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Abstract. Considered here is direct exchange of production allowances
or input factors. Motivated by practical modelling and compution, we sup-
pose every owner or user of such items has a linear technology. The issue
then is whether competitive market equilibrium can be reached merely via it-
erated bilateral barters. This paper provides positive and constructive answers.
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1. Introduction
Consider an economy in which agents own speci�c production factors and linear
technologies. Those factors and the resulting payo¤s are regarded as perfectly trans-
ferable. In such a setting, this paper considers whether market equilibrium could be
reached merely via direct two-sided deals.
What we have in mind is bilateral exchange of natural resources or user-rights to

such. Important instances comprise transfers of �sh quotas, production allowances,
pollution permits, or rights to water usage. Also �tting is trade of insurance policies
and contingent claims [6].
Many natural resources and production externalities are not traded - or their

markets are not well developed. Nonetheless, one can often witness direct transfer
of user permits, rental rights, or property shares.1 Typically, and quite naturally,
such transactions are facilitated by side payments. That is, money oils the exchange
mechanism. Re�ecting on this feature, we ask: Can the agents reach equilibrium
merely via iterated bilateral barters? If so, how?
Feldman (1973) already studied these issues in a pioneering paper. He required

that each deal yield a core outcome for the two parties who undertake exchange.2

Our approach - while decidedly agent-based and computational - is more inspired
by behavioral and experimental economics [27]. So, it takes another tack: no joint

�Corresponding author; he thanks Finansmarkedsfondet, E.On Ruhrgas and CESifo
for support. Both authors are at the Economics Department, University of Bergen,
fsjur:flaaam; kjetil:gramstadg@econ:uib:no:

1So-called unitization of oil �elds are cases in point.
2Other studies include [13], [15], [17], [23] and [26].
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optimization is ever undertaken. Agents merely adapt, step by step, each move being
somewhat moderate and myopic.
Along that line, the paper supplements and adds to closely related, on-going stud-

ies [7], [8]. Its novelties - and its many constructive features - come by specializing to
linear economies. Within that important, quite applicable setting, the paper provides
positive answers to the above questions. Decentralized and direct two-sided deals may
indeed su¢ ce to generate market clearing prices. Under weak assumptions, no coordi-
nation is ever needed. This result speaks for the stability of equilibrium in stationary,
competitive economies.
The paper is planned as follows. Section 2 deals with existence of equilibrium.

Section 3 models exchange as direct, between only two parties at a time, and itera-
tively driven merely by di¤erences in their margins. Section 4 details the manner of
exchange - presented there with the �avor of an algorithm. Section 5 proves conver-
gence. Some examples are found in Section 6.

2. Economic Equilibrium

This section formalizes the linear economy, de�nes the concept of transferable-utility
competitive equilibrium - and studies existence of such outcomes.
Agent i owns endowment ei of production factors, and he gets monetary payo¤

�i(xi) upon using input xi: Both bundles ei; xi are construed as vectors in a real linear
space X.
Our motivation is partly computational, and the orientation is agent-based [28].

Accordingly, there is �nite ensemble I of adaptive agents, and a �nite list C of
commodities. Let X = RC be the set of all functions x : C ! R. Writing such
commodity bundles in the form x = [xc], we equip X with ordinary inner product
x � x̂ :=

P
c2C xcx̂c; associated norm kxk = (x � x)1=2, and standard vector order

x � x̂, xc � x̂c 8c 2 C:3
Further, also for the sake of computation and practical modelling, suppose all

production payo¤s derive from linear programming [14]. Speci�cally, let

�i(xi) := sup fy�i � yi j xi � Aiyi & yi 2 Yig : (1)

The interpretation of (1) goes as follows. Agent i must choose a production plan yi 2
Yi. The set Yi; which accounts for his activity constraints, is presumed polyhedral.4

It is part of a linear space Yi, having �nite dimension and inner product y�i � yi.
The vector y�i 2 Yi re�ects agent i�s linear objective. A matrix or linear mapping
Ai : Yi ! X represents his technology. When operative, that technology consumes
various production factors - of which instance (1) lets bundle xi 2 X be available.
The subsequent discussion also �ts the standard version of (1) in which xi = Aiyi:
We remark that agent model (1) is important in practice - and most tractable

for computation. It can �t directly to a productive enterprise or serve as a good
approximation to what goes on there.

3In asset or insurance markets, xc 2 R records a monetary claim, valid only in contingency c 2 C:
4A set which equals the intersection of �nitely many closed half-spaces is declared polyhedral.
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Clearly, to make economic sense, input xi must yield �nite value �i(xi) in (1).5

So, by assumption, �i < +1 everywhere - and, of course, �i > �1 somewhere.
Thus, as a matter of hypothesis, agent i�s e¤ective domain

dom�i := fxi 2 X j the optimal value �i(xi) is �niteg

is non-empty. Further, to make physical sense, xi should belong to some prescribed
subset Xi � X.6 Accordingly, agent i must always care that his input xi be member
of

Xi := Xi \ dom�i:
Henceforth, by assumption, Xi is closed convex, and �i is �nite-valued near any
xi 2 Xi: The latter quali�cation amounts to require that

Xi � int(dom�i): (2)

To postpone queries about feasibility, let the indicator �i : X!f0;�1g take the
value �i(xi) = 0 if xi 2 Xi; and �1 elsewhere. This extreme penalty function simply
serves to report violation of implicit constraints. Using this function, the essential
objective of agent i reads

ui := �i + �i: (3)

In autarky he could, at most, achieve payo¤ ui(ei). But voluntary exchanges often
bring widespread improvements. Notably, a competitive market might make marvels.
In the present context, featuring perfectly transferable payo¤s and production fac-
tors, price-supported equilibrium becomes especially tractable:

De�nition (Exchange market equilibrium). The input pro�le (xi) 2 XI alongside
a price p 2 X is declared a competitive equilibrium i¤

P
i2I xi = eI :=

P
i2I ei; and

ui(xi) + p � (ei � xi) � ui(�i) + p � (ei � �i) for each �i 2 X and i 2 I: (4)

Thus, the solution concept requires that demand equals supply, and that everybody
maximizes his direct payo¤ ui(xi) plus price-taking revenue p � (ei � xi) from trading
resources.7

Granted format (1) and perfect transferability, competitive equilibria exist under
weak and natural assumptions. For a statement to that fact, call a subset X of a real
vector space conical i¤ (r;+1)X � X for some real r � 0:

Proposition 2.1 (Existence of competitive equilibrium). Suppose (1) holds, and
that the optimal value

uI(x) := sup

(X
i2I
ui(xi)

����� X
i2I
xi = x

)
(5)

5As customary, if xi renders (1) infeasible, posit �i(xi) = �1:
6For an important and natural example, take Xi = X+ = RC+.
7It is, of course, tacitly assumed that each ui(xi) be �nite in equilibrium.
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is �nite and attained at the aggregate endowment x = eI : Then there exists an equi-
librium (xi). When Xi and Yi are conical, ui(�i) � p � �i for each �i 2 f�i � 0g. If
moreover, Xi and Yi are cones, then ui(xi) = p � xi:

Proof. Inserting (1) in (5), and letting x = eI , yields the extended linear program:

uI(x) = sup

(X
i2I
y�i � yi

����� xi � Aiyi, yi 2 Yi & X
i2I
xi = x

)

= sup

(X
i2I
y�i � yi

����� x �X
i2I
Aiyi, yi 2 Yi

)
:

By assumption, this fully coordinated program has �nite value - whence at least
one optimal solution (xi) 2 XI . Consequently, the corresponding dual program [14]
admits an optimal solution in which a multiplier p 2 X associates to the coupling
constraint

P
i2I xi =

P
i2I ei. The reduced Lagrangian

L =
X
i2I
fui(�i) + p � (ei � �i)g

is then maximal in (�i) at (xi): Such maximality is equivalent to (4).
Finally, if Xi; Yi are conical, �i(r�i) � r�i(�i) � 0 when r is su¢ ciently large

and �i 2 Xi \ f�i � 0g : If one inequality is strict, then limr!+1�i(r�i) = +1 -
a contradiction. Hence, any equilibrium price p must yield ui(�i) � p � �i for all
�i 2 f�i � 0g : �

Proposition 2.1 generalizes that of Owen (1975), concerned with core solutions to
equal-objective, equal-technology, linear production games with transferable utility.
Here, since our focus is on competitive outcomes, by the �rst fundamental welfare
theorem, equilibria automatically belong to the core [29].
While existence easily obtains, uniqueness can hardly be guaranteed. For example,

suppose agents i; j have identical programs (1), and Xi= Xj. Then, if an equilibrium
allocation has xi 6= xj; these two parties could equally well swap their inputs.8 Also,
if the overall dual program, mentioned above, has several optimal solutions, then
equilibrium price vectors are just as many.
Linear models of exchange have a long and fascinating history.9 Their importance

make us inquire here about the attainability of market balance - and the emergence
of equilibrating prices. How might non-coordinated, scantly informed parties come
to implement equilibrium by themselves? Intuition suggests that iterated bilateral
barters might su¢ ce. The next section explores this idea.

8For a trivial illustration, let I = f1; 2g, �i(xi) = xi, Xi = [0; 1] ; and ei = 1=2: Then each
feasible allocation is an equilibrium.

9See Bray (1922), Remak (1929), Frisch (1934), Gale (1960).
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3. Direct Exchange
This section spells out the main idea behind our modelling of bilateral barters, illus-
trated by a simple example. Also included here are a few facts on shadow prices and
their coincidence in equilibrium.
The recurrent trade episode goes as follows. Suppose two agents i; j meet, then

holding factor bundles xi 2 Xi; xj 2 Xj respectively. If they agree on a suitable
direction � 2 X of input transfer to i from j; and use a step-size � > 0 along that
direction, their tentatively updated holdings become

xi + �� and xj � ��:

On choice of transfer direction: the smooth case. What direction � might
appear attractive? For the sake of simple argument, �rst suppose ui; uj are di¤eren-
tiable at xi; xj respectively, with gradients gi = u0i(xi); and gj = u0j(xj) there. The
gradient di¤erence

� := gi � gj (6)

then seems a good �rst proposal. The reason is simple: using small enough step-size
� > 0, if � 6= 0, the value added

�uij(�) = ui(xi + ��) + uj(xj � ��)� ui(xi)� uj(xj)

becomes strictly positive. Indeed, �u0ij(0) =
�
u0i(xi)� u0j(xj)

�
�� = k�k2 > 0:

However, the proposed and promising direction � - or the associated step-size �
- might cause some update to become infeasible. That is, the two trading parties
must care that xi + �� 2 Xi and xj � �� 2 Xj. In this regard, to disentangle
di¤erent concerns, we �rst look at their choice of some appropriate direction. For
precise discussion and statement, let, in general,

D(X; x) := fr(�� x) j r � 0 and � 2 X g = R+(X � x)

denote the cone of feasible directions of a subset X � X at x 2 X: As one might
expect, the candidate direction � must, when necessary, be bent onto the convex
cone Dixi := D(Xi; xi): Here, given the polyhedral nature of all sets, we assume that
any such cone Dixi is closed.
Quite similarly, looking at i0s interlocutor and counterpart j; his opposite direction

�� must, maybe after mandatory bending, reside in Djxj: In short, to make the
chosen direction feasible for both, let

d = Pij� (7)

denote the orthogonal projection of � onto the convex cone

Dij(xi; xj) := Dixi \ �Djxj;
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assumed closed.10 In view of polyhedral instances, we tacitly reckon that agents i; j
experience little di¢ culties in executing projection Pij; see Section 6.

Next comes a simple illustration:

Example (An elementary linear exchange economy). Let C = f1; 2; 3g ; and con-
sider three agents i = 1; 2; 3, boxed next:

�1(x1) = 3x11 + 2x12 + 1x13; e1 = (0; 1; 0);
�2(x2) = 2x21 + 1x22 + 3x23; e2 = (1; 0; 0);
�3(x3) = 1x31 + 3x32 + 2x33; e3 = (0; 0; 1):

For lighter notation, xic := xi(c): This instance �ts, of course, the standard version
of (1): Let Ai be the C � C identity matrix, let xi = Aiyi; posit Yi = RC with
ordinary inner product, and choose linear objectives de�ned by vectors y�1 = (3; 2; 1);
y�2 = (2; 1; 3); y

�
3 = (1; 3; 2):

Plainly, �i is �nite-valued everywhere. Let Xi = X+ = RC+. Write simply D for
the cone Di; and P for the projection Pij: As it turns out, exchange can proceed with
constant step-size � = 1 until swift convergence - as follows:
In round 1 suppose agents 1; 2 trade, starting from initial allocation [x0i ] = [ei].

Since Dx01 = R+ � R� R+ and Dx02 = R � R+�R+, we get Dx01 \ �Dx02 = R+ �
R��f0g and� = �01��02 = (1; 1;�2): So, the two active traders may apply projected
direction d = P� = (1; 0; 0): Using step-size � = 1; the updated allocation becomes
[x1i ] = [(1; 1; 0); (0; 0; 0); (0; 0; 1)] :
In round 2 let agents 1; 3 trade. Since Dx11 \ �Dx13 = R� � R��R+ and � =

�01 � �03 = (2;�1;�1); let d = P� = (0;�1; 0) to produce a novel allocation [x2i ] =
[(1; 0; 0); (0; 0; 0); (0; 1; 1)] :
Finally, in round 3 suppose agents 2; 3 trade to arrive at equilibrium allocation

[xi] = [x
3
i ] = [(1; 0; 0); (0; 0; 1); (0; 1; 0)] ; and associated equilibrium price p = (3; 3; 3):

In each round, the two traders obtain an increment

��ij(�) := �i(xi + �d) + �j(xj � �d)� �i(xi)� �j(xj) (8)

in joint payo¤ which equals ��ij(1) = 1. The �winner�gets additional payo¤ 3; and
the �looser�gives up 2: Accordingly, if the �rst pays compensation 2:5 to the latter,
both can pocket 0:5: }

More on choice of transfer direction: the case of non-smooth objectives.
Our arguments hitherto for choosing direction (7) hinged on ui; uj being di¤eren-
tiable. Alas, quite often, they are not. The optimal value function �i; as de�ned
in (1), need not have a classical gradient at xi 2 Xi.11 More seriously, the extreme
10We note that projection Pij is positively homogeneous. So, when well de�ned, only the unit

vector d= kdk counts, along which i receives a transfer.
11As is well known, �i is (continuously) di¤erentiable at xi i¤ @�i(xi) reduces to a singleton. By

Rademacher�s theorem this happens on a dense subset of Xi:



Direct Exchange in Linear Economies 7

penalty function �i is dramatically non-smooth at the boundary of Xi. So, in the
sequel, we must contend with use of generalized gradients [21], [22].
Recall that g 2 X is called a supergradient of a function f : X! R[f�1g at

x 2 X, and we write g 2 @f(x); i¤ f(x) is �nite, and

f(�) � f(x) + g � (�� x) for all � 2 X.

We presume that traders will not spoil the simplicity of procedures (6) and (7). Yet,
dispensing now with di¤erentiability, there remains a question: what supergradients
might, via their di¤erences, drive trade? To address this issue, we record next how
optimal values like (1) are �di¤erentiated.�The following, well known result derives
from Danskin�s envelope theorem [3] and linear programming duality [14]. For sim-
plicity in statement, let

�Y (y
�) := sup fy� � y j y 2 Y g

be the support function of some subset Y of a Euclidean space Y. As usual, when
A : Y! X is linear, AT : X! Y denotes its transpose operator. While A maps
�activity�y 2 Y into �resource consumption�Ay = x 2 X, the transpose AT sends
linear resource prices x� on X into corresponding activity prices y� on Y.

Proposition 3.1 (Supergradients of linear programs). Suppose, as in (1), that

�(x) := sup fy� � y j x � Ay & y 2 Y g

emerges as the optimal value of a linear program in which Y � Y is polyhedral. Then,
the function � : X! R[f�1g, so de�ned, becomes concave, and its superdi¤erential
@�(x) is non-empty whenever �(x) is �nite. To wit, x� 2 @�(x) i¤ x� solves the
corresponding dual program with equal value, namely:

�(x) = inf
�
x� � x+ �Y (y� � ATx�) j x� � 0

	
. �

This proposition applies of course to each program (1). Further, for di¤erentiation of
essential objective ui (3), recall the concept of normal cone

N(X; x) := fx� 2 X j x� � (�� x) � 0 for all � 2 X g

to a subset X � X at x 2 X: Now, in terms of Ni(xi) := N(Xi; xi), we have
@�i(x) = � Ni(xi) so that

@ui(xi) = @�i(xi)�Ni(xi).

Any pi 2 @ui(xi) is commonly called a shadow price. To conclude this section, we
note straightforwardly that equilibrium prevails when the agents�shadow prices all
coincide:
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Proposition 3.2 (Equilibrium and a common shadow price). If
P

i2I xi =
P

i2I ei
and

p 2 \i2I@ui(xi); (9)

then allocation (xi) and price p constitute an equilibrium. Conversely, if (xi); p is an
equilibrium, (9) holds, and p 2 @uI(eI): �

Equilibrium might be construed as �the goal�of some central planner or imaginary
auctioneer. None of the many narratives that go along with such perspectives �t
here [24]. Our interest is rather with non-coordinated enterprises - and with agents�
behavior out of equilibrium. A candidate mode of such behavior is described next.

4. Bilateral Barters
Only for argument and discussion, we �nd it expedient to let the exchange process
unfold very much like an algorithm, �ctitious or real, but a¤ected by a protocol that
decides who will trade next with whom.

Repeated bilateral barters construed as an ascent algorithm:
� Start with some allocation i 7! xi 2 Xi such that

P
i2I xi =

P
i2I ei.

� Invoke the protocol to activate a novel agent pair i; j 2 I.
� Pick supergradients gi 2 @ui(xi) and gj 2 @uj(xj). If d := Pij(gi � gj) = 0, invoke
the protocol anew.
� Stop when all d = 0:
� Otherwise, choose a feasible step-size � = �ij > 0.
� If in (8) ��ij(�) � 0, update holdings:

xi  xi + �d 2 Xi and xj  xj � �d 2 Xj: (10)

� Continue to invoke the protocol until convergence.

Note that � > 0 and d 6= 0 whenever (10) is executed. We say that i; j then undertake
a real trade.
Clearly, the algorithm maintains

P
i2I xi = eI and xi 2 Xi throughout. The above

schematic outline glosses, of course, over much detail, institutional and narrative. It
re�ects though, that autonomous agents, who operate within reasonable legal frames,
often �nd improving allocations.
Upon viewing exchange as the implementation of a (pre)programmed procedure,

one may wonder about its convergence rate. We shall make no claims in this regard.
Our only - and more modest - concern is with asymptotic stability: will holdings
cluster to e¢ cient allocations? More to the point: will a common shadow price
eventually emerge?
These questions invite queries about stopping, step-sizes, protocol, and conver-

gence. We address the �rst three issues next, deferring discussion of convergence to
the subsequent section.
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The stopping criterion is idealized and imprecise here. In practice, exchange
terminates when
* either all projected gradient di¤erences d = Pij(gi � gj) are so small (in norm) as
to pass unnoticed, or if
* the relative increment �

P
i ui=

P
i ui is negligible over some suitably long period.

For a more theoretical perspective on stopping, we state the following result, eas-
ily proved - and best understood as a special instance of Proposition 3.2:

Proposition 4.1 (A common shadow price blocks bilateral barter). Suppose agents
i; j, while holding xi 2 Xi; xj 2 Xj; meet to contemplate a bilateral exchange. Then,
at any optimal solution

(x+1i ; x
+1
j ) 2 argmax fui(~xi) + uj(~xj) j ~xi + ~xj = xi + xj g

they see a common shadow price p 2 @ui(x+1i ) \ @uj(x+1j ).
Conversely, if they already see one such price at xi 2 Xi; xj 2 Xj, then (xi; xj) =

(x+1i ; x
+1
j ) solves the above argmax inclusion. �

Proposition 4.1 tells that i; j should not barter if they see a common shadow price.
But otherwise, if @ui(xi) does not intersect @uj(xj), what feasible direction d 2
Dij(xi; xj) might be best? The method of steepest ascent will guide us here:

De�nition (Maximal slope). Suppose xi 2 Xi and xj 2 Xj. Then, by the maximal
slope of joint improvement for agents i; j is meant

Sij(xi; xj) := max
�
�0i(xi;d) + �

0
j(xj;�d) j d 2 Dij(xi; xj) & kdk � 1

	
: (11)

The chosen direction should emerge as

d = Pij(gi � gj) with gi 2 @ui(xi) and gj 2 @uj(xj): (12)

As said, when (10) & (12) hold with � > 0; d 6= 0; and ��ij � 0; agents i; j make a
real trade.
One wonders: In (12) what supergradients gi; gj make d = Pij(gi � gj) line up

with a maximizing d in (11)? The next result settles this question. For its statement,
given any two non-empty closed convex subsets Ci; Cj � X, naturally de�ne their
proximity, gap, or minimal distance by

dist [Ci; Cj] := inf fkci � cjk j ci 2 Ci; cj 2 Cj g :

Proposition 4.2 (A best common direction for bilateral transfer). When distinct
agents, i; j, hold feasible bundles xi 2 Xi and xj 2 Xj respectively, their maximal
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slope of joint improvement equals

Sij(xi; xj) = min fkPij [gi � gj]k j gi 2 @�i(xi); gj 2 @�j(xj)g
= min fkgi � gjk j gi 2 @ui(xi); gj 2 @uj(xj)g
= dist [@ui(xi); @uj(xj)] :

It follows that Sij is lower semicontinuous on Xi �Xj:

Proof (preferably not included in the �nal version). Recall that a concave
function f which is �nite near x, has a non-empty compact convex superdi¤erential
@f(x) and a directional derivative

f 0(x;d) := lim
r!0+

f(x+ rd)� f(x)
r

= min fx� � d j x� 2 @f(x)g : (13)

Quali�cation (2) ensures that @�i(xi) is a non-empty compact convex set whenever
xi 2 Xi: For this reason, letting B denote the closed unit ball, it obtains Sij(xi; xj)

= maxdmingi;gj f(gi � gj) � d jgi 2 @�i(xi); gj 2 @�j(xj); d 2 Dij(xi; xj) \B g

= mingi;gj maxd f(gi � gj) � d jgi 2 @�i(xi); gj 2 @�j(xj); d 2 Dij(xi; xj) \B g

= min fkPij [gi � gj]k j gi 2 @�i(xi); gj 2 @�j(xj)g :

In the preceding string, the �rst equality simply used formula (13) and the de�nition
of the maximal slope. Since all intervening sets are non-empty compact convex, the
second equality follows from the von Neumann min-max theorem. The third equality
derives from the Cauchy-Schwartz inequality, using the Moreau decomposition of
� := gi � gj with respect to the convex cone Dij(xi; xj); presumed closed. That is,
� decomposes uniquely into a sum d+ n where d = Pij� is feasible and n is normal
to Dij(xi; xj); meaning n �Dij(xi; xj) � 0:
This proves the �rst equality in the proposition. For the last two, note that

Ci := @ui(xi) = @�i(xi)�Ni(xi) and Cj := @uj(xj) = @�j(xj)�Nj(xj) (14)

are non-empty closed convex subsets of X (because @�i(xi); @�j(xj) are compact con-
vex). Also note that Dixi equals the dual cone fx� j x� �Ni(xi) � 0g of Ni(xi) - and
likewise for Djxj: It follows therefore from that dist [Ci; Cj] = dist [@ui(xi); @uj(xj)]

= inf fkgi � gjk j gi 2 @ui(xi); gj 2 @uj(xj)g

= min fkgi � gjk j gi 2 @ui(xi); gj 2 @uj(xj)g

= min fkPij [gi � gj]k j gi 2 @�i(xi); gj 2 @�j(xj)g :
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Finally the lower semicontinuty of Sij at any (xi; xj) 2 Xi � Xj follows from the
outer continuity of the correspondences in (14); see [22]. This completes the proof.
�

In hindsight, and not surprisingly, when the norm of d = Pij [gi � gj] 6= 0 realizes
Sij(xi; xj); the maximizing unit vector in (11) is d = d= kdk :
Proposition 4.2 tells that traders who implement a maximal slope can proceed

as though non-smoothness creates no hurdles. Yet, securing maximal ascent of joint
payo¤ can overstretch their competence - or require too much computational e¤ort on
their part. So, why could they not contend with a fraction of the said slope? Along
that line we make a standing assumption.

On choice of unit direction: If Sij(xi; xj) > 0 and agents i; j really trade, they
use a unit-vector direction d 2 Dij(xi; xj) such that

'ijSij(xi; xj) � �0i(xi;d) + �0j(xj;�d):

Here 'ij 2 (0; 1) is a �xed fraction of the maximal slope. In other words, when
d = Pij(gi � gj) = d kdk 6= 0;

'ijSij(xi; xj) kdk � �0i(xi; d) + �0j(xj;�d): (15)

For brevity, call any vector d 2 Dij(xi; xj) that satis�es (15) an approximate direc-
tion. As we shall see, use of such directions allows us to bracket the payo¤ increment
(8).

Proposition 4.3 (Bracketing the payo¤ increment). Granted Sij(xi; xj) > 0 sup-
pose supergradients gi 2 @ui(xi); gj 2 @uj(xj) yield an approximate direction d =
Pij(gi � gj) 6= 0. Then, for small enough step-size � > 0,

'2ij�Sij(xi; xj) kdk � ��ij(�) (16)

� �min
�
kPij(gi � gj)k2 ;Sij(xi; xj) kdk

	
= �Sij(xi; xj) kPij(gi � gj)k :

Proof (preferably not included in the �nal version). Because both functions
ui; uj are concave, it holds for any supergradients gi 2 @ui(xi); gj 2 @uj(xj), any
direction d; and any step-size �; that

ui(x
+1
i ) � ui(xi) + �gi � d and uj(x

+1
j ) � uj(xj)� �gj � d:

So, upon adding these two inequalities, and inserting d = Pij(gi � gj); yields (even
when Sij(xi; xj) = 0) that

�uij(�) � �(gi � gj) � d = � kPij(gi � gj)k2 : (17)
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Here, for the last inequality, we used the orthogonal decomposition

gi � gj = Pij(gi � gj) + n = d+ n

where n�d = 0. Clearly,�uij(�) = ��ij(�) when xi; xi+�d 2 Xi and xj; xj��d 2 Xj.
Note that � 7! ��ij(�) is concave for small enough �. Further, since the derivative
��0ij is positively homogeneous,

��ij(�) � ���0ij(0) � �Sij(xi; xj) kdk :

Combining this overestimate with (17) gives the right hand inequality in (16). The
last equality there derives from Proposition 4.2, saying thatSij(xi; xj) � kPij(gi � gj)k :
Finally, for the left hand inequality in (16), when Sij(xi; xj) > 0; and direction d

is approximate, it holds

0 < 'ijSij(xi; xj) kdk � ��0ij(0) = lim
�!0+

��ij(�)���ij(0)
�

:

Since ��ij(0) = 0; the last inequality implies '2ij�Sij(xi; xj) kdk � ��ij(�) for small
enough � > 0. �

This completes our discussion of feasible directions, approximate or not. It is time
now to consider choice of step-sizes. While trade is underway, no agent can step out-
side his feasible domain. Yet, when prospects for joint improvement are promising,
the interlocutors ought opt for a non-negligible transfer - that is, for real trade. In
that regard we make a standing assumption:

On step-sizes: For any chosen direction d 2 Dij(xi; xj) agents i; j agree on a
step-size � = �ij � 0 such that xi + �d 2 Xi and xj � �d 2 Xj: Most important, we
suppose that step-sizes dwindle

�k ! 0; (18)

but not too fast : For any subsequence K, all along which some agent pair i; j really
trade, it holds

lim
k2K

(xki ; x
k
j ) = (xi; xj); �

k
ij > 0 & lim inf

k2K
Sij(x

k
i ; x

k
j ) > 0)

X
k2K

�kij = +1. (19)

We think these conditions are reasonable. The ultimate vanishing of step-sizes re-
�ects market maturation and reduced volatility in agents�holdings. Yet, if agents
i; j indeed trade along a convergent sequence, for which Sij > 0 in the limit, their
step-sizes at those stages should form a divergent series. These assumptions, both
on asymptotics, o¤ers agents great freedom. In particular, they may apply maximal
steps for a long while. And �nite-time convergence is not precluded.

The protocol serves to regulate encounters. The recurrent issue is: who meets next
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whom? There might be room for random pairing, deliberate search, asynchronous
or parallel matching - and di¤erent a¢ nities among agents. Broadly, what imports
is that each agent pair be activated repeatedly. We shall not single out any speci�c
protocol. But we do assume that agents meet in almost cyclical manner:

Encounters are quasi-cyclic: for some �nite lapse l of stages each pair i; j meets
at least once during every interval of length l:

5. On Convergence
This section shows, under weak assumptions, that each accumulation point of the
sequence k 7! xk := (xki ) is an e¢ cient allocation. Henceforth naturally suppose the
set

A =

(
x = (xi)

����� xi 2 Xi,
X
i2I
xi = eI

)
of feasible allocations is bounded. Part of the argument is that iterated exchange
completely exhausts all possibilities for bilateral improvement. That is, we shall
show that the sequence

�
xk
	
clusters to the set

C := fx = (xi) 2 A j all Sij(xi; xj) = 0g

composed of what we call complete-trade allocations. Only thereafter shall we add an
assumption which ensures the coincidence of shadow prices.

Proposition 5.1 (On exhaustion of two-sided trade options). Each subsequential
limit point x = (xi) of the sequence

�
xk
	
belongs to the set C of complete-trade

allocations.

Proof. Let L denote the set of all limit points of
�
xk
	
. At least one such point

exists because each xk belongs to the bounded set A. By concavity, the function
�(x) :=

P
i2I �i(xi) is continuous on A. Since �(x

k) steadily improves,

lim
k!1

�(xk) =: �(L) = �(x) for each x = (xi) 2 L:

We claim that
lim
k!+1

�kijSij(x
k
i ; x

k
j )


dk

 = 0:

Otherwise, inserting d = dk = Pij(gki � gkj ) in (16) yields the contradiction �(L) =
+1: Further, we claim that the sequence xk is asymptotically regular, meaning

xk+1 � xk

! 0: (20)

To see this, note that � is Lipschitz continuous on the compact set A: Consequently,
its supergradients are norm-bounded there by some � > 0. Now, if agents i; j are the
ones that trade at stage k;

dk

 = 

Pij(gki � gkj )

 � 

gki � gkj 

 � 2max�

gki 

 ;

gkj 

	 � 2�:



Direct Exchange in Linear Economies 14

Hence assertion (20) follows from �k ! 0 and

xk+1 � xk

 = �k21=2 

dk

 � �k23=2�:
Consider now any limit point x = (xi) 2 L. Then x = limk2K x

k for some subsequence
K � f0; 1; :::g : If necessary, pick a subsequence of K in which the lapse between
consecutive members is greater than l: Assume this is already done.
We claim that Sij(xi; xj) = 0 for every pair i; j: By way of contradiction, suppose

some agent pair i; j has Sij(xi; xj) > 0: Let �(k) be the �rst stage � k 2 K at which
i; j trade. Thus emerges, by the quasi-cyclic nature of encounters, a sequence K
of stages �(k) 2 [k; ::::; k + l] ; k 2 K; at which i; j always trade. The asymptotic
regularity (20) and x = limk2K x

k ensure that x = lim�2K x
�. By Proposition 4.2 and

the lower semicontinuity of Sij; we must have

lim inf
�2K
kd�k = lim inf

�2K



Pij(g�i � g�j )

 � lim inf
�2K

Sij(x
�
i ; x

�
j ) � Sij(xi; xj) > 0:

Now (19) yields
P

�2K �
�
ij =1: Invoking the lower bound in (16); this again implies

�(L) = +1. We conclude that Sij(xi; xj) = 0 for each pair i; j: Hence x 2 C. �

Theorem 5.2 (On complete trade and equilibrium). Suppose, at any pro�le x =
(xi) 2 C, that at least one agent i = i(x) has �i di¤erentiable at xi and xi 2 intXi:
Then, each point x 2 C is part of an equilibrium.

Proof. For any x 2 C let i(x) be an agent for which p := �0i(xi) is unique with
xi 2 intXi: Then the equilibrium price becomes unique. That is, p is the unique
solution to (9). �

6. Some Numerical Illustrations
This section brings out a few simple examples, each simulating the exchange process
on a computer. To illustrate and probe the great �exibility in choice of directions,
protocol, and step-sizes, we have opted for much additional freedom. To wit, in the
subsequent numerical instances, we circumvent - or simply ignore - some requirements
imposed above.
Speci�cally, for convience, we never control that condition (16) holds. Instead,

agent i; j simply select any shadow prices alias dual solutions or supergradients gi 2
@ui(xi); gj 2 @uj(xj): We also relax the quasi-cyclic regime. Instead, when I =
f1; :::; ng ; in each complete round agent i meets agents i � 1 (modulo n) once and
only these two. Nonetheless, as seen below, convergence obtains all the same.
In all examples, since xi is construed as an input vector, we naturally require that

xi � 0; that is, each Xi = X+ = RC+. Consequently, Xi has closed tangent cone

D(Xi; x) = Dix = �c2CD(R+; xc)

so that
Dij(xi; xj) = �c2C [D(R+; xic) \ �D(R+; xjc)] :
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It follows that d = (dc) = Pij� where dc is the closest approximation to �c in the
closed �interval�D(R+; xic) \ �D(R+; xjc):
The chosen instance Xi = X+ = RC+ makes it easy to calculate maximal step-sizes

�� = �(xi; xj; d) := min f�i(xi; d); �j(xj;�d)g :

where

�i(xi; d) := min f�xic=dc : dc < 0g and �j(xj;�d) := min fxjc=dc : dc > 0g :

Agents are allowed to take maximal steps for a deliberately long lapse. If such a step
does not improve or maintain the joint payo¤, parties i; j may invoke the standard
bisection method to ensure that ��ij � 0.
Further, for long-term stability - in view of hypotheses (18) and (19) - we select

a priori a sequence f�̂kg of positive step-sizes, satisfying

�̂k ! 0 and
1X
k=0

�̂k = +1:

Thus, in the main, whenever agents i; j trade at some stage k, they employ step-size
�k := min f�̂k; ��kg :
Coming �nally to numerical instanes, there are always three agents: I = f1; 2; 3g,

two inputs: #C = 2; and three productive activities: dimYi = 3:

Example 1 Suppose the agents have equal endowments ei = (1; 1) and objectives
y�i = (1; 1; 1); but di¤erent technology matrices

A1 =

�
1 1 1
3 3 3

�
; A2 =

�
3 3 3
1 1 1

�
; A3 =

�
2 2 2
2 2 2

�
(21)

Step-sizes �k = minf��k; 10=(1 + 2k)g yield trajectories xki :

kni 1 2 3
P

i2I �i
0 (1:00; 1:00) (1:00; 1:00) (1; 1) 1:17
1 (0:58; 1:42) (1:43; 0:58) (1; 1) 1:44
10 (0:48; 1:52) (1:52; 0:48) (1; 1) 1:45
50 (0:50; 1:50) (1:50; 0:50) (1; 1) 1:49
200 (0:50; 1:50) (1:50; 0:50) (1; 1) 1:50

Note that already after 10 barters
P

i2I �i is within 4% from its optimal value 1:5. The
optimal allocation is not unique; agent 3 might just as well have used all resources.
p = (0:5; 0:5) is a shadow price. As expected, allocations tend to stabilize more
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slowly:

Trajectories for Example 1

Example 2. Clearly, letting some agent use each inputs more e¢ ciently, he will be
the only active producer. To see this, keep the data of Example 1 except the matrices,
now replaced with

A1 =

�
1 1 1
1 1 1

�
; A2 =

�
2 2 2
2 2 2

�
; A3 =

�
3 3 3
3 3 3

�
Using step-sizes �k = minf��k; 100=(1 + k), convergence of xki obtains quickly:

kni 1 2 3 �I
0 (1; 1) (1; 1) (1; 1) 1:83
1 (2; 2) (0; 0) (1; 1) 2:33
2 (2; 2) (1; 1) (0; 0) 2:49
3 (2; 2) (1; 1) (0; 0) 2:49
4 (3; 3) (0; 0) (0; 0) 2:99
20 (3; 3) (0; 0) (0; 0) 3:00
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