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Abstract

The issue of the order-dependence of iterative deletion processes is well-known in the game
theory community, and meanwhile conditions on the dominance concept underlying these pro-
cesses have been detected which ensure order-independence (see e.g. the criteria of Gilboa et al.,
1990 and Apt, 2011). While this kind of research deals with the technical issue, whether certain
iterative deletion processes are order-independent, or not, our focus is on the normative issue,
whether there are good reasons for employing order-independent iterative deletion processes on
strategic games. We tackle this question from an epistemic perspective and attempt to figure out,
whether order-independence contains some specific epistemic meaning. It turns out that, un-
der fairly general preconditions on the choice rules underlying the iterative deletion processes,
the order-independence of these deletion processes coincides with the epistemic characterization
of their solutions by the common belief of choice-rule following behavior. The presumably most
challenging precondition of this coincidence is the property of the independence of irrelevant acts.
We also examine the consequences of two weakenings of this property on our epistemic motiva-
tion for order-independence. Although the coincidence mentioned above breaks down for both
weakenings, still there exist interesting links between the order-independence of iterative deletion
processes and the common belief of following the choice rules, on which these processes are based.
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1 Introduction

The issue of order-independence of iterative deletion processes on strategic games has attracted
a great deal of attention in the game theory community and almost every textbook in game the-
ory point to the order-dependence of the deletion processes generated by the iterated deletion of
weakly dominated strategies. Meanwhile, scholars have established order-independence of differ-
ent iterative deletion processes and identified, for rather order-dependent iterative deletion pro-
cesses, subclasses of strategic games in which these deletion processes become essentially order-
independent. For example, Gilboa et al. (1990) detected properties on the players’ domination re-
lations guaranteeing that the iterative process based on these relations is order-independent. No-
tably, a corollary of their result is that the deletion processes generated by the iterated deletion of
strictly dominated strategies is order-independent in finite strategic games.1 Furthermore, for the
class of finite strategic games, Börgers (1993) proved that the iterative deletion processes based on
his dominance concept (also known as inherent dominance) is order-independent, Osborne and
Rubinstein (1994) proved that the deletion processes relying on the iterated deletion of strictly
dominated strategies in mixtures is order-independent and Apt (2005) proved that the iterative
deletion processes of rationalizability (a solution concept powerfully proposed by Bernheim, 1984
and Pearce, 1984) are order-independent. Recently, resorting to a theorem of Newman (1942) re-
garding abstract reduction systems, Apt (2011) provided a handy criterion for order-independent
iterative deletion processes. He showed that, if the iterative deletion processes are based on some
hereditary dominance operator, then these processes turn out to be order-independent in finite
strategic games. While the works just sketched dealt with the order-independence of specific it-
erative deletion processes, Rochet (1980) considered the order-dependent deletion processes of
iterated deletion of weakly dominated strategies and addressed himself to the issue, in which
subclass of finite strategic games these processes become order-independent. He established that
order-independence holds for all finite strategic games for which at least one of the iterative dele-
tion processes has a unique solution and for which every player receives a different payoff at each
strategy profile. Marx and Swinkels (1997, 2000) also looked at the deletion processes generated
by the iterated deletion of weakly dominated strategies and established that, if the finite strategic
game satisfies the transference of decision maker indifference (TDI) condition, then these dele-
tion processes result in solutions which are unique up to the addition or removal of redundant
strategies.

The previous research on the order-independence we just briefly sketched has been concerned
with the technical question, whether specific iterative deletion processes satisfy this property, or
not. The focus of our paper differs substantially from this research agenda. Instead of supplying
further results on the order-independence of specific iterative deletion processes, we shall address
ourselves to the normative issue, whether there are weighty reasons beyond that of convenience
to prefer order-independent iterative deletion processes. Thereto, we will take up an epistemic
perspective on strategic games, and we will attempt to provide an epistemic motivation for order-
independence. In the following discussion, we will set up a hypothesis that attributes a pellucid
epistemic meaning to order-independence. Unfortunately, we will figure out counterexamples es-
tablishing that our hypothesis is not true in general. Nevertheless, as will show in the succeeding

1However, as Dufwenberg and Stegeman (2002) demonstrate with simple examples of infinite strategic games (see e.g.
their Example 1), the deletion processes generated by the iterated deletion of strictly undominated strategies are order-
dependent in the class of general strategic games.

1

Jena Economic Research Papers 2012 - 010



sections of this paper, under specific restrictions regarding the deletion operators (or choice rules,
as we will call it from now on) on which the iterative deletion processes are based, our postu-
lated epistemic motivation proves to be correct. But, how does our hypothesis about the intrinsic
epistemic value of order-independence exactly run?

At first, consider the solution of the deletion processes generated by the iterated deletion of
weakly dominated strategies in strategic game Γ1 depicted in Figure 1.2 Obviously, the iterated
maximal deletion of weakly dominated strategies (i.e., in each round of deletion, all strategies of
every player weakly dominated in the (remaining) game will be eliminated) result in the unique
solution (d, r). An alternative iterative deletion process based on weak undominance would be
to eliminate all weakly dominated strategies only of player R in the first round and afterwards to
eliminate all strategies of player C weakly dominated in the remaining game. This process would
result in the outcome {(m, r), (d, r)}. Indeed, any of the sets {(d, r)}, {(d, c}, {m, r}, {(d, r), (d, c)}
and {(d, r), (m, r)} could be attained as a solution of some deletion process based on iterated
deletion of weakly dominated strategies in strategic game Γ1. This divergence in their solutions is
known as the order-dependence of the iterated deletion of weakly dominated strategies.

Player C
l c r

Player R
u (1000, 1000) (0, 1000) (0, 0)

m (1000, 0) (1, 1) (1, 2)

d (0, 0) (2, 1) (1, 1)

Figure 1: Strategic game Γ1

Next, let us analyze strategic game Γ1 from an epistemic perspective. Being more precise, we
would like to figure out the set of strategy profiles which are possible if there is common belief
among the players that they never choose weakly dominated strategies given their conjectures
about the possible opponent’s choices of strategy. It turns out that any strategy profile of strategic
game Γ1 could occur under this epistemic assumption. Even the strategy profile (u, l) consisting
of the two strategies that do not survive any conceivable deletion process of iterated deletion of
weakly undominated strategies is consistent with this precondition. To see this, consider a state
in which (i) the players R and C choose the strategies u and l, respectively, and (ii) both players
believe that this state will occur. Obviously, according to our assumptions (i) and (ii), in this
state, both players act as if they deem favorable only strategies which are weakly undominated
given their conjectures about the other player’s move. Applying again assumption (ii), we can
infer that, in this state, both players believe that they apply the choice rule of weak undominance.
Indeed, by repeated application of assumption (ii), it can be established that, in this state, there is
common belief of applying the choice rule of weak undominance (i.e. every player believes that
every player applies this choice rule, every player believes that every player believes that every
player applies this choice rule, and so on ad infinitum). Summing up the discussion so far, we
have observed that the deletion processes based on the iterated deletion of weakly dominated

2In this paper, whenever we speak of a weakly dominated strategy, we refer to a strategy that is weakly dominated by
some pure strategy. A strategy that is weakly dominated by some mixed strategy is said to be weakly dominated by mixtures.
Analogously, strictly dominated strategies and strictly dominated strategies by mixtures are defined.

2
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strategies are order-dependent and that their solutions do not contain all strategy profiles being
consistent with applying the weak undominance rule and the common belief of applying this rule.

Now, let us consider the deletion processes generated by the iterated deletion of strictly dom-
inated strategies. Unlike the deletion processes based on the weak undominance rule, these pro-
cesses are order-independent and, as it can be shown, their solution consists exactly of the strategy
profiles which are possible if all players follow the strict undominance rule and this is also com-
monly believed among them.3 Thus, while the order-dependent deletion processes based on the
weak undominance rule fail to comprise all strategy profiles that could be realized if all players
behave according to this choice rule and such behavior is commonly believed among them, the
order-independent deletion process relying on the strict undominance rule satisfies this epistemic
property. Therefore, in reviewing our two examples of iterative deletion processes, it becomes
obvious to suggest the following hypothesis about the epistemic meaning of order-independence.

CLAIM 0: The deletion processes based on the iterated deletion of unfavorable strategies are order-indepen-
dent, if and only if the solution of the iterated maximal deletion of unfavorable strategies coincides with the
set of strategy profiles being possible if all players follow the choice rules on which these deletion processes
are based and this is commonly believed among the players.

Unfortunately, this claim is incorrect. In what follows, we will discuss two counterexamples to
this claim. It will be demonstrated that order-independence is neither a sufficient nor a necessary
condition for the coincidence between the solutions obtained by the iterated maximal deletion of
unfavorable strategies and solutions under the choice rule following behavior and the common
belief of this.

In the first example, we will consider the choice rule which favors only the strategies that,
yield at least at one combination of the opponents’ strategies, at least the average payoff of all
available strategies at this combination. Henceforth, we shall simply term this choice rule as the
“average rule”. It can be proved that the deletion processes based on this choice rule are order-
independent.4 Now consider, strategic game Γ2 that is depicted in Figure 2 and that will be solved
by the iterated maximal deletion of unfavorable strategies with respect to this choice rule. Obvi-
ously, in the first round strategy d is canceled, in the second round strategy m, and in the third
round strategy r. Hence, the solution of this iterative deletion process is the strategy profile (u, l).

However, as we will demonstrate next, the solution of the iterated deletion of unfavorable
strategies does not contain all strategy profiles which are consistent with the choice rule following
behavior and the common belief of this. Consider a state in which player R chooses m and player
C chooses r. Moreover, it is presupposed that, in this state, both players believe that this state
will be realized. Given such beliefs, both players act as if they follow the so-called average rule.
Since both players believe that this state will occur, both players believe that they act according
to the average rule, both players believe that they believe that they act according to this rule,
and so on ad infinitum. Thus, at this state, there is common belief that they follow the average

3In Section 4, we will reproduce a theorem of Trost (2010) which specifies properties on choice rules ensuring that the
solution obtained by the iterated maximal deletion of unfavorable strategies with respect to these choice rules gives exactly
the set of strategy profiles consistent with the common belief of following these choice rules. As it can be easily checked,
the choice rule of strict undominance satisfies these properties.

4The criterion of order-independence proposed by Apt (2011) will be reproduced in Section 3. There, by means of this
criterion, we will demonstrate that the average rule is order-independent.
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Player C
l r

Player R
u (3, 1) (3, 0)

m (2, 0) (2, 1)

d (0, 1) (0, 1)

Figure 2: Strategic game Γ2

rule. Consequently, we have discovered a strategy profile that is consistent with the common
belief of applying the average rule, namely (m, r), but that does not survive the iterated deletion
of unfavorable strategies. We conclude that order-independence is not a sufficient condition that
the solutions of the iterated deletion of unfavorable strategies coincides with the set of strategy
profiles being consistent with the choice rule following behavior and the common belief of this.

In the second example, we will consider a choice rule that proves to be a modification of the
choice rule of strict dominance. This ”modified strict dominance rule” is specified as follows. For
strategy sets containing exactly two distinguishable strategies (i.e. which generate different payoff
profiles on the opponents’ strategy profiles), any strategy is considered favorable. Otherwise, only
the strategies that strictly dominate any other distinguishable strategy are deemed favorable or,
if such strategies do not exist, then any strategy is deemed favorable. It can be shown that, for
any strategic game, the solution of the iterated maximal deletion of strategies unfavorable with
respect to this choice rule is equal to the set of strategy profiles being consistent with the common
belief of applying this choice rule.5 Now, consider strategic game Γ3 depicted below.

Player C
l c r

Player R
u (4, 4) (4, 2) (4, 0)

m (2, 4) (2, 2) (2, 0)

d (0, 4) (0, 2) (0, 0)

Figure 3: Strategic game Γ3

As it can be easily verified, the iterated maximal deletion of unfavorable strategies stops after
the first round of deletion. In this round, the strategies m and d of player R and the strategies c
and r of player C are eliminated. Thus, the solution of this iterative deletion process consists only
of strategy profile (u, l). Remarkably, this solution is not reached by all deletion processes based
on this choice rule. For example, if only strategies d and r are eliminated in the first round of dele-
tion, then the reduced game consists of strategy sets that contain two distinguishable strategies.
According to our specification, the deletion process would stop and the solution would be the
product set {u,m} × {l, c}. This example shows, that the equivalence between iterated maximal
deletion of unfavorable strategies and the common belief of choice rule following behavior does
not ensure order-independence.

Obviously, the two examples just discussed lead to the following interim finding.

5Again, this can be affirmed by checking the criteria on choice rules postulated in Trost (2010).
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REMARK: The CLAIM 0 is false. Moreover, neither order independence implies that the solution of the
iterative maximal deletion process corresponds to the set of strategy profiles being possible if all players
follow the choice rules underlying this deletion process and this is commonly believed among the players,
nor the latter correspondence implies the order-independence of all iterative deletion processes based on these
choice rules.

Although our CLAIM 0 is not generally true, we admit that the choices rules specified in the two
counterexamples seem to be quite unreasonable and artificial. An obvious question is, whether
the epistemic motivation for order-independence as stated in CLAIM 0 is true, although not for all
conceivable choice rules, but at least for a class of choice rules containing prominent and mean-
ingful choice rules. Figuring out such class of choice rules is the main topic of this paper. As a
conclusion of our previous discussion, we can summarize our research question as follows.

RESEARCH QUESTION: For which class of choice rules can the order-independence of the iterative deletion
processes, based on these choice rules, be identified with the coincidence between the solution obtained by the
iterated maximal deletion and the solution under the choice rule following behavior and the common belief
of this?

To provide an answer to this question, we will proceed as follows. In the next section, we shall
introduce the concept of a choice rule in situations of subjective uncertainty and we shall discuss
properties of these rules that become relevant to our succeeding epistemic analysis. In Section
3, the strategic games shall be transformed to individual decision problems under subjective un-
certainty so that we can apply the concept of the choice rule to strategic games. Furthermore,
iterative deletion processes based on these choice rules will be defined and we will discuss cri-
teria ensuring their order-independence. The main results of this paper are stated in Section 4.
There, at first, we will specify our epistemic model and, afterwards, we will prove that the rela-
tionship suggested above between the order-independence of iterative deletion processes and the
epistemic characterization of its solution with the common belief of choice rule following behav-
ior holds for a wide class of choice rules. As we will see, one precondition for this relationship
is that the choice rules satisfy the property of the independence of unfavorable acts. Since this
property is quite demanding, we shall also consider two weakenings of this property. Although
the relationship just mentioned breaks down, whenever in place of the independence of irrele-
vant alternatives one of these weakenings are presupposed, there still exist some interesting links
between the order-independence of iterative deletion processes and the common belief of choice
rule following behavior. In Section 5, we shall summarize our findings and point to their limita-
tions. For reasons of clarity, we have postponed the lengthy proofs of Lemmata 3.5 and 4.4 to the
Appendix.

2 Properties of Choice Rules

In order to decompose strategic games into individual decision problems under uncertainty, we
will follow the state space framework proposed by Savage (1954) and describe the uncertainty of
a decision maker by a set of possible states of the world. Each state represents a specific resolution
of all relevant uncertain features. For example, given a strategic game, the factor of uncertainty
with which a player is faced is the strategy choices of the other players.

Henceforth, Ω will denote the finite set of all possible states of the world and this set will be
called state space. A choice of a decision maker induces a specific profile of outcomes on the state

5
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space. Here, we shall assume that the outcomes are real numbers and therefore they could be
interpreted as monetary payoffs. Formally, a choice rule is a mapping assigning to each state of
the world a real-valued payoff. The set of all these mappings will be denoted by RΩ. According
to Savage (1954) these mappings will be called acts. In literature, acts are also known as state-
contingent claims (see e.g. Arrow, 1953). The ωth component of the act x shall be denoted by xω
and shall indicate the payoff the decision maker receives, when she has chosen the act x and the
state ω occurs. A subset E of Ω will be termed as event and the restriction of some act x ∈ RΩ on
E will be denoted by x|E . To save coherency to the following conventions, this notation differs
slightly from the notation generally found in decision theory, where restriction on E is simply
denoted by xE . An act is said to be constant, whenever it yields the same payoff at each state.
Constant acts are signed by an upper bar. Let α be a real number, then ᾱ is the act yielding, in each
state, the payoff α.

A non-empty finite subset B of RΩ shall be termed constraint and shall comprise all acts that
are available for the decision maker. A decision problem under uncertainty will be described by
a pair Φ := (Ω, B), where Ω is the state space specifying the uncertainty the decision maker is
faced with and B the constraint specifying the options the decision maker has at her disposal. Let
E ⊆ Ω be a non-empty event and Φ := (Ω, B) some decision problem under uncertainty, then
B|E := {x|E : x ∈ B} will denote the constraint reduced on E and Φ|E := (E,B|E) will denote
the decision problem Φ reduced on event E. The latter can be understood as the new decision
problem arising when the decision maker confide in the information that the actual state of the
world belongs to E.

A choice rule C is a mapping that assigns to each decision problem Φ := (Ω, B) a (possibly
empty) set C(Φ) ⊆ B of acts. The set C(Φ) will be called choice set and the acts belonging to this set
will be termed as favorable acts or best acts under choice rule C. Available acts which do not belong
to the choice set will be called unfavorable acts. In the following, we shall list properties of choice
rules which will become relevant for our analysis in the succeeding sections.

Definition 2.1 A choice rule C is said to be

• non-empty, if C(Φ) 6= ∅ holds for any decision problem Φ.

• non-trivial, if there are real numbers α, β ∈ R so that β̄ /∈ C(Ω, {ᾱ, β̄}) holds for some state space Ω.

• independent of payoff-equivalent states, if

C(Ω̃, {x ◦ τ : x ∈ B}) = {x ◦ τ : x ∈ C(Ω, B)}

holds for any decision problem (Ω, B) and for any surjective mapping τ : Ω̃→ Ω.

• independent of unfavorable acts, if
C(Φ) = C(Ω, B̃)

holds for any decision problem Φ := (Ω, B) and for any constraint B̃ satisfying C(Φ) ⊆ B̃ ⊆ B.

The property of non-emptiness says that any decision problem contains a favorable act and,
thus, any decision problem is solvable. To avoid grappling with existence problems we presup-
pose this property throughout this paper. Nevertheless, we should be aware that prominent choice
rules like e.g. the choice rule of strict dominance (i.e. the rule considering favorable only the avail-
able act that strictly dominates any other available act) violate this property.

The property of non-triviality requires the existence of a decision problem in which only two
constant acts are available and in which at least one of these two acts is considered unfavorable.

6
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Obviously, this property excludes the trivial choice rule that, for any decision problem, considers
any available act as a favorable act. Because any reasonable choice rule fulfills this property, it
seems unproblematic to presuppose this property in succeeding analysis.

The property of the independence of payoff-equivalent states is more disputable. It demands
that neither relabeling of the acts nor the addition or removal of payoff-equivalent states (i.e. states
which yield the same payoffs as some other state) do affect the choice behavior of the decision
maker. Obviously, whenever both non-triviality and the independence of payoff-equivalent states
are postulated, there exists real numbers α, β ∈ R so that β̄ /∈ C(Ω, {ᾱ, β̄}) holds for any arbitrary
state space Ω.

A prominent example of a choice rule that violates this property is the Laplace rule (also known
as the principle of insufficient reasoning) according to which any act is favorable which maximizes the
expected payoff, where any state of the world is supposed to be equally likely. To see its failure,
consider the two decision problems Φ1 and Φ̃1 depicted below in Figure 4.

Decision problem Φ1 Decision problem Φ̃1

States

Acts α β

x 5 0

y 2 2

States

Acts (α, 1) (β, 1) (β, 2)

x̃ 5 0 0

ỹ 2 2 2

Figure 4: Decision problems Φ1 and Φ̃1

As pictured, the decision problems Φ1 := (Ω, B) and Φ̃1 := (Ω̃, B̃) consist of the state spaces
Ω := {α, β} and Ω̃ := {(α, 1), (β, 1), (β, 2)}, respectively, and the constraints B := {x, y} and B̃ :=

{x̃, ỹ}, respectively. The projection τ assigning, to each state from Ω̃, the state from Ω having the
same Greek lower case is surjective and has the property B̃ = {z ◦ τ : z ∈ B}. In case, the decision
maker always applies the Laplace rule, act x is chosen in decision problem Φ1, whereas act ỹ is
chosen in decision problem Φ̃1. Obviously, this contradicts the property of the independence of
payoff-equivalent states.

The presumably most demanding property presented in Definition 2.1 is the property of the
independence of unfavorable acts. It requires that the choice behavior is not affected by omitting
unfavorable acts from the constraint. A prominent example of a choice rule violating the inde-
pendence of unfavorable acts is the minimax regret rule proposed already by Niehans (1948) and
Savage (1951). This rule considers favorable these available acts which minimize, over all states,
the deviation from the highest possible payoff in each state. In order to recognize that the minimax
regret rule is dependent of unfavorable acts, consider decision problem Φ3 depicted in Figure 5.

States

Acts α β

x 5 0

y 2 2

z 0 4

Figure 5: Decision problem Φ2

7
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Obviously, act x as well as act z are unfavorable acts in this decision problem. However, if act
z is omitted from the constraint, then act x becomes favorable, while act y becomes unfavorable.
This simple example shows, that the choice behavior resulting from the minimax regret rule is not
independent of the set of unfavorable acts.

Among the choice rules satisfying all properties listed in Definition 2.1 are prominent choice
rules like the maximin rule, the leximin rule (see Sen, 1970), Börgers’ dominance rule (see Börgers,
1993), the strict undominance rule in pure as well as in mixed acts, and the weak undominance
rule in pure acts as well as in mixed acts. The property of the independence of unfavorable acts
can be split up in the following two properties.6

Definition 2.2 The choice rule C satisfies

(a) property α0, if
C(Φ) ⊆ C(Ω, B̃)

holds for any decision problem Φ := (Ω, B) and for any subset C(Φ) ⊆ B̃ ⊆ B.

(b) property β0, if
C(Φ) ⊇ C(Ω, B̃)

holds for any decision problem Φ := (Ω, B) and for any subset C(Φ) ⊆ B̃ ⊆ B.

The property α0 requires that favorable acts remain favorable, even if unfavorable acts are
omitted from the constraint. Clearly, a choice rule C having this property satisfies the condition
C(Φ) = C(Ω, C(Φ)). The property β0 requires that unfavorable acts remain unfavorable, even if
other unfavorable acts are omitted from the constraint. As it can be easily derived from the above
decision problem Φ2, the minimax regret rule satisfies neither property α0 nor property β0.

The modified strict dominance rule defined in the Introduction satisfies property α0, but vi-
olates property β0. In order to show that the modified strict dominance rule satisfies property
α0, we note that x ∈ C(Φ) means either that (i) #B > 2 (i.e. the cardinality of the constraint is
larger than 2) and x strictly dominates every other available act, or (ii) #B > 2 and there exists
no act strictly dominating the other available acts, or (iii) #B ≤ 2 holds. In the first case, we
observe {x} = C(Φ). Obviously, for any subset B̃ of B containing act x, act x strictly dominates
all other acts belonging to B̃. Thus, x ∈ C(Ω, B̃) holds for any C(Φ) ⊆ B̃ ⊆ B. In the second
and third case, we observe B = C(Φ) and the desired property follows immediately. In order
to show that property β0 is violated, consider the decision problem of player R participating in
strategic game Γ3. Let Ω := {l, c, r} be her state space and, for simplicity, denote each available
act by the letter pertaining to the strategy that induces this act, then {u} = CR(Ω, {u,m, d}) and
{u,m} = CR(Ω, {u,m}) hold. Clearly, this contradicts property β0.

The average rule discussed in the Introduction violates property α0, but satisfies property β0.
The former claim can be established by the decision problem of player R participating in strategic
game Γ2. Let Ω := {l, r} be her state space and identify the available acts as just done. Obviously,
{u,m} = CR(Ω, {u,m, d}) and {u} = CR(Ω, {u,m}) hold, but this choice behavior contradicts our
property α0. In order to show that the average rule satisfies property β0, consider some decision
problem Φ = (Ω, B) with the constraint B := {x1, . . . , xn}, where the distinct available acts xn−1

6The naming of these properties follows the naming of Sen’s (1969) requirements on choice rules. As it can be easily
shown, our property α0 is a weakening of Sen’s property α, whereas our property β0 is a weakening of a slightly modified
version of Sen’s property β demanding that, if x, y ∈ B̃ ⊆ B, x ∈ C(Ω, B̃) and y ∈ C(Ω, B) hold, then x ∈ C(Ω, B) results.
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and xn are deemed unfavorable. Now, suppose that act xn is removed form the constraint B.
Since both acts are deemed unfavorable in the original decision problem, xn−1

ω < 1
n

∑n
k=1 x

k
w

as well as xnω < 1
n

∑n
k=1 x

k
w hold for any state ω ∈ Ω. The latter strict inequality is equivalent to

xnω <
1

n−1

∑n−1
k=1 x

k
w. Because xn−1

ω < 1
n

∑n−1
k=1 x

k
w+ 1

nx
n
ω is satisfied for any ω ∈ Ω, we obtain xn−1

ω <
1

n−1

∑n−1
k=1 x

k
w for any ω ∈ Ω. This strict inequality says that act xn−1 is deemed unfavorable even

in the new decision problem without act xn. By applying repeatedly this argument, it can be
established that the average rule satisfies property β0.

3 Order-Independence of Iterative Deletion Processes

Up to now it has been left open what is hidden behind a state of the world. Now, we concretize
the environment with which the decision maker is faced. Henceforth, we shall consider situations
in which a group of decision makers interact, that is, a situation in which the payoffs the decision
makers receive are affected not only by their own choice, but also by the choice of the other de-
cision makers. Such situations are usually called games and the rules how this interaction takes
place are recorded in the game form. In this paper, we shall restrict ourselves to the most simple
game form, the so-called strategic games. This class of games is characterized by the property that
individuals decide only once and simultaneously (i.e. no individual has observed the decisions of
the other individuals, when she decides to move).

Formally, a strategic game Γ will be described by a tuple Γ := (Si, zi)i∈N , whereN shall denote
a non-empty, finite set of players, Si a non-empty set of strategies for player i, and zi : ×j∈NS

j →
R player i’s payoff function. Throughout this paper, we presuppose that the strategic game is finite,
that is, the strategy set Si of every player i ∈ N is finite. Any combination s := (si)i∈N of the
players’ strategies will be referred to as a strategy profile. As usual, the set of all strategy profiles
shall be denoted by S := ×i∈NS

i and the set of all profiles listing strategies of players different to i
shall be denoted by S−i = ×j∈N\{i}S

j . Note, the payoff function zi assigns to each strategy profile
s a real-valued number zi(s) which will be interpreted as the monetary payoff, which player i
receives, if the strategy profile s is realized. The sequence

(
zi(si, s−i)

)
s−i∈S−i gives the possible

payoffs which player i can receive, if she chooses strategy si. Henceforth, this sequence will be
called the payoff profile of the strategy si on S−i. The two strategies si, s̃i ∈ Si of player i shall
be termed distinguishable in the strategic game Γ, whenever their payoff profiles are different (i.e.
there exists some combination s−i so that zi(si, s−i) 6= zi(s̃i, s−i) holds). The Cartesian product
R := ×i∈NR

i where Ri ⊆ Si holds for every player i ∈ N will be called a restriction of the
strategy space S, and the set of all restrictions of the strategic game Γ will be signed by SΓ. A
strategy si ∈ Si shall be said to belong to constraint R, whenever si ∈ Ri holds. Consider some
strategic game Γ and some restriction R ∈ SΓ. The strategic game Γ|R :=

(
Ri, zi|R

)
i∈N , where

zi|R denotes the restriction of the payoff function on the domain R, will be called the reduction of
game Γ on restriction R.

In order to apply some family (Ci)i∈N of choice rules to some strategic game Γ := (Si, zi)i∈N

we have to decompose the game into individual decision problems. Thereto, we introduce, for
each player i ∈ N , a mapping aiΓ that associates with each strategy si ∈ Si the act aiΓ(si) on S−i

which is specified by aiΓ(si) := zi(si, s−i) for each s−i ∈ S−i. Obviously, act aiΓ(si) which will
be also referred to as the act induced by the strategy si, gives the payoff profile of the strategy si.
Let Ri ⊆ Si. As usual, the set aiΓ(Ri) := {aiΓ(si) ∈ RS−i

: si ∈ Ri} is the image of Ri under the
mapping aiΓ. The set of acts that player i has to her disposal when she is participating in game Γ
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is determined by Bi
Γ := aiΓ(Si). Following this convention, the decision problem of player i can

be described by the pair Φi
Γ := (S−i, Bi

Γ). Henceforth, this pair shall also be referred to as the
strategic decision problem of player i in strategic game Γ. A strategy si will be called favorable in the
strategic game Γ, if aiΓ(si) ∈ Ci(Φi

Γ) applies, and unfavorable, if aiΓ(si) ∈ Bi
Γ but aiΓ(si) /∈ Ci(Φi

Γ)

holds. Let (aiΓ)−1 denote the inverse of the mapping aiΓ. Obviously, the strategy si is favorable in
the strategic game Γ, if and only if si ∈ (aiΓ)−1

(
Ci(Φi

Γ)
)

holds.
Consider some family C := (Ci)i∈N of choice rules. For each strategic game Γ := (Si, zi)i∈N ,

we set up a binary relation Γ→C on SΓ by

R
Γ→C R̃ :⇔ R̃ ⊆ R, R̃ 6= R, and si /∈

(
aiΓ|R

)−1 (
Ci(Φi

Γ|R)
)

for any player i ∈ N
and for any strategy si ∈ Ri \ R̃i .

Henceforth, the binary relation Γ→C will be called the reduction relation of the family C of choice
rules on the restrictions SΓ of the strategic game Γ. In words, R Γ→C R̃ says, that the restriction R̃
is distinct from the restriction R and contains at least all strategies that are favorable with respect
to the choice rules C in the reduced strategic game Γ|R. In case some restriction R̃ exists, so that
R

Γ→C R̃ is satisfied, restriction R shall be termed reducible. Otherwise, it shall be called irreducible.
Let Γ→∗C be the reflexive and transitive closure of the reduction relation Γ→C .7 A restriction R will
be said to be reachable, whenever S Γ→∗C applies.

A deletion process generated by some iterated deletion of unfavorable strategies with respect
to the choice rules C in the strategic game Γ corresponds to a sequence (Rt)

T
t=0 of restrictions of

SΓ satisfying the three conditions:

(i) R0 := S,
(ii) restriction Rt is reachable for any t ∈ {1, . . . , T},

(iii) restriction RT is irreducible.

Index t indicates the round of the iterative deletion process and set Ri
t (set R−it ) is the set of strate-

gies of player i (of strategies of the opponents of i, respectively) surviving t rounds of deletion.
The last componentRT of some iterative deletion process will be called the solution of this process.

Let us turn to the deletion process eliminating in each round all unfavorable acts. This process
will be referred to as the iterated maximal deletion of unfavorable strategies and is determined by the
sequence (Rt)

T
t=0 satisfying the condition

(iv) Rt := ∪{R̃ : Rt−1
Γ→C R̃} holds for each t ∈ {1, . . . , T},

in addition to the above conditions (i)-(iii). Clearly, for any family of non-empty choice rules and
for any finite strategic game, the solution produced by the iterated maximal deletion of unfavor-
able strategies is non-empty.

The iterative deletion processes based on the family (Ci)i∈N of choice rules shall be said to
be order-independent if, for all strategic games, all deletion processes generated by the iterated
deletion of unfavorable strategies with respect to these choice rules have the same solution. In
the remaining part of this section, we will discuss some sufficient and necessary conditions for
order-independence. By referring to a result of Newman (1942) for abstract reduction systems,

7Let S be a set and→⊆ S × S a binary relation on S. The reflexive and transitive closure of the binary relation→ is
a reflexive and transitive binary relation →∗ on S containing → and satisfying →∗ ⊆ for any reflexive and transitive
binary relation on S that contains→.
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Apt (2011) demonstrated that the following property on choice rules ensures that the iterative
deletion processes based on such rules are order-independent.8

Definition 3.1 A family (Ci)i∈N of non-empty choice rules is hereditary if for any strategic game Γ :=

(Si, zi)i∈N and for any restrictions R and R̃, where R Γ→C R̃ holds, the implication

if si /∈
(
aiΓ|R

)−1 (
Ci(Φi

Γ|R)
)

then si /∈
(
aiΓ|R̃

)−1 (
Ci(Φi

Γ|R̃
)
)

is satisfied for any player i ∈ N and for any strategy si ∈ Si.

The succeeding theorem reproduces the order-independence theorem of Apt (2011). We will
resort to this theorem during our epistemic motivation for order-independence in the following
section.

Theorem 3.2 (Apt, 2011) If the family (Ci)i∈N of choice rules is hereditary, then the iterated deletion
processes based on these choice rules are order-independent.

However, without any further preconditions, the property of heredity does not prove to be a
sufficient condition for order-independence. In order to verify this claim, consider the following
choice rule which we shall call the ”modified strict undominance rule”, henceforth. According to
this choice rule, for decision problems, in which at least four distinguishable acts are available, the
acts that are strictly undominated are considered unfavorable. For the remaining decision prob-
lems, this choice rule deems unfavorable only the strictly undominated acts that yield the lowest
total payoff (i.e. with the lowest total sum of payoffs received over all strategy combinations of
the opponents). Interestingly, although the modified strict undominance rule fails to be hereditary,
the iterative deletion processes based on this choice rule are order-independent.

Definition 3.3 A choice rule C is called monotone, if x /∈ C(Φ) implies x|E /∈ C(Φ|E) for any decision
problem Φ := (Ω, B) and for any non-empty event E ⊆ Ω.

The property of monotonicity demands that the restriction of an act, being unfavorable in the
original decision problem, on some eventE is also unfavorable in the decision problem reduced to
E. This requirement rules out behavior in which acts being once considered unfavorable become
favorable, when additional information about the true state of the world is disclosed. As it can
be easily shown, while prominent choice rules like the maximin rule, the weak undominance in
pure acts or the weak undominance in mixed acts violate monotonicity, other well-known choice
rules like Börgers‘ concept of undominance, the strict undominance in pure acts or the strict un-
dominance in mixed acts satisfy this property. Without any difficulty, it can also be verified that

8Indeed, the framework of which Apt (2011) makes use differs from ours but, as we will see, only in unessential aspects.
Although not faithfully, we can say - without any substantial loss - that Apt (2011) starts with a dominance mapping
D : SΓ → SΓ, where R \D(R) 6= ∅ and D(R) ⊆ R hold for any restriction R ∈ SΓ. The strategies of player i belonging
to D(R)i are said to be D−dominated in R. By this dominance mapping, a binary relation Γ→D on SΓ is constructed, where
R

Γ→D R̃ holds, whenever R̃ ⊆ R, R̃ 6= R and si ∈ Ri \ R̃i is D-dominated in R for any player i ∈ N and for any strategy
si ∈ Ri. Apt (2011) terms a dominance relation D as hereditary if, for any strategic games Γ, for any restriction R and R̃,
where R Γ→D R̃ holds, for any player i ∈ N and for any strategy si ∈ R̃i, from si is D-dominated in R it follows that si

is D-dominated in R̃. In order to bring into line these concepts to our framework, specify the dominance mapping D by
D(R) := ×i∈N{si ∈ Ri : si /∈

(
aiΓ|

R̃

)−1(Ci(R−i,Φi
Γ|R)

)
} for any restriction R ∈ SΓ. Obviously, taking into account this

specification, our definition of hereditary corresponds to that of Apt (2011).
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the average rule as well as the modified strict dominance rule, both already specified in the Intro-
duction, are monotone, too. The following remark establishes that property β0 and monotonicity,
together, imply hereditary.

Remark 3.4 Consider a non-empty family (Ci)i∈N of choice rules. If the choice rules of this family satisfy
property β0 and monotonicity, then this family is hereditary.

Proof. Consider some strategic game Γ := (Si, zi)i∈N and let R and R̃ be restrictions of Γ, where
R

Γ→C R̃ is satisfied. Consider some player k ∈ N and some strategy sk ∈ R̃k, where sk /∈(
aiΓ|R

)−1(Ck(Φi
Γ|R)

)
holds. By property β0, we obtain Ck(R−k, aiΓ|R(Rk)) ⊇ Ck(R−k, aiΓ|R(R̃k)).

Hence, sk /∈
(
aiΓ|R

)−1(Ck(R−k, aiΓ|R(R̃k))
)

holds. Finally, the property of monotonicity entails

sk /∈
(
aiΓ|R̃

)−1(Ck(Φk
Γ|R̃

)
)
. �

Note, due to Theorem 3.2, the iterative deletion processes generated by choice rules satisfying
property α0 as well as monotonicity are order-independent. As we already know, our average
rule satisfies both properties. Consequently, the iterative deletion processes based on this choice
rule are order-independent, as already claimed in the Introduction.

The following lemma reverses the standard issue in game theory regarding the order-indep-
endence of iterative deletion processes as addressed e.g. in Gilboa et al. (1990) or in Apt (2011).
Instead of figuring out catchy properties of choice rules ensuring order-independence of their iter-
ative deletion processes, we intend to find out which properties are inherent to choice rules whose
iterative deletion processes are order-independent. It turns out that, under certain presupposi-
tions on the players’ choice rules, order-independence entails that the players’ choice rules satisfy
property β0 and monotonicity.

Lemma 3.5 Suppose the non-empty and non-trivial choice rules of the family (Ci)i∈N satisfy the indepen-
dence of payoff-equivalent states and property α0. If the deletion processes generated by the iterated deletion
of unfavorable strategies with respect to the choice rules (Ci)i∈N are order-independent, then

(a) any of these choice rules satisfy property β0.

(b) any of these choice rules satisfy monotonicity.

Our Lemma 3.5 together with Theorem 3.2 and Remark 3.4 entails that the heredity of a fam-
ily of choice rules is equivalent to the order-independence of the iterative deletion processes
based on this family of choice rules, whenever each of these choice rules satisfies non-emptiness,
non-trivialness, the independence of payoff-equivalent states and property α0. Remarkably, our
modified strict undominance rule fulfills the first three preconditions of our equivalence result,
however violates property α0. As aforementioned, this choice rule is not hereditary, but order-
independent. Thereby, it is demonstrated that the equivalence between order-independence and
hereditary breaks down if property α is canceled from the preconditions stated in Lemma 3.5 .

4 An Epistemic Rationale for Order-Independence

In this section, we aim to provide an epistemic rationale for order-independent deletion processes
in strategic games. We will demonstrate that, provided the choice rules (Ci)i∈N fulfill the precon-
ditions listed in Definition 2.1, the deletion processes of iterated deletion of unfavorable strategies
with respect to these choice rules are order-independent if and only if, for any strategic game, the

12

Jena Economic Research Papers 2012 - 010



iterated maximal deletion of unfavorable strategies with respect to these choice rules gives exactly
the strategy profiles that are consistent with the choice rule following behavior and the common
belief of such behavior. This theorem relies on the order-independence theorem by Apt (2011),
we reproduced in Section 3, an epistemic characterization theorem by Trost (2010), we will dis-
cuss after introducing our epistemic framework, and two results connecting these two theorems.
Indeed, one of these two results is Lemma 3.5 saying that, under specific preconditions on the
choice rules, the property of monotonicity follows from the order-independence of the iterative
deletion processes based on these choice rules. The second result, which will be proved later in
this section, is a complement to Lemma 3.5 and establishes that, under specific preconditions on
the choice rules, the property of monotonicity is also a consequence from the coincidence of the
set of strategy profiles surviving the iterated maximal deletion of unfavorable strategies with the
set of strategy profiles being consistent with the choice rule following behavior and the common
belief of it.

The objective of the epistemic approach on games is to detect the implications of the players‘
beliefs about the opponents‘ choices and beliefs on the outcomes of the games. To accomplish this
objective, games are supplemented with epistemic models which enable to describe explicitly the
beliefs of the players. The epistemic analysis carried out in this paper is based on models that are
known as extended Kripke frames or Aumann structures (see Kripke, 1963 and Aumann, 1976).

Formally, our epistemic model to a strategic game Γ := (Si, zi)i∈N is a tuple MΓ :=
(
Ω, (P i, σi)i∈N

)
whose items are defined as follows. The finite set Ω denotes the state space. Its members will be
called states of the world and will represent a certain resolution of all relevant issues for the players.
The mapping P i : Ω → 2Ω is the serial, transitive and euclidean possibility correspondence of player
i assigning to each state ω the possibility set P i(ω) that comprises all states deemed possible by
player i at state ω.9 The mapping σi : Ω→ Si will be referred to as strategy function of player i and
reveals player i’s choice of strategy for each state. It is taken for granted that σi(ω̃) = σi(ω) holds
for any ω̃ ∈ P i(ω) and for any ω ∈ Ω. That is, at each state, player i does not err about (i.e. knows)
her own choice of strategy.

An event E ⊆ Ω is believed by player i at state ω, if P i(ω) ⊆ E applies. Let P∗ the transitive
closure of the possibility correspondences (P i)i∈N .10 This correspondence will be referred to as
the common possibility correspondence. Clearly, P i(ω) ⊆ P∗(ω) is satisfied for any ω ∈ Ω and any
i ∈ N . Moreover, it turns out (see e.g. Fagin et al., 1995, Lemma 2.2.1) that an event E is commonly
believed at state ω (i.e. at state ω, every player believes E, every player believes that every player
believes E, and so on), if and only if P∗(ω) ⊆ E applies. Note, if P i(ω) ⊆ E holds for any ω ∈ E
and for any player i ∈ N , then the event E is commonly believed at every state belonging to E.

Consider a strategic game Γ := (Si, zi)i∈N , in which the beliefs of the players about the op-
ponents’ choices and beliefs are captured by the epistemic model MΓ :=

(
Ω, (P i, σi)i∈N

)
. Let

aiMΓ
be the mapping that associates with each strategy si ∈ Si the act aiMΓ

(si) determined by
aiMΓ

(si) := zi(si, σ−i(ω)) for any state ω ∈ Ω. That is, aiMΓ
(si) is the payoff profile on the state

space induced by the strategy si. A player i ∈ N is said to follow (or to apply) the choice rule

9Recall, seriality means that, for any ω ∈ Ω, P i(ω) 6= ∅ is satisfied, transitivity means that, for any ω ∈ Ω, if ω̃ ∈ P i(ω),
then P i(ω̃) ⊆ P i(ω), and euclideanness means that, for any ω ∈ Ω, if ω̃ ∈ P i(ω), then P i(ω) ⊆ P i(ω̃) . Obviously,
transitivity and euclideanness entail that, for any ω ∈ Ω, if ω̃ ∈ P i(ω) holds, then P i(ω̃) = P i(ω) is satisfied.

10The mapping P∗ : Ω → 2Ω is termed a transitive closure of the possibility correspondences (P i)i∈N , whenever ω̃ ∈
P∗(ω) holds, if and only if there is a finite sequence (i1, . . . , im) in N and a finite sequence (ω0, ω1, . . . , ωm) in Ω such that
ω0 = ω, ωm = ω̃ applies and, for every k = 1, . . . ,m, ωk ∈ P ik (ωk−1) holds.
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Ci, whenever aiMΓ
(σi(ω))|P i(ω) ∈ Ci

(
P i(ω), aiMΓ

(Si)|P i(ω)

)
holds, that is, whenever her choice of

strategy at state ω is favorable with respect to the choice rule Ci and given her uncertainty P i(ω).
A player i is said to believe at state ω that player j follows choice rule Cj , if ajMΓ

(σj(ω̃))|P j(ω̃) ∈
Cj
(
P j(ω̃), ajMΓ

(Sj)|P j(ω̃)

)
applies to any state ω̃ ∈ P i(ω). We remark that, if player i believes

at state ω that she herself applies the choice rule Ci, then she actually applies the choice rule Ci

at this state. This results from our precondition that she knows her choice of strategy (formally,
σi(ω) = σi(ω̃) holds for any ω̃ ∈ P i(ω)) and that she knows which states she considers possible
(formally, P i(ω) = P i(ω̃) holds for any ω̃ ∈ P i(ω)). We say, that there is common belief at state ω that
the players follow the choice rules (Ci)i∈N , if aiMΓ

(σi(ω̃))|P i(ω̃) ∈ Ci
(
P i(ω̃), aiMΓ

(Si)|P i(ω̃)

)
is satisfied

for any ω̃ ∈ P∗(ω) and for any i ∈ N . Obviously, by the arguments stated above, the common
belief of applying the choice rules (Ci)i∈N at the state ω implies that the choice rules (Ci)i∈N are
actually applied by the players at the state ω. Therefore, whenever such common belief is presup-
posed, there is no need anymore for stating explicitly that the players will follow the choice rules,
as we did it hitherto.

Consider some strategic game Γ := (Si, zi)i∈N . An epistemic model MΓ to Γ is said to be
consistent with a statement about the world, whenever the model contains a state, in which this state-
ment is satisfied. A statement characterizes a set of T ⊆ S of strategy profiles, if the following two
conditions hold:

(i) (Consistency) If the epistemic model MΓ is consistent with the statement, then, at every state
satisfying this statement, some strategy profile s ∈ T is realized.

(ii) (Existence) For every strategy profile s ∈ T there exists an epistemic model MΓ which con-
tains a state in which this statement is satisfied and in which this strategy profile is realized.

An epistemic statement is a statement referring to the beliefs of the players. An epistemic charac-
terization for a solution concept is given, whenever an epistemic statement is found which charac-
terizes, for any strategic game, the set of strategy profiles resulting from this solution concept. For
our purpose, it becomes crucial to characterize the iterated maximal deletion of unfavorable strate-
gies with respect to a given family (Ci)i∈N of choice rules. As shown in Trost (2010), whenever
the choice rules satisfy specific preconditions, this solution concept is characterized by the com-
mon belief that the players follow these choice rules. One of these preconditions is the property of
reflexivity, which is defined as follows.

Definition 4.1 A choice rule C is called reflexive, if

C(E, C(Φ)|E)) ⊆ C(Φ|E)

holds for any decision problem Φ := (Ω, B) and for any non-empty event E ⊆ Ω.

To understand the property of reflexivity, recall that Φ|E is the decision problem of a decision
maker after receiving the reliable information that the actual state of the world belongs to the
event E. Reflexivity demands that, if some act is considered unfavorable after the decision maker
received information E, then this act is either unavailable or unfavorable in the decision prob-
lem whose constraint is limited to the acts which are favorable in the corresponding unrestricted
decision problem and whose state space corresponds to the information E. Remarkably, the aver-
age rule as well as the modified strict dominance rule, which we defined in the Introduction, are
reflexive. Furthermore, as shown next, reflexivity results from the properties β0 and monotonicity.

Remark 4.2 If some choice rule satisfies both property β0 and monotonicity, then it is reflexive.
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Proof. Consider some decision problem Φ := (Ω, B) and some non-empty event E ⊆ Ω. Mono-
tonicity leads to

C(Φ|E) ⊆ C(Φ)|E ⊆ B|E .

Finally, by property β0,
C(E, C(Φ)|E)) ⊆ C(Φ|E)

results. �

The following epistemic characterization of the iterated maximal deletion of unfavorable strate-
gies with respect to some given family of choice rules has been proved in Trost (2010). It provides
conditions on the choice rules ensuring that the solution of this iterative deletion process consists
exactly of the strategy profiles that are consistent with the common belief, among the players, that
they apply these choice rules.11

Theorem 4.3 (Trost, 2010) If the non-empty choice rules of the family (Ci)i∈N satisfy the independence
of output-equivalent states, property α0, reflexivity as well as monotonicity then, for every strategic game,
the solution of the iterated maximal deletion of unfavorable strategies with respect to these choice rules is
characterizable with the common belief of applying these choice rules.

The objective we pursue in this paper is not to provide an epistemic characterization for some
solution concept, rather we seek for an epistemic justification for applying order-independent
deletion processes to strategic games. The next lemma proves to be a crucial step to accomplish
this goal. It states, that under certain conditions on the players’ choice rules, the coincidence
between the solution generated by the iterated maximal deletion of unfavorable strategies and the
solution generated by the common belief of choice-rule following behavior implies that the choice
rules of all players satisfy property α0 and monotonicity.

Lemma 4.4 Suppose the non-empty and non-trivial choice rules of the family (Ci)i∈N satisfy the indepen-
dence of payoff-equivalent states and property β0. If the iterated maximal deletion of unfavorable strategies
is characterizable by the common belief of applying these choice rules, then

(a) any of the choice rules satisfies property α0

(b) any of the choice rules satisfies monotonicity,

11The following theorem can also be proved by resorting to two results of Apt (2010). Theorem 1(i) of Apt (2010) says
that, if the non-empty choice rules of all players are monotone, then any strategy profile being consistent with the common
belief of choice rule following behavior survives the global iterated maximal deletion of unfavorable strategies. Unlike our
iterative deletion process introduced in Section 3, the global version requires that, in every round, each strategy being
unfavorable in the original strategy set and given the remaining strategies of the opponents is eliminated. However, for the
case that the choice rules satisfy additionally property α0, it can be shown that the solution generated by our local version
of iterated maximal deletion corresponds to the solution generated by the global version of iterated maximal deletion. Fur-
thermore, according to Theorem 1(iii) of Apt (2010), every strategy profile surviving the global iterated maximal deletion
of unfavorable strategies is consistent, within the subclass of standard epistemic models, with the common belief of choice
rule following behavior. A standard epistemic model is defined as an epistemic model, in which the state space is equal to
the strategy space (i.e. Ω := ×i∈NS

i) and the strategy functions are specified by σi(s) := si for any state s ∈ Ω and for
any player i ∈ N . It turns out that, if the choice rules satisfy additionally the independence of payoff-equivalent states, the
previous restriction to the subclass of standard epistemic models can be omitted.
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The following theorem is one central result of this paper. It states that, provided the require-
ments on the choice rules listed in Definition 2.1 are fulfilled, the order-independence of the iter-
ative deletion processes based on these choice rules are satisfied if and only if, for each strategic
game, the solution of the iterated maximal deletion of unfavorable strategies consists exactly of
the strategy profiles being consistent with the common belief of applying these choice rules.

Theorem 4.5 Suppose the non-empty and non-trivial choice rules of the family (Ci)i∈N satisfy the proper-
ties of independence of payoff-equivalent states and of independence of unfavorable acts. Then the following
statements are equivalent:

(i) Iterated deletion of unfavorable strategies with respect to the choice rules (Ci)i∈N is order-independent.

(ii) Each choice rule of the family (Ci)i∈N satisfies monotonicity.

(iii) The iterated maximal deletion of unfavorable strategies is characterizable by the common belief of
applying the choice rules (Ci)i∈N .

Proof. (“(i) ⇒ (ii)”) This implication results from Lemma 3.5(b). (“(ii) ⇒ (i)”) According to Re-
mark 3.4, our presuppositions imply that the family (Ci)i∈N of choice rules is hereditary. As Apt
(2011) showed (see Theorem 3.2), this property entails the order-independence of iterative dele-
tion processes which are based on this family of choice rules. (“(ii)⇒ (iii)”) As Trost (2010) proved
(see Theorem 4.3), our presuppositions entail that the iterated maximal deletion of unfavorable
strategies with respect to the choice rules (Ci)i∈N gives exactly these strategy profiles which are
consistent with the common belief of following these choice rules. (“(iii)⇒ (ii)”) This implication
results from Lemma 4.4(b). �

As postulated in Theorem 4.5, the equivalence between the order-independence of iterative
deletion processes and the epistemic characterization of their solution by the common belief of
choice rule following behavior hinges on several preconditions on the choice rules underlying
these deletion processes. An obvious question is, whether these preconditions can be relaxed
without loosing this equivalence. In what follows, we shall examine the consequences of weaken-
ing the assumption of the independence of unfavorable acts on our epistemic rationale for order-
independence. Unfortunately, it turns out that these weakenings will result in a breakdown of
this motivation. However, it is still possible to formulate either necessary or sufficient epistemic
conditions for order-independence.

Theorem 4.6 Suppose the non-empty and non-trivial choice rules of family (Ci)i∈N satisfy the indepen-
dence of output-equivalent states and property α0. If the iterative deletion processes based on the choice rules
(Ci)i∈N are order-independent, then their solution is characterizable by the common belief of following the
choice rules (Ci)i∈N .

Proof. Suppose the iterative deletion processes based on the choice rules (Ci)i∈N are order-indep-
endent. Due to Lemma 3.5, any of these choice rules satisfies property β0 and monotonicity. As we
already know, the properties α0 and β0 together correspond to the property of the independence
of unfavorable acts. Hence, the presuppositions of Theorem 4.5 are fulfilled, and the solution of
the iterated (maximal) deletion of unfavorable strategies with respect to the choice rules (Ci)i∈N
is characterizable by the common belief of applying these choice rules. �

Remarkably, the antecedent of Theorem 4.6 does not imply the converse of its consequent.
To establish this claim, consider the modified strict dominance rule we specified in the Introduc-
tion. As we already know, this choice rule is independent of output-equivalent states and satisfies
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property α0 as well as reflexivity and monotonicity. According to the epistemic characterization
result of Trost (2010), the solution of the iterated (maximal) deletion of unfavorable strategies with
respect to this choice rule is characterizable by the common belief of applying this choice rule.
However, as we argued in the Introduction, the iterative deletion processes based on this choice
rule are order-dependent.

Theorem 4.7 Suppose the non-empty and non-trivial choice rules of family (Ci)i∈N of choice rules satisfy
the independence of output-equivalent states and property β0. If, for any strategic game, the solution of
the iterated maximal deletion of unfavorable strategies is characterizable by the common belief of choice rule
following behavior, then the iterative deletion processes based on these choice rules are order-independent.

Proof. Suppose that, for any strategic game, the solution generated by the iterated maximal dele-
tion of unfavorable strategies with respect to the choice rules (Ci)i∈N coincides with the set of
strategies consistent with the common belief of choice rule following behavior. According to
Lemma 4.4, any of these choice rules satisfies both property α0 and monotonicity. Hence, the
choice rules are independent of unfavorable acts. Finally, Theorem 4.5 entails that the iterative
deletion processes based on theses choice rules are order-independent. �

However, it turns out that the preconditions on the choice rules stated in Theorem 4.7 are
not sufficient for ensuring the converse of its conclusion. Take, as an example, the average rule
presented in the Introduction. As we already know, this choice rule is independent of output-
equivalent states and satisfies property β0, but not property α0. Furthermore, it is hereditary
and according to Apt (2011) the iterative deletion processes relying on this choice rule are order-
independent. However, applied to strategic game Γ2, their solution does not contain all strategy
profiles which are consistent with the common belief of following this choice rule.

5 Concluding Remarks

As we have seen, it is not generally true, that the order-independence of iterative deletion pro-
cesses means that their solutions correspond to the set of strategies being consistent with the com-
mon belief of applying the choice rules underlying these processes. However, and this is the main
result of this paper, if these choice rules are non-empty, non-trivial and independent of payoff-
equivalent states as well as of unfavorable acts, then the order-independence is equivalent to this
correspondence. Thereby, we have detected a comprehensible epistemic rationale for employing
order-independent iterative deletion processes on strategic games.

We do not deny that the preconditions for this epistemic motivation of order-independence are
quite demanding. Notably, the properties of the independence of payoff-equivalent states and of
the independence of unfavorable acts are restrictive and narrow the applicability of our epistemic
motivation for order-independence. As we will see, the following two prominent iterative dele-
tion processes are not captured by our theorems, because they fail in one of these independence
postulates.

The first well-known iterative deletion process not embraced by our analysis is the solution
concept of rationalizability put forth by Bernheim (1984) and Pearce (1984). This deletion process
is based on a choice rule, which we will call uncorrelated best response rule, henceforth, and which is
a tightening of the choice rule of strict undominance in mixtures. While the latter choice rule picks
out the acts which maximize the expected payoff for some uncorrelated probabilistic belief on the
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state space (see Pearce, 1984, Lemma 3 for this characterization), the choice rule of uncorrelated
best response favors only the acts which maximize the expected payoff for some uncorrelated (i.e.
independent) probabilistic belief on the state space. Without any difficulty, it can be shown that
the uncorrelated best response rule satisfies the properties of non-emptiness, non-triviality and
the independence of unfavorable acts. However, as we will demonstrate with the following two
strategic games Γ4 and Γ̃4, this choice rule fails to be independent of payoff-equivalent states.

Let us presuppose that player M takes part in both games and applies always the uncorre-
lated best response rule. The strategic game Γ4 depicted in Figure 6 has been taken from Os-
borne and Rubinstein (1994, Figure 58.1) and is a three-payer game, where player R’s strategy
space is SR := {u, d}, player C’s strategy space is SC := {l, r} and player M ’s strategy space is
SM := {m1,m2,m3,m4}. For simplicity, we have only recorded the payoffs player M receives. As
aforementioned, player M sticks by the uncorrelated best response rule, where p and q measure
the probability M could attach to the event that player R chooses strategy u and player C chooses
strategy l, respectively. Obviously, in order for m2 to be a favorable strategy to M the weak in-
equality 4pq + 4(1− p)(1− q) ≥ max{8pq, 8(1− p)(1− q), 3}must be satisfied for some values of
p, q ∈ [0, 1]. Since, the last weak inequality does not hold for any values of p and q, strategy m2

turn outs to be unfavorable to player M .

Player C

Player R

l r

u 8 0

d 0 0

m1

l r

u 4 0

d 0 4

m2

l r

u 0 0

d 0 8

m3

l r

u 3 3

d 3 3

m4

Player M

Figure 6: Three-player strategic game Γ4

The strategic game Γ̃4 depicted in Figure 7 is a two-player game, where player D’s strategy
space is given by S̃D := {ẽ, f̃ , g̃, h̃} and playerM ’s strategy space is given by S̃M := {m̃1, m̃2, m̃3, m̃4}.
Again, we have only depicted the possible payoffs of player M . Since strategy m̃2 maximizes the
expected payoff to the probabilistic belief assigning the same probability of 1

2 to player D’s strate-
gies ẽ and f̃ , this strategy is deemed favorable by player M in his strategic decision problem ΦM

Γ̃
.

Player M
m̃1 m̃2 m̃3 m̃4

Player D

ẽ 8 4 0 3

f̃ 0 0 0 3

g̃ 0 0 0 3

h̃ 0 4 8 3

Figure 7: Strategic Game Γ̃4

Obviously, the mapping τ : S̃D → SR × SC , specified by τ(ẽ) := (u, l), τ(f̃) := (d, l), τ(g̃) :=

(u, r) and τ(h̃) := (d, r), is bijective and aM
Γ̃

(m̃i) = aMΓ (mi) ◦ τ applies to any i = 1, . . . , 4. The
latter equality says that the strategies m̃i and mi induce the same payoff profile for player M .
Thus, the condition (S̃D, BM

Γ̃
) = (S̃D, {x ◦ τ : x ∈ BM

Γ }) is satisfied and the postulate of the
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independence of payoff-equivalent states would imply CM (S̃D, BM
Γ̃

) = {x ◦ τ : x ∈ CM (SR ×
SC , BM

Γ )}). However, as argued above, aMΓ (m2) ◦ τ ∈ CM (S̃D, BM
Γ̃

) and aMΓ (m2) /∈ CM (SR ×
SC , BM

Γ )}) hold, contradicting this independence postulate.
As Apt (2005) proved, the iterative deletion processes based on the uncorrelated best response

rule are order-independent. Furthermore, in Apt (2010), it is shown that their solution can be char-
acterized, within the subclass of standard epistemic models, by the common belief of following
this choice rule. Standard epistemic models are defined as epistemic models, in which the state
space corresponds exactly to the set of all strategy profiles (formally, Ω := ×i∈NS

i must hold)
and the strategy function of the players are projections on the players’ strategy space (formally,
σi(s) := si must hold for all player i ∈ N ).12 Apart from this restriction on the epistemic mod-
els, the solution concept of rationalizability would fit in with the result of our main Theorem 4.5,
although its underlying choice rule does not fulfill all preconditions of this theorem.

The other prominent iterative deletion process that is also not captured by our results is the
deletion process of iterated regret minimization which has been forcefully advocated by Halpern
and Pass (2012). Iterated regret minimization is defined as the iterated maximal deletion of un-
favorable strategies with respect to the minimax regret rule of Niehans (1948) and Savage (1951),
which, as we already know, fulfills all requirements listed in Definition 2.1 with the exception of
the independence of unfavorable acts.

Applied to strategic game Γ5 depicted in Figure 8 the iterative deletion processes based on this
choice rule produce different solutions, namely {(u, l)} or {(m, c)}, where the first solution results
from the iterated regret minimization. Interestingly, this solution is not reconcilable with the as-
sumption that the players have the common belief of minimax regret rule following behavior. To
see this, consider player R. Obviously, her strategy u becomes only favorable according to the
minimax regret rule, if she considers possible that player C chooses strategy r. The strategy r,
in turn, is only favorable with respect to the minimax regret rule, if player C considers possible
that player R chooses strategy d. However, this strategy is incompatible with minimax regret rule
following behavior. Thus, strategy u will not be realized in strategic game Γ5, if player R applies
the minimax regret rule, believes that player C applies this choice rule and believes that player C
believes that she applies this choice rule.

Player C
l c r

Player R
u (3, 3) (3, 2) (4, 1)

m (4, 2) (4, 3) (2, 2)

d (0, 1) (0, 1) (3, 3)

Figure 8: Strategic Game Γ5

Summing up, with this example, it has been demonstrated both that the iterative deletion
processes based on the minimax regret rule are order-dependent and that there is no coincidence
of their solutions with the set of strategies being characterizable by the common belief of following
this choice rule. Unfortunately, although this observation conforms with the consequent of our
Theorem 4.5, these iterative deletion processes are not covered by any of our results about order-

12See also the Footnote 11. There, we briefly sketched the epistemic framework used in Apt (2010).
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independence, since their underlying choice rule does not satisfy all preconditions of these results
(i.e. it does satisfy neither property α0 nor property β0).

Since the preconditions of our epistemic rationale for order-independence are quite restrictive,
we have attempted to relax this precondition without abandoning above epistemic motivation of
order-independence. For this purpose, we have split this independence postulate into two prop-
erties, called property α0 and property β0. It turns out that, whenever the individual choice rules
are only required to satisfy property α0 instead of the independence of unfavorable acts, order-
independence of the iterative deletion processes continues to imply that, for any strategic game,
their solution is characterizable by the common belief of applying the choice rules underlying
these processes. In the other case - whenever the choice rules are only required to satisfy property
β0 instead of the independence of unfavorable acts - the fact that, for any strategic game, the set of
strategies surviving the iterated maximal deletion of unfavorable strategies is characterizable by
the common belief of choice rule following behavior implies the order-independence of all itera-
tive deletion processes based on these choice rules. However, for both weakenings of the postulate
of the independence of unfavorable acts, the converses of these implications are not valid, as we
have demonstrated by the counterexamples of the so-called average rule and modified strict dom-
inance rule. That means, in both cases, the equivalence between the order-independence of the
iterative deletion processes and the epistemic characterization of the solution of the iterated max-
imal deletion of unfavorable acts by the common belief of applying the choice rules underlying
these processes breaks down.

Even if the consequent of our main result Theorem 4.5 breaks down for both weakenings,
this does not mean that the preconditions of our epistemic motivation for order-independence
postulated in this theorem are the weakest possible one. In fact, they are not, as the example
of iterated regret minimization reveals. Identifying a wider class of choice rules, for which our
motivation for order-independence still holds, remains a question of further research.

Interestingly, even our specification of an iterative deletion process by individual choice rules
proves to be restrictive. For example, the deletion processes of the iterated deletion of nicely
weakly dominated strategies, as introduced by Marx and Swinkels (1997), can not be captured by
our specification. According to Marx and Swinkels (1997), a strategy si nicely weakly dominates
a strategy s̃i on restriction R ⊆ S if (i) si weakly dominates s̃i on R−i and (ii) if for any s−i ∈ R−i

the equality zi(si, s−i) = zi(s̃i, s−i) implies the zj(si, s−i) = zj(s̃i, s−i) for all player j different to
i. Applying repeatedly their dominance concept to the trivial strategic game Γ6 depicted in Figure
9, we obtain the sets ∅, {(u,m)}, {(d,m)}, {(u,m), (d,m)} as possible solutions. However, if we
define the iterative deletion process in terms of (possibly, empty) choice rules, as we did in Section
3, only the sets ∅, {(u,m), (d,m)} are conceivable solutions. This divergence in the set of possible
solutions shows that the deletion process introduced by Marx and Swinkels (1997) is incompatible
with our specification of an iterative deletion process.

Player C
m

Player R
u (1, 1)

d (1, 1)

Figure 9: Strategic Game Γ6
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A further limitation of our work is that we only consider finite strategic games (i.e. games in
which the strategy sets of each player is finite) and finite epistemic models (i.e. epistemic models
with finite state spaces). In literature, there have been worked out two ways of dealing with
the issue of infinity. The first one is to add topological assumptions like e.g. in Dufwenberg
and Stegeman (2002), who established that the solutions of the iterative deletion processes based
on the strict undominance rule are unique, whenever the strategy sets are compact Hausdorff
spaces and the payoff functions are continuous. The second one is to generalize the iterative
deletion process to a transfinite recursion. This way has been pursued by Chen et al. (2007), who
proved that transfinite deletion processes based on the choice rule of strict undominance are order-
independent. Unquestionably, it might be a worthwhile project to extend our idea of an epistemic
motivation of order-independence to general strategic games and epistemic models, but on the
other side we also heavily presume that the properties listed in Definition 2.1 are still relevant for
an epistemic rationale for order-independence in general strategic games.

Appendix

Proof of Lemma 3.5:

(a) Let C := (Ci)i∈N be some family of non-empty and non-trivial choice rules being independent
of payoff-equivalent states and satisfying property α0. Suppose there is some player k whose
choice rule Ck violates property β0. That is, there exists some decision problem Φk := (Ωk, Bk),
some act x ∈ Bk and some constraint B̃k satisfying Ck(Φk) ⊆ B̃k ⊆ Bk so that x /∈ Ck(Φk), but
x ∈ Ck(Ωk, B̃k) hold. Consider the strategic game Γ := (Si, zi)i∈N consisting of the strategy sets

Si :=


Bk for player i = k,

Ωk for some arbitrary player i = l different to k,
{∅} for any player i different to k and l,

and the payoff functions assigning to each strategy profile s ∈ S the payoff

z̃k(y, s−k) := ysl for player k and for any strategy y ∈ Bk,

z̃l(ω, s−l) := 0 for player l and for any strategy ω ∈ Ωk,

z̃j(∅, s−j) := 0 for any player j different to k and l .

In what follows, we shall show that, for the strategic game Γ, a reachable restriction exists which
does not contain all strategies surviving some alternative iterative deletion process based on C.

At first, we remark that the independence of payoff-equivalent states entails

Ck(Φk
Γ) = {y ◦ τ : y ∈ Ck(Ωk, Bk)} , (1)

where τ denotes the projection from the strategy space S−k = Ωk × (×j 6=l,k{∅}) of player k’s
opponents on the state space Ωk. Because akΓ(y) = y ◦ τ holds for any act y ∈ Bk, we obtain the
identity

Rk
1 := (akΓ)−1

(
Ck(Φk

Γ)
)

= Ck(Ωk, Bk) .

From our presupposition x /∈ Ck(Ωk, Bk), it follows Rk
1 6= Sk. Let R1 := ×i∈NR

i
1 be the restric-

tion consisting of the sets Ri
1 := Si for any player i different to k. Obviously, S Γ→C R1 holds.

Remarkably, strategy x does not belong to the reachable restriction R1.
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Next, we shall construct an iterative deletion process on Γ based on the choice rules C whose
solution contain strategy x. The restrictions of this deletion process will be denoted by the upper-
case letter T , henceforth. Remember above identity (1). Due to this identity, our assumption
Ck(Ωk, Bk) ⊆ B̃k entails

Ck(Φk
Γ) ⊆ {y ◦ τ : y ∈ B̃k} =: akΓ(B̃k) ⊆ akΓ(Bk) .

The latter result says that any strategy of player k belonging to the set Bk \ B̃k is unfavorable in
the strategic game Γ. Determine T k

1 := B̃k. Since the difference Bk \ B̃k is non-empty, T k
1 6= Sk

applies. Define T1 := ×i∈NT
i
1 where T i

1 := Si is specified for any player i different to k. Obviously,
S

Γ→C T1 holds. Since x ∈ B̃k is presupposed, strategy x belongs to the restriction T1. Again, by
the independence of payoff-equivalent states, we reach the identity

Ck(Φk
Γ|T1

) = {y ◦ τ : y ∈ Ck(Ωk, B̃k)} . (2)

Let us start with the case that B̃k = Ck(Ωk, B̃k) is satisfied. Then, it follows

Ck(Φk
Γ|T1

) = {y ◦ τ : y ∈ B̃k} = akΓ|T1
(T k

1 )

from the identity (2). Consequently,(
akΓ|T1

)−1 (
Ck(Φk

Γ|T1
)
)

= T k
1 (3)

holds. Furthermore, non-emptiness implies(
aiΓ|T1

)−1 (
Ci(Φi

Γ|T1
)
)

= T i
1 (4)

for any player i different to k. The equations (3) and (4) reveal that, whenever B̃k = Ck(Ωk, B̃k)

holds, the restriction T1 is not further reducible and thus T1 becomes the solution of an iterative
deletion process on strategic game Γ.

Now, turn to the case, in which B̃k = Ck(Ωk, B̃k) is violated. That is, there exists an act x̃ ∈ B̃k

which is unfavorable for player k in the decision problem (Ωk, B̃k). Due to the identity (2), we
obtain

T k
2 :=

(
akΓ|T1

)−1 (
Ck(Φk

Γ|T1
)
)

= Ck(Ωk, B̃k) .

Because x̃ ∈ T k
1 and x̃ /∈ Ck(Ωk, B̃k) hold, T k

2 6= T k
1 results. Specify T2 := ×i∈NT

i
2 where T i

2 :=

T i
1 is defined for any player i different to k. Obviously, T1

Γ→C T2 holds. Remarkably, by our
presupposition x ∈ Ck(Ωk, B̃k), strategy x is contained in the restriction T2. The property α0

entails
T k

2 = Ck(Ωk, B̃k) = Ck
(

Ωk, Ck(Ωk, B̃k)
)

= Ck(Ωk, T k
2 ) .

By the independence of payoff-equivalent states, the identity(
akΓ|T2

)−1 (
Ck(Φk

Γ|T2
)
)

=
(
akΓ|T2

)−1 ({
y ◦ τ : y ∈ Ck(Ωk, T k

2 )
})

= T k
2 (5)

results, which says that each strategy of player k in her restriction T k
2 is favorable in the reduced

strategic game Γ|T2 . Furthermore, by non-emptiness, we obtain the identity(
aiΓ|T2

)−1 (
Ci(Φi

Γ|T2
)
)

= T i
2 (6)

for any player i different to k. The two identities (5) and (6) establish that the restriction T2 is not
further reducible and, thus, it constitutes a solution of an iterative deletion process on strategic
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game Γ. As aforementioned, x ∈ T k
2 holds and, hence, strategy x is contained in some solution of

an iterative deletion process based on the choice rules C.
Summing up, regardless whether our iterative deletion process consists of one or two rounds

of deletion, strategy x always belongs to the solution of this process. Consequently, the solution
of some iterative deletion process contains a strategy that does not belong to some reachable re-
striction (recall that x /∈ R1 applies). Thereby, it is established that the iterative deletion processes
based on the choice rules C are order-dependent. Or putting it differently, order-independence
requires that each of the choices rules underlying the iterative deletion processes must satisfy
property β0.

(b) Let C := (Ci)i∈N be some family of non-empty and non-trivial choice rules satisfying the
independence of payoff-equivalent states and property α0. Suppose there is some player k whose
choice rule Ck fails to be monotone. That is, there exists some decision problem Φk := (Ωk, Bk),
some act x ∈ Bk and some eventE ⊆ Ωk so that x /∈ Ck(Φk), but x|E ∈ Ck(E,Bk|E) hold. Consider
the strategic game Γ̃ := (S̃i, z̃i)i∈N with the same strategy sets as specified in the previous part (a)
(i.e. S̃ := S), but with the payoff functions, assigning to any strategy profile s ∈ S, the payoff

z̃k(y, s−k) := ysl for player k and for any strategy y ∈ Bk,

z̃l(ω, s−l) :=

{
α , if ω ∈ E
β , if ω /∈ E

for player l and for any strategy ω ∈ Ωk,

z̃j(∅, s−j) := 0 for any player j different to k and l,

where α, β are the real numbers for which β̄ /∈ Cl(Ω, {ᾱ, β̄}) holds. Note, because the choice rule Cl

is supposed to be non-trivial, the existence of these numbers is guaranteed. Furthermore, by the
independence of payoff-equivalent states, we can specify Ω := Bk without any loss of generality.
Analogously to the part (a), we shall demonstrate that, for the strategic game Γ̃, a reachable re-
striction exists which does not contain all strategies surviving some alternative iterative deletion
process. To differentiate the restrictions of Γ̃ from those of Γ we will sign the formers with the
circumflex .̃

Let the restriction R̃1 be defined as in part (a), but for which strategic game Γ̃ is considered

instead of strategic game Γ. By the same arguments as in part (a), it turns out, that S Γ̃→C R̃ holds
and that strategy x does not belong to the reachable restriction R̃1.

Next, we will construct an iterative deletion process on Γ̃ based on the choice rules C whose
solution contains strategy x. Its restrictions shall be denoted by upper-case letter T , henceforth.
Due to the independence of output-equivalent states, the identity

Cl(Φl
Γ̃
) =

{
y ◦ τ̃ l : y ∈ Cl(Bk, {ᾱ, β̄})

}
=
{
ᾱ ◦ τ̃ l

}
results, where τ̃ l is the projection from the strategy space Bk× (×j 6=k,l{0}) of player l’s opponents
to the state space Bk. Because alΓ(ω) = ᾱ ◦ τ l holds, if and only if ω ∈ E holds, we obtain

T̃ l
1 :=

(
al

Γ̃

)−1 (Cl(Φl
Γ̃
)
)

= E .

By presupposition, E 6= Ωk applies. Therefore, the restriction T̃1 := ×i∈N T̃
i
1, where T̃ i

1 := Si is

specified for any player i different to l, satisfies S Γ̃→C T̃1. Again, the independence of payoff-
equivalent states guarantees the identity

Ck(Φk
Γ|T̃1

) =
{
y ◦ τ̃k : y|E ∈ Ck(E,Bk|E)

}
, (7)
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where τ̃k is the projection from the restriction E× (×j 6=k,l{0}) of player k’s opponents to the event
E.

At first, consider the case that Bk|E = Ck(E,Bk|E) is satisfied. Resorting to the arguments put
forward in part (a), it follows that (

ai
Γ̃|T̃1

)−1(
Ci(Φi

Γ̃|T̃1

)

)
= T̃ i

1

holds for any player i ∈ N . The latter identity says that the restriction T̃1 is no further reducible
and thus T̃1 is the solution of some iterative deletion process on the strategic game Γ̃.

Now, turn to the case that Bk|E = Ck(E,Bk|E) is violated. That is, there exists an act x̃ ∈ Bk

which is unfavorable for player k in the reduced decision problem (E,Bk|E). Due to the identity
(7), we attain

T̃ k
2 :=

(
ak

Γ̃|T̃1

)−1(
Ck(Φk

Γ̃|T̃1

)

)
=
{
y : y|E ∈ Ck(E,Bk|E)

}
.

Because x̃ ∈ T̃ k
1 , but also x̃|E /∈ Ck(E,Bk|E) applies, T̃ k

2 6= T̃ k
1 is satisfied. Specify T̃ i

2 := T̃ i
1 for

each player i different to k and define T̃2 := ×i∈N T̃
i
2. Obviously, T̃1

Γ̃→C T̃2 holds. Remarkably, by
our presupposition x|E ∈ Ck(Ωk, Bk|E), strategy x is contained in the restriction T̃2. Similar to the
arguments given in the part (a), property α0, the independence of payoff-equivalent states and the
non-emptiness lead to the identity(

ai
Γ̃|T̃2

)−1(
Ci(Φi

Γ̃|T̃2

)

)
= T̃ k

2

for any player i ∈ N . These identities establish that the restriction T̃2 is not further reducible
and, thus, T̃2 constitutes a solution of some iterative deletion process on strategic game Γ̃. As
aforementioned, x ∈ T̃ k

2 holds and, hence, strategy x is contained in the solution of some iterative
deletion process which is based on the choice rules C.

Summing up, regardless whether above iterative deletion process consists of one or two rounds
of deletion, strategy x always belongs to the solution of this process. Hence, the solution of some
iterative deletion process on Γ̃ contains a strategy that does not belong to some reachable restric-
tion (recall that x /∈ R̃1 holds). Thereby, it is established that the iterative deletion processes based
on the choice rules C are order-dependent. Or putting it differently, their order-independence re-
quires that each of the choices rules underlying these deletion processes must be monotone. �

Proof of Lemma 4.4:

(a) Let C := (Ci)i∈N be some family of non-empty and non-trivial choice rules satisfying the in-
dependence of payoff-equivalent states and property β0. Suppose there is some player k whose
choice rule Ck violates property α0. That is, there exists some decision problem Φk := (Ωk, Bk),
some act x ∈ Bk and some constraint B̃k satisfying Ck(Φk) ⊆ B̃k ⊆ Bk so that x ∈ Ck(Φk), but
x /∈ Ck(Ωk, B̃k) hold. Obviously, Bk 6= B̃k holds and, thus, Bk 6= Ck(Φk) applies.

Consider the strategic game Γ specified in Lemma 3.5(a) and frame it with the epistemic model
MΓ :=

(
Ω, (P i, σi)i∈N

)
consisting of state space Ω := Ωk, the strategy functions assigning strategy

σi(ω) :=


x , if player i = k,

ω , if player i = l,

∅ , otherwise,
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to any state ω ∈ Ω, and the possibility correspondences P i(ω) := Ω for any player i ∈ N and any
state ω ∈ Ω. Obviously, for every state, the players act as if they follow the choice rules (Ci)i∈N
and, hence, for every state, there is common belief, among the players, that they apply these choice
rules. Since strategy x is realized in each state, this simple epistemic model confirms that strategy
x is compatible with the common belief of choice rule following behavior.

Now, look at the deletion process generated by the iterated maximal deletion of unfavorable
strategies with respect to C. Specify

R̂i
1 :=

(
aiΓ
)−1 (Ci(Φi

Γ)
)

for each player i ∈ N . By the independence of payoff equivalent states, the identity

R̂k
1 =

(
aiΓ
)−1 ({y ◦ τ : y ∈ Ck(Ωk, Bk)}

)
= Ck(Ωk, Bk)

holds, where τ denotes the projection from the strategy space S−k = Ωk×(×j 6=l,k{∅}) of player k’s
opponents on the state space Ωk. Moreover, the non-emptiness ensures the identity R̂i

1 = Si for
any player i different to k. Because Bk 6= Ck(Ωk, Bk) applies, the restriction R̂1 := ×i∈N R̂

i
1 differs

from the strategy space S and thus S Γ→C R̂1 holds. According to our construction, the restriction
R̂1 is the first round of the process generated by the iterated maximal deletion of unfavorable
strategies. Since we presupposed x ∈ Ck(Φk), strategy x survives this round.

Proceed with specifying the sets

R̂i
2 :=

(
aiΓ|R̂1

)−1 (
Ci(Φi

Γ|R̂1

)
)

for each player i ∈ N . By the independence of payoff equivalent states, the identity

R̂k
2 =

(
aiΓ|R̂1

)−1 (
{y ◦ τ : y ∈ Ck(Ωk, R̂k

1)}
)

= Ck(Ωk, R̂k
1)

results. In what follows, we will demonstrate that strategy x does not belong to R̂k
2 . Note, if

B̃k = Ck(Φk) holds, then x /∈ Ck(Ωk, R̂k
1) results and thus x /∈ R̂k

2 follows immediately. Consider
the remaining case that B̃k = Ck(Φk) is not satisfied. Define the set B̂k := {z ∈ B̃k : z /∈ Ck(Φk)}
consisting of all strategies of player k belonging to the constraint B̃k as well as being unfavorable
in the original decision problem Φk. By property β0, we obtain z /∈ Ck(Ωk, B̃k) for any z ∈ B̂k.
Remember, x ∈ B̃k as well as x /∈ Ck(Ωk, B̃k) have been presupposed. Since B̂k ⊆ B̃k \Ck(Ωk, B̃k)

is satisfied, property β0 implies x /∈ Ck(Ωk, B̃k \ B̂k). Due to the identity B̃k \ B̂k = Ck(Ωk, Bk) we
obtain R̂k

2 = Ck(Ωk, B̃k \ B̂k). Hence, x /∈ R̂k
2 results.

Obviously, the restriction R̂2 := ×i∈N R̂
i
2 differs from restriction R̂1. Therefore, R̂1

Γ→C R̂2 ap-
plies. According to the above construction, the restriction R̂2 corresponds to the second round of
the deletion process generated by the iterated maximal deletion of unfavorable strategies with re-
spect to the choice rules C. Remarkably, strategy x does not survive this deletion process, although
it is consistent with the common belief of following these choice rules. Putting it differently, if for
any strategic games the solution of the iterated maximal deletion of unfavorable strategies with
respect to the choice rules C is characterizable by the common belief of applying these choice rules,
then any of the choice rules must satisfy property α0.

(b) Let C := (Ci)i∈N be some family of non-empty and non-trivial choice rules satisfying
the independence of payoff-equivalent states and property β0. Suppose there is some player k
whose choice rule Ck violates the property of monotonicity. Hence, there exists some decision
problem Φk := (Ωk, Bk), some act x ∈ Bk and some event E ⊆ Ωk so that x /∈ Ck(Φk), but
x|E ∈ Ck(E,Bk|E) hold.
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Consider the strategic game Γ̃ constructed in Lemma 3.5(b) and frame it with the epistemic
model MΓ̃ :=

(
Ω, (P i, σi)i∈N

)
consisting of the state space Ω := E, the strategy functions defined

by

σi(ω) :=


x , if player i = k,

ω , if player i = l,

∅ , otherwise .

for any state ω ∈ Ω, and the possibility correspondences P i(ω) := Ω for any state ω ∈ Ω and for
any player i ∈ N .

Obviously, in each state ω ∈ Ω, each player acts according to her choice rule and thus there is,
in each state, common belief of choice rule following behavior. Furthermore, for each state ω ∈ Ω,
strategy x is realized. Hence, choosing strategy x is consistent with the common belief of choice
rule following behavior. However, as already shown in Lemma 3.5(b), strategy x is not contained
in the restriction T1. As it can be easily checked, restriction T1 corresponds to the first round of
the iterated maximal deletion of unfavorable strategies with respect to the choice rules C. Hence,
strategy x does not survive this iterative deletion process. We conclude that if, for any strategic
game, the solution of the iterated maximal deletion of unfavorable strategies corresponds to the
set of strategy profiles being consistent with the common belief of choice rule following behavior,
then any of the choice rules must be monotone. �
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