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LEVEL SETS AND NON GAUSSIAN INTEGRALS OF

POSITIVELY HOMOGENEOUS FUNCTIONS

J.B. LASSERRE

Abstract. We investigate various properties of the sublevel set {x :
g(x) ≤ 1} and the integration of h on this sublevel set when g and h

are positively homogeneous functions. For instance, the latter integral
reduces to integrating h exp(−g) on the whole space Rn (a non Gaussian
integral) and when g is a polynomial, then the volume of the sublevel
set is a convex function of the coefficients of g. In fact, whenever h is
nonnegative, the functional

∫
φ(g(x))h(x)dx is a convex function of g

for a large class of functions φ : R+ → R. We also provide a numer-
ical approximation scheme to compute the volume or integrate h (or,
equivalently to approximate the associated non Gaussian integral). We
also show that finding the sublevel set {x : g(x) ≤ 1} of minimum vol-
ume that contains some given subset K is a (hard) convex optimization
problem for which we also propose two convergent numerical schemes.
Finally, we provide a Gaussian-like property of non Gaussian integrals
for homogeneous polynomials that are sums of squares and critical points
of a specific function.

1. Introduction

Positively homogeneous functions (PHF) form a wide class of functions
that one encounters in many applications. As a consequence of homogeneity,
they enjoy very particular properties, and among them the celebrated and
very useful Euler’s identity which allows to deduce additional properties of
PHFs in various contexts. One goal of this paper is to show that another
not well-known property of PHFs yields surprising and unexpected results,
some of them already known in particular cases. Namely, we are concerned
with PHFs, their sublevel sets and in particular, the integral

(1.1) y 7→ Ig,h(y) :=

∫

{x : g(x)≤y}
h(x) dx,

as a function Ig,h : R+ → R when g, h are PHFs. With y fixed, we are
also interested in Ig,h(y) now as a function of g, especially when g is a
nonnegative homogeneous polynomial. Nonnegative homogeneous polyno-
mials are particularly interesting as they can be used to approximate norms;
see e.g. Barvinok [4, Theorem 3.4]. Interestingly, the integral (1.1) is
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2 J.B. LASSERRE

related in a simple and remarkable manner to the non-Gaussian integral
∫

Rn h exp(−g)dx and therefore, any information on either one can help un-
derstanding and evaluating the other.

Functional integrals appear frequently in quantum Physics. In the impor-
tant particular case when h = 1, Morosov et Shakirov [17] proved that for
all forms g of degree k,

(1.2) Ig,1(1) = cte(k) ·
∫

Rn

exp(−g)dx,

where the constant depends only on k. In fact, a formula of exactly the same
flavor was already known for convex sets, and was the initial motivation and
starting point of this paper. Namely, if C ⊂ R

n is convex, its support
function σC is a PHF of degree 1, and the polar C◦ ⊂ R

n of C is the convex
set {x : σC(x) ≤ 1}. Then

vol (C◦) =
1

n!

∫

Rn

exp(−σC(x)) dx, ∀C.

(See e.g. Hiriart-Urruty [3, Exercise 65, p. 243-244] and Barvinok [4, Prob-
lem 4, p. 207].) In fact, as we will see, the intriguing result (1.2) is a
particular case of a more general and striking result about PHFs.

The connection between Ig1 and
∫
exp(−g) is a consequence of what the

authors in [17] call action-independence of integral discriminants. That is,
for a very general class of univariate functions φ, and for every form g of
degree d,

(1.3)

∫

φ(g(x))dx = C(φ, d) · θ(g),

for some function θ, where the constant C(φ, d) depends only on φ and d;
see [17, (73)]. And so for instance, with the choices t 7→ φ1(t) = 1[0,1](t) and
φ2(t) = exp(−t), and with R

n as integration contour,
∫

{x : g(x)≤1}
dx =

C(φ1, d)

C(φ2, d)

∫

Rn

exp(−g) dx, ∀g,

whenever any of the above integrals finite. In Morosov and Shakirov [17] the
motivation of the authors was not to connect Ig1 with

∫
exp(−g) but rather

to study a specific class of non-Gaussian integrals, the so-called integral
discriminants. In fact, the theory of integral discriminants which lies in the
field of non linear algebra, extends to integrals on more general contours of
integration, and Ward identities permits to study properties of such integrals
that are invariant under a change of contour of integration. Hence the goal
in [17] is to provide exact formulas for integral discriminants in terms of
algebraic invariants of the form g involved in the exponent; several highly
non trivial examples are provided in [18, 22] and some of their results are
further analyzed in Fuji [7] and Stoyanovsky [23].
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Contribution. In the present paper we do not study non Gaussian inte-
grals from the point of view of algebraic invariants as in e.g. [17, 18, 22].
We are interested in properties of the integral (1.1) (and variants as well)
and its associated non-Gaussian integral

∫

Rn h exp(−g)dx for PHFs that are
not necessarily polynomials. Among other things, we are also interested in
methods for their evaluation (or approximation). More precisely:

(a) We first extend the action-independence property (1.3) to PHFs of
degree 0 6= d ∈ R. Namely, given a measurable mapping φ : R+ → R, and
g, h PHFs of respective degree 0 6= d, p ∈ R and such that

∫
|h| exp(−g)dx

is finite,

(1.4)

∫

Rn

φ(g(x))h(x) dx = C(φ, d, p) ·
∫

Rn

h exp(−g) dx,

where the constant C(φ, d, p) depends only on φ, d, p. In particular, if the
sublevel set {x : g(x) ≤ 1} is bounded, then for every nonnegative y ∈ R,

(1.5)

∫

{x : g(x)≤y}
hdx =

y(n+p)/d

Γ(1 + (n+ p)/d)

∫

Rn

h exp(−g) dx,

with Γ being the standard Gamma function1. And so the (Lebesgue) volume
of the sublevel set {x : g(x) ≤ y} is given by:

(1.6) vol ({x : g(x) ≤ y}) =
yn/d

Γ(1 + n/d)

∫

Rn

exp(−g) dx.

As already mentioned, when h(x) = 1 for all x, and g is a positive definite
form, (1.6) was already proved in Morosov et Shakirov [17, (75) p. 39]. In
fact, the same arguments as in [17] can be adapted to PHFs g and with
h 6= 1. The same technique applies for the integral

Ig1,...,gm,h :=

∫

{x : gk(x)≤1, k=1,...,m}
hdx,

for a finite family (gk), h of PHFs with same degree 0 < d ∈ R.
In addition, we obtain the identity

∫

{x : g(x)≤y}
exp(−g)hdx

∫

Rn

exp(−g)hdx
=

∫ y

0
exp(−z)z(n+p)/d−1 dz

Γ((n+ p)/d)
,

which expresses how fast µ({x : g(x) ≤ y}) converges to µ(Rn)(=
∫
exp(−g)hdx)

when y → ∞ and µ has the non Gaussian density h exp(−g) with respect
to the Lebesgue measure. It is the same speed with which the truncated
(Gamma) integral

∫ y
0 exp(−z)z(n+p)/d−1 dz converges to Γ((n+ p)/d).

(b) We also provide an alternative and simple proof based on

Laplace transform (in the spirit of Lasserre and Zeron [13] to provide

1The Gamma function Γ : R → R is defined by a 7→ Γ(a) :=
∫

∞

0
ta−1 exp(−t)dt, for

every a > −1.
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explicit expressions for certain integrals on specific domains like e.g., a sim-
plex or an ellipsoid). This proof permits to interpret (1.2) as duality result in
the usual (·,+)-algebra which parallels duality in convex optimization, i.e.,
in the (max,+)-algebra. This complements the list of the many remarkable
properties of homogeneous functions; for instance in [12] for integration, in
[9] for optimization, and in [14] for several properties of some conjugates of
homogeneous functions.

(c) Convexity: (1.5) also helps analyze properties of the mapping fh :
Cd → R,

g 7→ fh(g) :=

∫

{x : g(x)≤1}
h(x) dx, ∀ g ∈ Cd,

where Cd is the space of nonnegative PHFs of degree 0 6= d ∈ R with
bounded sublevel set {x : g(x) ≤ 1}, and h is a given PHF. Whenever h is
nonnegative, fh is strictly convex and when g is a homogeneous polynomial,
we provide an explicit expression of its gradient and Hessian on the interior
of its domain. This is the analogue in our context of a formula already
provided in Müller et al. [19] when the integration domain is a polytope.

This convexity property is important. For instance, given K ⊂ R
n, it

shows that the problem of computing a homogeneous polynomial g such that
{x : g(x) ≤ 1} contains K and has minimum volume, is a finite-dimensional
convex optimization problem (but hard to solve even though it is convex)!
This problem has received a lot of attention with an elegant solution in the
case d = 2 (that is, finding the ellipsoid of minimum volume). Notice that
here with d > 2 the problem is still convex even though the sublevel set
{x : g(x) ≤ 1} is not required to be convex. We present two numerical
approximation schemes based on semidefinite programming, that provide
sequences of upper and lower bounds that converge to minimum volume.

(d) Polarity: When g is a convex PHF of degree d ∈ R with compact
sublevel set G = {x : g(x) ≤ 1}, the polar G◦ is a certain sublevel set of the
Legendre-Fenchel conjugate g∗ of g, which is itself a PHF of degree q with
1/d+ 1/q = 1 and therefore we also obtain the volume of G◦ in the form of
non Gaussian integral, the dual analogue of the one obtained for G.

(e) Numerical approximation: Evaluating a non Gaussian integral
∫
exp(−g) is a very hard problem even if in some cases exact results can be

obtained from some algebraic invariants of g, as in e.g. [17, 18, 22]. However,
it turns out that (1.5) is indeed very useful to approximate non Gaussian
integrals from polynomials. Indeed, when h is a polynomial and g is a homo-
geneous polynomial, we show how to approximate the non Gaussian integral
∫
h exp(−g)dx, as closely as desired, by solving a hierarchy of so-called semi-

definite programs. This numerical approximation scheme complements the
exact results mentioned above.

(f) A Gaussian-like property: Finally we also prove a (again intrigu-
ing) Gaussian-like property of homogeneous polynomials that are sums of
squares (SOS). Recall that every homogeneous and SOS polynomial g of
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degree 2d can be written as ṽd(x)
TΣṽd(x) for some positive semidefinite

matrix Σ (not unique in general) and where ṽd(x) is the vector of all mono-
mials of degree d. If we now consider the function

Σ 7→ θ(Σ) = (detΣ)k
∫

exp(−kṽd(x)TΣṽd(x)),

where k = n/(2dℓ(d)) (with ℓ(d) =
(n+d−1

d

)
), then its critical points are the

positive semidefinite matrices Σ such that Σ−1 is the matrix of moments of
order 2d associated with the non Gaussian density exp(−kṽd(x)TΣṽd(x))
(normalized to be a probability density) ... exactly like in the Gaussian case
(i.e. when d = 1) where Σ−1 is a covariance matrix! (In the latter case, the
function θ is constant, hence all points Σ are critical).

2. sublevel sets and non Gaussian integrals

2.1. Notation and definitions. Let R[x] be the ring of polynomials in the
variables x = (x1, . . . , xn) and let R[x]d be the vector space of polynomials

of degree at most d (whose dimension is s(d) :=
(n+d
n

)
). For every d ∈ N,

let N
n
d := {α ∈ N

n : |α| (= ∑

i αi) = d}, and let vd(x) = (xα), α ∈ N
n, be

the vector of monomials of the canonical basis (xα) of R[x]d. Denote by Sk
the space of k × k real symmetric matrices with scalar product 〈B,C〉 =
trace (BC); also, the notation B � 0 (resp. B ≻ 0) stands for B is positive
semidefinite (resp. positive definite).

A polynomial f ∈ R[x]d is written

x 7→ f(x) =
∑

α∈Nn

fα x
α,

for some vector of coefficients f = (fα) ∈ R
s(d).

A real-valued continuous function f : R
n → R is homogeneous (resp.

positively homogeneous) of degree k (k ∈ R) if f(λx) = λkf(x) for all
λ 6= 0 (resp. for all λ > 0) and all x ∈ R. For instance if x 7→ f(x) is
homogeneous of degree k, then |f | is positively homogeneous of degree k
(but not homogeneous). Let us denote by:

• Cd the convex cone of PHFs g of degree d ∈ R with bounded sub-
level set G := {x : g(x) ≤ 1}. Notice that necessarily d 6= 0 and
any g ∈ Cd is nonnegative. Indeed, if d = 0 then x ∈ G implies
λx ∈ G for every λ > 0, in contradiction with boundedness of G.
Similarly, assume that g(x0) < 0 for some some x0 (hence x0 ∈ G).
As g(λx0) = λdg(x0) < 0 for every λ > 0, λx0 ∈ G for every λ > 0,
again in contradiction with boundedness of G.

• P[x]d ⊂ R[x]d, d ∈ N, the convex cone of homogeneous polynomials
of degree d with compact sublevel set {x : g(x) ≤ 1}. Hence,
P[x]d ⊂ Cd whenever d ∈ N.
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Remember that a convex function is proper if f(x) > −∞ for all x and
f(x) < +∞ for some x. A proper convex function is closed if it is lower
semicontinuous; see Rockafellar [21].

In the sequel we will need the following result which extends to PHFs of
degree d ∈ R, one already used in [17] for forms of degree d ∈ N (and also
used in Hiriart-Urruty [3] for the volume of the polar of a convex set).

Lemma 2.1. Let d, p ∈ R with d 6= 0, and let φ : R+ → R+ be a measurable
function such that

∫ ∞

0
tn+p−1φ(td) dt <∞,

and let g, h be nonnegative PHFs of degree 0 6= d ∈ R and p ∈ R respectively.

The functional

∫

Rn

φ(g(x))h(x) dx is finite if and only if

∫

Rn

h exp(−g)dx <
+∞, in which case:

(2.1)

∫

Rn

φ(g(x))h(x) dx =

d

∫ ∞

0
tn+p−1φ(td) dt

Γ((n+ p)/d)
︸ ︷︷ ︸

cte(n,p,d,φ)

·
∫

Rn

h exp(−g) dx.

Proof. With z = (z1, . . . , zn−1), do the change of variable x1 = t, x2 =
tz1, . . . , xn = tzn−1) so that one may decompose

∫

Rn φ(g(x))h(x)dx into the
sum

∫

R+×Rn−1

tn+p−1φ(tdg(1, z))h(1, z) dt dz

+

∫

R+×Rn−1

tn+p−1φ(tdg(−1,−z))h(−1,−z) dt dz,

=

∫

Rn−1

(∫ ∞

0
tn+p−1φ(tdg(1, z)) dt

)

h(1, z) dz

+

∫

Rn−1

(∫ ∞

0
tn+p−1φ(tdg(−1,−z)) dt

)

h(−1,−z) dz,

where the last two integrals are obtained from the sum of the previous two
by using Tonelli’s Theorem (since φ and h are nonnegative functions) and
whether or not the integrals are finite; see e.g. Dunford and Schwartz [6,
Theorem 14, p. 194].

Next, with the change of variable u = t g(1, z)1/d and u = t g(−1,−z)1/d

(2.2)

∫

Rn

φ(g(x))h(x)dx =

(∫

R+

un+p−1φ(ud) du

)

·A(g, h),

with

(2.3) A(g, h) =

∫

Rn−1

(
h(1, z)

g(1, z)(n+p)/d
+

h(−1,−z)

g(−1,−z)(n+p)/d

)

dz.
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In particular, the choice t 7→ φ(t) = exp(−t) yields:

(2.4) A(g, h) =
d

Γ((n + p)/d)

∫

Rn

h exp(−g) dx,

and so A(g, h) is finite if and ony if
∫
h exp(−g)dx is finite. Substituting

A(g, h) in (2.2) with (2.4) yields (2.1). �

2.2. Integration on sublevel sets and non Gaussian integrals. As a
consequence of Lemma 2.1 we obtain the following result.

Theorem 2.2. Let g, h be PHFs of degree 0 6= d ∈ R and p ∈ R respectively,
and such that g ∈ Cd. Then for every y ∈ [0,∞):

(2.5) vol ({x : g(x) ≤ y}) =
yn/d

Γ(1 + n/d)

∫

Rn

exp(−g) dx,

and

(2.6)

∫

{x : g(x)≤y}
hdx =

y(n+p)/d

Γ(1 + (n+ p)/d)

∫

Rn

h exp(−g) dx,

whenever
∫

Rn |h| exp(−g)dx (or
∫

{x : g(x)≤1} |h| dx) is finite. And (2.6) also

holds if h is replaced with |h|, or with max[0, h], or with max[0,−h].
Proof. Write h = h+−h− with h+(x) := max[0, h(x)], h−(x) := max[0,−h(x)]
for all x. Observe that |h|, h+ and h− are nonnegative and positively ho-
mogeneous of degree p, and |h| = h+ + h−, h = h+ − h−.

With A as in (2.2), using Lemma 2.1 with φ(t) = exp(−t), yields
∫

Rn

|h| exp(−g) dx =
Γ(1 + (n + p)/d)

n+ p
·A(g, |h|)

where all integrals are finite since the right-hand-side is finite. Similarly,
using Lemma 2.1 with φ(t) = 1[0,1](t), yields

∫

{x:g(x)≤1}
|h| dx =

1

n+ p
· A(g, |h|),

and therefore,
∫

{x : g(x)≤1}
|h| dx =

1

Γ(1 + (n+ p)/d)

∫

Rn

|h| exp(−g) dx.

Next, by homogeneity,
∫

{x : g(x)≤y}
|h| dx = y(n+p)/d

∫

{x : g(x)≤1}
|h| dx,

and so

(2.7)

∫

{x : g(x)≤y}
|h| dx =

y(n+p)/d

Γ(1 + (n+ p)/d)

∫

Rn

|h| exp(−g) dx.
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Obviously, with same arguments, (2.7) also holds if we replace |h| with h+
and h− and finiteness follows because

0 ≤
∫

{x : g(x)≤y}
h+ dx ≤

∫

{x : g(x)≤y}
|h| dx,

and similarly for h−. Hence (2.7) with h in lieu of |h| (i.e. (2.6)) follows by
additivity since h = h+ − h−.

Finally, from what precedes, finiteness of
∫

{x:g(x)≤1} |h|dx is equivalent to

finiteness of
∫

Rn |h| exp(−g)dx. �

When y = 1, g is a positive definite form with d ∈ N, and h is identical
to the constant function 1, (2.5) is already proved in Morosov and Shakirov
[17, (75) p. 39].

In particular, when g is the quadratic form x 7→ g2(x) :=
1
2x

TQx for some
real symmetric positive definite matrix Q, one retrieves that the volume of
the ellipsoid ξ(y) := {x : g2(x) ≤ y} is simply related to the determinant
of Q by the formula

(2.8) vol (ξ(y)) =
yn/2

Γ(1 + n/2)

∫

Rn

exp(−1

2
xTQx) dx

︸ ︷︷ ︸

=(2π)n/2/
√
detQ

So Theorem 2.2 states that the volume of the sublevel set is simply related
to the integral of exp(−g(x)) over the entire domain R

n which happens
to be simply related to the determinant of Q when g is the quadratic form
xTQx. One goal of the theory of integral discriminants is precisely to express
∫
exp(−g) in terms of invariants of g when g is a form. See e.g. Morosov

and Shakirov [17, 18] and Shakirov [22].

Intersection of sublevel sets. Suppose that with h being positively ho-
mogeneous of degree p, one wishes to compute the integral

∫

Ω h(x) dx where

Ω := {x ∈ R
n : gk(x) ≤ zk, k = 1, . . . ,m},

for somem PHFs g1, . . . , gm of degree 0 6= d ∈ R, and some (strictly) positive
vector z ∈ R

m. Equivalently,

Ω := {x ∈ R
n : g̃k(x; z) ≤ 1, k = 1, . . . ,m},

for the functions x 7→ g̃k(x; z) := gk(z
−1/d
k x), k = 1, . . . ,m, which are also

PHFs of degree d ∈ R. Hence with no loss of generality, one may restrict to
sets of the form

(2.9) Ω(y) := {x : gk(x) ≤ y, k = 1, . . . ,m}

for some positive scalar y ∈ R, and PHFs g1, . . . , gm of same degree d ∈ R.
Notice that x 7→ ψ(x) := max[g1(x), . . . , gm(x)] is a PHF of degree d.
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Corollary 2.3. Let h be a PHF of degree p ∈ R, let g1, . . . , gm be PHFs of
degree 0 6= d ∈ R, and assume that the set {x : gk(x) ≤ 1, k = 1, . . . ,m} is
bounded and for every y > 0, let Ω(y) be as in (2.9). Then:

(2.10) vol (Ω(y)) =
yn/d

Γ(1 + n/d)

∫

Rn

exp(−ψ) dx,

and

(2.11)

∫

Ω(y)
h(x) dx =

y(n+p)/d

Γ(1 + (n+ p)/d)

∫

Rn

h exp(−ψ) dx,

whenever
∫

Rn |h| exp(−ψ) dx.
Proof. Notice that x 7→ ψ(x) := max[g1(x), . . . , gm(x)] is also a PHF of
degree 0 6= d ∈ R, and Ω(y) = {x : ψ(x) ≤ y}. And so if Ω(y) is bounded
then ψ ∈ Cd. Hence (2.11)-(2.10) is just (2.5)-(2.6) with h and ψ in lieu of
h and g. �

2.3. An alternative proof with a duality interpretation. Next, we
present an alternative proof of Theorem 2.2 that uses Laplace transform
techniques and provides an interpretation of the result in an appropriate
duality framework.

Suppose that g, h ∈ Cd. Since g is nonnegative, the function Ig,h vanishes
on (−∞, 0]. Its Laplace transform LIg,h : C → R is the function

λ 7→ LIg,h(λ) :=
∫ ∞

0
exp(−λy)Ig,h(y) dy,

and observe that

LIg,h(λ) =

∫ ∞

0
exp(−λy)

(
∫

{x:g(x)≤y}
hdx

)

dy

=

∫

Rn

h(x)

(
∫ ∞

g(x)
exp(−λy)dy

)

dx [by Fubini’s Theorem]

=
1

λ

∫

Rn

h(x) exp(−λg(x)) dx

=
λ−p/d

λ

∫

Rn

h(λ1/dx) exp(−g(λ1/dx)) dx [by homogeneity]

=
1

λ1+(n+p)/d

∫

Rn

h(z) exp(−g(z)) dz [by λ−1/dx → z]

=

∫

Rn

h(z) exp(−g(z)) dz

Γ(1 + (n+ p)/d)
Ly(n+p)/d(λ).

And so, by uniqueness of the Laplace transform,

Ig,h(y) =
y(n+p)/d

Γ(1 + (n + p)/d)

∫

Rn

h(x) exp(−g(x)) dx,
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which is the desired result. So the above expression of Ig,h(y) is obtained
by “inverting” the Laplace transform LIg,h at the point y, which in fact, as
we next see, is solving a “dual” problem.

For analogy purposes, consider, the optimization problem

ρg,h(y) = sup
x
{h(x) : g(x) ≤ y},

where y is fixed, h and −g are concave and h is nonnegative. Equivalently,
ρg,h(y) = exp(θg,h(y)) where y 7→ θg,h(y) is the optimal value function of the
optimization problem

Py : θg,h(y) = sup
x

{lnh(x) : g(x) ≤ y }.

Associated with Py is the dual problem P∗
y : infλ {G(λ) : λ ≥ 0}, where

G : R+ → R is the function λ 7→ G(λ) := supx { lnh(x) + λ(y − g(x))}.
Observe that:

λ 7→ G(λ) = λy + sup
x

{ lnh(x) − λg(x)}

= λy + sup
z

{ ln(λ−p/dh(z)) − g(z)} [via z = λ1/dx]

= λy +−p
d
lnλ+ sup

z
{lnh(z) − g(z)}.

And so the dual problem P∗
y reads

P∗
y : γ = sup

z
{lnh(z) − g(z)} + inf

λ≥0
{λy − p

d
lnλ }

= ln yp/d + ln

(

sup
z
{h(z) exp(−g(z))}

)

+
p

d
(1− ln

p

d
)

In particular, if h is log-concave and g is convex, by a standard argument of
convex optimization, γ = θg,h(y) (= ln ρg,h(y)). And therefore,

ρg,h(y) = exp(θg,h(y)) = yp/d
exp(p/d)

(p/d)p/d
sup
x
{h(x) exp(−g(x)) }

to compare with

Ig,h(y) = y(n+p)/d
1

Γ(1 + (n+ p)/d)

∫

Rn

h(x) exp(−g(x)) dx.

Alternatively, the Legendre-Fenchel transform of θg,h(y) (for the concave
version) is the function

θ∗g,h(λ) = inf
y
{λy − θg,h(y)}

= inf
λ
{λy − sup

x
{ln h(x) : g(x) ≤ y} }

= inf
x

{λg(x) − lnh(x)} = − ln

(

sup
x
{h(x) exp(−λg(x))}

)
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and so when h is log-concave and g is convex, θg,h(y) = (θ∗g,h)
∗(y), so that

θg,h(y) = inf
λ
{λy − θ∗g,h(λ)}

= inf
λ

{λy + ln

(

sup
x
{h(x) exp(−λg(x))}

)

}

= ln yp/d + ln

(

sup
z
{h(z) exp(−g(z))}

)

+
p

d
(1− ln

p

d
).

In summary, to the Laplace transform step

(2.12) LIg,h(λ) =

∫

Rn

exp(−λy)Ig,h(y) dy

in the usual (·,+)-algebra, corresponds to the Legendre Fenchel transform

θ∗g,h(λ) = inf
y
{λy − θg,h(y)} = − sup

y
{−λy + θg,h(y)}

= − ln sup
y
{exp(−λy)ρg,h(y)},

where to emphasize the analogy, the latter term can be written

ln

(

“

∫

” exp(−λy) ρg,h(y)
)

,

i.e., the “ sup ” operator is integration “
∫
” in the (max,+)-algebra. And

with this convention

exp(θ∗g,h(λ)) ≃ “

∫

” exp(−λy) ρg,h(y).

(Compare with (2.12).) Similarly, the Laplace inverse transform step

(2.13) Ig,h(y) =

∫ ω+i∞

ω−i∞
exp(λy)LIg,h(λ) dλ

(where ω ∈ C is on the right of all singularities of LIg,h) and which yields

Ig,h(y) =
y(n+p)/d

Γ(1 + (n + p)/d)

∫

Rn

h exp(−g)dx,

is solving the “dual” and corresponds to the Legendre-Fenchel transform
(which is involutive) applied to θ∗g,h

exp(θg,h(y)) = exp(inf
λ
{λy − θ∗g,h(λ)}) ≃ −“

∫

” exp(−λy) exp(θ∗g,h(λ)) dλ

(compare with (2.13)), and which yields

exp(θg,h(y)) = yp/d
exp(p/d)

(p/d)p/d
“

∫

”h(x) exp(−g(x)).

A rigorous analysis of the links between integration and linear optimization
on a polytope has been already investigated in [10].



12 J.B. LASSERRE

2.4. Approximating non Gaussian integrals. As we have already men-
tioned, in some cases the non Gaussian integral can be computed explicitly
in terms of some on algebraic invariants of g; see e.g. Morosov and Shakirov
[17] and Shakirov [22]. But so far there is no general formula and therefore
an alternative is to seak for a numerical scheme for its evaluation, or at least,
its approximation.

For this purpose, we next show that Theorem 2.2 is helpful as it provides
a means to compute any moment of the measure dµ = exp(−g)dx on R

n

by computing the same moment but now of the Lebesgue measure on the
sublevel set {x : g(x) ≤ 1}. Indeed, for every α ∈ N

n, letting x 7→ h(x) :=
xα in Theorem 2.2, yields

(2.14)

∫

Rn

xα exp(−g(x)) dx = Γ(1 + (n+ |α|)/d)
∫

{x : g(x)≤1}
xα dx,

where |α| =∑i αi. Have we made any progress with this equivalence?
The answer is yes. If g is a (non necessarily homogeneous) polynomial,

it turns out that every moment of the Lebesgue measure on the sublevel
set {x : g(x) ≤ 1} can be approximated as closely as desired by solving a
hierarchy of semidefinite programs2 as described in Henrion et al. [8]. In
fact, for every α ∈ N

n fixed, the moment

zα :=

∫

{x : g(x)≤1}
xα dx

can be approximated to arbitrary precision ǫ > 0 fixed in advance, by solving
two sequences of semidefinite programs, one which provides a monotone non
decreasing sequence of upper bounds uk, k ∈ N, while the other provides a
monotone non increasing sequence of lower bounds ℓk, k ∈ N. The procedure
stops whenever uk − ℓk < ǫ, in which case one may set

zα ≈ z̃α := (uk + ℓk)/2.

This requires to solve two sequences of semidefinite programs for each α ∈
N
n. In fact, if one is ready to relax the monotonicity property of the upper

and lower bounds {uk, ℓk}, it is enough to solve a single sequence of semi-
definite programs, e.g., the one defined to approximate the mass z0. Then
if d ∈ N and ǫ > 0 are fixed, and k is large enough, not only |uk − z0| < ǫ
but also from the solution of the semidefinite program at step k one obtains
scalars z̃α such that |z̃α − zα| < ǫ, for all α ∈ N

n such that |α| < d. How-
ever, in contrast to the case of upper and lower bounds, there is no simple
stopping criterion to guarantee the ǫ-approximation. For more details, the
interested reader is referred to Henrion et al. [8]. And therefore, once the

2A semidefinite program is a finite-dimensional convex conic optimization problem,
that up to arbitrary (fixed) precision, can be solved efficiently, i.e., in time polynomial in
the input size of the problem. For more details the interested reader is referred to e.g.
[24].
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z̃α have been computed, using Theorem 2.2, we obtain:
∣
∣
∣
∣

∫

Rn

xα exp(−g(x)) dx − z̃α Γ(1 + (n+ |α|)/d)
∣
∣
∣
∣
< ǫ, ∀α ∈ N

n
d ,

which provides an ǫ-approximation guarantee for the non Gaussian integral
∫

Rn exp(−g)dx (and more generally for the integral
∫

Rn h exp(−g)dx when-
ever h is any polynomial).

2.5. Sensitivity analysis and convexity. Recall that when d ∈ N, P[x]d ⊂
Cd is the convex cone of nonnegative and homogeneous polynomials of de-
gree d, with compact sublevel set {x : g(x) ≤ 1}. Formula (2.6) of Theorem
2.2 allows us to provide insights into the function f : Cd → R, defined by:

(2.15) g 7→ fh(g) :=

∫

{x : g(x)≤1}
h(x) dx, g ∈ Cd,

where h is a PHF. In particular when one wishes to see how fh changes
when some coefficient of g ∈ P[x]d varies. Notice that the restriction of fh
to P[x]d may be seen as a function fh : Rℓ(d) → R of the coefficient vector

of the polynomial g ∈ P[x]d, where ℓ(d) =
(
n+d−1

d

)
.

Before proceeding further we need the following result. Recall that the
support suppµ of a Borel measure on R

n is the smallest closed set A such
that µ(Rn \A) = 0. Let C0

d := {g ∈ Cd : g is continuous} ⊂ Cd.

Lemma 2.4. Let µ be a non trivial σ-finite Borel measure on R
n and let

Θµ ⊂ R[x]d be the convex cone of polynomials g of degree at most d such
that

∫
exp(−g)dµ <∞. Then:

(a) With d ∈ R, the function f : Cd → R, with g 7→ f(g) :=
∫
exp(−g)dµ,

is convex (and strictly convex on C0
d if suppµ = R

n).
(b) If µ(O) > 0 for some open set O ⊂ R

n and if d ∈ N, then f is strictly
convex and twice differentiable on int(Θµ), with:

∂f(g)

∂gα
=

∫

xα exp(−g) dµ, ∀α, |α| ≤ d.(2.16)

∂2f(g)

∂gα∂gβ
=

∫

xα+β exp(−g) dµ, ∀α, β, |α|, |β| ≤ d.(2.17)

Proof. (a) Observe that f is nonnegative. Let α ∈ [0, 1] and let g, q ∈ Cd.
To prove f(αg+(1−α)q) ≤ αf(g)+ (1−α)f(q), we only need consider the
case where f(g), f(q) < +∞, for which we have

f(αg + (1− α)q) =

∫

exp(−αg − (1− α)q) dµ.

By convexity of u 7→ exp(−u),

f(αg + (1− α)q) ≤
∫

[α exp(−g) + (1− α) exp(−q) ] dµ

= αf(g) + (1− α)f(q),
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and so f is convex. Now, in view of the strict convexity of u 7→ exp(−u),
equality may occur only if g(x) = q(x), µ-almost everywhere. If g, q ∈ C0

d ,
the set ∆ := {x : g(x) − q(x) = 0} is closed and so if ∆ 6= R

n then
µ(∆) < µ(Rn) because suppµ = R

n. Therefore, equality occurs only if
g = q so that f is strictly convex on C0

d .

(b) Next, if d ∈ N and g ∈ int(Θµ), write g in the canonical basis as

g(x) =
∑

α gαx
α. For every α ∈ N

n
d , let eα = (eα(β)) ∈ R

s(d) be such that
eα(β) = δβ=α (with δ being the Kronecker symbol). Then for every t ≥ 0,

f(g + teα)− f(g)

t
=

∫

exp(−g)







exp(−txα)− 1

t
︸ ︷︷ ︸

ψ(t,x)






dµ(x)

Notice that for every x, by convexity of the function t 7→ exp(−txα),
lim
t↓0

ψ(t,x) = inf
t≥0

ψ(t,x) = exp(−txα)′|t=0 = −xα,

because for every x, the function t 7→ ψ(t,x) is nondecreasing; see e.g.
Rockafellar [21, Theorem 23.1]. Hence, the one-sided directional derivative
f ′(g; eα) in the direction eα satisfies

f ′(g; eα) = lim
t↓0

f(g + teα)− f(g)

t
= lim

t↓0

∫

exp(−g)ψ(t,x) dµ(x)

=

∫

exp(−g) lim
t↓0

ψ(t,x) dµ(x) =

∫

−xα exp(−g) dµ(x),

where the third equality follows from the Extended Monotone Convergence
Theorem [2, 1.6.7]. Indeed for all t < t0 with t0 sufficiently small, the
function ψ(t, ·) is bounded above by ψ(t0, ·) and

∫
exp(−g)ψ(t0,x)dµ <∞.

Similarly, for every t > 0

f(g − teα)− f(g)

t
=

∫

exp(−g) exp(txα)− 1

t
︸ ︷︷ ︸

ξ(t,x)

dµ(x),

and by convexity of the function t 7→ exp(txα)

lim
t↓0

ξ(t,x) = inf
t≥0

ξ(t,x) = exp(txα)′|t=0 = xα.

Therefore, with exactly same arguments as before,

f ′(g;−eα) = lim
t↓0

f(g − teα)− f(g)

t

=

∫

xα exp(−g) dµ(x) = −f ′(g; eα),

and so
∂f(g)

∂gα
= −

∫

Rn

xα exp(−g) dµ(x),
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for every α with |α| ≤ d, which yields (2.16). Similar arguments can used
for the Hessian ∇2f(g) which yields (2.17).

So the Hessian ∇2f(g) is the matrix Md ∈ Sℓ(d) whose rows and columns
are indexed in the set Γd := {α ∈ N

n : |α| = d} and with entries

Md(α, β) =

∫

Rn

xα+β exp(−g) dµ
︸ ︷︷ ︸

dν

, α, β ∈ Γd,

i.e., Md is the matrix of 2d-moments of the finite Borel measure ν. Let
h ∈ R

ℓ(d) be the coefficient vector of a non trivial and arbitrary homogeneous
polynomial h ∈ R[x]d. Then

〈h,Mdh〉
(

=

∫

Rn

h(x)2 dν(x)

)

> 0

because µ(O) > 0 (hence ν(O) > 0) on some open set O ⊂ R
n. Therefore

∇2f(g) ≻ 0, which in turn implies that f is strictly convex on int(Θµ). �

Corollary 2.5. Let h be a PHF of degree p ∈ R and with 0 6= d ∈ R,
consider the function fh : Cd → R defined by:

(2.18) g 7→ fh(g) :=

∫

{x:g(x)≤1}
h(x) dx, ∀g ∈ Cd.

The function fh is a PHF of degree −(n + p)/d and convex whenever h is
nonnegative (and strictly convex if h > 0 on R

n \{0}). In addition, if d ∈ N

and h is continuous with
∫
|h| exp(−g)dx <∞, then:

(a) fh is twice differentiable on int(P[x]d), and for every α, β ∈ N
n
d :

∂fh(g)

∂gα
=

−1

Γ(1 + (n+ p)/d)

∫

Rn

xα h(x) exp(−g(x)) dx(2.19)

=
−Γ(2 + (n+ p)/d)

Γ(1 + (n+ p)/d)

∫

{x : g(x)≤1}
xα h(x) dx.(2.20)

∂2fh(g)

∂gα∂gβ
=

1

Γ(1 + (n+ p)/d)

∫

Rn

xα+β h(x) exp(−g(x)) dx.(2.21)

(b) If h is non trivial and nonnegative, then fh is strictly convex on int(P[x]d),
and its Hessian ∇2fh(g) is the matrix of 2d-moments of the measure

ν(B) =
1

Γ(1 + (n+ p)/d)

∫

B
h exp(−g) dx, B ∈ B.

Proof. With λ > 0 and g ∈ Cd,

fh(λg) =

∫

{x:λg(x)≤1}
hdx =

∫

{x:g(λ1/dx)≤1}
hdx,

and so, doing the change of variable z = λ1/dx, one obtains fh(λg) =

λ−(n+p)/dfh(g), i.e., fh is a PHF of degree −(n+ p)/d.
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Next, first consider the case where h is nonnegative, and let µ be the

σ-finite measure defined by µ(B) :=

∫

B
h(x)dx for every Borel set B of Rn.

By Theorem 2.2, whenever g ∈ Cd and fh(g) is finite,

fh(g) =
1

Γ(1 + (n+ p)/d)

∫

Rn

exp(−g) dµ.

Hence by Lemma 2.4, fh is convex (and strictly convex if h > 0 on R
n\{0}).

In addition, if d ∈ N and h is continuous, fh(g) <∞ if g ∈ int(P[x]d) (and
so g ∈ int(Θµ)). Moreover, h being non trivial, nonnegative and continuous,
h > 0 on some open set O and so µ(O) > 0. Therefore, by Lemma 2.4(b),
fh is twice differentiable and strictly convex on int(P[x]d) and (2.16)-(2.17)
yield (2.19) and (2.21), while (2.20) follows from (2.19) and Theorem 2.2.
That∇2fh(g) is the matrix of 2d-moments of the measure dν = h exp(−g)dx
follows from (2.21). This proves (b).

To prove (a) when h is not nonnegative, write h = h+ − h− with h+ :=
max[0, h] and h− := max[0,−h]. Both h+ and h− are continuous PHFs of
degree p, and nonnegative. Moreover, fh = fh+ − fh− and so applying (b)
to fh+ and fh−, yields (a) by additivity.

�

Remark 2.6. (a) Notice that proving convexity of fh directly from its defi-
nition (2.18) is not obvious at all whereas it becomes much easier when using
Theorem 2.2.

(b) In Lemma 2.4, differentiability of f on the convex cone Cd should be
now in the sense of Gâteaux-differentiablity, not explored here.

We end up with the following relatively surprising results which even
though are again particular cases of Lemma 2.1, deserve special mention.

Lemma 2.7. Let y ≥ 0 be fixed, let h be a PHF of degree p ∈ R and let
ξ, ψ : R+ → R be measurable functions such that

∫

{t:ψ(td)≤y}
tn+p−1ξ(td) dt < +∞.

Let fh : Cd → R, 0 6= d ∈ R, be the function:

g 7→ fh(g) :=

∫

{x :ψ(g(x))≤y}
ξ(g(x))h(x) dx, g ∈ Cd.

Then whenever
∫
|h| exp(−g)dx < +∞, fh(g) is finite, and

(2.22) fh(g) =

d

∫

{t:ψ(td)≤y}
tn+p−1ξ(td) dt

Γ((n+ p)/d)
︸ ︷︷ ︸

cte(y,p,d,ξ,ψ)

·
∫

Rn

h exp(−g)dx,
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where the constant depends only on ξ, ψ, d, p, y and neither on g nor h.
Therefore, fh is convex whenever h is nonnegative (and strictly convex on
C0
d whenever h > 0 on R

n \ {0}). In particular,

∫

Rn

gh exp(−g) dx =
n+ p

d

∫

Rn

h exp(−g) dx(2.23)

∫

{x : g(x)≤1}
gh dx =

1

Γ((n + p)/d)

∫

Rn

h exp(−g) dx(2.24)

∫

{x : g(x)≤y}
exp(−g) dx

∫

Rn

exp(−g) dx
=

∫ y

0
exp(−z)zn/d−1 dz

Γ(n/d)
(2.25)

∫

{x : g(x)≤y}
exp(g) dx =

∫

Rn

exp(−g) dx

Γ(n/d)

∫ y

0
exp(z)zn/d−1 dz.(2.26)

Proof. We first assume that h is nonnegative and
∫
h exp(−g) < +∞, so

that (2.22) follows from Lemma 2.1 with t 7→ φ(t) := ξ(t)I[0,y](ψ(t)), which
yields fh(g) = cte(y, p, d, ξ, ψ) ·A(g, h), with A(·, ·) as in (2.3) and

cte(y, p, d, ξ, ψ) =

∫

{t:ψ(td)≤y}
tn+p−1ξ(td) dt,

and the result follows by recalling that with φ(t) = exp(−t) one had already
obtained in (2.4)

A(g, h) =
d

Γ((n+ p)/d)

∫

Rn

h exp(−g) dx (< +∞).

When h is not nonnegative, writing h = h+−h− where both h+ and h− are
also PHFs of degree p, the result follows by additivity since

∫
|h| exp(−g)dx <

+∞ only if both
∫
h+ exp(−g)dx and

∫
h− exp(−g)dx are finite.

Finally, (2.23)-(2.26) are special cases of (2.22) with respective choices
t 7→ ψ(t) := 0, ξ(t) := exp(−t), then t 7→ ψ(t) := t, ξ(t) = t and finally,
t 7→ ψ(t) = t, ξ(t) := exp(−t) and t 7→ ξ(t) := exp(t).

At last, when h is nonnegative, convexity and strict convexity follow from
Lemma 2.4(a) with dµ = hdx (and so suppµ = R

n if h > 0). �

So Lemma 2.7 shows that f is convex provided that h is nonnegative and
no matter how the functions ξ and ψ behave!

Next, if µ is the non Gaussian measure dµ = exp(−g)dx on R
n, then

(2.25) shows how fast µ({x : g(x) ≤ y}) converges to the non Gaussian inte-
gral

∫

Rn exp(−g)dx as y → ∞. It converges as fast as the one-dimensional

integral
∫ y
0 t

n/d−1 exp(−t)dt converges to the Gamma function Γ(n/d).
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2.6. Polarity. We here investigate the polar G◦ set of the sublevel set G :=
{x : g(x) ≤ 1} assumed to be compact and when g is a proper closed convex
PHF. In this case G is a convex body, and in fact g is a gauge.

The polar C◦ of a set C ⊂ R
n is the convex set defined by

C◦ = {x ∈ R
n : σC(x) ≤ 1} with σC(x) := sup

y
{〈x,y〉 : y ∈ C}.

and (C◦)◦ is the smallest convex balanced set that contains C.
Recall that the Legendre-Fenchel conjugate f∗ : Rn → R ∪ {+∞,−∞} of

f : Rn → R is defined by

f∗(u) := sup
x

{〈u,x〉 − f(x) } u ∈ R
n.

The conjugate g∗ of a PHF g of degree d ∈ R is tself a PHF of degree q with
1
d +

1
q = 1 (where d does not need to be positive); see e.g. Lasserre [14].

Proposition 2.8. Let g be closed proper convex PHF of degree 1 < d ∈ R,
and let G := {x : g(x) ≤ 1/d}. Then with 1

d +
1
q = 1,

G◦ = {x ∈ R
n : g∗(x) ≤ 1/q},(2.27)

where g∗ is the Legendre-Fenchel conjugate of g. In other words, G◦ is a
sublevel set the PHF g∗ of degree q. Moreover, if G is bounded then

(2.28) vol (G◦) =
1

qn/qΓ(1 + n/q)

∫

Rn

exp(−g∗) dx.

Proof. (2.27) is from Rockafellar [21, Corollary 15.3.2] and (2.28) follows
from Theorem 2.2 applied to the PHF g∗ and with y = 1/q. �

Example 1. Let x 7→ g(x) := |x|3 if x > 0 and +∞ otherwise. Hence,
d = 3, q = 3/2, G = [−1, 1], σG(x) = |x|, and g∗(x) = 2

3
√
3
|x|3/2. One

retrieves that G◦ = G = [−1, 1] = {x : g∗(x) ≤ (d− 1)/dq}.
Example 2. Let x 7→ g(x) := |x| so that G = [−1, 1]. As g∗(x) = 0 if
x ∈ [−1, 1] and +∞ otherwise (a PHF of degree 0) one may check that
indeed G◦ = [−1, 1] = G and (2.27) holds although d = 1 and g is not
strictly convex.

Example 3. Let x 7→ g(x) := x41 + x42 and G = {x : x41 + x42 ≤ 1/4}.
Then g∗(x) = 3(x

4/3
1 + x

4/3
2 )/44/3 (a PHF of degree 4/3) and G◦ = {x :

x
4/3
1 + x

4/3
2 ≤ 1/41/3}.

2.7. A variational property of homogeneous polynomials. We end up
this section with an intriguing variational property of homogeneous polyno-
mials that are sums of squares.

Let ṽd(x) be the vector of all monomials (xα) of degree d and let g ∈
R[x]2d be homogeneous and a sum of squares, that is,

(2.29) g(x) = −1

2
ṽd(x)

TΣṽd(x), x ∈ R
n,
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for some real symmetric ℓ(d) × ℓ(d) matrix Σ which is positive definite
(denoted Σ ≻ 0). If d = 1 it is well-known that

∫

Rn

exp(−g)dx =
(2π)n/2√
det Σ

,

and
∫

Rn

ṽd(x)ṽ
T
d (x) exp(−g)dx =

(2π)n/2√
det Σ

Σ−1,

that is, Σ−1 is the covariance matrix associated with the Gaussian proba-
bility density (2π)−n/2

√
detΣ exp(−g).

When d > 1 the non Gaussian integral can be still expressed as a (possibly
complicated) combination of several algebraic invariants of g, but in general
not in terms of the single algebraic invariant detΣ.

It turns out that detΣ and
∫
exp(−1

2vd(x)
TΣvd(x))dx are still related

in the following Gaussian-like manner. Let S++
ℓ(d) ⊂ Sℓ(d) be the convex cone

of ℓ(d)× ℓ(d) positive definite matrices, and let θd : S++
ℓ(d) → R be defined by:

(2.30) θd(Σ) := (detΣ)k
∫

Rn

exp(−kṽd(x)TΣ ṽd(x)) dx, Σ ∈ S++
ℓ(d)

,

where k = n/(2dℓ(d)) and let

Md(Σ) :=

∫

Rn

ṽd(x)ṽd(x)
T exp(−kṽd(x)TΣ ṽd(x)) dx

∫

Rn

exp(−kṽd(x)TΣ ṽd(x)) dx

,

be the matrix of moments of order d, associated with the non Gaussian
probability measure

(2.31) µ(B) :=

∫

B
exp(−kṽd(x)TΣṽd(x)) dx

∫

Rn

exp(−kṽd(x)TΣṽd(x)) dx

, B ∈ B.

Observe that θd is nonnegative and positively homogeneous of degree 0;
therefore θd is constant in any fixed direction Σ. In particular, if d = 1
then k = 1/2, µ is a Gaussian probability measure, M1(Σ) is the associated
covariance matrix Σ−1 and θd(Σ) is constant. In fact,

Lemma 2.9. Let θd be the function defined in (2.30). Then 〈Md(Σ),Σ〉 =
ℓ(d) for all Σ in the domain of θd and ∇θd(Σ) = 0 if

(2.32) Md(Σ) = Σ−1.
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Proof. Let g(x) = kṽd(x)Σṽd(x) so that

〈Md(Σ),Σ〉
∫

Rn

exp(−g) dx =

〈∫

Rn

ṽd(x)ṽd(x)
T exp(−g) dx,Σ

〉

= k−1

∫

Rn

kṽd(x)
TΣṽd(x) exp(−g) dx

= k−1

∫

Rn

g exp(−g) dx

=
k−1n

2d

∫

Rn

exp(−g) dx [by (2.23)],

which yields the desired result 〈Md(Σ),Σ〉 = ℓ(d). Next, write the gradient
∇θ(Σ) in the form A1 +A2 with

A1 = ∇((detΣ)k)

∫

Rn

exp(−kṽd(x)TΣṽd(x)) dx

= k(detΣ)k−1ΣA

∫

Rn

exp(−kṽd(x)TΣṽd(x)) dx

= k
ΣA

detΣ
(detΣ)k

∫

Rn

exp(−kṽd(x)TΣṽd(x)) dx

= kΣ−1 θd(Σ),

where ΣA is the adjugate of Σ (see e.g. [5, p. 411]), and

A2 = (detΣ)k ∇
(∫

Rn

exp(−kṽd(x)TΣṽd(x)) dx

)

= −k(detΣ)k
∫

Rn

ṽd(x)ṽd(x)
T exp(−kṽd(x)TΣṽd(x)) dx

= −kMd(Σ) θd(Σ).

This yields A1+A2 = kθd(Σ)(Σ−1−Md(Σ)) and so∇θd(Σ) = 0 ifMd(Σ) =
Σ−1. �

Lemma 2.9 states that for all critical points Σ, or equivalently for all
critical SOS homogeneous polynomials g of the function θd (assuming that
at least one such critical point exists), their associated non Gaussian measure
dµ = exp(−g)dµ (rescaled to a probability measure) has the Gaussian-like
property that Σ−1 is the “d-covariance” matrix of µ!

3. sublevel set of minimum volume containing a compact set

If K ⊂ R
n is a convex body, computing the ellipsoid of minimum volume

that contains K is a classical problem which has an optimal solution called
the Löwner-John ellipsoid; see e.g. Barvinok [4, p. 209]. In this section we
consider the following generalization:

P: Find a homogeneous polynomial g of degree 2d such that its sublevel
set G := {x : g(x) ≤ 1} contains K and has minimum volume among all
such sublevel sets with this inclusion property.
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With K ⊂ R
n, let C2d(K) ⊂ R[x]2d be the convex cone of polynomials of

degree at most 2d that are nonnegative on K. Recall that P[x]2d ⊂ R[x]2d
is the convex cone of homogeneous polynomials of degree 2d with compact
sublevel set {x : g(x) ≤ 1}. We next show that problem P is a convex
optimization problem:

Proposition 3.1. The minimum volume of a sublevel set {x : g(x) ≤ 1},
g ∈ P[x]2d, that contains K ⊂ R

n is ρ/Γ(1 + n/2d) where ρ is the optimal
value of the finite-dimensional convex optimization problem:

(3.1) P : ρ = inf
g∈P[x]2d

{∫

Rn

exp(−g) dx : 1− g ∈ C2d(K)

}

.

Proof. From Theorem 2.2

vol ({x : g(x) ≤ 1}) =
1

Γ(1 + n/2d)

∫

Rn

exp(−g) dx.

Moreover, the sublevel set {x : g(x) ≤ 1} contains K if and only if 1− g ∈
C2d(K), and so ρ/Γ(1 + n/2d) in (3.1) is the minimum value of all volumes
of sublevels sets {x : g(x) ≤ 1}, g ∈ P[x]2d, that contain K. Now since
g 7→

∫

Rn exp(−g)dx is strictly convex (see Corollary 2.5(b)) and C2d(K)
is a convex cone, problem P is a finite-dimensional convex optimization
problem. �

We also have the following characterization of an optimal solution of P
when it exists. Let M(K) be the convex cone of finite Borel measures on K.

Theorem 3.2. Let K ⊂ R
n be compact and consider the convex optimiza-

tion problem P in (3.1).
(a) Suppose that g∗ ∈ P[x]2d is an optimal solution of P. Then there

exists µ∗ ∈M(K) such that

(3.2)

∫

Rn

xα exp(−g∗)dx =

∫

K

xα dµ∗, ∀|α| = 2d;

∫

K

(1−g∗) dµ∗ = 0.

In particular, µ∗ is supported on the real variety V := {x ∈ K : g(x) = 1}
and in fact, µ∗ can be substituted with another measure ν∗ ∈M(K) supported

on at most
(n+2d−1

2d

)
+ 1 points of V .

(b) Conversely, if g∗ ∈ P[x]2d and µ∗ ∈M(K) satisfy (3.2) then g∗ is an
optimal solution of P.

Proof. (a) We may and will consider g∗ as an element of R[x]2d with g∗β = 0

whenever |β| < 2d. As K is compact, there exists θ ∈ P[x]2d such that
1 − θ ∈ intC2d(K), i.e., Slater’s condition holds for P. Indeed, choose
θ := M−1‖x‖2d for M > 0 sufficiently large so that 1− θ > 0 on K. Hence
with ‖g‖1 denoting the ℓ1-norm of the coefficient vector of g (in R[x]2d), there
exists ǫ > 0 such that for every h ∈ B(θ, ǫ)(:= {h ∈ R[x]2d : ‖θ − h‖1 < ǫ}),
1− h > 0 on K.
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Therefore, the optimal solution g∗ satisfies the KKT-optimality condi-
tions, which read:

(3.3)

∫

Rn

xα exp(−g∗) dx = y∗α, ∀|α| = 2d; 〈1− g∗,y∗〉 = 0,

for some y∗ = (y∗α), α ∈ N
n
2d, an element of the dual cone C2d(K)∗ ⊂ R

s(2d)

of C2d(K). By Lemma 4.1 in §4.3,

C2d(K)∗ = {y ∈ R
s(2d) : ∃µ∗ ∈M(K) s.t. yα =

∫

K

xα dµ∗, α ∈ N
n
2d },

and so (3.2) is just (3.3) restated in terms of µ∗. Finally, the last statement

follows from Anastassiou [1, Theorem 2.1.1, p. 39] applied to the
(n+2d−1

2d

)

equality constraints of (3.2).
(b) As Slater’s condition holds for P, the KKT-optimality conditions (3.2)

are sufficient to ensure that g∗ is an optimal solution on P. �

Theorem 3.2 states that when (3.2) holds, there is an optimal solution g∗

to P such that g(x) = 1 on (at most)
(
n+2d−1

2d

)
+1 points of K, the analogue

for d > 1 of the well-known property of the Löwner-John ellipsoid in the
case d = 1.

Even though being convex and finite-dimensional, P is by no means easy
to solve because there is no simple and computationally tractable way of
describing the convex cone C2d(K). However, there are cases where one may
provide a sequence of inner or outer approximations that both converge to
C2d(K). One such case is when one knows all moments of a finite Borel
measure whose support is exactly K, and another case is when K = {x :
gk(x) ≥ 0, k = 1, . . . ,m} for some polynomials (gk) ⊂ R[x], i.e., K is a
compact basic semi-algebraic set.

3.1. Lower bounds via inner approximations. Suppose that one knows
all moments z = (zα), α ∈ N

n, of a finite Borel measure µ on K, i.e.,

zα =

∫

K

xα dµ(x), ∀α ∈ N
n,

whose support is exactly K. For every k ∈ N and p ∈ R[x], let Mk(p, z)
be the localizing matrix with respect to the polynomial p and the moment
sequence z, that is, Mk(p, z) is the s(k)× s(k) real symmetric matrix with
rows and columns indexed in the canonical basis (xα), α ∈ N

n
k , of R[x]k,

and with entries

Mk(p, z)(α, β) =

∫

K

p(x)xα+β dµ(x), ∀α, β ∈ N
n
k

=
∑

γ

pγ zα+β+γ

(when p(x) =
∑

γ pγx
γ). We recall the following result.
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Lemma 3.3. ([15, Theorem 3.2]) Let K ⊂ R
n be compact and let µ be a

finite Borel measure with support K and with moments z = (zα), α ∈ N
n.

Then p ∈ R[x] is nonnegative on K if and only if Mk(p, z) � 0 for every
k = 0, 1, . . ..

In view of Lemma 3.3, a natural idea is to relax the “difficult” constraint
1−g ∈ C2d(K) in (3.1) to Mk(1−g, z) � 0 for fixed k, and then let k → ∞.
Indeed, for every fixed k, the latter is much easier to handle as it defines
a spectrahedron3 ∆k ⊂ R

ℓ(2d) on the coefficients of the homogeneous poly-
nomial g. And so one obtains a hierarchy of convex relaxations of P by
minimizing the (strictly) convex function g 7→

∫
exp(−g) on the spectrahe-

dra ∆k, k ∈ N, which yields a monotone nondecreasing sequence of lower
bounds ρk ≤ ρ, k ∈ N, on ρ. Of course the larger k (i.e., the larger the size
of the localizing matrix Mk(1 − g, z)) the better the lower bound ρk (but
also the harder the problem).

Theorem 3.4. Let K ⊂ R
n be compact with nonempty interior and consider

the finite-dimensional convex optimization problem:

(3.4) Pk : ρk = inf
g∈P[x]2d

{∫

Rn

exp(−g) dx : Mk(1− g, z) � 0

}

.

The sequence (ρk), k ∈ N, is monotone nondecreasing with ρk ≤ ρ and:
(a) If Pk has an optimal solution g∗k ∈ P[x]2d then there exists a SOS

polynomial σ∗k ∈ Σ[x]k such that
∫

Rn

xα exp(−g∗k) dx =

∫

K

xα σ∗k dµ, ∀|α| = 2d.(3.5)

∫

K

(1− g∗k)σ
∗
k dµ = 0,(3.6)

and ρk =
2d
n

∫

K

σ∗kdµ.

(b) Conversely if (3.5)-(3.6) holds for some g∗k ∈ P[x]2d and some σ∗k ∈
Σ[x]k then g∗k is an optimal solution of Pk.

(c) If in addition,
sup
k

sup
|α|=2d

|g∗kα | < M,

for some M > 0, then ρk → ρ and P has an optimal solution g∗.

For a proof see §4.1. So problem Pk amounts to minimize a strictly convex
function on a spectrahedron of Rℓ(2d). For instance, one may use interior
point methods and minimize the standard log-barrier function

g 7→ φν(g) :=

∫

Rn

exp(−g)dx − 1

ν
log det(Mk(1− g, z)),

3A spectrahedron is a convex set that can be formed by intersecting the cone of positive
semidefinite matrices Sn with a linear affine subspace.
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with parameter ν, and let ν → ∞. For more details on log-barrier methods,
the reader is referred to e.g. Wright [25].

3.2. Upper bounds via outer approximations. Let K ⊂ R
n be the

compact basic semi-algebraic set defined by

K = {x : uj(x) ≥ 0, j = 1, . . . ,m},
for some polynomials (uj) ⊂ R[x]. As K is compact, with no loss of gen-
erality we may and will suppose that u1(x) = M − ‖x‖2 for some M large
enough. Let

Q∗ = {
m∑

j=0

σjuj : uj ∈ Σ[x], j = 0, . . . ,m},

be the quadratic module of R[x] generated by the uj’s (with u0 = 1). Q∗ is
Archimedean because the quadratic polynomial x 7→ M − ‖x‖2 belongs to
Q∗. If one defines

Q∗
k := {

m∑

j=0

σjuj : uj ∈ Σ[x]; degσjuj ≤ 2k, j = 0, . . . ,m}, k ∈ N,

(a subset of Q∗ with a degree bound on the SOS weights σj) then this time
one may replace the “difficult” constraint 1 − g ∈ C2d(K) by the stronger
constraint 1− g ∈ Q∗

k for fixed k ∈ N.
The convex cone Q∗

k is the dual cone of the closed pointed convex cone

(3.7) Qk := {y ∈ R
s(2k) : Mk(y) � 0, Mk−vj (uj , y) � 0, j = 1, . . . ,m},

where Mk(y) (resp. Mk−vj(uj , y)) is the moment matrix associated with
the sequence y (resp. the localizing matrix associated with y and the poly-
nomial uj). Hence, Q

∗
k has a nonempty interior; see e.g. Rockafellar [21].

Then solving the problem

(3.8) P ′
k : inf

g∈P[x]2d

{∫

Rn

exp(−g)dx : 1− g ∈ Q∗
k

}

, k ∈ N,

k ≥ d, now provides a monotone sequence of upper bounds ρ′k ≥ ρ, k ∈ N.

Theorem 3.5. Let K ⊂ R
n be compact with nonempty interior and consider

the finite-dimensional convex optimization problem (3.8), k ≥ d.
(a) The sequence (ρ′k), d ≤ k ∈ N, is monotone nonincreasing with ρ′k → ρ

as k → ∞. Moreover there exists an optimal solution g∗k ∈ P[x]2d.
In addition, assume that there exists g0 ∈ P[x]2d such that 1−g0 ∈ intQ∗

k0
for some k0 ≥ d. Then:

(b) If k ≥ k0 and g∗k ∈ P[x]2d is an optimal solution of P ′
k, there exists a

vector yk ∈ Qk such that:

(3.9) 0 = 〈1− g∗k,y
k〉; ykα =

∫

Rn

xα exp(−g∗k) dx, ∀ |α| = 2d.
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(c) Conversely, if k ≥ k0 and (yk, 1 − g∗k) ∈ Qk ×Q∗
k satisfy (3.9), then

g∗k is an optimal solution of P ′
k.

(d) Let (g∗k) ⊂ P[x]2d, k ≥ k0, be a sequence of optimal solutions. If

sup
k

sup
|α|=2d

|g∗kα | < N,

for some N > 0, then every accumulation point g∗ of the sequence (g∗k),
k ∈ N, is an optimal solution of P.

For proof see §4.2.

4. Proofs

4.1. Proof of Theorem 3.4.

Proof. (a) That the sequence (ρk) is monotone non decreasing is straightfor-
ward since the constraints of Pk are more and more restrictive as k increases.
Next, as K is compact there exists M, δ > 0 such that M − ‖x‖2d > δ for
all x ∈ K. With g0 ∈ Σ[x]d being the polynomial x 7→ M−1‖x‖2d, one has
1− g0(x) > δ/M for all x ∈ K and so Mk(1− g0, z) ≻ 0. Indeed, for every
0 6= f ∈ R[x]k,

〈f ,Mk(1− g0, z) f〉 =

∫

K

f2(1− g0) dµ ≥ δ

M

∫

K

f2dµ > 0.

where the last inequality is because K has nonempty interior and suppµ =
K. Observe also that g0 ∈ P[x]2d and so g0 is a strictly feasible solution of
Pk, that is, Slater’s condition4 holds for Pk. So the Karush-Kuhn-Tucker
(KKT) optimality conditions at a point g∗k are necessary and sufficient for
g∗k to be a (global) minimizer of Pk. Therefore, there exists 0 � ∆ ∈ Ss(k)
such that:

(4.1)

∫

Rn

−xα exp(−g∗k) dx+ 〈∆,Mk(x
α, z)〉 = 0, ∀|α| = 2d,

and

(4.2) 〈Md(1− g∗k, z),∆〉 = 0,

where one has writtenMk(g
∗
k z) =

∑

α g
∗
kαMk(x

α, z) (withMk(x
α, z) being

the localizing matrix with respect to the polynomial xα and the moment
sequence z). From its spectral decomposition, ∆ =

∑

j qjq
T
j for some vectors

(qj), which yields

〈∆,Mk(x
α, z)〉 =

∫

K

σ∗k(x)x
α dµ, ∀|α| = 2d,

4For a convex optimization infx{f(x) : hk(x) ≥ 0, k = 1, . . . ,m} Slater’s condition
holds if there exists x0 such that hk(x0) > 0 for all k. In this case the Karush-Kuhn-Tucker
(KKT) optimality conditions are necessary and sufficient.
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where σ∗k =
∑

j(q
T
j vk(x))

2 ∈ Σk is a SOS polynomial. And so (4.1) yields

(3.5), and the complementary condition (4.2) yields (3.6). Next, multiplying
both sides of (4.1) with g∗kα and summing up yields:
∫

Rn

g∗k exp(−g∗k) dx
(

=
n

2d

∫

Rn

exp(−g∗k) dx
)

= 〈∆,Mk(g
∗
k, z)〉

=

∫

K

σ∗k g
∗
k dµ,

=

∫

K

σ∗k dµ [by (4.2)]

(b) The converse is because under Slater’s condition, the KKT optimality
conditions are also sufficient for g∗k to be a minimizer.

(c) Write g∗k(x) =
∑

|α|=2d g
∗
kαx

α. As supk sup|α|=2d |g∗kα| < M , there

exists a subsequence (ki), i ∈ N, and a vector g∗ ∈ R
ℓ(2d) such that for every

α ∈ N
n with |α| = 2d, g∗kiα → g∗α as i→ ∞.

Notice that x 7→ g∗(x) = lim supi→∞ g∗ki(x) = lim inf i→∞ g∗ki(x). Next, as
ρ ≥ ρk for every k, and exp(−g∗k) ≥ 0, by Fatou’s Lemma (see e.g. Ash [2])

ρ ≥ lim inf
i→∞

ρki = lim inf
i→∞

∫

Rn

exp(−g∗ki) dx

≥
∫

Rn

lim inf
i→∞

exp(−g∗ki) dx

=

∫

Rn

exp(− lim sup
i

g∗ki) dx =

∫

Rn

exp(−g∗) dx.

On the other hand, observe that for every k ∈ N, Mk(1− g∗k, z) � 0 implies
Mj(1 − g∗k, z) � 0 for all j ≤ k. Hence, let j be fixed arbitrary so that
Mj(1 − g∗k, z) � 0, for all sufficiently large k. For every f ∈ R[x]j , f

2gk is
uniformly bounded on K and so by Fatou’s Lemma

0 ≤ lim sup
i→∞

∫

K

f2 (1− g∗ki) dµ = − lim inf
i→∞

∫

K

f2 (g∗ki − 1) dµ

≤
∫

K

− lim inf
i→∞

f2 (g∗ki − 1) dµ

=

∫

K

f2 (1− g∗) dµ.

As f ∈ R[x]j was arbitrary, Mj(1 − g∗, z) � 0; and as j was arbitrary,
Mj(1 − g∗, z) � 0, for all j = 0, 1, . . . But by Lemma 3.3, this implies
1 − g∗ ≥ 0 on K, and so g∗ is a feasible solution for P. Combining with
ρ ≥

∫

Rn exp(−g∗)dx yields that g∗ is an optimal solution of P. �

4.2. Proof of Theorem 3.5.

Proof. (a) The sequence (ρ′k) is monotone non increasing becauseQ∗
k ⊂ Q∗

k+1

for every k ∈ N. Next, let ǫ > 0 be fixed, and let g ∈ P[x]2d be such that
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ρ ≤
∫

Rn exp(−g)dx ≤ ρ+ ǫ. Observe that g̃ := (1 + ǫ)−1g ∈ P[x]2d and
∫

Rn

exp(−g̃) dx =

∫

Rn

exp(−(1 + ǫ)−1g) dx

= (1 + ǫ)n/d
∫

Rn

exp(−g) dx ≤ (1 + ǫ)n/d(ρ+ ǫ).

and 1− g̃ = 1+ǫ−g
1+ǫ > 0 on K. Therefore, as Q∗ is Archimedean, by Putinar’s

Positivstellensatz [20], 1− g̃ ∈ Q∗, that is, 1− g̃ ∈ Q∗
k1

for some k1. Hence

g̃ is a feasible solution of Pk1 which implies ρ ≤ ρ′k1 ≤ (1 + ǫ)n/d(ρ+ ǫ). As
the sequence is monotone and ǫ > 0 was arbitrary, we obtain the desired
convergence ρ′k → ρ.

Next, let w = (wα), α ∈ N
n, be the sequence of moment of the Lebesgue

measure on K, and let g ∈ R[x]2d be an arbitrary feasible solution. Let
Mk(w) (resp. Mk−vj(uj w)) be the moment (resp. localizing) matrix associ-
ated withw and uj . Hence, Md(w) ≻ 0 andMd−vj (uj w) ≻ 0, j = 1, . . . ,m,
because K has nonempty interior. The constraint 1−g ∈ Qk(u) which reads
(1− g) = σ0 +

∑m
j=1 σjuj for some SOS polynomials (σj) has the equivalent

form

(4.3) (1− g)α = 〈X0,Bα〉+
m∑

j=1

〈Xj ,Cjα〉, ∀α ∈ N
n
2k,

for some appropriate real symmetric s(2(k − vj)) × s(2(k − vj)) matrices
Xj � 0, (and where Bα,Cjα are given real symmetric matrices). The vec-
tor of coefficients of the SOS polynomial σj ∈ Σ[x] is obtained from the
eigenvectors of Xj, j = 0, . . . ,m. For more details see e.g. [11]. Multiplying
(4.3) by wα and summing up yield:

∫

K

(1− g) dx = 〈X0,
∑

α

Bαwα〉+
m∑

j=1

〈Xj ,
∑

α

Cjαwα〉

= 〈X0,Mk(w)〉+
m∑

j=1

〈Xj ,Mk−vj (uj w)〉

Observe that every feasible solution g ∈ R[x]2d is nonnegative otherwise
∫
exp(−g)dx is not bounded. And so exp(−g) ≥ 1− g on K because g ≥ 0.

Therefore, for any minimizing sequence (gn,X
n
j ) of (3.8),

∫

K

(1− gn) dx ≤
∫

K

exp(−gn) dx ≤
∫

Rn

exp(−gn) dx ≤
∫

Rn

exp(−g0) dx.

And so

sup
n






〈Xn

0 ,Mk(w)〉+
m∑

j=1

〈Xn
j ,Mk−vj (uj w)〉






≤
∫

Rn

exp(−g0) dx.

As Mk(w),Mk−vj (uj w) ≻ 0 and Xn
j � 0, j = 1, . . . ,m, all matrices Xn

j are

uniformly bounded. Hence one may extract a subsequence (nℓ) such that
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X
nℓ
j → X∗

j � 0, j = 0, . . . , n, as ℓ→ ∞. And so for every α ∈ N
n
2k,

〈X∗
0,Bα〉+

m∑

j=1

〈X∗
j ,Cjα〉 = lim

ℓ→∞
(1− gnℓ

)α =: (1− g∗)α,

for some homogeneous polynomial g∗ ∈ R[x]2d (as all coefficients g∗α with
|α| 6= 2d vanish). In other words (gnℓ

)α → g∗α as ℓ → ∞, for all α ∈ N
n
2k.

As (1 − gnℓ
) ≥ 0 on K one also has (1 − g∗) ≥ 0 on K. Finally, since we

also have the pointwise convergence gnℓ
(x) → g∗(x) for all x ∈ R

n, invoking
Fatou’s lemma yields

ρ′k = lim
ℓ→∞

∫

Rn

exp(−gnℓ
) dx ≥

∫

Rn

lim inf
ℓ→∞

exp(−gnℓ
) dx

=

∫

Rn

exp(−g∗) dx,

which proves that g∗ is an optimal solution of (3.8).
(b) 1− g0 ∈ intQ∗

k for all k ≥ k0 because 1− g0 ∈ intQ∗
k0

and Q∗
k ⊃ Q∗

k0
.

Hence Slater’s condition holds for P ′
k whenever k ≥ k0. Therefore, if g

∗
k is an

optimal solution of Pk, there exists yk ∈ Qk such that the KKT-optimality
condition hold, which yields (3.9).

(c) Follows from the fact that under Slater’s condition, the KKT-optimality
conditions are sufficient for g∗k to be an optimal solution of P ′

k.
(d) If supk sup|α|=2d |g∗kα | < N , let g∗ be an accumulation point, i.e.,

a limit point of some subsequence (g∗ki), i ∈ N, i.e., such that for every α

with |α| = 2d, g∗kiα → g∗α as i → ∞. Let g∗ ∈ R[x]2d be the homogeneous

polynomial with coefficients g∗α, |α| = 2d. For every x ∈ K, (1− gki(x)) ≥ 0
because 1− g∗ki ∈ Q∗

ki
for every i. Therefore, with x ∈ K fixed,

0 ≤ 1− lim
i→∞

g∗ki(x) = 1− g∗(x),

and so, as x ∈ K is arbitrary, 1− g∗ ∈ C2d(K), which implies that 1− g∗ is
a feasible solution of P. Next, from (a) and by Fatou’s Lemma,

ρ = lim
i→∞

ρki = lim inf
i→∞

ρki = lim inf
i→∞

∫

Rn

exp(−g∗ki) dx

≥
∫

Rn

lim inf
i→∞

exp(−g∗ki) dx

=

∫

Rn

exp(−g∗) dx,

and so as g∗ is feasible for P, it is an optimal solution of P. �

4.3. The dual cone of Cd(K). Recall that M(K) is the space of finite
Borel measures on K. Let C∞(K) ⊂ R[x] be the space of polynomials
nonnegative on K ⊆ R

n and let ∆∞ ⊂ R[x]∗ be the set:

(4.4) ∆∞ :=

{(∫

K

xα dφ

)

, α ∈ N
n : φ ∈M(K)

}

.
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It is known that when K ⊆ R
n is closed then ∆∗

∞ = C∞(K) and ∆∞ =
C∞(K)∗. See e.g. the proof in Laurent [16, Prop. 4.5] for K = R

n, which
also works for any closed set K ⊂ R

n. The following result is a truncated
version when K is compact.

Lemma 4.1. Let K ⊂ R
n be compact. For every d ∈ N, the dual Cd(K)∗

of Cd(K) is the set:

(4.5) ∆d :=

{(∫

K

xα dφ

)

, α ∈ N
n
d : φ ∈M(K)

}

.

Proof. For every y = (yα) ∈ ∆d and f ∈ Cd(K) with coefficient vector

f ∈ R
s(d):

(4.6) 〈y, f〉 =
∑

α∈Nn
d

fαyα =
∑

α∈Nn
d

∫

K

fαx
α dφ =

∫

K

f dφ ≥ 0.

Since (4.6) holds for all f ∈ Cd(K) and y ∈ ∆d, then necessarily ∆d ⊆
Cd(K)∗ and similarly, Cd(K) ⊆ ∆∗

d. Next,

∆∗
d =

{

f ∈ R
s(d) : 〈f ,y〉 ≥ 0 ∀y ∈ ∆d

}

=

{

f ∈ R[x]d :

∫

K

f dφ ≥ 0 ∀φ ∈M(K)

}

⇒ ∆∗
d ⊆ Cd(K),

and so ∆∗
d = Cd(K). Hence the result follows if one proves that ∆d is closed,

because then Cd(K)∗ = (∆∗
d)

∗ = ∆d, the desired result. So let (yk) ⊂ ∆d,

k ∈ N, with yk → y as k → ∞. Equivalently,
∫

K
xαdφk → yα for all α ∈ N

n
d .

In particular, the convergence yk0 → y0 implies that the sequence of measures
(φk), k ∈ N, is bounded, that is, supk φk(K) < M for some M > 0. As K

is compact, the unit ball of M(K) is sequentially compact in the weak ⋆
topology σ(M(K), C(K)) where C(K) is the space of continuous functions
on K. Hence there is a finite Borel measure φ ∈ M(K) and a subsequence
(ki) such that

∫

K
gdφki →

∫

K
gdφ as i→ ∞, for all g ∈ C(K). In particular,

for every α ∈ N
n
d ,

yα = lim
k→∞

ykα = lim
i→∞

ykiα = lim
i→∞

∫

K

xαdφki =

∫

K

xαdφ,

which shows that y ∈ ∆d, and so ∆d is closed. �

References

[1] G.A. Anastassiou; Moments in Probability and Approximation Theory, Longman Sci-
entific & Technical, UK, 1993.

[2] R.B. Ash. Real Analysis and Probability, Academic Press Inc., Boston, 1972.
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