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1. Introduction

In a general matching problem, a set of agents has to be matched, either to some

other set of agents (two-sided matching), or to itself (one-sided matching). Gale and

Shapley [1962] wrote a now classical paper in which they considered the two basic

models of one-to-one matching (“marriage markets”) and many-to-one matching

(labor markets). Their paper generated a vast literature, and especially in the last

two decades the number of contributions and researchers in the field has grown

very fast: hundreds, if not thousands, of theory papers, empirical studies, laboratory
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experiments, and three text books1 studied matching problems. Apart from the text

books, some surveys2 have reviewed parts of the matching literature. Last but not

least, the number of applications (labor markets, school choice, kidney exchange,

etc.) has made the field of interest to market designers, policy makers, and the

public in general.3

In this survey, we focus on a particular but important branch of many-to-one

two-sided matching, motivated by a feature of many entry-level labor markets.

This feature is the presence of couples whose members each look for a job in the

same market. A couple faces a difficult coordination problem since it has to find a

“good” pair of jobs. Hence, the agents’ preferences contain complementarities. Most

matching markets studied in the literature consider agents’ preferences to be free

of complementarities. It turns out that introducing complementarities, such as the

presence of married couples, changes a great deal the properties of the market.

The extent to which the presence of couples causes complications can possibly be

most easily illustrated in the case of centralized labor markets. In such centralized

matching schemes, the participants submit their preferences to the market orga-

nizer and an automated mechanism produces a matching. Ideally, the mechanism

is incentive compatible and its outcomes satisfy certain desirable properties related

to welfare, optimality, etc. that are studied in the economics and game theory lit-

erature. When couples are present, the existence of “desirable” matchings can no

longer be guaranteed. The automated mechanism of a centralized scheme is usu-

ally realized by a computer program, which should be able to compute an outcome

efficiently for any possible input of preference lists. The computational tractabil-

ity of mechanism design problems is intensively studied in the computer science

literature. When couples are present, and even if “desirable” matchings do exist,

the problem of finding such a matching is no longer tractable. Therefore, the study

of matching markets with couples is profoundly different from matching markets

without couples. It also calls for an interdisciplinary approach to tackle the hurdles

just described. Obviously, improving our knowledge regarding this complementarity

is a first step to dealing with other complementarities as well.

In Section 2 we first give a short overview of the most important results in

matching without couples. This makes the survey self-contained and facilitates an

easy comparison with Section 3, where we review recent contributions to the study

of matching markets with couples. Section 4 concludes. Finally, two remarks are

1The first book was written by Knuth [1976] with a focus on computational aspects. The second

book by Gusfield and Irving [1989] studied stable matching problems from a graph and algorithm
theoretical point of view. The third book was written by Roth and Sotomayor [1990] and mainly
describes structural and game-theoretical findings.
2The survey by Roth [2008] focused on Gale and Shapley’s (1962) celebrated deferred acceptance
algorithm. The survey by Klijn [2008] focused on recent developments in school choice, which
has turned out to be a fruitful application of matching theory. Sönmez and Ünver [2011] and
Abdulkadiroğlu and Sönmez [2010] dealt with several models of both one-sided and two-sided

matching. Finally, Kojima and Troyan [2011] focused on market design issues in matching markets.
3We refer to Al Roth’s website and market design blog for further discussion.
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in order. First, in view of the main applications, we have opted to use mainly the

terminology of students/residents and hospitals. Second, we have purposely omitted

most formal definitions: they would require substantial additional space without

clear benefits for most non-specialized readers.

2. Matching Without Couples

There are two finite and disjoint sets of agents: a set S of single students (or resi-

dents) and a set H of hospitals. For each hospital h, there is a fixed quota qh that

represents the number of positions it offers.4

Each student has a complete, transitive, and strict preference relation over the

hospitals and the prospect of being unmatched. Hence, student s’s preferences can

be represented by a strict ordering Ps of the elements in H∪{s}, where the element

s represents being unmatched. Hospital h is acceptable to student s if s prefers h

to s.

Each hospital has a complete, transitive, and strict preference relation over the

individual students and the prospect of getting no residents. Hence, hospital h’s

preferences over individual students can be represented by a strict ordering Ph of

the elements in S ∪ {∅}. Student s is acceptable to hospital h if h prefers s to ∅. A
set of students S′ ⊆ S is feasible for hospital h if |S′| ≤ qh. Each hospital h has a

complete and transitive preference relation over feasible sets of students, which can

be represented by a weak ordering P ∗
h of the elements in P(S, qh) := {S′ ⊆ S : |S′| ≤

qh}. A widely used assumption in the literature is that P ∗
h is a responsive extension5

of Ph. This connects the preferences over sets of students with the preferences over

individual students in the following way. Given a set of students, an improvement

is obtained by (i) replacing a student by a better student, or (ii) filling an empty

position with an acceptable student. (In other words, each hospital ranks a student

independently of his colleagues.) By responsiveness, P ∗
h coincides with Ph on the set

of individual students. Note also that Ph allows for multiple responsive extensions.

A (matching) market is a triple (S,H, P ), where P = (PS , P
∗
H). A matching for

market (S,H, P ) is a function µ on the set S ∪H that specifies which students are

matched to which hospitals. Formally,

• for all s ∈ S, either µ(s) ∈ H or µ(s) = s;

• for all h ∈ H, µ(h) ∈ P(S, qh);

• for all s ∈ S and h ∈ H, µ(s) = h if and only if s ∈ µ(h).

A matching µ is individually rational if any student and any hospital that are

matched to one another are mutually acceptable. If a student s and a hospital h

are not matched to one another in a matching µ, but the student would prefer to

be matched to the hospital and the hospital would prefer to either add the student

4The marriage model is the special case of one-to-one matching, where for all h ∈ H, qh = 1.
5See Roth [1985] and Roth and Sotomayor [1990] for a discussion of this assumption.
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or replace another student by student s, then we would expect the pair (s, h) to

block the matching, i.e., carry out the mutually beneficial adjustment. A matching

is stable if it is individually rational and there are no blocking pairs.6 Stability is

a key property of matchings. Apart from its theoretical appeal, empirical studies

have found that in many centralized labor markets, clearinghouses are most often

successful if they produce stable matchings.7 Since stability does not depend on

the particular responsive extensions of the hospitals’ preferences over individual

students, a matching market is henceforth a triple (S,H, P ), or simply P , where P =

(PS , PH). In view of stability, we can (and often do) omit, without loss of generality,

the unacceptable hospitals and sets of students from the agents’ preference lists.

2.1. Existence of Stable Matchings and Optimality

The famous deferred acceptance (DA) algorithm (Gale and Shapley [1962]) yields

a stable matching.8 Let P = (PS , PH) be a preference profile (of preferences over

individual agents). The student-proposing DA algorithm applied to P , denoted by

DA(P ) for short, finds a matching through the following steps.9

Step 1: Each student s proposes to the hospital that is ranked first in Ps (if there

is no such hospital then s remains single). Each hospital h considers its proposers

and tentatively assigns its qh positions to these students one at a time following the

preferences Ph. All other proposers are rejected.

Step k, k ≥ 2: Each student s that is rejected in Step k − 1 proposes to the

next hospital in his list Ps (if there is no such hospital then s remains single). Each

hospital h considers the students it has been holding together with its new proposers

and tentatively assigns its qh positions to these students one at a time following the

preferences Ph. All other proposers are rejected.

The algorithm stops when no student is rejected. Then, all tentative matches become

final. With some abuse of notation, let µ(P ) denote the matching. Gale and Shapley

[1962] proved that matching µ(P ) is stable with respect to preference profile P .

Moreover, they also showed (one-side) optimality: µ(P ) is the best (worst) stable

matching for the students (hospitals) with respect to preference profile P .

Taking the requirement of stability as granted, an important question is whether

the choice of a particular stable mechanism affects the numerical distribution of stu-

dents; and if not, whether it affects the composition of the hospitals that do not fill

all their vacant positions. For instance, Sudarshan and Zisook [1981] observed that

6It is not necessary to consider any other possible blocking coalition since the existence of such a
blocking coalition implies the existence of a blocking pair (see for instance, Roth and Sotomayor

[1990], Lemma 5.5). Also, the set of stable matchings coincides with the core defined by weak
domination (see for instance, Roth and Sotomayor [1990], Proposition 5.36).
7See, for instance, Roth [1984b], Roth [1990], Roth [1991], and Roth and Xing [1994].
8We refer to Roth [2008] for a history on the deferred acceptance algorithm.
9Note that the DA algorithm does not depend on the particular responsive extensions.
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in the US market of medical graduates the National Resident Matching Program

(NRMP) fails to fill the posts of many rural hospitals. Roth [1984a] and Roth [1986]

showed that the problem of the rural hospitals cannot be attributed to the NRMP’s

particular stable mechanism, since the number of assignees is the same for every

hospital in each stable matching. Moreover, a hospital that does not fill its quota

in all stable matchings gets the same assignees in each stable matching.

Many matching markets, and in particular job markets, work in a decentralized

way. This means that the agents contact each other randomly and they form new

pairs (and possibly break old ones) whenever this is in their interest (it is assumed

that the market is flexible; the costs of (re-)contracting can be neglected). Knuth

[1976] posed the question whether the above stochastic process converges to a stable

matching. Roth and Vande Vate [1990] showed that there always exists a path

to stability in one-to-one matching markets, implying that the stochastic process

converges to a stable matching with probability one. This result has been extended

for many-to-one markets by Kojima and Ünver [2006]. However, real markets are

not completely flexible, and even if they were, the time10 and efforts needed to reach

a stable solution in a medium-size market are significant. Therefore, in many large

markets, especially when the matching is due to be created in a short time interval

(e.g., for resident allocation and student admissions), centralized matching schemes

are used.

2.2. Efficiency and Incentive Compatibility in Centralized Markets

Two important desirable properties for centralized matching schemes are computa-

tional tractability and incentive compatibility. They are compatible with stability if

the students are the only strategic agents: the DA algorithm induces a mechanism

that satisfies the first and the restricted second additional requirements.

The DA algorithm can be implemented in linear time (see, e.g., Knuth [1976]).

This means that the running time of the algorithm is proportional to the number

of applications in the scheme. For example, the algorithm used in the Hungarian

higher education matching scheme calculates a student-optimal stable matching11

in 10 seconds for about 150,000 applicants. The linear running time suggests that

the same method could be efficiently used in any other country (including higher

education admissions in China, where a scoring system similar to that of Hungary

is used). Note that even a quadratic time algorithm would very likely be too slow

for such large scale applications.

The other important property of the DA-algorithm is incentive compatibility.

Roth [1985] proved that under the direct-revelation mechanism induced by µ it is

a weakly dominant strategy for the students to reveal their true preferences. So, no

10Ackermann et al. [2008] showed that the expected time of convergence to a stable matching may
be exponential in two-sided matching markets.
11This application has some special features (see Biró [2008] and Biró, Fleiner, Irving and Manlove
[2010]), but the automated mechanism of the scheme is based on the DA algorithm.
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student has incentives to misrepresent his preferences.12 However, it is not possible

to ensure incentive compatibility for both sides of (one-to-one) markets as Roth

[1982] showed that any stable mechanism is manipulable via preference lists: there

is always some participant for whom reporting a true preference list is not a best

response to the other participants’ reported preferences. Furthermore, in many-

to-one markets we cannot even obtain incentive compatibility for the side of the

hospitals. Even the hospital-proposing variant of the DA algorithm (which induces

a hospital-optimal stable matching) is not immune to manipulation from hospitals

(see Roth [1985]).

Sönmez [1997] and Sönmez [1999] showed that if hospitals have more than one

slot then there are additional strategic concerns. First, any stable mechanism is

manipulable via capacities, i.e., hospitals may sometimes benefit by underreporting

their quotas. Second, any stable mechanism is manipulable via prearranged matches,

i.e., a hospital and a student may benefit by agreeing to match before receiving their

allocations from the centralized matching mechanism.

2.3. Large Centralized Markets

Roth and Peranson [1999] conducted simulations based on data from the NRMP.

They found suggestive evidence that in large markets the set of stable matchings

is likely to be very small and that stable matching mechanisms are difficult to

manipulate. A key assumption in their analysis is that the length of students’ pref-

erence lists is bounded as market size grows. Motivated by the findings of Roth

and Peranson [1999], Immorlica and Mahdian [2005] and Kojima and Pathak [2009]

analyzed the scope for manipulation in one-to-one and many-to-one matching mar-

kets, respectively, under the student-optimal stable mechanism when the number

of participants is large. Under some regularity conditions (including the bounded

preference lists of the students), they showed that the fraction of participants with

incentives to misrepresent their preferences when the others are truthful approaches

zero as the market becomes large. Moreover, if the market is sufficiently “thick,”

truthful reporting by every participant is an approximate equilibrium.

3. Matching With Couples

In this section we consider matching markets where couples are present. We first

describe some of the most important real-life matching schemes involving couples.

Then, we explain through several simple situations why and how the stability con-

cept can be generalized in different ways to the extended model with couples. How-

ever, no matter the precise definition, the set of stable matchings can be empty and

no longer satisfies several desirable structural properties. Also, the problem of find-

ing a stable matching is computationally hard. Next, we compare some heuristics

12In other words, the mechanism is strategy-proof for the students.
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that are used in practice. We also discuss the papers that have considered pref-

erence domain restrictions (but nonetheless have obtained several negative results

regarding structural properties of the set of stable matchings). Finally, we describe

some very recent results for large markets with couples.

3.1. Applications

In the National Resident Matching Program (NRMP) couples can submit joint

preference lists over pairs of positions since 1983. Before that, they could only

submit individual preferences for each spouse and assign priority to one spouse.

But even after this change, the participation of married couples in the program was

very low (see Roth [1984b]). However, in 1995–1998 the program was successfully

redesigned by Roth and Peranson [1999]. One of the important issues that triggered

the redesign was the presence of couples. Since the redesign of the NRMP, a number

of similar applications in the US have adopted the method (see Roth [2008] for a

summary).

In Scotland, the Scottish Foundation Allocation Scheme (SFAS) has been re-

sponsible for the allocation of residents to hospitals since 2000. Since 2010 a pair of

residents can indicate that they wish to be treated as a couple. A couple submits

individual preference lists and then a joint preference list is created automatically

from them in a very specific way, keeping only those pairs of positions that are lo-

cated in hospitals geographically close to each other. At the same time, all residents

are ranked at each hospital according to a common scoring method. Hence, there

is a so-called “master list” of resident scores (see Biró, Irving and Schlotter [2011]

for more details).

The US Navy assignment process involves hundreds of thousands of sailors to

be assigned, commands seeking sailors and detailers who advise both sailors and

commands. According to recent studies (see Short [2000], Robards [2001], and Yang,

Giampapa and Sycaratech [2003]), the three most important requirements for an

optimal assignment of sailors to billets are the following. The matching should be

stable; it should accommodate the wishes of married couples; and it should ensure

that all sailors are assigned to a position and that certain critical positions are filled.

Although there is no publicly available description of the algorithm used in this (or

any similar) program, it is clear that the presence of couples plays an important

role.13

In the Hungarian higher education matching scheme, students apply for studies

via a centralized program since 1985. The matching mechanism is based on a sta-

13Note that if we consider the third requirement primordial and take only one of the other two
requirements, then we already end up with an NP-hard problem. If we omit the stability require-
ment and aim to find a maximum size matching with couples then the problem is NP-hard (see
Biró and McDermid [2010] and Marx and Schlotter [2011]). If we neglect the wishes of couples

and try to find a maximum size matching with a minimum number of blocking pairs, then the
problem becomes again NP-hard (see Biró, Manlove and Mittal [2010]).
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ble score-limit algorithm, which is a generalization of the DA algorithm (see Biró

[2008]). Apart from the issue of ties (i.e., when there are students with identical

scores), there are at least two other special features in the scheme. Universities

and colleges not only have different kinds of common (upper) quotas, but they can

also set lower quotas for each study (see Biró, Fleiner, Irving and Manlove [2010]).

Finally, students can apply for pairs of MSc studies, which are special studies for

future teachers. For instance, in 2010, 5,578 students applied for teachers’ studies

and 2,091 of them applied for pairs of studies. The matching problem is essentially

the same as the one in matching markets with couples, since students applying to

pairs of studies act like couples in resident allocation programs. The proportion

of paired applications is very high since they are crucial in pursuing a successful

teaching career.

3.2. Stability: Definitions

If each hospital has only one position then the stable matching problem in markets

with couples can be formulated in terms of a hedonic coalition formation game14

as follows. The single applicants, the couples, and the hospitals are the players and

each coalition corresponds to a possible contract between a single applicant and a

hospital or between a couple and a pair of hospitals. The preferences of the hospitals

over the possible contracts are derived from their preferences over the individual

candidates who would be assigned to them under the contracts. A stable matching

in a market with couples is equivalent to a core element in the above defined NTU-

game. More precisely, an individually rational matching is not stable if there is a

blocking pair (consisting of a single applicant and a hospital) or a blocking coalition

(consisting of a couple and two hospitals) whose members would all be better of by

signing a new contract and possibly breaking existing ones.

If hospitals have multiple positions but no couple applies for a pair of positions at

the same hospital, then the extension of the stability definition is straightforward.15

However, if hospitals have multiple positions and couples are allowed to apply to

a pair of positions at the same hospital, then different definitions of stability are

possible.16 Assuming hospitals have responsive preferences we know how they would

decide between two single candidates, but it is not obvious how they would rank

a single applicant with respect to a couple, or how they would rank two couples.

14See Bogomolnaia and Jackson [2002] for a definition of hedonic coalition formation games. To

be precise, we can model a market with couples as a coalition formation game only if there is no
couple that applies to a pair of hospitals in two ways (i.e., (h, h′) and (h′, h)). In the general case,
the matching problem can be formulated in terms of an NTU-game, where the core corresponds
to the set of stable matchings.
15Here again, the set of stable matchings coincides with the core defined by weak domination.
16The complexities with multiple positions have not been considered until lately. The only papers
that mention this issue are Kojima, Pathak and Roth [2010], McDermid and Manlove [2010], Marx

and Schlotter [2011], and Biró, Irving and Schlotter [2011]. Both the NRMP and the SFAS allow
couples to apply to a pair of positions at the same hospital.
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Below, we describe three critical situations that illustrate the basic differences in

the possible definitions of stability.17

In the first situation we have a hospital h with two positions, a single applicant,

s2, and a couple (s1, s3). Hospital h prefers s1 to s2 and s2 to s3. The hospital

can decide to admit either the couple or the single applicant. Both decisions can

be rational, depending on the matching scheme. In Scotland, the single applicant

would be selected. The reason behind this decision is the following. In Scotland, the

residents are ranked in each hospital according to a common scoring system and a

matching mechanism provides score limits for each hospital such that admitting a

new single applicant or a couple by rejecting some other assignees cannot decrease

this score limit (more about this in Biró, Irving and Schlotter [2011]). Based on

the stability definition18 given in the paper by Kojima, Pathak and Roth [2010],

the single applicant would be chosen, therefore supposedly this solution would be

returned in the NRMP as well.19 This is because the preference of each hospital is

assumed to be responsive, and hence the choice of h from the set {s1, s2, s3} would

be {s1, s2}. So, the single applicant can block with the hospital if it is not matched,

but the couple cannot. However, in the two other papers where this option (i.e.,

having applications from a couple for pairs of positions at the same hospital) has

been considered (McDermid and Manlove [2010] and Marx and Schlotter [2011]),

the opposite assumption has been made, namely that the couple would be selected.

Note that this assumption can be equally reasonable, since admitting (s1, s3) instead

of s2 can be seen as an improvement for the hospital, as s1 is better than s2 and it

is also better to fill the empty slot with s3 than leaving it unfilled.

The second critical situation is when two couples, (s1, s4) and (s2, s3), apply for

two positions at the same hospital h, where there are exactly two positions. The

candidates are ranked by the hospital in the following order: s1Phs2Phs3Phs4 (i.e.,

s1 is the best and s4 is the worst candidate). Either of the two possible matchings

may be considered as stable, and actually both are stable according to the definitions

presented in Kojima, Pathak and Roth [2010], McDermid and Manlove [2010], and

Marx and Schlotter [2011]. However, in Biró, Irving and Schlotter [2011] the unique

stable matching matches (s2, s3). Essentially, in the SFAS every couple that applies

17For two reasons we do not provide the full formal definitions of stability for markets with couples.

First, the formal definitions would require a considerable amount of space without clear benefits
for most non-specialized readers. Second, most results in the literature are negative and even hold
when each hospital has only one position (i.e., when all definitions of stability coincide).
18In Kojima, Pathak and Roth [2010], a necessary condition for a hospital h to form a blocking

pair with a single candidate s is s ∈ Chh(µ(h) ∪ {s}), and to form a blocking coalition with a
couple (s1, s2) is {s1, s2} ⊆ Chh(µ(h) ∪ {s1, s2}). Here, Chh(S) denotes the choice of hospital h
from the set of residents S.
19The algorithm used in the NRMP is described in detail in Roth and Peranson [1999], we give a
short summary in Subsection 3.4. At this point we only note that in each step of this algorithm
either a single resident (or a couple) makes a proposal to a hospital (or to a pair of hospitals).
The proposal is accepted if and only if the resident forms a blocking pair with the hospital (or

the couple forms a blocking coalition with the hospital or pairs of hospitals) with respect to the
actual matching.
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for a pair of positions at the same hospital is ranked according to its weakest

member.

Finally, the third critical situation is when two couples, (s1, s3) and (s2, s4), ap-

ply for two positions at the same hospital h, and the applicants are again ranked ac-

cording to their indices. Both possible matchings are stable when stability is defined

as in Kojima, Pathak and Roth [2010]: the choice of h from the set {s1, s2, s3, s4}
would be {s1, s2}, so neither of the couples can form a blocking coalition with the

hospital when the other couple is matched there. However, one could argue that

having s1 instead of s2 and s3 instead of s4 are both strict improvements for the

hospital, so only {⟨s1, h1⟩ , ⟨s3, h2⟩} should be considered stable. Actually, this is the

case in the other three papers mentioned above. Therefore, the stability condition

defined in Kojima, Pathak and Roth [2010] (and presumably used in the NRMP)

is the least restrictive among the four variants that are present in the literature.

3.3. Stability: (Loss of) Structure and Computational Complexity

In this subsection we provide a number of “simple” matching markets that illustrate

the difficulties that may arise when extending the many-to-one model to account

for the presence of couples. In all our examples each hospital has only one position.

Therefore, our findings are valid no matter which definition of stability we use from

the previously described literature.

The first example, presented by Roth [2008] and accredited by him to Klaus and

Klijn [2005], describes an instance that does not admit a stable matching.20

Example 1. (No stable matching.) There are three residents, comprising one single

applicant s2, one couple (s1, s3) and two hospitals, each with one position. The applicants

are ordered by both hospitals according to their indices (s1 highest, s3 lowest), and the

preference lists of the residents are as shown in Figure 1. There are three non-empty match-

(s1, s3) : (h1, h2)

s2 : h1 h2

Fig. 1. A couples market without a stable matching.

ings for this instance: M1 = {⟨s1, h1⟩ , ⟨s3, h2⟩}, M2 = {⟨s2, h2⟩} and M3 = {⟨s2, h1⟩}.
It may readily be verified that M1 is blocked by ⟨s2, h2⟩, M2 by ⟨s2, h1⟩, and M3 by

⟨(s1, s3), (h1, h2)⟩. ⋄

The following basic example illustrates that in the presence of couples, the set

of stable matchings does not necessarily have extreme elements and nice structural

20Roth [1984b] and Marilda Sotomayor [unpublished note] were the first to exhibit couples markets
without stable matchings.
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properties.21

Example 2. (No one-side optimality.) There are four residents, comprising two couples

(s1, s4) and (s2, s3), and two hospitals, each with one position. The applicants are ordered

by both hospitals according to their indices (s1 highest, s4 lowest), and the preference

lists of the residents are as shown in Figure 2. There are two stable matchings: µ1 =

(s1, s4) : (h1, h2)

(s2, s3) : (h1, h2)

Fig. 2. A couples market without one-side optimality.

{⟨s1, h1⟩ , ⟨s4, h2⟩} and µ2 = {⟨s2, h1⟩ , ⟨s3, h2⟩}, but neither of them is optimal for either

side of the market. (This follows since h1 and (s1, s4) prefer µ1, but h2 and (s2, s3) prefer

µ2.) ⋄

We can extend the previous example by adding a pair of positions to the end of

one joint preference list to show that the rural hospital theorem (Roth [1984a] and

Roth [1986]) does not carry over to markets with couples.22

Example 3. (No extension of the rural hospital theorem.) There are four residents,

comprising two couples (s1, s4) and (s2, s3), and four hospitals, each with one position. The

applicants are ordered by all hospitals according to their indices (s1 highest, s4 lowest),

and the preference lists of the residents are as shown in Figure 3. There are only two

(s1, s4) : (h1, h2)

(s2, s3) : (h1, h2) (h3, h4)

Fig. 3. A couples market with stable matchings of different sizes.

stable matchings {⟨s1, h1⟩ , ⟨s4, h2⟩ , ⟨s2, h3⟩ , ⟨s3, h4⟩} and {⟨s2, h1⟩ , ⟨s3, h2⟩}, and they

have different sizes. ⋄

Combining the markets in Examples 1 and 2, we can easily construct another

market (with a stable matching) such that if we start from some unstable matching,

there is no path to a stable matching by consecutively satisfying blocking pairs.23

21Aldershof and Carducci [1996] were the first to exhibit a couples markets with stable matchings

but without optimal stable matchings.
22Aldershof and Carducci [1996] were the first to exhibit a couples markets with stable matchings
of different sizes.
23Klaus and Klijn [2007] were the first to exhibit a couples markets (with a stable matching) where
there is an unstable matching from which there exists no path to a stable matching.
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Example 4. (No path to stability.) There are five residents, comprising one single ap-

plicant s3 and two couples (s1, s5) and (s2, s4), and four hospitals, each with one position.

The applicants are ordered by all hospitals according to their indices (s1 highest, s5 low-

est), and the preference lists of the residents are as shown in Figure 4. There is a unique

(s1, s5) : (h1, h2)

(s2, s4) : (h1, h2) (h3, h4)

s3 : h3 h4

Fig. 4. A couples market without a path to stability.

stable matching {⟨s2, h1⟩ , ⟨s4, h2⟩}. If we start with matching {⟨s1, h1⟩ , ⟨s5, h2⟩}, then no

path of matchings obtained by satisfying blocking pairs leads to the stable matching. ⋄

Finally, we illustrate with a similar example that there is no incentive compatible

mechanism that yields a stable matching whenever one exists.

Example 5. (No incentive compatibility + “stability whenever possible.”) There

are five residents, comprising one single applicant s3 and two couples (s1, s5) and

(s4, s2), and four hospitals, each with one position. The applicants are ordered by all

hospitals according to their indices (s1 highest, s5 lowest), and the preference lists of

the residents are as shown in Figure 5. There is a unique stable matching given by

(s1, s5) : (h1, h2)

(s4, s2) : (h1, h2) (h3, h4)

s3 : h1 h4

Fig. 5. A couples market with a unique stable matching.

{⟨s1, h1⟩ , ⟨s5, h2⟩ , ⟨s4, h3⟩ , ⟨s2, h4⟩}, where s3 is unmatched. However, if s3 were to re-

place h1 with h2 in his preference list, then the unique stable matching for the manipu-

lated instance would be {⟨s4, h1⟩ , ⟨s2, h2⟩ , ⟨s3, h4⟩}. So, any mechanism that always yields

a stable matching whenever one exists violates incentive compatibility. ⋄

Another piece of bad news for policy makers and mechanism designers is that it is

very unlikely that there is an efficient algorithm that always finds a stable matching

whenever one exists. Indeed, the problem of finding a stable matching in a market

with couples is NP-hard. This was first proved by Ronn [1990] for markets where

each hospital has only one position. The same negative result has been proved for

even more restricted settings, namely McDermid and Manlove [2010] showed that

the problem of finding a stable matching is NP-hard even for “consistent” couples,

i.e., couples that apply only for pairs of positions at the same hospital. Furthermore,
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Biró, Irving and Schlotter [2011] showed that the problem is still NP-hard if the

residents are ranked according to a common order (or “master list”) and the joint

list of each couple is constructed in a systematic way (which is how for instance the

SFAS proceeds).

The problem is also hard from a parameterized point of view when the number

of couples is the parameter considered. Marx and Schlotter [2011] proved that the

problem is so-called W [1]-hard, which means that there exists no FPT-algorithm

for this problem unless P=NP.24 Note that for the restricted problem setting that

is present in the SFAS, and which is still NP-hard, Biró, Irving and Schlotter [2011]

provide an FPT-algorithm.

Finally, there do exist some positive results for the special case where the set

of possible matchings is restricted to those which are stable with respect to the

individual preferences as well. Sethuraman, Teo and Qian [2006] and McDermid

and Manlove [2010] gave polynomial time algorithms for such problems in different

settings.

As most variants of the problems, and certainly all the variants that are present

in the current applications, are NP-hard, the mechanism designers can do nothing

but try different heuristics to solve the real instances. As we will see, computational

experiments show that the problem is relatively easy to solve in practice for resident

allocation schemes, where the proportion of couples is small (about 5%). However,

in other applications, where the proportion of couples is high, the problem seems

very challenging.

3.4. Heuristics

Since the National Resident Matching Program has been redesigned (see Roth and

Peranson [1999]), the matching algorithm that is used in the program is a heuristic

based on the incremental algorithm by Roth and Vande Vate [1990]. The idea of

the algorithm is that the applicants are added to the market one-by-one and the

matching regains stability after satisfying a bounded number of blocking pairs. The

algorithm that is used in the NRMP is very similar; the difference is that couples

are also accommodated. The algorithm starts by adding all the single applicants

first, and then the couples are added one-by-one with the hope that a stable solution

can be reached by the same proposal-rejection sequence for each sub-market. This

simple algorithm seems to work well for markets with a small proportion of couples

(see Roth and Peranson [1999]). However, in Klaus, Klijn and Massó [2007] it was

shown that (i) this method may not find a stable solution, even if the instance

24An FPT-algorithm would have a running time f(c) ·g(n), where c is the number of couples, f(c)
is an arbitrary function of c and g(n) is a polynomial function of n, n being the size of the instance.
The existence of an FPT-algorithm might suggest that the problem can be tractable for instances
where the number of couples is small, even if the problem is NP-hard. However, W [1]-hardness

implies that the problem is practically intractable, even if the number of couples is small in a
matching scheme.
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satisfies some special properties that guarantee the existence of a stable solution

(see Subsection 3.5), and (ii) the induced mechanism is also vulnerable to strategic

manipulation.

Motivated by the practical challenge of constructing an algorithm for the SFAS,

Biró, Irving and Schlotter [2011] designed and implemented some “more complex”

algorithms and compared their performance with the NRMP-algorithm described

in Roth and Peranson [1999] by testing them on random samples. Their finding was

that most variants were able to return a stable matching for almost every instance

when the proportion of couples was low (around 5%). However, as the proportion

of couples increased the success rate of the new heuristics was clearly higher than

that of the Roth-Peranson algorithm.

There is a third approach described in a very recent paper by Biró, Fleiner and

Irving [2011], which uses the Scarf-algorithm (Scarf [1967]) to find a stable match-

ing. Biró and Fleiner [2010] showed how the Scarf-algorithm can be employed to

find fractional core solutions for NTU-games where agents can have capacities. As

a possible application, they illustrated how their theory can be applied to matching

markets with couples. The Scarf-algorithm always produces a stable fractional so-

lution (which can be interpreted as part-time contracts), and when the solution is

integral it corresponds to a stable matching. Biró, Fleiner and Irving [2011] imple-

mented and tested this method and compared its performance with the two above

mentioned algorithms for the same random samples that Biró, Irving and Schlotter

[2011] studied. The results of a particular experiment are shown in Table 1.

Number of couples
Algorithm 12 25 50 75 100 125 150 175 200 225 250

R–P (1999) 952 897 701 547 395 277 170 83 41 9 3
B–I–S (2011) 976 958 911 870 811 752 682 546 281 71 10

Scarf by B–F–I (2011) 895 813 649 532 426 356 316 261 202 174 158

Table 1. Randomly created matching markets with couples for 500 residents.

In this computational experiment, there were 500 residents and the proportion

of couples varied from 5% to 100%. For each proportion of couples, the authors

generated 1000 random instances and counted how many instances each variant

could solve. They considered the Roth-Peranson method (used in the NRMP), some

more sophisticated heuristics due to Biró, Irving and Schlotter [2011] (used in the

SFAS), and the Scarf-algorithm. The table shows that the heuristics due to Biró,

Irving and Schlotter [2011] obtained a much better success ratio than the Roth-

Peranson heuristics, especially for high proportions of couples. But surprisingly, the

Scarf-algorithm was much better than the others when (almost) all the applicants

form couples. Note that this situation occurs in some applications, such as the

Hungarian higher education matching scheme (where many applicants apply for a

pair of studies).
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Another possibility that has not been explored thoroughly is the application

of genetic algorithms to generate stable matchings. Aldershof and Carducci [1999]

provided such an algorithm. They applied their algorithm to some couples markets

of size 50. They noticed that their examples are much smaller than most real-world

problems, but the latter involve preference lists that are very short with respect to

the number of available choices (e.g., a resident ranks only a very small number of

hospital positions from the thousands of available ones). Considering some larger

instances with smaller number of applications, they found that genetic enumeration

of stable matchings in a market of size 2,000 can be accomplished in a relatively

short amount of time. This experiment led them to suggest that it could be possible

to use the genetic algorithm for markets of the size of the NRMP.

3.5. Restricted Preference Domains

One possible way to get around the non-existence of stable matchings is to consider

restricted preference domains for couples. Dutta and Massó [1997] considered a re-

striction that they called togetherness and proved the existence of a stable matching

using an adapted deferred acceptance algorithm. Unfortunately, togetherness is a

very strong restriction since it basically makes the couples behave like individual

students.

Klaus and Klijn [2005] introduced a natural preference domain for couples,

namely the domain of “(weakly) responsive” preferences, and showed that on this

domain stable matchings exist.25 A couple’s preferences are responsive if the uni-

lateral improvement of one partner’s job is considered beneficial to the couple as

well. If responsiveness only applies to acceptable positions, then preferences are

weakly responsive. Hence, (weakly) responsive preferences may reflect situations

where couples search for jobs in the same metropolitan area. They proved that un-

der a restricted unemployment aversion condition, the domain of weakly responsive

preferences is maximal for the existence of stable matchings.26

Hatfield and Kojima [2010] introduced a condition called “bilateral substitutes”

in the matching with contracts framework of Hatfield and Milgrom [2005]. Matching

with couples (where each hospital has only one position) is a special case of matching

with contracts. Hatfield and Kojima [2010] proved that weak responsiveness implies

bilateral substitutes. Hence, their result that bilateral substitutes is sufficient for

the existence of a stable matching subsumes the existence result in Klaus and Klijn

[2005]. Hatfield and Kominers [2011] generalized the matching with contracts model

in Hatfield and Milgrom [2005] to a many-to-many setting. One special case of the

more general model is matching with couples where hospitals can have more than

one position. The work in Hatfield and Kominers [2011] showed that for hospitals

25See also Klaus, Klijn and Nakamura [2009].
26More precisely, in a couples market with only restricted strictly unemployment averse couples

and at least one couple whose preferences are not weakly responsive, there exist (weakly) responsive
preferences for the other couple(s) such that no stable matching exists.
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with substitutable preferences (i.e., instead of responsive preferences), the domain of

substitutable preferences is a maximal domain of couples’ preferences under which

a stable matching is guaranteed to exist.

In a decentralized market, stable outcomes can always be reached provided that

couples’ preferences are weakly responsive. Starting from an arbitrary matching,

Klaus and Klijn [2007] showed how to construct a path of matchings obtained from

“satisfying” blocking coalitions that yields a stable matching.

Although on the domain of responsive preferences a stable matching always

exists, Klaus and Klijn [2005] showed that even on this domain other desirable

properties of stable matchings for singles markets do not carry over to couples

markets:

• there may be no optimal stable matching for either side of the market;

• different stable matchings may fill a different number of positions;

• there is no stable matching mechanism for which stating the true prefer-

ences is a dominant strategy for every couple.

One possible reason why couples’ preferences might not satisfy weak responsive-

ness is geographic. For instance, if a couple’s most preferred option is two hospitals

in one region and its second most preferred option is two hospitals in some other

region, then responsiveness is violated. Cantala [2004] considered a model with dif-

ferent regions of hospital locations and assumed that couples prefer to be matched in

the same region rather than in distinct ones. He further assumed that couples share

a ranking of regions. Despite these strong restrictions on the couples’ preferences,

Cantala [2004] exhibited a couples market that fails to have a stable matching.

3.6. Large Markets

Very recently, Kojima, Pathak and Roth [2010] analyzed data from the Association

of Psychology Postdoctoral and Internship Centers (APPIC) matching program.

They found that (i) the preferences of the overwhelming majority of couples violate

weak responsiveness, but nonetheless (ii) there exists a stable matching for each of

the nine years of the psychology market for which they had data. To explain the

stability of the psychologists market (and similar large markets), Kojima, Pathak

and Roth [2010] built a model for large markets with couples. Using stylized facts

from the psychologist market, they placed several conditions on the sequence of

random markets (indexed by n, which is the number of hospitals) of growing size

(in order to study limit behavior). Informally,27

• the length of students’ preference lists does not grow when the number of

market participants grows;

27See Kojima, Pathak and Roth [2010] for details, in particular regarding possible relaxations of
the assumptions.
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• the number of single students does not grow much faster than the number

of hospitals. Moreover, the number of couples does not grow at the same

rate as the number of hospitals and instead grows at the slower rate of

O(na), where 0 ≤ a ≤ 1
2 ;

• the capacity of each hospital is bounded;

• the popularity of different hospitals (measured by the probability of being

listed by doctors as acceptable) does not vary too “much.”

A crucial implication of the model is that if n is large enough then it is very likely

that there is a large number of hospitals with vacant positions (even if there are more

students than positions). This implication partially drives their first main result:

the probability that there exists a stable matching converges to 1 when the number

of hospitals n approaches infinity. The proof of their first main result consists of

showing that the probability that their “sequential couples algorithm” succeeds (i.e.,

finds a stable matching) converges to one as the market size approaches infinity.28

Next, Kojima, Pathak and Roth [2010] proceeded with an analysis of the in-

centives for manipulation in a market with couples, employing a mechanism that

builds on the sequential couples algorithm.29 They considered a Bayesian game in

which single students, couples, and hospitals submit their preference lists to the

clearinghouse. Under conditions (on a sequence of Bayesian games) that are very

similar to the ones in their first main result, they established their second main

result: for any ϵ > 0, truth-telling is an ϵ-Bayes-Nash equilibrium when the number

of hospitals n approaches infinity.

Ashlagi, Braverman and Hassidim [2011] studied a model very similar to Kojima,

Pathak and Roth [2010], but with a weaker notion of stability. They allowed the

number of couples to grow at a near-linear rate: n1−ϵ where ϵ > 0. Under this

assumption, they established that the probability that a stable matching exists

approaches 1 as the market grows large. To obtain their result, they introduced a

new matching algorithm called “sorted deferred acceptance.” Moreover, under the

induced mechanism, truth-telling is an approximate Bayes-Nash equilibrium for any

large enough market. A key element in their analysis is the selection of a particular

sequence of proposals by couples that is least likely to generate existence problems.

Furthermore, their simulation and theory suggest that asymptotic existence is likely

to fail if the number of couples grows proportionally to the market size. Therefore,

the growth rate n1−ϵ is probably the highest one can achieve without running into

the non-existence of stable matchings.

28The sequential couples algorithm is based on the deferred acceptance algorithm and incorporates
applications by couples. Obviously, the sequential couples algorithm may fail to find a stable
matching (even if there exists one).
29The difference is that the mechanism has to specify some matching when the sequential couples
algorithm fails (to find a stable matching).
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4. Concluding Discussion and Outlook

Studies in the last decade have answered many questions regarding the presence

of couples in matching markets. Most of these studies are theoretical, but many of

them are motivated by empirical findings. Given the possible non-existence of stable

matchings, computational experiments have been very helpful as well to measure

and compare the performance of algorithms that aim to find a stable matching

whenever one exists.

Obviously, there is still a long road to a full understanding of the complexities

introduced by the presence of married couples. One theoretical question is how to

weaken stability to obtain an appropriate non-empty solution. For instance, the

weak stability proposed in Klijn and Massó [2003] does not seem adequate: Klaus

and Klijn [2005] showed that most of their negative results hold even for weak

stability. A helpful tool in such an analysis could be a concept of comparing (un-

stable) matchings according to the number of blocking pairs they admit or number

of agents involved in blocking pairs (see e.g. Biró, Manlove and Mittal [2010]), or

other measures like the one developed by Biermann [2011].

Another important issue that has received relatively little attention is the match-

ing of couples in decentralized markets. To the best of our knowledge, Klaus and

Klijn [2007] is the only paper that explicitly dealt with it. They showed that on their

restricted preference domain, under rather mild conditions a decentralized market

converges to a stable matching with probability 1. They also showed that in general,

even if a stable matching exists, such convergence is not always possible (see also

Example 4). In order to obtain positive results it therefore seems necessary to study

and model the behavior of couples in more specific real-life decentralized markets.

To a large extent, the literature on matching with couples belongs to the rather

new field of market design. “Economic engineering” (coined by Roth [2002]), how-

ever, typically takes a trial and error approach, in which laboratory experiments

play a prominent role. We are not aware of any laboratory experiments that deal

with couples in matching markets, but they would be crucial in the study of couples’

preference formation and decision making.

The analysis of matching markets with couples is a first small step in understand-

ing markets with complementarities. Until recently, these markets were difficult to

tackle. However, the tools developed in large markets studies can turn out to be very

helpful. An important example of this is a result obtained by Ashlagi, Braverman

and Hassidim [2011]. They adapted their analysis of large markets with couples

to a more general worker-firm model studied by Roth and Sotomayor [1990]. Roth

and Sotomayor (1990) proved that if firms’ preferences are substitutable a stable

matching exists; and even if only one firm does not have substitutable preferences,

a stable matching need not exist. Ashlagi, Braverman and Hassidim [2011] showed

that if the market is large and random, as long as the number of firms that have

non-substitutable preferences is growing at a near-linear rate, the probability that

a stable matching exists tends to 1 as the market size tends to infinity.
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To put our survey in perspective, we note that there are some new interdis-

ciplinary research directions that incorporate our particular subject. Algorithmic

mechanism design (see e.g. Nisan and Ronen [1999]) is one of them. In both the

economics and computer science communities it is now widely accepted that a mech-

anism can be successful only if both strategic and algorithmic considerations form

part of the design process. More general interdisciplinary areas such as algorithmic

game theory (see e.g. Nisan, Roughgarden, Tardos and Vazirani [2007]) and compu-

tational social choice (see e.g. Chevaleyre, Endriss, Lang and Maudet [2007]) have

already shown the fruitful interaction between economics and computer science.
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Kojima, F. and Ünver, M.U. [2006] Random Paths to Pairwise Stability in Many-to-
Many Matching Problems: A Study on Market Equilibration, International Journal
of Game Theory, 36, 473–488.

Knuth, D.E. [1976] Marriages Stables. Les Presses de l’Université, Montreal.
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