By

Ezio Marchi

IMA Preprint Series \# 2200

(April 2008)

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA
400 Lind Hall
207 Church Street S.E.
Minneapolis, Minnesota 55455-0436
Phone: 612-624-6066 Fax: 612-626-7370
URL: http://www.ima.umn.edu

E-points for diagonal games III

by

Ezio Marchi ${ }^{* * * *)}$

Abstract

In this paper we study and compute E-points in an explicit way for a special kind of games with $3 \mathrm{k}+1,4 \mathrm{k}+3$ and $\mathrm{sk}+1$ with $1 \leq \mathrm{s} \leq \mathrm{k}$.

Key words: Equilibrium points, E-points, non-cooperative games.

[^0]
1. Introduction

In two previous papers Marchi (2004) we have begun to compute in an explicit way E-points for diagonal games. The games presented there are simple. Here in this paper we continue the computations of E-points in diagonal games for more difficult cases.

With notation of Marchi (2004) we have that the expected functions E_{i} for player $\mathrm{i} \in \mathrm{N}=\{1, \ldots, \mathrm{n}\}$ and $\mathrm{d}(\mathrm{i}) \subset \mathrm{N}$ the set the friends players of player $\mathrm{i} \in \mathrm{N}$ determines all the structure of the game (F, E). We remind that an E-point is a point $\overline{\mathrm{x}}=\left(\overline{\mathrm{x}}_{1}, \ldots, \overline{\mathrm{x}}_{\mathrm{n}}\right)$ such that

$$
\mathrm{E}_{\mathrm{i}}(\overline{\mathrm{x}}) \geq \mathrm{E}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{d}(\mathrm{i} \mathrm{i}}, \overline{\mathrm{x}}_{\mathrm{N}-\mathrm{d}(\mathrm{i})}\right) \quad \forall \mathrm{i} \quad \forall \mathrm{x}_{\mathrm{d}(\mathrm{i})}
$$

In Marchi (2004) we have proved the following result:
Preposition: $\overline{\mathrm{x}}$ is an E-point if and only if

$$
\begin{array}{cc}
\lambda_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\left(\sigma_{\mathrm{d}(\mathrm{i})}, \overline{\mathrm{x}}_{\mathrm{N}-\mathrm{d}(\mathrm{i})}\right)=0 & \forall \sigma_{\mathrm{d}(\mathrm{i})} \in \prod_{\mathrm{j} \in \mathrm{~d}(\mathrm{i})} \mathrm{S}\left(\overline{\mathrm{x}}_{\mathrm{j}}\right) \\
\lambda_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\left(\sigma_{\mathrm{d}(\mathrm{i})}, \overline{\mathrm{x}}_{\mathrm{N}-\mathrm{d}(\mathrm{i})}\right) \geq 0 & \forall \sigma_{\mathrm{d}(\mathrm{i})} \notin \prod_{\mathrm{j} \in \mathrm{~d}(\mathrm{i})} \mathrm{S}\left(\overline{\mathrm{x}}_{\mathrm{j}}\right) \\
\sum_{\sigma_{\mathrm{i}} \in \mathrm{\Sigma}_{\mathrm{i}}} \overline{\mathrm{x}}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}\right)=1 & \forall \mathrm{i} \\
\overline{\mathrm{x}}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}\right) \geq 0 & \forall \mathrm{i} \forall \sigma_{\mathrm{i}} \in \Sigma_{\mathrm{i}} .
\end{array}
$$

where $S\left(\bar{x}_{j}\right)$ denotes the support of the mixed strategy \bar{x}_{j}.
We consider in this note that all the players have the same cardinality for their pure strategy set: $\mathrm{m}=\left|\Sigma_{\mathrm{i}}\right|$.

In the next section we study two games namely one with $4 k+1$ and $4 k+3$ players respectively and in the third section a general game with $\mathrm{sk}+1,1 \leq \mathrm{s} \leq \mathrm{k}$. All of them have a similar structure function. But they are more complicated that those presented in Marchi (2004).

2. General games with $4 k+1$ and $4 k+3$ players with $k \geq 1$

Here in this section we are going to compute E-points for general diagonal games having respectively $4 \mathrm{k}+1$ and $4 \mathrm{k}+3$ players.

Consider the game Γ with n-players with the structure function given by $d(i)=N-\{i+2, i+3, i+4, i+5\} \bmod 3 k+1$ with $1 \leq k$. Therefore the payoff function of player $\mathrm{i} \in \mathrm{N}$ for the diagonal game (Γ, E) is given by

$$
\mathrm{A}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}, \ldots, \sigma_{4 \mathrm{k}+1}\right)=\mathrm{a}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}\right) \delta\left(\sigma_{\mathrm{i}}, \sigma_{\mathrm{i}+2}, \sigma_{\mathrm{i}+3}, \sigma_{\mathrm{i}+4}, \sigma_{\mathrm{i}+5}\right), \quad \mathrm{a}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}\right)>0,
$$

where

$$
\delta\left(\sigma_{i}, \sigma_{i+2}, \sigma_{i+3}, \sigma_{i+4}, \sigma_{i+5}\right)=\delta\left(\sigma_{i}, \sigma_{i+2}\right) \delta\left(\sigma_{i+2}, \sigma_{i+3}\right) \delta\left(\sigma_{i+3}, \sigma_{i+4}\right) \delta\left(\sigma_{i+4}, \sigma_{i+5}\right),
$$

with Krorecker's delta δ 's
A completely mixed strategy is a mixed strategy $\mathrm{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{4 \mathrm{k}+1}\right)$ such that $\forall \mathrm{i} \forall \sigma_{\mathrm{i}} \in \Sigma_{\mathrm{i}}: \mathrm{x}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}\right)>0$.

We wish to compute the completely mixed E-points for our game. By the preposition we have to solve

$$
\begin{equation*}
\lambda_{\mathrm{i}}-\mathrm{a}_{\mathrm{i}}(\sigma) \mathrm{x}_{\mathrm{i}+2}(\sigma) \mathrm{x}_{\mathrm{i}+3}(\sigma) \mathrm{x}_{\mathrm{i}+4}(\sigma) \mathrm{x}_{\mathrm{i}+5}(\sigma)=0 \quad \forall \mathrm{i} \quad \bmod 4 \mathrm{k}+1 \quad \forall \sigma: 1, \ldots, \mathrm{~m} \tag{1}
\end{equation*}
$$

For reasons of simplicity we drop in the notation the independent variable, in other words $\mathrm{a}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}}(\sigma)$ and $\mathrm{x}_{\mathrm{i}}(\sigma)=\mathrm{x}_{\mathrm{i}}$. Calling $\bar{\mu}_{\mathrm{i}}=\bar{\mu}_{\mathrm{i}}(\sigma)=\lambda_{\mathrm{i}} / \mathrm{a}_{\mathrm{i}}$ and $\bar{\mu}_{\mathrm{i}}=\mu_{\mathrm{i}+2}$ we have

$$
\begin{equation*}
\mu_{i+2}-x_{i+2} x_{i+3} x_{i+4} x_{i+5}=0 \quad \bmod 4 k+1 . \tag{2}
\end{equation*}
$$

From two consecutives equations we have

$$
\begin{equation*}
\mathrm{x}_{\mathrm{i}+6}=\frac{\mu_{\mathrm{i}+3}}{\mu_{\mathrm{i}+2}} \mathrm{x}_{\mathrm{i}+2} \tag{3}
\end{equation*}
$$

and recursively

$$
\begin{equation*}
x_{i+4}=\prod_{s=0}^{r} S_{i+1-4 s} x_{i-4 r} \tag{4}
\end{equation*}
$$

with $S_{i+1}=\frac{\mu_{i+1}}{\mu_{\mathrm{i}}}$. From now on if it not necessary we assume implicitly that all our equations are $\bmod 4 \mathrm{k}+1$.

Consider a $1 \leq \mathrm{p} \leq \mathrm{k}$. Then the corresponding equation is

$$
\begin{equation*}
\mu_{4 p+1}-x_{4 p+1} x_{4 p+2} x_{4 p+3} x_{4 p+4}=0 \tag{5}
\end{equation*}
$$

Take in (4) $\mathrm{i}=4(\mathrm{p}+\mathrm{k})+1$ and $\mathrm{r}=\mathrm{k}$ then we have

$$
\begin{equation*}
\mathrm{x}_{4 \mathrm{p}+4}=\prod_{\mathrm{s}=0}^{\mathrm{k}} \mathrm{~S}_{4(\mathrm{p}+\mathrm{k})+2-4 \mathrm{~s}} \mathrm{x}_{4 \mathrm{p}+1} \tag{6}
\end{equation*}
$$

On the other hand if $i=4(p+2 k)+1$ and $r=2 k$ it holds true

$$
\begin{equation*}
\mathrm{x}_{4 \mathrm{p}+3}=\prod_{\mathrm{s}=0}^{2 \mathrm{k}} \mathrm{~S}_{4(\mathrm{p}+\mathrm{k})+2-4 \mathrm{~s}} \mathrm{X}_{4 \mathrm{p}+1} \tag{7}
\end{equation*}
$$

Finally if $i=4(p+3 k)+1$ and $r=3 k$ it appears

$$
\begin{equation*}
\mathrm{x}_{4 \mathrm{p}+2}=\prod_{\mathrm{s}=0}^{3 \mathrm{k}} \mathrm{~S}_{4(\mathrm{p}+3 \mathrm{k})+2-4 \mathrm{~s}} \mathrm{x}_{4 \mathrm{p}+1} \tag{8}
\end{equation*}
$$

Replacing (6), (7) and (8) in (5) we derive

$$
\begin{equation*}
\mu_{4 p+1}-x_{4 p+1}^{4} \prod_{s=0}^{k} S_{4(p+k)+2-4 s} \prod_{s=0}^{2 k} S_{4(p+3 k)+2-4 s} \prod_{s=0}^{3 k} S_{4(p+3 k)+2-4 s}=0 \tag{9}
\end{equation*}
$$

In a similar way for $4 p+2,4 p+3$ and $4 p+4$:

$$
\begin{align*}
& \mu_{4 \mathrm{p}+2}-\mathrm{x}_{4 \mathrm{p}+2}^{4} \prod_{\mathrm{s}=0}^{\mathrm{k}} \mathrm{~S}_{4(\mathrm{p}+\mathrm{k})+3-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{2 \mathrm{k}} \mathrm{~S}_{4(\mathrm{p}+2 \mathrm{k})+3-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{3 \mathrm{k}} \mathrm{~S}_{4(\mathrm{p}+3 \mathrm{k})+3-4 \mathrm{~s}}=0 \tag{10}\\
& \mu_{4 \mathrm{p}+3}-\mathrm{x}_{4 \mathrm{p}+3}^{4} \prod_{\mathrm{s}=0}^{\mathrm{k}} \mathrm{~S}_{4(\mathrm{p}+\mathrm{k})+4-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{2 \mathrm{k}} \mathrm{~S}_{4(\mathrm{p}+2 \mathrm{k})+4-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{3 \mathrm{k}} \mathrm{~S}_{4(\mathrm{p}+3 \mathrm{k})+4-4 \mathrm{~s}}=0 \tag{11}
\end{align*}
$$

and

$$
\begin{equation*}
\mu_{4 p+4}-x_{4 p+4}^{4} \prod_{\mathrm{s}=0}^{\mathrm{k}} \mathrm{~S}_{4(\mathrm{p}+\mathrm{k})+5-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{2 \mathrm{k}} \mathrm{~S}_{4(\mathrm{p}+2 \mathrm{k})+5-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{3 \mathrm{k}} \mathrm{~S}_{4(\mathrm{p}+3 \mathrm{k})+5-4 \mathrm{~s}}=0 \tag{12}
\end{equation*}
$$

Making use of the equation $\sum_{\sigma_{i}} \mathrm{X}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}\right)=1$ then we have from (9)

$$
\begin{equation*}
\lambda_{4 \mathrm{p}-1} \frac{\prod_{\mathrm{s}=0}^{\mathrm{k}} \lambda_{4(\mathrm{p}+\mathrm{k})-1-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{2 \mathrm{k}} \lambda_{4(\mathrm{p}+2 \mathrm{k})-1-4 \mathrm{~s}} \prod_{\mathrm{s}+0}^{3 \mathrm{k}} \lambda_{4(\mathrm{p}+3 \mathrm{k})-1-4 \mathrm{~s}}}{\prod_{\mathrm{s}=0}^{\mathrm{k}} \lambda_{4(\mathrm{p}+\mathrm{k})-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{2 \mathrm{k}} \lambda_{4(\mathrm{p}+2 \mathrm{k})-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{3 \mathrm{k}} \lambda_{4(\mathrm{p}+3 \mathrm{k})-4 \mathrm{~s}}}=\mathrm{b}_{4 \mathrm{p}+1} \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{b}_{4 \mathrm{p}+1} \\
& =\left(\sum_{\sigma}\left(\frac{1}{a_{4 p+1}(\sigma)} \frac{\prod_{\mathrm{s}=0}^{\mathrm{k}} \mathrm{a}_{4(\mathrm{p}+\mathrm{k})-4 \mathrm{~s}}(\sigma) \prod_{\mathrm{s}=0}^{2 \mathrm{k}} \mathrm{a}_{4(\mathrm{p}+2 \mathrm{k})-4 \mathrm{~s}}(\sigma) \prod_{\mathrm{s}+0}^{3 \mathrm{k}} \mathrm{a}_{4(\mathrm{p}+3 \mathrm{k})-4 \mathrm{~s}}(\sigma)}{\prod_{\mathrm{s}=0}^{\mathrm{k}} \mathrm{a}_{4(\mathrm{p}+\mathrm{k})-1-4 \mathrm{~s}}(\sigma) \prod_{\mathrm{s}=0}^{2 \mathrm{k}} \mathrm{a}_{4(\mathrm{p}+2 \mathrm{k})-1-4 \mathrm{~s}}(\sigma) \prod_{\mathrm{s}+0}^{3 \mathrm{k}} \mathrm{a}_{4(\mathrm{p}+3 \mathrm{k})-1-4 \mathrm{~s}}(\sigma)}\right)^{4}\right)^{1 / 4} \tag{14}
\end{align*}
$$

Similarly for $4 p+2,4 p+3$ and $4 p+4$

$$
\begin{align*}
& \lambda_{4 \mathrm{p}+2} \frac{\prod_{\mathrm{s}=0}^{\mathrm{k}} \lambda_{4(\mathrm{p}+\mathrm{k})+2-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{2 \mathrm{k}} \lambda_{4(\mathrm{p}+2 \mathrm{k})+2-4 \mathrm{~s}} \prod_{\mathrm{s}+0}^{3 \mathrm{k}} \lambda_{4(\mathrm{p}+3 \mathrm{k})+2-4 \mathrm{~s}}}{\prod_{\mathrm{s}=0}^{\mathrm{k}} \lambda_{4(\mathrm{p}+\mathrm{k})+3-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{2 \mathrm{k}} \lambda_{4(\mathrm{p}+2 \mathrm{k})+3-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{3 \mathrm{k}} \lambda_{4(\mathrm{p}+3 \mathrm{k})+3-4 \mathrm{~s}}}=\mathrm{b}_{4 \mathrm{p}+4} \tag{17}
\end{align*}
$$

where the expressions of $b_{4 p+2}, b_{4 p+3}$ and $b_{4 p+4}$ are analogous to that of $b_{4 p+1}$ in (14).
Now multiplying the four amounts it turns out

$$
\begin{gather*}
\mathrm{b}_{4 \mathrm{p}+1} \mathrm{~b}_{4 \mathrm{p}+2} \mathrm{~b}_{4 \mathrm{p}+3} \mathrm{~b}_{4 \mathrm{p}+4}=\lambda_{4 \mathrm{p}-1} \lambda_{4 \mathrm{p}} \lambda_{4 \mathrm{p}+1} \lambda_{4 \mathrm{p}+2} . \\
\cdot \frac{\lambda_{4(\mathrm{p}+\mathrm{k})-1} \lambda_{4(\mathrm{p}+\mathrm{k})-5} \cdots \lambda_{4 \mathrm{p}+3} \lambda_{4 \mathrm{p}-1}}{\lambda_{4(\mathrm{p}+\mathrm{k})+3} \lambda_{4(\mathrm{p}+\mathrm{k})-1} \cdots \lambda_{4 \mathrm{p}+3}} . \\
\cdot \frac{\lambda_{4(\mathrm{p}+2 \mathrm{k})-1} \lambda_{4(\mathrm{p}+2 \mathrm{k})-5} \cdots \lambda_{4 \mathrm{p}-1}}{\lambda_{4(\mathrm{p}+2 \mathrm{k})+3} \lambda_{4(\mathrm{p}+2 \mathrm{k})-1} \cdots \lambda_{4 \mathrm{p}+3}} \tag{18}\\
\cdot \frac{\lambda_{4(\mathrm{p}+3 \mathrm{k})-1} \lambda_{4(\mathrm{p}+3 \mathrm{k})-5} \cdots \lambda_{4 \mathrm{p}-1}}{\lambda_{4(\mathrm{p}+3 \mathrm{k})+3} \lambda_{4(\mathrm{p}+3 \mathrm{k})-1} \cdots \lambda_{4 \mathrm{p}+3}} \\
=\lambda_{4 \mathrm{p}-1}^{4} \frac{\lambda_{4 \mathrm{p}} \lambda_{4 \mathrm{p}+1} \lambda_{4 \mathrm{p}+2}}{\lambda_{4(\mathrm{p}+\mathrm{k})+3} \lambda_{4(\mathrm{p}+2 \mathrm{k})+3} \lambda_{4(\mathrm{p}+3 \mathrm{k})+3}}=\lambda_{4(\mathrm{p}-1)}^{4}
\end{gather*}
$$

But since

$$
\begin{aligned}
& 4 \mathrm{p}+2+4 \mathrm{k}+1=4(\mathrm{p}+\mathrm{k})+3 \\
& 4 \mathrm{p}+1+8 \mathrm{k}+2=4(\mathrm{p}+2 \mathrm{k})+3 \\
& 4 \mathrm{p}+12 \mathrm{k}+3=4(\mathrm{p}+3 \mathrm{k})+3
\end{aligned}
$$

the last equality of (18) holds. Therefore

$$
\begin{equation*}
\lambda_{4 \mathrm{p}-1}=\left(\mathrm{b}_{4 \mathrm{p}+1} \mathrm{~b}_{4 \mathrm{p}+2} \mathrm{~b}_{4 \mathrm{p}+3} \mathrm{~b}_{4 \mathrm{p}+4}\right)^{1 / 4} \tag{19}
\end{equation*}
$$

Thus, in a similar way it is possible to obtain

$$
\begin{equation*}
\lambda_{i}=\left(b_{i+2} b_{i+3} b_{i+4} b_{i+5}\right)^{1 / 4} \tag{20}
\end{equation*}
$$

replacing in (10), (11), (12) the derivation of x_{i} is immediate. Thus we have computed the only one E-point completely mixed for this game.

Next we are going to study the same diagonal game but with $4 \mathrm{k}+3$ players. For our task it facilitates the operation to write the stripes
$14 \mathrm{k}+1$

$$
4 k+5 \equiv 2 \ldots \ldots 8 k+1
$$

$$
8 \mathrm{k}+5
$$

$$
8 k+9 \equiv 3 \ldots
$$

$2 \ldots \ldots .4 \mathrm{k}+2$
$4 \mathrm{k}+6 \equiv 3 \ldots \ldots 8 \mathrm{k}+2$
$\underline{8 k+6}$ $8 \mathrm{k}+10 \equiv 4 \ldots$
$3 \ldots \ldots .4 \mathrm{k}+3$
$4 \mathrm{k}+7 \equiv 4 \ldots \ldots 8 \mathrm{k}+3$
$8 k+7 \equiv 1$
......
$4 \ldots . .4 \mathrm{k}+4 \equiv 1$
$\ldots . .8 \mathrm{k}+4$
$8 \mathrm{k}+8 \equiv 2 \quad \ldots \ldots$.

$$
\begin{array}{lr}
\ldots \underline{12 k+9} & 12 k+13 \equiv 4 \ldots \ldots 16 k+13 \equiv 1 \\
\ldots 12 k+10 \equiv 1 & \ldots \ldots 16 k+14 \equiv 2 \\
\ldots 12 k+11 \equiv 2 & \ldots \ldots .16 k+15 \equiv 3 \\
\ldots 12 k+12 \equiv 3 & \ldots \ldots .16 k+16 \equiv 4
\end{array}
$$

in order to realize how the number formation $\bmod 4 k+3$ arranges.
Using (4) with $\mathrm{i}=4(\mathrm{p}+\mathrm{k})+1$ and $\mathrm{r}=\mathrm{k}$ we obtain

$$
\begin{equation*}
x_{3 p+2}=\prod_{s=0}^{k} S_{4(p+k)+2-4 s} x_{4 p+1} \tag{22}
\end{equation*}
$$

on the other hand with $\mathrm{i}=4(\mathrm{p}+2 \mathrm{k})+5$ and $\mathrm{r}=2 \mathrm{k}+1$ it holds

$$
\begin{equation*}
x_{3 p+3}=\prod_{s=0}^{2 k+1} S_{4(p+2 k)+6-4 s} x_{4 p+1} \tag{23}
\end{equation*}
$$

changing the corresponding i to $i=4(p+3 k)+9$ and $r=3 k+2$ it follows

$$
\begin{equation*}
\mathrm{x}_{4 \mathrm{p}+4}=\prod_{\mathrm{s}=0}^{3 \mathrm{k}+2} \mathrm{~S}_{4(\mathrm{p}+3 \mathrm{k})+10-4 \mathrm{~s}} \mathrm{X}_{4 \mathrm{p}+1} \tag{24}
\end{equation*}
$$

replacing the amounts in the equation (5) then we get

$$
\begin{equation*}
\mu_{3 p+1}-x_{3 p+1}^{4} \prod_{s=0}^{k} S_{4(p+k)+2-4 s} \prod_{s=0}^{2 k+1} S_{4(p+2 k)+6-4 s} \prod_{s=0}^{3 k+2} S_{4(p+3 k)+10-4 s}=0 \tag{25}
\end{equation*}
$$

Performing the same operations in the corresponding equations it is easy to obtain

$$
\begin{align*}
& \mu_{4 p+2}-x_{3 p+2}^{4} \prod_{s=0}^{k} S_{4(p+k)+3-4 s} \prod_{s=0}^{2 k+1} S_{4(p+2 k)+7-4 s} \prod_{s=0}^{3 k+2} S_{4(p+3 k)+11-4 s}=0 \tag{26}\\
& \mu_{4 p+3}-x_{3 p+3}^{4} \prod_{s=0}^{k} S_{4(p+k)+4-4 s} \prod_{s=0}^{2 k+1} S_{4(p+2 k)+8-4 s} \prod_{s=0}^{3 k+2} S_{4(p+3 k)+12-4 s}=0 \tag{27}\\
& \mu_{4 p+4}-x_{3 p+4}^{4} \prod_{s=0}^{k} S_{4(p+k)+5-4 s} \prod_{s=0}^{2 k+1} S_{4(p+2 k)+9-4 s} \prod_{s=0}^{3 k+2} S_{4(p+3 k)+13-4 s}=0 \tag{28}
\end{align*}
$$

$$
\begin{equation*}
\mu_{4 p+5}-x_{3 p+5}^{4} \prod_{s=0}^{k} S_{4(p+k)+6-4 s} \prod_{s=0}^{2 k+1} S_{4(p+2 k)+10-4 s} \prod_{s=0}^{3 k+2} S_{4(p+3 k)+14-4 s}=0 \tag{29}
\end{equation*}
$$

Using the fact that $\sum_{\sigma} \mathrm{x}_{\mathrm{i}}(\sigma)=1$ for $\mathrm{i}=4 \mathrm{p}+2,4 \mathrm{p}+3,4 \mathrm{p}+4$ and $4 \mathrm{p}+5$ from the previous equations one obtains

$$
\begin{align*}
& \lambda_{4 \mathrm{p}} \frac{\prod_{\mathrm{s}=0}^{\mathrm{k}} \lambda_{4(\mathrm{p}+\mathrm{k})-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{2 \mathrm{k}+1} \lambda_{4(\mathrm{p}+2 \mathrm{k})+4-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{3 \mathrm{k}+2} \lambda_{4(\mathrm{p}+3 \mathrm{k})+8-4 \mathrm{~s}}}{\prod_{\mathrm{s}=0}^{\mathrm{k}} \lambda_{4(\mathrm{p}+\mathrm{k})+1-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{2 \mathrm{k}+1} \lambda_{4(\mathrm{p}+2 \mathrm{k})+5-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{2 \mathrm{k}+2} \lambda_{4(\mathrm{p}+3 \mathrm{k})+9-4 \mathrm{~s}}}=\mathrm{b}_{3 \mathrm{p}} \tag{30}\\
& \lambda_{4 \mathrm{p}+1} \frac{\prod_{\mathrm{s}=0}^{\mathrm{k}} \lambda_{4(\mathrm{p}+\mathrm{k})+1-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{2 \mathrm{k}+1} \lambda_{4(\mathrm{p}+2 \mathrm{k})+5-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{3 \mathrm{k}+2} \lambda_{4(\mathrm{p}+3 \mathrm{k})+9-4 \mathrm{~s}}}{\prod_{\mathrm{s}=0}^{\mathrm{k}} \lambda_{4(\mathrm{p}+\mathrm{k})+2-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{2 \mathrm{k}+1} \lambda_{4(\mathrm{p}+2 \mathrm{k})+6-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{3 \mathrm{k}+2} \lambda_{4(\mathrm{p}+3 \mathrm{k})+10-4 \mathrm{~s}}}=\mathrm{b}_{3 \mathrm{p}+1} \tag{31}\\
& \lambda_{4 \mathrm{p}+2} \frac{\prod_{\mathrm{s}=0}^{\mathrm{k}} \lambda_{4(\mathrm{p}+\mathrm{k})+2-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{2 \mathrm{k}+1} \lambda_{4(\mathrm{p}+2 \mathrm{k})+6-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{2 \mathrm{k}+2} \lambda_{4(\mathrm{p}+3 \mathrm{k})+10-4 \mathrm{~s}}}{\prod^{\mathrm{k}} \lambda_{4(\mathrm{p}+\mathrm{k})+3-4 \mathrm{~s}} \prod^{2 \mathrm{k}+1} \lambda_{4(\mathrm{p}+2 \mathrm{k})+7-4 \mathrm{~s}} \prod^{2 \mathrm{k}+2} \lambda_{4(\mathrm{p}+3 \mathrm{k})+11-4 \mathrm{~s}}}=\mathrm{b}_{3 \mathrm{p}+2} \tag{32}\\
& \lambda_{4 \mathrm{p}+3} \frac{\prod_{\mathrm{s}=0}^{\mathrm{k}} \lambda_{4(\mathrm{p}+\mathrm{k})+3-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{2 \mathrm{k}+1} \lambda_{4(\mathrm{p}+2 \mathrm{k})+7-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{2 \mathrm{k}+2} \lambda_{4(\mathrm{p}+3 \mathrm{k})+11-4 \mathrm{~s}}}{\prod_{\mathrm{s}=0} \lambda_{4(\mathrm{p}+\mathrm{k})+4-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{2 \mathrm{k}+1} \lambda_{4(\mathrm{p}+2 \mathrm{k})+8-4 \mathrm{~s}} \prod_{\mathrm{s}=0}^{2 \mathrm{k}+2} \lambda_{4(\mathrm{p}+3 \mathrm{k})+12-4 \mathrm{~s}}}=\mathrm{b}_{3 \mathrm{p}+3} \tag{33}
\end{align*}
$$

where

$$
\begin{align*}
& \mathrm{b}_{3 \mathrm{p}} \\
& =\left(\sum_{\sigma}\left(\frac{1}{a_{4 p}(\sigma)} \frac{\prod_{s=0}^{\mathrm{k}} \mathrm{a}_{4(\mathrm{p}+\mathrm{k})+1-4 \mathrm{~s}}(\sigma) \prod_{\mathrm{s}=0}^{2 \mathrm{k}+1} \mathrm{a}_{4(\mathrm{p}+2 \mathrm{k})+5-4 \mathrm{~s}}(\sigma) \prod_{\mathrm{s}=0}^{\mathrm{k}+2} \mathrm{a}_{4(\mathrm{p}+3 \mathrm{k})+9-4 \mathrm{~s}}(\sigma)}{\prod_{\mathrm{s}=0}^{\mathrm{k}} \mathrm{a}_{4(\mathrm{p}+\mathrm{k})-4 \mathrm{~s}}(\sigma) \prod_{\mathrm{s}=0}^{2 \mathrm{k}+1} \mathrm{a}_{4(\mathrm{p}+2 \mathrm{k})+4-4 \mathrm{~s}}(\sigma) \prod_{\mathrm{s}=0}^{3 \mathrm{k}+2} \mathrm{a}_{4(\mathrm{p}+3 \mathrm{k})+8-4 \mathrm{~s}}(\sigma)}\right)^{4}\right)^{1 / 4} \tag{34}
\end{align*}
$$

and $b_{3 p+1}, b_{3 p+2}, b_{3 p+3}$ are similar expression.
Now multiplying the equations (30) through (33) it appears

$$
\begin{gather*}
\mathrm{b}_{4 \mathrm{p}} \mathrm{~b}_{4 \mathrm{p}+1} \mathrm{~b}_{4 \mathrm{p}+2} \mathrm{~b}_{4 \mathrm{p}+3}=\lambda_{4 \mathrm{p}} \lambda_{4 \mathrm{p}+1} \lambda_{4 \mathrm{p}+2} \lambda_{4 \mathrm{p}+3} \\
\cdot \frac{\lambda_{4(\mathrm{p}+\mathrm{k})} \lambda_{4(\mathrm{p}+\mathrm{k})-4} \cdots \lambda_{4 \mathrm{p}+4} \lambda_{4 \mathrm{p}}}{\lambda_{4(\mathrm{p}+\mathrm{k})+4} \lambda_{4(\mathrm{p}+\mathrm{k})} \cdots \lambda_{4 \mathrm{p}+8} \lambda_{4 \mathrm{p}+4}} \\
\cdot \frac{\lambda_{4(\mathrm{p}+2 \mathrm{k})+4} \lambda_{4(\mathrm{p}+2 \mathrm{k})} \cdots \lambda_{4 \mathrm{p}+4} \lambda_{4 \mathrm{p}}}{\lambda_{4(\mathrm{p}+2 \mathrm{k})+8} \lambda_{4(\mathrm{p}+\mathrm{k})+4} \cdots \lambda_{4 \mathrm{p}+4}} \tag{35}\\
\cdot \frac{\lambda_{4(\mathrm{p}+3 \mathrm{k})+8} \lambda_{4(\mathrm{p}+3 \mathrm{k})+4} \cdots \lambda_{4 \mathrm{p}+4} \lambda_{4 \mathrm{p}}}{\lambda_{4(\mathrm{p}+3 \mathrm{k})+12} \lambda_{4(\mathrm{p}+3 \mathrm{k})+8} \cdots \lambda_{4 \mathrm{p}+4}}
\end{gather*}
$$

$$
=\lambda_{4 \mathrm{p}}^{4} \frac{\lambda_{4 \mathrm{p}+1} \lambda_{4 \mathrm{p}+2} \lambda_{4 \mathrm{p}+3}}{\lambda_{4(\mathrm{p}+\mathrm{k})+4} \lambda_{4(\mathrm{p}+2 \mathrm{k})+8} \lambda_{4(\mathrm{p}+3 \mathrm{k})+12}}
$$

but remembering that

$$
\begin{gathered}
4 \mathrm{p}+1+4 \mathrm{k}+3=4(\mathrm{p}+\mathrm{k})+4 \\
4 \mathrm{p}+2+8 \mathrm{k}+6=4(\mathrm{p}+2 \mathrm{k})+8 \\
4 \mathrm{p}+3+12 \mathrm{k}+9=4(\mathrm{p}+3 \mathrm{k})+12
\end{gathered}
$$

then

$$
\begin{equation*}
\lambda_{4 \mathrm{p}}=\left(\mathrm{b}_{4 \mathrm{p}} \mathrm{~b}_{4 \mathrm{p}+1} \mathrm{~b}_{4 \mathrm{p}+2} \mathrm{~b}_{4 \mathrm{p}+3}\right)^{1 / 4} \tag{36}
\end{equation*}
$$

In a similar way it is possible to obtain

$$
\begin{equation*}
\lambda_{\mathrm{i}}=\left(\mathrm{b}_{\mathrm{i}} \mathrm{~b}_{\mathrm{i}+1} \mathrm{~b}_{\mathrm{i}+2} \mathrm{~b}_{\mathrm{i}+3}\right)^{1 / 4} \tag{37}
\end{equation*}
$$

Thus we have computed explicitly the E-point completely mixed. The value of $\mathrm{x}_{\mathrm{i}}(\sigma)$ are derived from the equations (25) and similar ones. It is clear that such E-point is the only one completely mixed for the diagonal game.

3. A general game with $\mathbf{s k}+1$ players with $1 \leq s \leq k$

Now in this last section we are going to generalize the previous results obtained in the first part of the section 2 . Here we consider a game with $\mathrm{sk}+1$ players with $1 \leq \mathrm{s} \leq \mathrm{k}$. The structure function is given by $d(i)=N-\{i+2, i+3, i+4, i+5, \ldots, i+s\}$ $\bmod \mathrm{sk}+1$.

The payoff functions are given by

$$
\mathrm{A}_{\mathrm{i}}\left(\sigma_{1} \ldots \sigma_{\mathrm{sk}+1}\right)=\mathrm{a}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}\right) \delta\left(\sigma_{\mathrm{i}}, \sigma_{\mathrm{i}+2}, \sigma_{\mathrm{i}+3}, \ldots, \sigma_{\mathrm{i}+\mathrm{s}}\right), \quad \mathrm{a}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}\right)>0
$$

The corresponding equations (4) for this game with the same notation as in the previous section is

$$
\begin{equation*}
x_{i+s}=\prod_{t=0}^{r} S_{i+1-t s} x_{i-s t} \tag{38}
\end{equation*}
$$

For $\mathrm{i}=\mathrm{s}(\mathrm{p}+\mathrm{k})+1$ and $\mathrm{r}=\mathrm{k}$ it is obtained

$$
\begin{equation*}
\mathrm{x}_{\mathrm{sp}+\mathrm{s}}=\prod_{\mathrm{t}=0}^{\mathrm{k}} \mathrm{~S}_{\mathrm{s}(\mathrm{p}+\mathrm{k})+2-\mathrm{ts}} \mathrm{X}_{\mathrm{sp}+1} \tag{39}
\end{equation*}
$$

and similarly it is possible to derive

$$
\begin{equation*}
\mathrm{x}_{\mathrm{sp}+\mathrm{s}-1}=\prod_{\mathrm{t}=0}^{2 \mathrm{k}} \mathrm{~S}_{\mathrm{s}(\mathrm{p}+2 \mathrm{k})+2-\mathrm{ts}} \mathrm{X}_{\mathrm{sp}+1} \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{X}_{\mathrm{sp}+\mathrm{s}-\mathrm{u}}=\prod_{\mathrm{t}=0}^{(\mathrm{u}+1) \mathrm{k}} \mathrm{~S}_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1)) \mathrm{k}+2-\mathrm{ts}} \mathrm{X}_{\mathrm{sp}+1} \tag{41}
\end{equation*}
$$

Replacing in the adequate equation we get

$$
\begin{equation*}
\mu_{\mathrm{sp}+1}-\mathrm{X}_{\mathrm{sp}+1}^{\mathrm{s}} \prod_{\mathrm{u}=0}^{\mathrm{s}-2} \prod_{\mathrm{t}=0}^{(\mathrm{u}+1) \mathrm{k}} \mathrm{~S}_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})+2-\mathrm{ts}}=0 \tag{42}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{x}_{\mathrm{sp}+1}^{\mathrm{s}}=\mu_{\mathrm{sp}+1} \frac{\prod_{\mathrm{u}=0}^{\mathrm{s}-2} \prod_{\mathrm{t}=0}^{(\mathrm{u}+1) \mathrm{k}} \mu_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})+1-\mathrm{ts}}}{\prod_{\mathrm{u}=0}^{\mathrm{s}-2} \prod_{\mathrm{t}=0}^{(\mathrm{u}+1) \mathrm{k}} \mu_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})+2-\mathrm{ts}}} \tag{43}
\end{equation*}
$$

and from here

$$
\begin{equation*}
\lambda_{\mathrm{sp}-1}=\frac{\prod_{\mathrm{u}=0}^{\mathrm{s}-2} \prod_{\mathrm{t}=0}^{(\mathrm{u}+1) \mathrm{k}} \lambda_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})-1-\mathrm{ts}}}{\prod_{\mathrm{u}=0}^{\mathrm{s}-2} \prod_{\mathrm{t}=0}^{(\mathrm{u}+1) \mathrm{k}} \lambda_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})-\mathrm{ts}}}=\mathrm{b}_{\mathrm{sp}+1} \tag{44}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{b}_{\mathrm{sp}+1}=\left[\sum_{\sigma}\left(\frac{1}{\mathrm{a}_{\mathrm{sp}-1}(\sigma)} \frac{\prod_{\mathrm{u}=0}^{\mathrm{s}-2} \prod_{\mathrm{t}=0}^{(\mathrm{u}+1) \mathrm{k}} \mathrm{a}_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})-\mathrm{ts}}(\sigma)}{\prod_{\mathrm{u}=0}^{\mathrm{s}-2} \prod_{\mathrm{t}=0}^{(\mathrm{u}+1) \mathrm{k}} \mathrm{a}_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})-1-\mathrm{ts}}(\sigma)}\right)^{1 / \mathrm{s}}\right]^{\mathrm{s}} \tag{45}
\end{equation*}
$$

Similarly it is possible to derive

$$
\begin{equation*}
\lambda_{\mathrm{sp}-1+\mathrm{q}} \frac{\prod_{\mathrm{u}=0}^{\mathrm{s}-2} \prod_{\mathrm{t}=0}^{(\mathrm{u}+1) \mathrm{k}} \lambda_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})-1+\mathrm{q}-\mathrm{ts}}}{\prod_{\mathrm{u}=0}^{\mathrm{s}-2} \prod_{\mathrm{t}=0}^{(\mathrm{u}+1) \mathrm{k}} \lambda_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})+\mathrm{q}-\mathrm{ts}}}=\mathrm{b}_{\mathrm{sp}+1+\mathrm{q}} \tag{46}
\end{equation*}
$$

where the values $b_{s p+1+q}$ might be obtained in a similar way as $b_{s p+1}$ in (45). Multiplying the b's we get

$$
\begin{equation*}
\prod_{\mathrm{q}=1}^{\mathrm{s}} \mathrm{~b}_{\mathrm{sp}+\mathrm{q}}=\prod_{\mathrm{q}=1}^{\mathrm{s}} \lambda_{\mathrm{sp}+\mathrm{q}-2} \frac{\prod_{\mathrm{u}=0}^{\mathrm{s}-2} \prod_{\mathrm{t}=0}^{(\mathrm{u}+1) \mathrm{k}} \lambda_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})-2+\mathrm{q}-\mathrm{ts}}}{\prod_{\mathrm{u}=0}^{\mathrm{s}-2} \prod_{\mathrm{t}=0}^{(\mathrm{u}+1) \mathrm{k}} \lambda_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})-1+\mathrm{q}-\mathrm{ts}}} \tag{47}
\end{equation*}
$$

or

$$
\begin{equation*}
\prod_{\mathrm{q}=1}^{\mathrm{s}} \mathrm{~b}_{\mathrm{sp}+\mathrm{q}}=\prod_{\mathrm{q}=1}^{\mathrm{s}} \lambda_{\mathrm{sp}+\mathrm{q}-2} \frac{\prod_{\mathrm{u}=0}^{\mathrm{s}-2} \prod_{\mathrm{t}=0}^{(\mathrm{u}+1) \mathrm{k}} \lambda_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})-1-\mathrm{ts}}}{\prod_{\mathrm{u}=0}^{\mathrm{s}-2} \prod_{\mathrm{t}=0}^{(\mathrm{u}+1) \mathrm{k}} \lambda_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})-1+\mathrm{s}-\mathrm{ts}}} \tag{48}
\end{equation*}
$$

In (48) we can consider a term for fixed u, then we have

$$
\begin{gathered}
\frac{\prod_{\mathrm{t}=0}^{(\mathrm{u}+1) \mathrm{k}} \lambda_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})-1-\mathrm{ts}}}{\prod_{\mathrm{t}=0}^{(\mathrm{u}+1) \mathrm{k}} \lambda_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})-1+\mathrm{s}-\mathrm{ts}}}=\frac{\lambda_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})-1} \lambda_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})-1-\mathrm{s}} \cdots}{\lambda_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})-1+\mathrm{s}} \lambda_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})-1}} \\
\frac{\cdots \lambda_{\mathrm{sp}-1+\mathrm{s}} \lambda_{\mathrm{sp}-1}}{\lambda_{\mathrm{sp}-1+\mathrm{s}}}=\frac{\lambda_{\mathrm{sp}-1}}{\lambda_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})-1-\mathrm{s}}}
\end{gathered}
$$

therefore

$$
\begin{align*}
& \prod_{\mathrm{q}=1}^{\mathrm{s}} \mathrm{~b}_{\mathrm{sp}+\mathrm{q}}=\prod_{\mathrm{q}=1}^{\mathrm{s}} \lambda_{\mathrm{sp}+\mathrm{q}-2} \prod_{\mathrm{u}=0}^{\mathrm{s}-2} \frac{\lambda_{\mathrm{sp}-1}}{\lambda_{\mathrm{s}(\mathrm{p}+(\mathrm{u}+1) \mathrm{k})-1+\mathrm{s}}} \tag{50}\\
= & \lambda_{\mathrm{sp}-1}^{\mathrm{s}} \frac{\lambda_{\mathrm{sp}} \lambda_{\mathrm{sp+1}} \lambda_{\mathrm{sp}+2} \cdots \lambda_{\mathrm{sp}+\mathrm{s}-3} \lambda_{\mathrm{sp}+\mathrm{s}-2}}{\lambda_{\mathrm{s}(\mathrm{p}+\mathrm{k})-1+\mathrm{s}} \lambda_{\mathrm{s}(\mathrm{p}+2 \mathrm{k})-1+\mathrm{s}} \cdots \lambda_{\mathrm{s}(\mathrm{p}+(\mathrm{s}-1) \mathrm{k})-1+\mathrm{s}}}
\end{align*}
$$

but remembering that

$$
\begin{aligned}
& \mathrm{sp}+\mathrm{s}-2+\mathrm{sk}+1=\mathrm{s}(\mathrm{p}+\mathrm{k})-1+\mathrm{s} \\
& \mathrm{sp}+\mathrm{s}-3+2 \mathrm{sk}+2=\mathrm{s}(\mathrm{p}+2 \mathrm{k})-1+\mathrm{s} \\
& \mathrm{sp}+(\mathrm{s}-1) \mathrm{sk}+\mathrm{s}-1=\mathrm{s}(\mathrm{p}+(\mathrm{s}-1) \mathrm{k})-1+\mathrm{s}
\end{aligned}
$$

the (50) takes the form

$$
\begin{equation*}
\lambda_{\mathrm{sp}-1}^{\mathrm{s}}=\prod_{\mathrm{q}=1}^{\mathrm{s}} \mathrm{~b}_{\mathrm{sp}+\mathrm{q}} \tag{51}
\end{equation*}
$$

or

$$
\lambda_{\mathrm{sp}-1}=\left(\prod_{\mathrm{q}=1}^{\mathrm{s}} \mathrm{~b}_{\mathrm{sp}+\mathrm{q}}\right)^{1 / \mathrm{s}}
$$

thus we have computed explicitly the completely mixed E-point in the game (Γ, E).
As a final remark we would like to say that with the same technique it would be possible to compute the E-points in the case that we have $\mathrm{sk}+\overline{\mathrm{s}}$ instead of $\mathrm{sk}+1$ with the property

$$
\left\{\mathrm{sk}+\overline{\mathrm{s}}, 2 \mathrm{~s}+\mathrm{k}+2 \overline{\mathrm{~s}}, 3 \mathrm{sk}+3 \overline{\mathrm{~s}}, \ldots, \mathrm{~s}^{2} \mathrm{k}+\mathrm{s} \overline{\mathrm{~s}}\right\}=\{1,2, \ldots, \mathrm{~s}\}
$$

If this last condition is not satisfied then the problem of the existence and the computation of E-point becomes complex.

4. References

(1945) Kaplansky I.: A Contribution of von Neumann's Theory of Games. Annals of Mathematics Vol. 46 pp. 474-479.
(1967) Marchi, E.: E-points for Games. Proc. Mat. Acad. of Sciences U.S.A. Vol. 57 No4 pp. 878-882.
(1990) -: On Equilibrium Points of Diagonal N-Person Games. JOTA Vol. 64, № 1.
(2004) -: E-points of Diagonal Games I, II (to be published)
(1989) Martínez, R.: Cálculo de E-points en juegos tripersonales. Doctoral Thesis Universidad Nacional de San Luis, San Luis, Argentina, 1989.

[^0]: ${ }^{\text {*) }}$ Founder and First Director of the Instituto de Matemática Aplicada, San Luis, CONICET and Universidad Nacional de San Luis, San Luis, Argentina. Visiting the University of Barcelona, Spain. e-mail: emarchi@sinectis.com.ar
 ${ }^{* *)}$ This paper has been written in the Department of Applied Mathematics and Analysis, University of Barcelona, Barcelona, Spain, during a visit supported by the Dirección General de Investigaciones Científicas y Técnicas (DGIGYT) of Spain. The author acknowledges the hospitality of the Department.

