) (t>0)

It should be clear that, for n = 2, this is the Maschler—Perles superadditive
solution. Hence p is a generalized Maschler—Perles solution. Clearly, we
should justify the name and provide an axiomatization.

Theorem 2.5. 1. The adjustment factor is additive, i.e., for any two
cephoids T1 and TI'

(214) TH+H’ = T1 —|— T
holds true.

2. The canonical representation is conditionally additive. 1e., for any
two cephoids T1 and TI' and any x € O, x' € O’ satisfying © + x' €
O(IT+ 11", it follows that

(2.15) kn(z) + kp(2') = ko (z + ')

holds true.

Proof:

1*STEP :

The first statement is obvious from the definition, i.e., by (2.3).
2"4STEP :

Regarding the second statement, we start out with two extremal points u €
OIT and u' € OII'. Consider the corresponding mappings as given by (2.11),
say i, : K — I and 7, : K' — I. We assume that the sum u + v’ is Pareto
efficient, hence extremal in O(IT + II"). We write

(2.16) u+u = Za(k)ik + Z /i — Z Gl

keK k'eK' leKUK'

with canonically defined quantities

(2.17) ad =a (lcK), a = a' (lc K').
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and

(2.18) u=u (leK), 1, = (le K.
Consequently

(2.19) k(u) + k(u') = Za(k)ik L Z Gy _ Z 2l

keK K eK' leKUK'

and since the mapping ¢, corresponding to w + u’ is uniquely defined, the
right hand side in (2.19) has to be ki (u + o).

3"4STEP :

Suppose now that @ and «’ sum up to a Pareto efficient point, hence admit of
a joint normal. Pick extremal points of OII and OI1’ in the tangent hyperplane
generated by that normal for TT and II' respectively. Then we have convex
representations, say

(2.20) T = Zap:f:p, ' = Za;:ﬁ'
p o

with positive coefficients adding up to 1. All extremal points admit of the
same normal, hence our result from the 2"¢STEP holds true for the sum
of any two of them taken from the different cephoids. Also, the subfaces
generated by the normal add up to a subface of the sum and all mappings
behave affinely linear on these subfaces. In view of

(2.21) Kin(x) = Zapnn(:ip) = Zapa;nn(i'p)a

we obtain

ku(z) + ko (2) = Zap (kn(x*) + kw(2"7))

= Z% (kg (2" +2'7))

(2.22) = Knpw (Z apon (27 + 5:’”))

Theorem 2.6. p is conditionally additive.
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Proof: This is an immediate consequence of Theorem 2.5 as the midpoints
of multiples of of the unit simplices clearly behave additively. Formally we
have

() + (1) = kg' (BAT) + k! (BATF)
= k' (2) + k! (r(1)7)
(2:23) =l (7 + (1))
= A (PO
= p(I+11)
q.e.d.

We show that p is a bargaining solution. Pareto efficiency is obvious. The
covariance properties follow from the proper behavior of the measure pre-
serving mapping.

Lemma 2.7. p is symmetric.

Proof:
1StSTEP :

Note that a permutation @ : I — I constitutes a linear mapping on
R" via (7(x)); := zz—1)(® € R", 7 € I)). For subsimplices this implies
m(Ag) = A2, ;) whenever a is a positive vector and J C I. It follows at
once that a maximal face

1 K
(2.24) F=A) +...+a0)
of a cephoid II induces a maximal face

1 K
(2.25) m(F) = A;,)I(J(l)) t..F A;j(‘,(m)

of the permuted cephoid 7(IT). Consider the surface measure of such a face
as given by formula (2.7) of Section 2. We obtain for the permuted version

(2.26)  ea(m(F)) = cmg) V(Un) [V (M) [V ()P

Here the exponents j, are written for the size |[7~'(J®))| of the permuted
index sets, which is for each k obviously equal to j5. The volume of a prism
does not change under a permutation, so the term under the root is actually
invariant. Finally, the coefficient c(r4) attached to the permuted set system
equals ¢j as it depends in the size of the reference sets only (see [9]). Hence
the surface measure is invariant under permutations, i.e.,

(2.27) ia(n(F)) = ua(F).
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Since the maximal faces are being permuted, so are the extremal points of
OIl and as the surface measure is invariant, we conclude that the whole p.o.
structure as well as the mapping £ comply with the permutation.

Formally, for any cephoid Il and any x € II

(2.28) o (m(x)) = 7(sn ()
or

(2.29) Komy =TOKmom .
Also,

(2.30) Tr() = T

is obvious, i.e., the adjustment factor invariant under permutations.
274STEP : Symmetry of the solution follows now at once; we have

Paay = K (TamB) =  mokg om ' (Trfi)

(2.31) o
= 7moky (Tnp) =7o py

3"ISTEP :

Now covariance with a.t.u. is verified similarly. Consider a linear mapping
L :R'"—>R", Lz = (r,...,a,z,) (x€R")

for positive & = (ayq, . .., ).

First observe that
(2.32)

Next define the translation 7' : R” — R" via
(2.33) T(x) = Tox (x € R")
such that in particular
(2.34) T : A€ — ATLE
holds true. Now, for some cephoid II, let
(2.35) u = Z a Pk
keK
be a vertex of OII (see (2.11)). Then
(2.36) L(u) =Y L@®*) = Y L(a®)

keK ke K
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is the corresponding vertex of L(II). If u is the image of w under xp (cf.
(2.12)), then

(2.37) sum(L(w) = D (T@H)h) = T<Z<a<k>>”>

keK keK
= T(u) = T(kn(u)).
Because of the linearity of k, on the faces, we have

(2.38) krmy(L(x)) =T (ku(x))

for all & in some face F and then for all £ € OII. This is now reformulated
to

(2.39) L(ky ' (0)) = ki) (T()) -

4*BSTEP :

Finally, the behavior of pu under a.t.u. is demonstrated by

u(L() = ki (Trah)
) (by (2.32))
(2.40) = wpm (T(Tof)) (by definition of T)
= L(xg' (rui)) (by (2.39))
= L(pp),

3 Axioms for the Solution

Definition 3.1. An adjustment is a pair of mappings (v,,o) with the
following properties:

1. o : € = R (the scaling factor) is a positively homogeneous mapping.

2. v, (the transfer mapping) assigns to every cephoid 11 a bijective
mapping
vy Ol — o AC.

. s positively homogeneous ,i.e., satisfies

(3.1) Y =ty : 01l = oynA® = tonA® (¢ > 0).
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3. For 0 < a € R", the mapping
(3.2) Yo = Yia:A® = g®A°
18 the canonical affine identification of simplices, i.e., the mapping
Y il = oa(Br..... ) (B>0,e8=1)
icl
For prisms we simplify the notation and write v,, o4 instead of yqa, opa.

Remark 3.2. A transfer mapping v, may be conditionally additive in the sense
introduced for ko in Theorem 2.5. Note that this implies that ~, is piecewise
convez, i.e., for any set of extremal points b', ..., b" of A1 and convex coefficients

B=(B,-...00) (B>0,e8=1) with Y1, 5b' € IIl, we have

L L
(3.3) Tn (Zﬁlbl) = > v ()
=1 =1

Definition 3.3. A scaling factor o is said to be consistent, if, there are
real valued functions g and f such that for any 1,5 € I

(3.4) 0o = 9(0@a)) f (Tan,) -

This means that the assessment of concessions by n players is consistent with
the one by any two players. If (ay)gi; is fixed, then concessions between to
players are evaluated according to the scaling factor for two persons. The
next lemma says that n players should consistently evaluate a simplex in
terms of the coordinate product. Together with positive homogeneity, this
amounts to choosing 7.

Lemma 3.4. Let o be a consistent scaling factor. Assume that, forn = 2
o is a function of the product. Then o = T holds true.

Proof: Let 0 < a € R". Choose any 4,5 € I. Then o, is, for fixed
values of a, (k # 4,j) a function of the product a;a;. This is true for any
arbitrary choice of {i,j}. We show that the function &, is exponential in
the coordinate product, say

oa=(a1-...-ay)

Indeed, for fixed ay, ..a, write h3(a3) = fi2(as,aq, ..., a,) etc. such that

0o = g(a1a2)h*(a3) = g(aiaz)h*(as) = g(azas)h'(ay).

Then
Oq _ (a1a2) _ 9((11(13)
h*(as)h*(az)h*(as) h*(az)h'(a1) h*(as)h'(a1)
= M = const
h?(az)h?(as) '
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Hence ,
04 = const H h'(a;)
123

and

g9(araz) = h'(ay)h*(as)
Then

g(t) = h'(t)h*(1) = P2 (t)h' (1)

thus

) e

with h(1) = 1. Consequently

g(t) = h(t)a, h(ajas)a = g(ajas) = h(ar)h(az)a

meaning

h(alag) = h(al)h(ag).

Hence h is exponential and so is g. Now

oo = glaras) f(as, ...ap) = (a1)"(az)" f(as, ...ay)

= (a1)"(a3)" f(ag, ag...a,) = (az)"(a3)" f (a1, a4...a,),

thus
Oa _ flas, ...ap) _ flay,ay...ay) _ — const
(a1)"(ag)" ... (an)"™  (az)"...(an)" (a1)"(as)"...(a,)"
and

0o =const(ay...a,)"

Because of o4, = to,, hence r = L. Ignoring a constant, we come up with
(3:5) Ou= @ ay = "Via(Ae) = 1%

q.e.d.

Definition 3.5. Let m be a solution, and let (v,,o) be an adjustment. We
say that (N, 7., o) satisfies the adjusted value axioms if the following holds
true.

1. m 1is conditionally additive.
2. v, 18 conditionally additive.
3. o is additive and consistent.

4. The solution concept respects the adjustment. That is,

(3.6) Yu(n(M)) = n(yu (D)) = n(eud®).
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Theorem 3.6. If (n,~,,0) satisfies the adjusted value axioms, then
1. m is the generalized superadditive solution p,
Up to some positive common constant,

2. v, 18 the measure preserving mapping K., and

3. o is the assessment function T.

Proof:

For arbitrary n, every bargaining solution yields the center-point whenever
the bargaining problem is a simplex. Therefore, with respect to the last
axiom, equation (3.6) can be rewritten

1

B1) () = Aln() = Alond) = ou(. o

).

1S*STEP :

For n = 2 all polyhedral bargaining problems are cephoids. There is one and
only one solution which is conditionally additive on polyhedral bargaining
problems, this is the Maschler—Perles solution g, see [7],[12] [15]. Hence we
have n = pu.

2"dSTEP :

We prove that, for n = 2, o and T coincide up to a constant. Let R? > a, b >
0 be positive vectors and let A% and Ab be the corresponding simplices (line
segments) in R? (we assume non-degeneracy). Assume that ajas > bibs.
Also, choose a < 1 such that aa;as = b1by. Furthermore, let IT := I1¢ + I1®
and 1% = 1% + I1%. Then II* is symmetric up to an affine transformation,
so (I1%) = p(I1%) is the unique vertex. Hence, 7. maps the two line

A A

oIl

O'HAe

II O'HHe

Figure 3.1: A sum of two prisms and the «—image
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segments of OI1* bijectively linear onto the two line segments of 201« A€ that
are generated by the midpoint (e, oya). We conclude that 4 = Kpe and
Y(-ayie = K(1-a)ne holds true. Now any x on the “left side” of JII* and
any ' on (1 — «a)A® add up to a Pareto efficient sum x + «’. By conditional
additivity we have

(@ + ) = Yo (&) + Y1 (&) = e () + K1 e (2) = (@ + ).

That is, v and Ky coincide on the “left side” of OII. In particular g behaves
additively, i.e., by = ppo + B(1_q)ne- That is, the midpoint of A (cf. Figure
3.1) is mapped onto the midpoint of ;. Hence, all line segments on 0TI are
mapped onto the corresponding line segments on o A€ in the same ratio of
length as is the case with the mapping x. We conclude that

(3-8) Yo = —kn =: rokn

holds true indeed.

We claim that the ratio rr; does not depend on II. Indeed, change b to b’
in the above argument such that the product cajas = biby = b)b), is the
same. Then the length of the line segments involving A® and aA® does not
change. As the ratios are again the ones indicated above, the total length of
the image oy A€ does not change.

The above procedure is naturally extended to a sum of K prisms in R? (see

[7],[12] or [13]). Hence, for some positive r, we have v, = rk,, o, = r7,.
We assume that the constant is 1, hence
(3.9) one = Tra = a(0l?) = V/aja,.

which is well known from the Maschler—Perles solution |7],[12].

3"4STEP : Now we turn to bargaining problems in R™. First of all we deter-
mine the nature of or;. By the previous step, o equals 7 on two dimensional
simplices. By Lemma 3.4 it follows that o equals 7 on all n—dimensional
prisms. As both functions are additive, they coincide necessarily on all
cephoids.

4*"STEP : Let Il be a cephoid and let uw be a vertex of dII. By non-
degeneracy u is a unique sum of vertices of the simplices A*) say

(3.10) u=a" = Z a®ix

keEK

with suitable i, : K — I (see (2.11)). By item 3 we know that
Yak) (a(k)ik) =o,me" (ke K).

As o and T coincide on prisms, we use conditional additivity in order to
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conclude that

(W) = o (Z a(k)ik> = > Yaw (aM¥)

keK keK
= Z T o) €' = Z 7o' gl
(3.11) keK keK
keK keK
= Kn(u).

Thus, v and K coincide on the extremal points of OII. By piecewise con-
vexity, they coincide necessarily on all of OII.

q.e.d.

4 The TU-game

Within this section we introduce the TU game derived from an NTU-game.
To this end, let V' be a cephoidal NTU-game. Our approach suggests that
players evaluate concessions and gains in accordance with the coordinate
product. It seems plausible that a “side payment game” derived from an
NTU situation has to be calibrated accordingly.

The foremost candidate is suggested by the surface measure and the adjust-
ment factor. Accordingly, coalition S considers its “worth” implied by V to
be given as follows.

Definition 4.1. Let V be a cephoidal NTU-game. The TU-game induced
by V is

(4.1) =9 : P—>R

(42) 3(S) = 37(5) = Tvis) (SEP).

Example 4.2. A hyperplane NTU-game illustrates the relevance of our
version. Let v : P — Ry be a nonnegative TU-game and let a € R} be a
positive vector. Define V.= V7 by

V(5) = Va(S) =v(5)A5 (SeB).

We have (using s := |5])

TV(S) = (H’U(S)az‘> = v(9), Hai

€S

= v(S)TAg = ’U(S)TG(S)
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It follows at once that for S € P
v(S)=v(9)T, -

The worth of coalition S € P is adjusted or rescaled by means of the ad-
justment factor. Clearly, ¥ and v coincide whenever a is the unit vector e
and hence V7 is the embedding of the side payment game v into the NTU
framework.

Lemma 4.3. The TU game mapping ©° is additive. That is, for V. W € 0"

(4.3) 3V +3W =3V,

Proof: The proof follows immediately from the additivity of the adjustment
factor, i.e., from Theorem 2.5, q.e.d.

Next we wish to assess the behavior of side payment games under affine
transformations. Let

L : R"=>R" Lx) = (qzy,...,0,2,) (€ €R")
specify such a transformation, then (2.32) implies obviously

(4.4) TLV(S) = TasTV(s) -

Accordingly, we have to define the action of a.t.u. regarding the admittance
of side payments. The appropriate version of the transformed game is given
as follows.

Definition 4.4. Let V' be an NTU-game and let L be an a.t.u.. Define the
transformed game LV by

(4.5) LV)(S) = —2L(V(S) (SeP)

Tag

A transformation of utility refers to the grand coalition. The Shapley value
assumes that agreement eventually takes place within the grand coalition.
When a rescaling of the axes is applied, coalitions considering ¥ should take
the different measurements into account when rescaling is applied.

Lemma 4.5. Let L be an a.t.u.. Then the TU-game mapping v° satisfies
(4.6) 3V (S) = TaBY(S)
for all V € 0" and S € P. Thus, an affine transformation is reflected in

the corresponding TUfgam_e by a rescaling via the factor

(4.7) Ta =

The Proof is obvious.
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5 The Conditionally Additive Value

Within this section we describe an NTU Shapley value based on Shapley’s
seminal paper [16] but also referring to theMaschler—Perles solution ([7]).
Thus, it is appropriate to say that we define a Maschler—Perles—Shapley value.

Let V be a cephoidal NTU-game. Recall the TU game & = 8" given by
formula (4.2) of Section 4. The (TU —) Shapley value of ¥ is denoted by ®(v)
and satisfies

(5.1) (@@)(I) = > (@) = 3(I) = Tvq)

that is
(5.2) d(v) € ATvVD

thus, ®(v) is located in the range of k(v (r)). This justifies the following
definition.

Definition 5.1. The conditionally additive value (the c.a. value or the
MPS value) is the mapping x defined on cephoidal games by

(5.3) xX(V) = Ky (@@Y)) .
Theorem 5.2. The MPS value

1. is Pareto efficient,
2. 18 symmetric,
3. respects a.t.u.

4. 1s conditionally superadditive.

Proof: 1*STEP :

In order to deal with functions depending on (cephoidal) NTU-games, we
extend K in a canonical way; we introduce

(5.4) h‘,V = Rv) - 8V(I) —)TV(I)Ae = ,’l}V(I)Ae.

2"ISTEP :

Pareto efficiency is obvious from the definition. We prove symmetry. Recall

that, for a TU game v we have 7v = wv o7~ while for NTU games the

appropriate definition is 7V = 1oV on~L

Now, in view of (2.30) we have for S € P

V(S) = Tavys) = Ta(V(r=1(S))
(5.5) = TvE-u(s) = TaYx(V(x—1(S))))

= T v)e)
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that is,
(5.6) "V =m0Y

proving symmetry of the function ¥°. Analogously, we prove the symmetry
of k*. In view of (2.29) we have

vV

5.7 k = R@v)a) = B@vE-i(1)
(5.7) _ . v
= ToRypoT = mqmokr’om .
Combining this we obtain
7T —1 el
xxv) = (V)" (e6™))
= nokrYorn! (@(ﬂ@v)>
(5.8) = gokYor lr ((P(@V))
— 1okVo (@(a"))
= 7m(x(V)),
3"4STEP :
Next, covariance with a.t.u is verified. To this end, let & = (ay,..., ) > 0
and let
L R" - R"
Lx) = (oqzy,...,00%,) (x€R")

be the corresponding positive linear mapping. Note that we have to apply
the mapping L (see (4.5)) when transforming an NTU-game. Also, recall
the translation 7" defined in (2.33) that satisfies

(5.9) Trm = TaTn = T'(Tn)
(see (2.32)). Also, Lemma 4.5 reads
(5.10) "V = 1,97,

The relation of the mappings ki and &,y is explained by (2.38). Therefore
the applications of x and L commute as

XIV) = ki (e@) (by definition of x)
- n(}}v)(n (I)(Ta’/v\v (by (46) of Lemma 45)

(2(ra5")

= Ky (2ra®”))  as V(D) = (ZV)(D)
(ro2@")
(

(5.11) = “i(lv(z)) Taq)(@v) (as @ is linear)
= ""’Z(lv(z)) T(‘I)(EV))) (by definition of T)
= 1L (%1(1) ((P(@V)) (by (2.39))
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4*"STEP : Finally, the proof for conditional additivity runs quite analo-
gously to the one of Lemma 2.6. If, for two games V and W the values
x(V) and x(W) yield a Pareto efficient sum, then they are located within
faces that admit of a joint normal and k behaves additively. Consequently

(5.12)

= n(_V(I))((I)('/U\V) +"t‘f(_vlv(1))((1>('13w)) by definition,

)
)
(@(@V) + @(@W)) by (2.15 ) Theorem 2.5,
= Ry @ w) <<I>('v + i)\W)) , as the Shapley value is additive,
(@(3V+W)) by Lemma (4.3),
= x(V+W),

q.e.d.

6 Axioms for the Conditionally Additive Value

Within this section, a value is a mapping ¥ : ‘U" — R" which is Pareto
efficient, symmetric, and a.t.u. covariant.

An adjustment is a pair (v,, o) consisting of a scaling factor and a transfer
mapping as given by Definition 3.1. Clearly adjustments induce mappings
on games, we have

(6.1) YW oi= vy . 0V = ov
and
(6.2) v(S) = vY(S) = vV (S) == ov (SEP).

Finally, a value is required to obey the null player axiom, that is, any null
player of v7°V receives 1p,(V) = 0.

Definition 6.1. We say that (¥, 7., o) satisfies the adjusted value axioms
if the following holds true.

1. v is conditionally additive.
2. v, 15 conditionally additive.
3. o is additive and consistent.

4. The solution concept respects the adjustment. That is,

(6.3) 7 (W(V) = $(07Y (0)A7) (V €T").
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Theorem 6.2. If (¢,,,0) satisfies the adjusted value axioms, then v is
the MPS wvalue x, and (up to some positive common constant)

1. =, 1S the measure preserving mapping K., and

2. o is the adjustment factor T.

Proof:
1StSTEP :

For bargaining problems, we know that the c.a. value x equals the general-
ized Maschler—Perles solution p. Now, the axiomatic of Definition 6.1 is the
one presented in Definition 3.5 when restricted to bargaining problems. It
follows from Theorem 3.6 that (v, o) = (k, T) holds true. Thus, statements
1 and 2 are immediately verified..

2"ISTEP :

It follows that the derived side payment game is

(6.4) oV = vV =3"Y =3Y (VeD).

We claim that @ has to coincide with the Shapley value (more precisely:
with x) on hyperplane games.

Indeed, consider the function 99 on TU-games defined by
I(v) = p(v(e)A7) = P(Vy) .

As 1) is conditionally additive it follows that 9 is additive. Also, by (6.4)

and Example 4.2 we have v="0= v, hence null players of v and v coincide.
Consequently, 9 satisfies the axioms of the Shapley value.

3"4STEP :

In particular, the fourth axiom (formula (6.3) in Definition 6.1) can be re-
placed by

(6.5) Y @(V)) =d(7") =d@™Y) (V ey
As vV = kY, this implies

66 (V) = (") (2@™)) = x(V) (Vev").

q.e.d.

Remark 6.3. Our solution or value respectively is point valued and does not re-
quire a fixed point theorem. With this respect it differs from other NTU-Shapley
values given previously. See e.g. AUMANN [1], who axiomatizes the Shapley’s trans-
fer value and HART [5], who axiomatizes Harsanyis [4] NTU-value. See also DE
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CLIPPEL-PETERS-ZANK [2] who discuss the dependence on regularity conditions
and add axiomatizations for several values including the Consistent NTU-Shapley
value of MASCHLER—OWEN [6]. Our solution concept is “constructive”. The maxi-
mal faces of a cephoid can be determined by a recursive procedure (see [8]), thus the
scaling factor and the surface measure are attainable by computational methods.
We do not know as yet whether these problems are “NP—-hard”.

Remark 6.4. We believe that, with a suitable topology on Pareto surfaces,
cephoids are dense within a large class of smooth polyhedra. In two dimensions
this is well known assuming that no line segments parallel to an axis appears in
the Pareto surface. In n dimensions a more restrictive condition may be necessary.
Quite likely, the surface measure can be extended to certain smooth Pareto sur-
faces, a plausible candidate would be obtained by integrating the “volume element”
over the Pareto surface, vaguely

a(0U) = V(dzy - ... dz,)" 1.
/

Yet, the continuity properties of the c.a. value are to be studied carefully. This
task clearly exceeds the scope of our present framework.
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