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LEVEL SETS AND NON GAUSSIAN INTEGRALS OF
POSITIVELY HOMOGENEOUS FUNCTIONS

J.B. LASSERRE

ABSTRACT. We investigate various properties of the sublevel set {x :
g(x) < 1} and the integration of h on this sublevel set when g and h
are positively homogeneous functions. For instance, the latter integral
reduces to integrating h exp(—g) on the whole space R™ (a non Gaussian
integral) and when g is a polynomial, then the volume of the sublevel
set is a convex function of the coefficients of g. In fact, whenever h is
nonnegative, the functional [ ¢(g(x))h(x)dx is a convex function of g
for a large class of functions ¢ : Ry — R. We also provide a numer-
ical approximation scheme to compute the volume or integrate h (or,
equivalently to approximate the associated non Gaussian integral). We
also show that finding the sublevel set {x : g(x) < 1} of minimum vol-
ume that contains some given subset K is a (hard) convex optimization
problem for which we also propose two convergent numerical schemes.
Finally, we provide a Gaussian-like property of non Gaussian integrals
for homogeneous polynomials that are sums of squares and critical points
of a specific function.

1. INTRODUCTION

Positively homogeneous functions (PHF) form a wide class of functions
that one encounters in many applications. As a consequence of homogeneity,
they enjoy very particular properties, and among them the celebrated and
very useful Euler’s identity which allows to deduce additional properties of
PHF's in various contexts. One goal of this paper is to show that another
not well-known property of PHFs yields surprising and unexpected results,
some of them already known in particular cases. Namely, we are concerned
with PHF's, their sublevel sets and in particular, the integral

(1.1) y=I,n(y) = / h(x) dx,

{x:g(x)<y}
as a function I;; : Ry — R when g,h are PHFs. With y fixed, we are
also interested in I, (y) now as a function of g, especially when g is a
nonnegative homogeneous polynomial. Nonnegative homogeneous polyno-
mials are particularly interesting as they can be used to approximate norms;
see e.g. Barvinok [4, Theorem 3.4]. Interestingly, the integral (LI]) is
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related in a simple and remarkable manner to the non-Gaussian integral
fR" hexp(—g)dx and therefore, any information on either one can help un-
derstanding and evaluating the other.

Functional integrals appear frequently in quantum Physics. In the impor-
tant particular case when h = 1, Morosov et Shakirov [I7] proved that for
all forms g of degree k,

(1.2) I,1(1) = cte(k) / exp(—g)dx,

where the constant depends only on k. In fact, a formula of exactly the same
flavor was already known for convex sets, and was the initial motivation and
starting point of this paper. Namely, if C C R™ is convex, its support
function o¢ is a PHF of degree 1, and the polar C° C R™ of C is the convex
set {x : oc(x) < 1}. Then

vol (C°) = %/ exp(—oc(x)) dx, vC.
(See e.g. Hiriart-Urruty [3, Exercise 65, p. 243-244] and Barvinok [4, Prob-
lem 4, p. 207].) In fact, as we will see, the intriguing result (2] is a
particular case of a more general and striking result about PHFs.

The connection between Iy; and [ exp(—g) is a consequence of what the
authors in [I7] call action-independence of integral discriminants. That is,
for a very general class of univariate functions ¢, and for every form g of
degree d,

(1.3) / H(g(x))dx = C(6,d) - 6(g),

for some function @, where the constant C'(¢,d) depends only on ¢ and d;
see [I7, (73)]. And so for instance, with the choices t > ¢1(t) = 1j9 1)() and
¢2(t) = exp(—t), and with R™ as integration contour,

C(¢17d) /
dX = " 7 eXp _g dX, Vg,
/{x:g<x><l} Cnd) Jon P9

whenever any of the above integrals finite. In Morosov and Shakirov [17] the
motivation of the authors was not to connect I;; with [ exp(—g) but rather
to study a specific class of non-Gaussian integrals, the so-called integral
discriminants. In fact, the theory of integral discriminants which lies in the
field of non linear algebra, extends to integrals on more general contours of
integration, and Ward identities permits to study properties of such integrals
that are invariant under a change of contour of integration. Hence the goal
in [I7] is to provide exact formulas for integral discriminants in terms of
algebraic invariants of the form ¢ involved in the exponent; several highly
non trivial examples are provided in [I8, 22] and some of their results are
further analyzed in Fuji [7] and Stoyanovsky [23].



POSITIVELY HOMOGENEOUS FUNCTIONS 3

Contribution. In the present paper we do not study non Gaussian inte-
grals from the point of view of algebraic invariants as in e.g. [17) [I8] 22].
We are interested in properties of the integral (ILI)) (and variants as well)
and its associated non-Gaussian integral [p, hexp(—g)dx for PHFs that are
not necessarily polynomials. Among other things, we are also interested in
methods for their evaluation (or approximation). More precisely:

(a) We first extend the action-independence property (L3]) to PHFs of
degree 0 # d € R. Namely, given a measurable mapping ¢ : R, — R, and
g, h PHFs of respective degree 0 # d,p € R and such that [ |h|exp(—g)dx
is finite,

(14) $gG)h(x) dx = Clond.p)- [ hexp(-g)dx.

R™ n
where the constant C'(¢,d,p) depends only on ¢,d,p. In particular, if the
sublevel set {x : g(x) < 1} is bounded, then for every nonnegative y € R,
(L5) / W y(ntp)/d
1.5 X =
{x:9(x)<y} F(l + (’I’L + p)/d) R™

with I' being the standard Gamma functionl]. And so the (Lebesgue) volume
of the sublevel set {x : g(x) <y} is given by:

n/d
(1.6) vol ({x : g(x) <y}) = m/n exp(—g) dx.

As already mentioned, when h(x) = 1 for all x, and g is a positive definite
form, (LO) was already proved in Morosov et Shakirov [I7, (75) p. 39]. In
fact, the same arguments as in [17] can be adapted to PHFs g and with
h # 1. The same technique applies for the integral

hexp(—g) dx,

Iy . gmh = hdx,

\/{ng(x)<17 k‘:l,,m}

for a finite family (gx), h of PHFs with same degree 0 < d € R.
In addition, we obtain the identity

y
/ exp(—g) hdx / exp(—z)z /A1 g,
{x:g(x)<y} 0

/ exp(—g) hdx N I((n+p)/d) 7

which expresses how fast u({x : g(x) < y}) converges to u(R")(= [ exp(—g)hdx)
when y — oo and p has the non Gaussian density hexp(—g) with respect
to the Lebesgue measure. It is the same speed with which the truncated
(Gamma) integral [ exp(—2)z("?)/?=1 dz converges to I'((n + p)/d).

(b) We also provide an alternative and simple proof based on
Laplace transform (in the spirit of Lasserre and Zeron [13] to provide

IThe Gamma function T : R — R is defined by a ~— I'(a) := J57 t%  exp(—t)dt, for
every a > —1.
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explicit expressions for certain integrals on specific domains like e.g., a sim-
plex or an ellipsoid). This proof permits to interpret (I.2]) as duality result in
the usual (-, +)-algebra which parallels duality in convex optimization, i.e.,
in the (max, 4)-algebra. This complements the list of the many remarkable
properties of homogeneous functions; for instance in [12] for integration, in
[9] for optimization, and in [14] for several properties of some conjugates of
homogeneous functions.

(¢) Convexity: (L5 also helps analyze properties of the mapping f :
Cqg— R,

g— frn(g) = / h(x) dx, Vge Oy,
{x:g(x)<1}

where Cy is the space of nonnegative PHFs of degree 0 # d € R with
bounded sublevel set {x : g(x) < 1}, and h is a given PHF. Whenever h is
nonnegative, f is strictly convex and when g is a homogeneous polynomial,
we provide an explicit expression of its gradient and Hessian on the interior
of its domain. This is the analogue in our context of a formula already
provided in Miiller et al. [I9] when the integration domain is a polytope.

This convexity property is important. For instance, given K C R", it
shows that the problem of computing a homogeneous polynomial g such that
{x:g(x) <1} contains K and has minimum volume, is a finite-dimensional
convex optimization problem (but hard to solve even though it is convex)!
This problem has received a lot of attention with an elegant solution in the
case d = 2 (that is, finding the ellipsoid of minimum volume). Notice that
here with d > 2 the problem is still convex even though the sublevel set
{x : g(x) < 1} is not required to be convex. We present two numerical
approximation schemes based on semidefinite programming, that provide
sequences of upper and lower bounds that converge to minimum volume.

(d) Polarity: When ¢ is a convex PHF of degree d € R with compact
sublevel set G = {x : g(x) < 1}, the polar G° is a certain sublevel set of the
Legendre-Fenchel conjugate g* of g, which is itself a PHF of degree ¢ with
1/d+1/q =1 and therefore we also obtain the volume of G° in the form of
non Gaussian integral, the dual analogue of the one obtained for G.

(e) Numerical approximation: Evaluating a non Gaussian integral
[ exp(—g) is a very hard problem even if in some cases exact results can be
obtained from some algebraic invariants of g, as in e.g. [17,[18,22]. However,
it turns out that (LA]) is indeed very useful to approximate non Gaussian
integrals from polynomials. Indeed, when h is a polynomial and ¢ is a homo-
geneous polynomial, we show how to approximate the non Gaussian integral
[ hexp(—g)dx, as closely as desired, by solving a hierarchy of so-called semi-
definite programs. This numerical approximation scheme complements the
exact results mentioned above.

(f) A Gaussian-like property: Finally we also prove a (again intrigu-
ing) Gaussian-like property of homogeneous polynomials that are sums of
squares (SOS). Recall that every homogeneous and SOS polynomial g of
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degree 2d can be written as v4(x)? Ev4(x) for some positive semidefinite
matrix 3 (not unique in general) and where v4(x) is the vector of all mono-
mials of degree d. If we now consider the function

Be 0(®)= (@t 2)* [ exp(—hva0"Ev())

where k = n/(2d¢(d)) (with ¢(d) = ("+g_l)), then its critical points are the
positive semidefinite matrices 3 such that ¥~! is the matrix of moments of
order 2d associated with the non Gaussian density exp(—kv,(x)T2v4(x))
(normalized to be a probability density) ... exactly like in the Gaussian case
(i.e. when d = 1) where 7! is a covariance matrix! (In the latter case, the
function 6 is constant, hence all points 3 are critical).

2. SUBLEVEL SETS AND NON (GAUSSIAN INTEGRALS

2.1. Notation and definitions. Let R[x] be the ring of polynomials in the
variables x = (x1,...,z,) and let R[x]4 be the vector space of polynomials
of degree at most d (whose dimension is s(d) := ("Zd)) For every d € N,
let N := {a € N" : |a| (= >, a;) = d}, and let v4(x) = (x¥), o € N", be
the vector of monomials of the canonical basis (x) of R[x|4. Denote by Si
the space of k x k real symmetric matrices with scalar product (B,C) =
trace (BC); also, the notation B = 0 (resp. B > 0) stands for B is positive
semidefinite (resp. positive definite).

A polynomial f € R[x]; is written

x= f(x) = D fax?

aeN™

for some vector of coefficients f = (f,) € R,

A real-valued continuous function f : R”™ — R is homogeneous (resp.
positively homogeneous) of degree k (k € R) if f(Ax) = M f(x) for all
A # 0 (resp. for all A > 0) and all x € R. For instance if x — f(x) is
homogeneous of degree k, then |f| is positively homogeneous of degree k
(but not homogeneous). Let us denote by:

e (C,; the convex cone of PHFs g of degree d € R with bounded sub-
level set G := {x : g(x) < 1}. Notice that necessarily d # 0 and
any g € Cy is nonnegative. Indeed, if d = 0 then x € G implies
Ax € G for every A > 0, in contradiction with boundedness of G.
Similarly, assume that g(xg) < 0 for some some xq (hence xy € G).
As g(Axg) = Ag(xg) < 0 for every A > 0, Axg € G for every A > 0,
again in contradiction with boundedness of G.

e P[x]; C R[x]4, d € N, the convex cone of homogeneous polynomials
of degree d with compact sublevel set {x : g(x) < 1}. Hence,
P[x]; C Cyq whenever d € N.
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Remember that a convex function is proper if f(x) > —oo for all x and
f(x) < +oo for some x. A proper convex function is closed if it is lower
semicontinuous; see Rockafellar [21].

In the sequel we will need the following result which extends to PHF's of
degree d € R, one already used in [I7] for forms of degree d € N (and also
used in Hiriart-Urruty [3] for the volume of the polar of a convex set).

Lemma 2.1. Let d,p € R with d # 0, and let ¢ : Ry — R, be a measurable
function such that

/ Pl (1) dt < oo,

0
and let g, h be nonnegative PHFs of degree 0 # d € R and p € R respectively.

The functz'onal/ #(g9(x))h(x) dx is finite if and only z'f/ hexp(—g)dx <
R” R"

400, in which case:

d / oy di
o 0
@1 ] elgx)hx)dx = —=Fm——s

cte(n,p,d,¢)

/n h exp(—g) dx.

Proof. With z = (21,...,2,-1), do the change of variable 1 = ¢, o =
tz1,..., &, = tz,_1) so that one may decompose [, ¢(g(x))h(x)dx into the
sum

/R . 1tnﬂ’_lgb(tdg(l,z))h(l,z)dtdz
+XRn=

+ / " P Lo (tlg(~1, —2))h(—1, —2) dt dz,
R+XR"71

_ /R </0°° t"+p—1¢(tdg(1,z))dt> h(l,2) dz

+ /R </0°° t"+p—1gb(tdg(—1,—z))dt> h(=1,z) dz,

where the last two integrals are obtained from the sum of the previous two
by using Tonelli’s Theorem (since ¢ and h are nonnegative functions) and
whether or not the integrals are finite; see e.g. Dunford and Schwartz [6,
Theorem 14, p. 194].

Next, with the change of variable u = t g(1,z)

e [ otabaneix = ( [

with

h(l, Z) h(_17 _Z)
(2.3) A(g,h) = /Rn1 (g(l’z)(nﬂ,)/d + g(_l’_z)(n-l-p)/d) dz.

1/d 1/d

and u =tg(—1,—z)

g ) du) A(g, h).

+
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In particular, the choice t — ¢(t) = exp(—t) yields:

73 b

———— [ hexp(—yg)dx,

T+ /) Jun " P

and so A(g,h) is finite if and ony if [ hexp(—g)dx is finite. Substituting

A(g,h) in [22]) with 24) yields 21)). O

2.2. Integration on sublevel sets and non Gaussian integrals. As a
consequence of Lemma [2.1] we obtain the following result.

(2.4) A(g,h) =

Theorem 2.2. Let g, h be PHF's of degree 0 = d € R and p € R respectively,
and such that g € Cy. Then for every y € [0,00):

‘ B yn/d
25 vol(x s glx) < 9h) = g L ep(-)dx
and
4P/

h exp(—g) dx,

(2:6) /Mx)gy}hdx =Tt p)/d) Jan

whenever [p, |h|exp(—g)dx (or f{x:g(x)gl} |h| dx ) is finite. And (2:4) also
holds if h is replaced with |h|, or with max[0, h], or with max[0, —h].

Proof. Write h = ht —h™ with AT (x) := max[0, h(x)], h™(x) := max[0, —h(x)]
for all x. Observe that |h|, ht and h~ are nonnegative and positively ho-
mogeneous of degree p, and |h| =hT +h~, h=ht —h™.

With A as in (2.2)), using Lemma 2] with ¢(¢) = exp(—t), yields

[ W exp(gix - D0/

- A(g, |h
e (9:11])

where all integrals are finite since the right-hand-side is finite. Similarly,
using Lemma 2Tl with ¢(t) = 1j9 1)(¢), yields

1
/ hldx = —— . A(g, A,
{x:g(x)<1} n+p

and therefore,
1
|h|dx =
/{x:g(x)gl} F(l + (’I’L—l—p)/d)
Next, by homogeneity,

/ hldx = y)/d / Ih dx.,
{x:9(x)<y} {x:g(x)<1}

en [l yoro
. X =
{x:g(x)<y} I'(1+ (n+p)/d)

/ 1] exp(—g) dx.

and so

/ |h| exp(—g) dx.
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Obviously, with same arguments, (2.7) also holds if we replace |h| with AT
and A~ and finiteness follows because

0< / htdx < / |h| dx,
{x:g(x)<y} {x:g(x)<y}

and similarly for h~. Hence [27)) with & in lieu of |h| (i.e. ([Z6]) follows by
additivity since h = h™ — h™.

Finally, from what precedes, finiteness of | (x:9(x)<1} |h|dx is equivalent to
finiteness of [, |h|exp(—g)dx. O

When y = 1, g is a positive definite form with d € N, and h is identical
to the constant function 1, (2.5]) is already proved in Morosov and Shakirov
[I7 (75) p. 39].

In particular, when g is the quadratic form x — go(x) := %XTQX for some
real symmetric positive definite matrix Q, one retrieves that the volume of
the ellipsoid £(y) := {x : g2(x) < y} is simply related to the determinant
of Q by the formula

n/2 1
(2.8) R [ expl- 5xTQx) dx
=(2m)"/2/\/det Q

So Theorem states that the volume of the sublevel set is simply related
to the integral of exp(—g(x)) over the entire domain R"™ which happens
to be simply related to the determinant of Q when g is the quadratic form
xT'Qx. One goal of the theory of integral discriminants is precisely to express
[ exp(—g) in terms of invariants of g when g is a form. See e.g. Morosov
and Shakirov [17, 18] and Shakirov [22].

Intersection of sublevel sets. Suppose that with A being positively ho-
mogeneous of degree p, one wishes to compute the integral fQ h(x) dx where

Q:{XGRngk(X)SZk, k:l,.”’m}7

for some m PHFs g1, ..., gn of degree 0 # d € R, and some (strictly) positive
vector z € R™. Equivalently,

Q:={xeR": gix;z) <1, k=1,...,m},

for the functions x — gr(x;z) := gk(zk_l/dx), k=1,...,m, which are also
PHFs of degree d € R. Hence with no loss of generality, one may restrict to
sets of the form

(2.9) Qy) ={x:gx) <y, k=1,...,m}

for some positive scalar y € R, and PHF's ¢, ..., g, of same degree d € R.
Notice that x — 1(x) := max[g1(X), ..., gm(x)] is a PHF of degree d.
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Corollary 2.3. Let h be a PHF of degree p € R, let g1,...,gm be PHFs of
degree 0 # d € R, and assume that the set {x : gr(x) <1, k=1,...,m} is
bounded and for everyy > 0, let Q(y) be as in (2.9). Then:

n/d
(2.10) vl Q) = Frkg [l o) dx
and
B y(ntp)/d v dx
(2.11) /Q(y)h(x)dx— F(1+(n+p)/d)/nheXp( V) dx,

whenever [4, |h| exp(—1) dx.

Proof. Notice that x — ¥(x) := max[g1(x),...,gm(x)] is also a PHF of
degree 0 # d € R, and Q(y) = {x : ¥(x) < y}. And so if Q(y) is bounded
then ¢ € Cy. Hence (2.II))-2I0]) is just 2.5)-(26]) with h and ¢ in lieu of
h and g. O

2.3. An alternative proof with a duality interpretation. Next, we
present an alternative proof of Theorem that uses Laplace transform
techniques and provides an interpretation of the result in an appropriate
duality framework.

Suppose that g, h € Cy. Since g is nonnegative, the function I, j, vanishes
on (—o0,0]. Its Laplace transform Ly , : C — R is the function

A L, (A) = /0 exp(—Ay) Iy (y) dy,

and observe that

Lr,,(\) = / exp(—Ay) </ hdx) dy
0 {x:g9(x)<y}

= / h(x) ( / exp(—/\y)dy) dx [by Fubini’s Theorem]
" 9(x)

= %/ h(x) exp(—Ag(x)) dx
\—p/d
- T / h(A?x) exp(—g(A/9x)) dx  [by homogeneity]
1
~ St [, h@) e (-o@)da by Aix =

| hexp(-g(a) da
I'(1+ (n+p)/d)

And so, by uniqueness of the Laplace transform,

Ly
k) = S ., M exp(—g(o0) dx

L nip/a(N).
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which is the desired result. So the above expression of I, (y) is obtained
by “inverting” the Laplace transform Ly , at the point y, which in fact, as
we next see, is solving a “dual” problem.

For analogy purposes, consider, the optimization problem

Pgn(y) = Sgp{h(X) :g(x) <yl

where y is fixed, h and —g are concave and h is nonnegative. Equivalently,
pg.n(y) = exp(04.1(y)) where y — 0, 5 (y) is the optimal value function of the
optimization problem

Py Oonly) = sup {Inh(x) : g(x) <y}

Associated with Py, is the dual problem Py : infy {G(\) : A > 0}, where
G : Ry — R is the function A — G(\) := supy {Inh(x) + ANy — g(x))}.
Observe that:

A= GA) = Ay+ sup {Inh(x) — A\g(x)}

= \y+ sup {In(A"Pn(2)) — g(z)} [via z = A\V/x]

d
And so the dual problem P} reads

= \y+ _P In A + sup{lnh(z) — g(z)}.

P,: v = Slzlp{ln h(z) — g(z)} + )l\g% {\y — gln/\}
= Iny??+1n <51Z1p{h(z) exp(—g(z))}> + g(l —1In g)

In particular, if h is log-concave and g is convex, by a standard argument of
convex optimization, v = 6, 1 (y) (= Inpg 1 (y)). And therefore,

punta) = exp(Oa) = 174 SHEEE sup{hix) expl(—g(x)

to compare with

Tynly) = 1P e [ B exp(—g(x) dx.

T(1+ (n+p)/d)

Alternatively, the Legendre-Fenchel transform of 6, (y) (for the concave
version) is the function

R = igf{ky —Ogn(y)}
= igf{/\y - sgp{ln h(x) : g(x) <y}}

= inf {Ag(x) ~ Inh(x)} = ~1n <s3p{h<x> exp(—Ag<x>>}>
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and so when h is log-concave and g is convex, 8y 5(y) = (6} ;)" (y), so that

Ognly) = inf{Ay — 05, (M)}

= iyt -+ (S {AGe) exp(- a0} ) )

(I-1In B).

— Iny”/?+In <sgp{h(2) exp(—g(z))}> + d

In summary, to the Laplace transform step

(212) L1, = [ (-2 ya)dy

p
d

in the usual (-, +)-algebra, corresponds to the Legendre Fenchel transform
gn(N) = nf{dy —05n(y)} = —sup{=Ay+05n(y)}
y
= —Insup{exp(=Ay)pgn(y)},
y

where to emphasize the analogy, the latter term can be written

In (“/” exp(—\y) pg,h(y)> :

i.e., the “sup” operator is integration “f” in the (max,+)-algebra. And
with this convention

exp(074(\) ~ / > exp(—Ay) Pon(y)-

(Compare with (ZI2]).) Similarly, the Laplace inverse transform step
w100
(2.13) L) = [ exp) £1,, () A
(where w € C is on the right of all singularities of £ 1,,,) and which yields
y(ntp)/d
T+ (n+p)/d) Jen

is solving the “dual” and corresponds to the Legendre-Fenchel transform
(which is involutive) applied to 67 |,

Iyn(y) = hexp(—g)dx,

exp(bg4(y)) = exp(irif{)\y— 9;h(}\)}) ~ —“/” exp(—Ay) exp( ;h()\))d)\
(compare with (2.13))), and which yields

_ ,p/d exp(p/d) « [ » _
exp(0g,n(y)) = y* /AT h(x) exp(—g(x)).
A rigorous analysis of the links between integration and linear optimization
on a polytope has been already investigated in [10].



12 J.B. LASSERRE

2.4. Approximating non Gaussian integrals. As we have already men-
tioned, in some cases the non Gaussian integral can be computed explicitly
in terms of some on algebraic invariants of g; see e.g. Morosov and Shakirov
[17] and Shakirov [22]. But so far there is no general formula and therefore
an alternative is to seak for a numerical scheme for its evaluation, or at least,
its approximation.

For this purpose, we next show that Theorem is helpful as it provides
a means to compute any moment of the measure du = exp(—g)dx on R”
by computing the same moment but now of the Lebesgue measure on the
sublevel set {x : g(x) < 1}. Indeed, for every o € N"| letting x — h(x) :=
x® in Theorem 2.2 yields

(2.14) / x%exp(—g(x))dx = T'(1+ (n+ |a|)/d) / x* dx,
" {x:9(x)<1}
where |a| = ), ;. Have we made any progress with this equivalence?

The answer is yes. If g is a (non necessarily homogeneous) polynomial,
it turns out that every moment of the Lebesgue measure on the sublevel
set {x : g(x) < 1} can be approximated as closely as desired by solving a
hierarchy of semidefinite programsE as described in Henrion et al. [§]. In
fact, for every a € N” fixed, the moment

Zo = / x% dx
{x:g9(x)<1}

can be approximated to arbitrary precision € > 0 fixed in advance, by solving
two sequences of semidefinite programs, one which provides a monotone non
decreasing sequence of upper bounds ug, k¥ € N, while the other provides a
monotone non increasing sequence of lower bounds ¢, k € N. The procedure
stops whenever u; — £ < €, in which case one may set

Za R Zo = (ug + 0k)/2.

This requires to solve two sequences of semidefinite programs for each o €
N™. In fact, if one is ready to relax the monotonicity property of the upper
and lower bounds {ug, ¢}, it is enough to solve a single sequence of semi-
definite programs, e.g., the one defined to approximate the mass zy. Then
if d € N and € > 0 are fixed, and k is large enough, not only |ux — zg| < €
but also from the solution of the semidefinite program at step k£ one obtains
scalars Z, such that |Z, — z,| < €, for all @ € N" such that |a| < d. How-
ever, in contrast to the case of upper and lower bounds, there is no simple
stopping criterion to guarantee the e-approximation. For more details, the
interested reader is referred to Henrion et al. [8]. And therefore, once the

2A semidefinite program is a finite-dimensional convex conic optimization problem,
that up to arbitrary (fixed) precision, can be solved efficiently, i.e., in time polynomial in
the input size of the problem. For more details the interested reader is referred to e.g.
24].
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Zo have been computed, using Theorem [2.2] we obtain:

/n xYexp(—g(x))dx — Z,T'(1+ (n+ |af)/d)| <€ Vae Ny,

which provides an e-approximation guarantee for the non Gaussian integral
Jgn €xp(—g)dx (and more generally for the integral [, hexp(—g)dx when-
ever h is any polynomial).

2.5. Sensitivity analysis and convexity. Recall that whend € N, P[x]; C
Cy is the convex cone of nonnegative and homogeneous polynomials of de-
gree d, with compact sublevel set {x : g(x) < 1}. Formula (2.6]) of Theorem
allows us to provide insights into the function f : Cy; — R, defined by:

(2.15) g0 Fulg) = / hx)dx, g€ Ca
{x:g(x)<1}

where h is a PHF. In particular when one wishes to see how f; changes
when some coefficient of g € P[x]; varies. Notice that the restriction of f
to P[x]; may be seen as a function f; : R4Y — R of the coefficient vector
of the polynomial g € P[x]4, where ¢(d) = ("+§_1 .

Before proceeding further we need the following result. Recall that the
support supp 4 of a Borel measure on R” is the smallest closed set A such

that u(R™\ A) = 0. Let C%:={g € Cy: g is continuous} C Cy.

Lemma 2.4. Let p be a non trivial o-finite Borel measure on R™ and let
O, C R[x|q be the convex cone of polynomials g of degree at most d such
that [ exp(—g)dp < oo. Then:

(a) With d € R, the function [ : Cq — R, with g — f(g) := [ exp(—g)dpu,
is convex (and strictly convex on C’g if supppu = R"™).

(b) If u(O) > 0 for some open set O C R™ and if d € N, then f is strictly
convex and twice differentiable on int(©,), with:

(216) 859(9) /Xa eXp(_g) d/‘) \V/Oé, |Oé| <d.

3 f(9) /
2.17 xT8 exp(—g) du, Va, 8, |al, |8] < d.
(2.17) 90095 p(—g) dp B, lal, |8

Proof. (a) Observe that f is nonnegative. Let a € [0,1] and let g,q € Cy.
To prove f(ag+ (1 —a)q) < af(g)+ (1 —«a)f(q), we only need consider the
case where f(g), f(q) < 400, for which we have

flag+ (1 —a)g) = /exp(—ag — (1 —a)g)dp.
By convexity of u — exp(—u),
flag+ (1 —a)g) < /[aexp(—g) + (1 — a)exp(—q) ] du
= af(9)+ 1 -a)f(9),
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and so f is convex. Now, in view of the strict convexity of u — exp(—u),
equality may occur only if g(x) = ¢(x), p-almost everywhere. If g,q € CY,
the set A := {x : g(x) — q(x) = 0} is closed and so if A # R™ then
w(A) < p(R™) because supppu = R™. Therefore, equality occurs only if
g = q so that f is strictly convex on C’g.

(b) Next, if d € N and ¢g € int(©,), write g in the canonical basis as

9(x) = >, gax®. For every a € NI, let e, = (e4(8)) € R*@ be such that
ea(B) = 0p=q (with ¢ being the Kronecker symbol). Then for every ¢ > 0,

dp(x)

f(g+te§)—f(g) _ /exp(_g) exp(—t:( )—1
W(tx)

Notice that for every x, by convexity of the function ¢ — exp(—tx?),
lgj61¢(t,x) = %Izlgi/)(t,x) = exp(—txo‘)TtZO = —x%,

because for every x, the function ¢t — 1 (t,x) is nondecreasing; see e.g.
Rockafellar [21, Theorem 23.1]. Hence, the one-sided directional derivative
1'(g;eq) in the direction e, satisfies

Flgea) =ty TOTIDI IO iy [expig) vt du

— [ expl-g) lim vt ) dutx) = [ —x exp(—g) du(),

where the third equality follows from the Extended Monotone Convergence
Theorem [2, 1.6.7]. Indeed for all ¢ < ¢y with ¢y sufficiently small, the
function (¢, -) is bounded above by ¥(to,-) and [ exp(—g)¥(to,x)dp < oo.
Similarly, for every ¢ > 0

f(g—tej) —fl9) _ /exp(_g) exp(bjj )—1
()

dp(x),

and by convexity of the function ¢ — exp(tx?®)
1. ¢ — f t — t a/ — Oz.
3&15( 1 X) ;12105( ,x) = exp(tx?);_o = x
Therefore, with exactly same arguments as before,

"o . flg—tea) — f(g)
(g —ea) = ltlg]l n

/xa exp(—g) du(x) = —f'(g; €a),

and so

_ / ™ exp(—g) dp(x),
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for every a with || < d, which yields (2I6]). Similar arguments can used
for the Hessian V2 f(g) which yields (ZI7).

So the Hessian V2 f(g) is the matrix My € Sy(4) whose rows and columns
are indexed in the set I'y := {a € N": |a] = d} and with entries

Md(aw@) = / Xa+5 exp(—g) d,LL, Of,,@ € Fd7
' T

i.e., My is the matrix of 2d-moments of the finite Borel measure v. Let
h € RY9 be the coefficient vector of a non trivial and arbitrary homogeneous
polynomial h € R[x|s. Then

(h, Myh) (: /nh(x)zdu(x)> >0

because p(O) > 0 (hence v(O) > 0) on some open set O C R". Therefore
V2f(g) > 0, which in turn implies that f is strictly convex on int(©,). O
Corollary 2.5. Let h be a PHF of degree p € R and with 0 # d € R,
consider the function f : Cqg — R defined by:
(2.18) g—  fulg) = / h(x) dx, Vg € Cy.

{x:g(x)<1}

The function fy is a PHF of degree —(n + p)/d and convex whenever h is
nonnegative (and strictly convex if h > 0 on R™\ {0}). In addition, if d € N
and h is continuous with [ |h|exp(—g)dx < oo, then:

(a) fn is twice differentiable on int(P[x]4), and for every o, € NI

8fh(g) _ —1 a
(2.19) 90 TAT0 D)D) Jen x% h(x) exp(—g(x)) dx
—T@2+(n+p)/d) o
(2.20) T+ (0T p)/d) /{x;g(x)§1} x% h(x) dx.
82fh(9) _ 1 a
(2.21) m RN CETI) /[R” xTF p(x) exp(—g(x)) dx.

(b) If h is non trivial and nonnegative, then f, is strictly convex on int(P[x]4),
and its Hessian V2 f1,(g) is the matriz of 2d-moments of the measure

1
B) =
YB) = Tt p)/d)
Proof. With A > 0 and g € Cy,

fu(Ag) = / hdx = / h dx,
{x:Ag(x)<1} {xig(A\V/dz)<1}

and so, doing the change of variable z = A\/9x, one obtains fn(Ag) =
A—(R)/df, () ie., f, is a PHF of degree —(n + p)/d.

/ h exp(—g) dx, B e B.
B
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Next, first consider the case where h is nonnegative, and let p be the
o-finite measure defined by p(B) := / h(x)dx for every Borel set B of R™.
B
By Theorem 2.2, whenever g € Cy and fj,(g) is finite,

1
T(1 + (n+p)/d) /R exp(—g) dji-

Hence by Lemmal[24] f}, is convex (and strictly convex if A > 0 on R™\ {0}).

In addition, if d € N and h is continuous, fj,(g) < oo if g € int(P[x]4) (and
so g € int(©,)). Moreover, h being non trivial, nonnegative and continuous,
h > 0 on some open set O and so u(O) > 0. Therefore, by Lemma 2.4|b),
fn is twice differentiable and strictly convex on int(P[x];) and (2I6])-(217)
yield (Z19) and (221]), while ([2:20) follows from (2ZI9) and Theorem
That V2 f;(g) is the matrix of 2d-moments of the measure dv = h exp(—g)dx
follows from (2Z.2I]). This proves (b).

To prove (a) when h is not nonnegative, write h = ht — h™ with AT :=
max[0, h] and h~ := max[0, —h]. Both A" and h~ are continuous PHFs of
degree p, and nonnegative. Moreover, f, = f,+ — f,- and so applying (b)
to fp+ and f;,—, yields (a) by additivity.

fu(g) =

O

Remark 2.6. (a) Notice that proving convexity of fp, directly from its defi-
nition (2.18) is not obvious at all whereas it becomes much easier when using
Theorem [2.2.

(b) In Lemma (2, differentiability of f on the convex cone Cy should be
now in the sense of Gateauz-differentiablity, not explored here.

We end up with the following relatively surprising results which even
though are again particular cases of Lemma [2.1], deserve special mention.

Lemma 2.7. Let y > 0 be fized, let h be a PHF of degree p € R and let
&Y Ry — R be measurable functions such that

/ t"Plet) dt < +oo.
{tp(t) <y}
Let fr, : Cqg = R, 0£d € R, be the function:

9 fulg) = / ) h(x)dx,  geCa
x:(9(x))<y}

Then whenever [ |h|exp(—g)dx < oo, fi(g) is finite, and

d/ ) P Le () ar
222) o) =

cte(y,p,d,&,%)

hexp(—g)dx,
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where the constant depends only on £,v,d,p,y and neither on g nor h.
Therefore, fr is convexr whenever h is nonnegative (and strictly conver on
CY9 whenever h >0 on R™\ {0}). In particular,

(2.23) / gh exp(—g)dx = n;—p h exp(—g) dx
n R

1
2.24 / ghdx = 7/ h exp(—g) dx
( ) {x:g9(x)<1} P((n—l—p)/d) R™ ( )
y
exp(—g) dx / exp(—2)2" 41 dz
_ Jo

I(n/d)

exp(—g) dx
Rn

/ exp(—g)dx .,
(2.26) /{ x:g(x)gy}exp(g)dx = T(n/d) /0 exp(2)z"/ " dz.

Proof. We first assume that h is nonnegative and [ hexp(—g) < +oo, so
that (2.22)) follows from Lemma 2.1l with t — ¢(t) := {(t)I}g 4 (¥(t)), which

yields fh(g) = Cte(yvpa d,fﬂ/)) ’ A(97 h)v with A(7 ) as in (IBD and

cte(y, p,d. &) — / rr1g(1) dt,
{t:4p(t?)<y}

and the result follows by recalling that with ¢(t) = exp(—t) one had already
obtained in (2.4))

4
I'((n+p)/d)

When h is not nonnegative, writing h = h* — h™ where both h* and h™ are
also PHFs of degree p, the result follows by additivity since [ |h|exp(—g)dx <
+o0 only if both [ htexp(—g)dx and [ h~ exp(—g)dx are finite.

Finally, (2:23))-(220]) are special cases of (222] with respective choices
t — P(t) == 0,&(t) := exp(—t), then t — (t) := t,£(t) = t and finally,
t— (t) =t,&(t) == exp(—t) and t — &(t) := exp(t).

At last, when A is nonnegative, convexity and strict convexity follow from
Lemma [2.4)a) with du = hdx (and so supp p = R™ if A > 0). O

A(g,h) = /]R” h exp(—g) dx (< +00).

So Lemma [2.7] shows that f is convex provided that h is nonnegative and
no matter how the functions £ and v behave!

Next, if p is the non Gaussian measure dy = exp(—g)dx on R”, then
([2:25)) shows how fast p({x : g(x) < y}) converges to the non Gaussian inte-
gral fRn exp(—g)dx as y — oo. It converges as fast as the one-dimensional

integral [ t"/4=1 exp(—t)dt converges to the Gamma function I'(n/d).
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2.6. Polarity. We here investigate the polar G° set of the sublevel set G :=
{x : g(x) < 1} assumed to be compact and when g is a proper closed convex
PHF. In this case GG is a convex body, and in fact g is a gauge.

The polar C° of a set C' C R" is the convex set defined by

C° = {xeR" : o¢(x) <1} with o¢(x) :=sup{(x,y) : y € C}.
y
and (C°)° is the smallest convex balanced set that contains C.

Recall that the Legendre-Fenchel conjugate f* : R™ — R U {400, —o0} of
f:R™ — R is defined by

Fr(u) = sup {{u,x) - f(x)}  uweR™

The conjugate g* of a PHF ¢ of degree d € R is tself a PHF of degree ¢ with
% + % = 1 (where d does not need to be positive); see e.g. Lasserre [14].

Proposition 2.8. Let g be closed proper conver PHF of degree 1 < d € R,
and let G := {x : g(x) < 1/d}. Then with } —|—% =1,

(2.27) G° = {xeR": g"(x) < 1/q},

where g* is the Legendre-Fenchel conjugate of g. In other words, G° is a
sublevel set the PHF g* of degree q. Moreover, if G is bounded then

1

2.28 vol (G°) = —/ exp(—g*) dx.

Proof. ([227) is from Rockafellar [21I, Corollary 15.3.2] and (2.:28]) follows
from Theorem applied to the PHF ¢* and with y = 1/q. O
Example 1. Let z — g(x) := |22 if x > 0 and +oo otherwise. Hence,
d=3,q= 3/2: G = [_171]; Jg(l‘) = |l‘|, and g*($) = 3—\2/§|l‘|3/2 One
retrieves that G° = G = [-1,1] = {z : g*(z) < (d — 1)/d?}.

Example 2. Let ¢ — g(z) = |z| so that G = [-1,1]. As g"(z) = 0 if
x € [—1,1] and +oo otherwise (a PHF of degree 0) one may check that
indeed G° = [-1,1] = G and (2.27) holds although d = 1 and g is not

strictly convex.

Example 3. Let x — g(x) := 2 + 23 and G = {x : 2} + x5 < 1/4}.
Then g*(x) = 3(3:%/3 + x;‘/g)/44/3 (a PHF of degree 4/3) and G° = {x :

2 g < 174173},

2.7. A variational property of homogeneous polynomials. We end up
this section with an intriguing variational property of homogeneous polyno-
mials that are sums of squares.

Let v4(x) be the vector of all monomials (x*) of degree d and let g €
R[x]24 be homogeneous and a sum of squares, that is,

(2.29) g(x) = —%\N/d(x)TEGd(x), x €R,
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for some real symmetric ¢(d) x ¢(d) matrix ¥ which is positive definite
(denoted X > 0). If d =1 it is well-known that

B (27T)n/2
/n exp(—g)dx = s

and

< =T (zﬂ)n/ —
/n Va(x)V; (x) exp(—g)dx mﬁ )
that is, 7! is the covariance matrix associated with the Gaussian proba-
bility density (27)~"/2v/det X exp(—g).

When d > 1 the non Gaussian integral can be still expressed as a (possibly
complicated) combination of several algebraic invariants of g, but in general
not in terms of the single algebraic invariant det 3.

It turns out that det 3 and [ exp(—3va(x)TZvy(x))dx are still related
in the following Gaussian-like manner. Let SZE;F) C Sy(a) be the convex cone

of £(d) x £(d) positive definite matrices, and let 6, : SZ;S — R be defined by:

(2.30) 604(%) = (det Z)k/ exp(—kvy(x)T T v,4(x)) dx, P ESl;Ed)’

n

where k = n/(2d¢(d)) and let

[ Ra60wa0)T exp( k() 7)) dx
My(X) = == :

/n exp(—kvq(x)T L v4(x)) dx

be the matrix of moments of order d, associated with the non Gaussian
probability measure

/ exp(—kvy(x)T Bvy(x)) dx
B

w(B) =
/n exp(—kvy(x)T Bv4(x)) dx

(2.31) , BeB.

Observe that 6; is nonnegative and positively homogeneous of degree 0;
therefore 6, is constant in any fixed direction 3. In particular, if d = 1
then k = 1/2, p is a Gaussian probability measure, M (X) is the associated
covariance matrix 37! and 64(X) is constant. In fact,

Lemma 2.9. Let 6; be the function defined in (2:30). Then (M4(X),X) =
0(d) for all X in the domain of 05 and VOy(X) = 0 if

(2.32) My(®) = L



20 J.B. LASSERRE
Proof. Let g(x) = kvg(x)Xv4(x) so that

M), %) [ ewt-gix = ([ vt g ax )

n

= k! /n kvq(x)T 2v4(x) exp(—g) dx

= k_l/ g exp(—g) dx

k~n
= & exp(—g)dx [by 2.23)],

R?’L
which yields the desired result (My4(X),3) = £(d). Next, write the gradient
V6(X) in the form Ay + Ay with

A = V((detZ)k)/ exp(—kvy(x)T TV y(x)) dx

n

= k(detZ)k-1xA / exp(—kvy(x)T Bv4(x)) dx

n

A
det X (det 2)* /n exp(—kva(x)" By(x)) dx

= EXTlg4(Z),
where 4 is the adjugate of T (see e.g. [5l p. 411]), and

Ay = (detE)kV< / nexp(—kod(x)Tzvd(x))dx>

= k

= —k(det Z)k/ Va(x)Va(x)T exp(—kvy(x)T Ev4(x)) dx

= —kMy(X)04(%).

This yields A1+ Ay = kOy(X)(Z"1-My4(X)) and so Vy(2) = 0if My(X) =
»-h a

Lemma states that for all critical points 3, or equivalently for all
critical SOS homogeneous polynomials g of the function 6; (assuming that
at least one such critical point exists), their associated non Gaussian measure
dp = exp(—g)dp (rescaled to a probability measure) has the Gaussian-like
property that £! is the “d-covariance” matrix of u!

3. SUBLEVEL SET OF MINIMUM VOLUME CONTAINING A COMPACT SET

If K C R" is a convex body, computing the ellipsoid of minimum volume
that contains K is a classical problem which has an optimal solution called
the Lowner-John ellipsoid; see e.g. Barvinok [4, p. 209]. In this section we
consider the following generalization:

P: Find a homogeneous polynomial g of degree 2d such that its sublevel
set G :={x : g(x) < 1} contains K and has minimum volume among all
such sublevel sets with this inclusion property.



POSITIVELY HOMOGENEOUS FUNCTIONS 21

With K C R", let Cy(K) C R[x]2q be the convex cone of polynomials of
degree at most 2d that are nonnegative on K. Recall that P[x]|oq C R[x]oq
is the convex cone of homogeneous polynomials of degree 2d with compact
sublevel set {x : g(x) < 1}. We next show that problem P is a convex
optimization problem:

Proposition 3.1. The minimum volume of a sublevel set {x : g(x) < 1},
g € P[x]aq, that contains K C R™ is p/T'(1 + n/2d) where p is the optimal
value of the finite-dimensional convexr optimization problem.:

31)  P:  p= inf {/nexp(—g)dx l-ge C’gd(K)}.

9€P[x]2q
Proof. From Theorem

vol ({x : g(x) <1}) = m/w exp(—g) dx.

Moreover, the sublevel set {x : g(x) < 1} contains K if and only if 1 — g €
C24(K), and so p/T'(1 4+ n/2d) in (31)) is the minimum value of all volumes
of sublevels sets {x : g(x) < 1}, g € P[x]aq, that contain K. Now since
g = Jgnexp(—g)dx is strictly convex (see Corollary 2Z5(b)) and Cyy(K)
is a convex cone, problem P is a finite-dimensional convex optimization
problem. O

We also have the following characterization of an optimal solution of P
when it exists. Let M (K) be the convex cone of finite Borel measures on K.

Theorem 3.2. Let K C R" be compact and consider the convexr optimiza-
tion problem P in (31]).

(a) Suppose that g* € Plx|oq is an optimal solution of P. Then there
exists p* € M(K) such that

(3.2) / xexp(—g*)dx = / x*dp*, V]a| = 2d, /(1—g*)du*:0.
n K K

In particular, p* is supported on the real variety V := {x € K : g(x) = 1}
and in fact, u* can be substituted with another measure v* € M(K) supported
on at most (”+§g_1) + 1 points of V.

(b) Conversely, if g* € P[x]aq and pu* € M(K) satisfy (3.2) then g* is an

optimal solution of P.

Proof. (a) We may and will consider g* as an element of R[x]2q with gj =0
whenever || < 2d. As K is compact, there exists § € P[x]oq such that
1 — 0 € int Cyy(K), i.e., Slater’s condition holds for P. Indeed, choose
6 := M~1|x|]>® for M > 0 sufficiently large so that 1 — 6 > 0 on K. Hence
with ||g||1 denoting the ¢1-norm of the coefficient vector of g (in R[x]sq), there
exists € > 0 such that for every h € B(0,¢€)(:= {h € R[x]aq: ||0 — h|l1 < €}),
1—h>0onK.
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Therefore, the optimal solution ¢* satisfies the KKT-optimality condi-
tions, which read:

(3.3) / X exp(—g")dx =yt Vla|=2d; (1—g%y") =0,

for some y* = (y), @ € Nj,, an element of the dual cone Caq(K)* C R*29)
of Cy4(K). By Lemma 1] in §4.3

Coa(K)* = {y e R*CD . 3" € M(K) s.t. yo = / x*du*, a € Ny, },
K

and so ([B.2) is just (B.3) restated in terms of p*. Finally, the last statement
follows from Anastassiou [I, Theorem 2.1.1, p. 39] applied to the ("+§g_1)
equality constraints of (B.2]).

(b) As Slater’s condition holds for P, the KKT-optimality conditions (B.2])

are sufficient to ensure that ¢* is an optimal solution on P. O

Theorem [3.2] states that when (3.2)) holds, there is an optimal solution ¢*
to P such that g(x) = 1 on (at most) ("+§g_l) +1 points of K, the analogue
for d > 1 of the well-known property of the Léwner-John ellipsoid in the

case d = 1.

Even though being convex and finite-dimensional, P is by no means easy
to solve because there is no simple and computationally tractable way of
describing the convex cone Cy4(K). However, there are cases where one may
provide a sequence of inner or outer approximations that both converge to
C54(K). One such case is when one knows all moments of a finite Borel
measure whose support is exactly K, and another case is when K = {x :
gr(x) > 0, k = 1,...,m} for some polynomials (gx) C R[x], i.e., K is a
compact basic semi-algebraic set.

3.1. Lower bounds via inner approximations. Suppose that one knows
all moments z = (z4), @ € N, of a finite Borel measure p on K, i.e.,

Zo = / x* du(x), Va e N,
K

whose support is exactly K. For every k € N and p € R[x], let Mg(p, z)
be the localizing matrix with respect to the polynomial p and the moment
sequence z, that is, Mg(p, z) is the s(k) x s(k) real symmetric matrix with
rows and columns indexed in the canonical basis (x*), a € N, of R[x],
and with entries

Mi(p, D)@ f) = [ p0x"dutx). Va5 e Ny

K
= Py Za+B+~y
S

(when p(x) = >__ p,x7). We recall the following result.
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Lemma 3.3. ([15] Theorem 3.2]) Let K C R™ be compact and let y be a
finite Borel measure with support K and with moments z = (z,), o € N™.
Then p € R[x] is nonnegative on K if and only if Mg(p, z) = 0 for every
k=0,1,....

In view of Lemma [3.3], a natural idea is to relax the “difficult” constraint
1—g € Cy%(K) in BI) to Mg(1—g, z) = 0 for fixed k, and then let k — oo.
Indeed, for every fixed k, the latter is much easier to handle as it defines
a spectrahedron]%, Ay C Ré (2d) on the coefficients of the homogeneous poly-
nomial g. And so one obtains a hierarchy of convex relaxations of P by
minimizing the (strictly) convex function g — [ exp(—g) on the spectrahe-
dra Ag, k € N, which yields a monotone nondecreasing sequence of lower
bounds pi < p, k € N, on p. Of course the larger k (i.e., the larger the size
of the localizing matrix My (1 — g, z)) the better the lower bound pi (but
also the harder the problem).

Theorem 3.4. Let K C R" be compact with nonempty interior and consider
the finite-dimensional convex optimization problem:

(34) Pr:  pp= inf {/ exp(—g)dx : My(l—g,2) =0 }
9€P[X]24 n

The sequence (py), k € N, is monotone nondecreasing with pr, < p and:
(a) If P has an optimal solution g; € P[x]aq then there exists a SOS
polynomial o}, € ¥[x|, such that

(3.5) / x% exp(—gr)dx = / x% o dy, V|a| = 2d.
n K
(3.6) | a-aaidn = o

and py = %d/ opdp.
K

(b) Conversely if (3.3)-(3.0) holds for some g; € P[x]aq and some o, €
Y[x]i then gi is an optimal solution of Py,.

(¢) If in addition,

sup sup |gp, | < M,
k  |al=2d

for some M > 0, then pp — p and P has an optimal solution g*.
For a proof see §4.11. So problem P, amounts to minimize a strictly convex

function on a spectrahedron of R4 For instance, one may use interior
point methods and minimize the standard log-barrier function

97 0ulo) = [ expl=g)ix - logdet(M(1 ~ g, 2)

3A spectrahedron is a convex set that can be formed by intersecting the cone of positive
semidefinite matrices S, with a linear affine subspace.
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with parameter v, and let v — co. For more details on log-barrier methods,
the reader is referred to e.g. Wright [25].

3.2. Upper bounds via outer approximations. Let K C R™ be the
compact basic semi-algebraic set defined by

K= {x:ujx)>0, j=1,...,m},

for some polynomials (u;) C R[x]. As K is compact, with no loss of gen-
erality we may and will suppose that u1(x) = M — ||x||? for some M large
enough. Let

m
Q" = {Zajuj tujeXx|, j=0,...,m},
§=0

be the quadratic module of R[x] generated by the w;’s (with up =1). Q* is
Archimedean because the quadratic polynomial x — M — [x||? belongs to
Q*. If one defines

m
Q= {Zajuj tuj € X[x|; degoju; <2k, j=0,...,m}, keN,
§=0

(a subset of Q* with a degree bound on the SOS weights ¢;) then this time
one may replace the “difficult” constraint 1 — g € Coy(K) by the stronger
constraint 1 — g € Qj for fixed k € N.

The convex cone Q7 is the dual cone of the closed pointed convex cone

(37) Qk = {y € Rs(2k) : Mk(Y) = 07 Mk—vj (u]7 y) = 07 ] = 17 s 7m}7

where My (y) (resp. Mgy, (uj, ¥)) is the moment matrix associated with

the sequence y (resp. the localizing matrix associated with y and the poly-

nomial u;). Hence, @ has a nonempty interior; see e.g. Rockafellar [21].
Then solving the problem

(3.8) Py inf {/ exp(—g)dx : 1—g € QZ} , keN,

9EP[x]24
k > d, now provides a monotone sequence of upper bounds pj. > p, k € N.

Theorem 3.5. Let K C R" be compact with nonempty interior and consider
the finite-dimensional convex optimization problem (3.8), k > d.

(a) The sequence (p}), d < k € N, is monotone nonincreasing with pj, — p
as k — oco. Moreover there exists an optimal solution g; € P[x]aq.

In addition, assume that there exists gy € P[x]|aq such that 1—gg € int Q%o
for some ko > d. Then:

(b) If k > ko and g; € P[x]aq is an optimal solution of Py, there exists a
vector y* € Qy, such that:

(3.9) 0= (1-ghLy"): o= / x* exp(—gp) dx, Vl|a|=2d.
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(c) Conversely, if k > ko and (y*,1 — g) € Qr x Q} satisfy (39), then
gy is an optimal solution of P;..
(d) Let (g5) C P[x]oa, k > ko, be a sequence of optimal solutions. If
sup sup |grq | < N,
k|o|=2d
for some N > 0, then every accumulation point g* of the sequence (gj),
k € N, is an optimal solution of P.

For proof see §4.21

4. PROOFS
4.1. Proof of Theorem 3.4l

Proof. (a) That the sequence (pg) is monotone non decreasing is straightfor-
ward since the constraints of P}, are more and more restrictive as k increases.
Next, as K is compact there exists M,§ > 0 such that M — ||x[|?*? > § for
all x € K. With gy € X[x]; being the polynomial x — M ~!|x||??, one has
1 —go(x) > /M for all x € K and so Mg (1 — go, z) > 0. Indeed, for every
0# f € R[xly,

1)
(£, My(1— go, 2) f) = /Kf2(1—go)du > 2 /Kf2du > 0.

where the last inequality is because K has nonempty interior and supp p =
K. Observe also that gy € P[x]2q and so gg is a strictly feasible solution of
Pr, that is, Slater’s condition] holds for Pg. So the Karush-Kuhn-Tucker
(KKT) optimality conditions at a point g are necessary and sufficient for
gy, to be a (global) minimizer of Py. Therefore, there exists 0 X A € Sy,
such that:

(4.1) / —x%exp(—g;) dx + (A, My(x%, z)) = 0, V]a| = 2d,

and
(4'2) <Md(1 - 9;27 Z),A> =0,

where one has written My (g5 2) = >, 5o Mi(x%, 2) (with My (x®, z) being
the localizing matrix with respect to the polynomial x* and the moment
sequence z). From its spectral decomposition, A = 3 j qjqu for some vectors
(g;), which yields

AMx ) = [ Gix)x"dp, Ve =24
K

4For a convex optimization infx{f(x) : hx(x) > 0, k = 1,...,m} Slater’s condition
holds if there exists x¢ such that hi(xo) > 0 for all k. In this case the Karush-Kuhn-Tucker
(KKT) optimality conditions are necessary and sufficient.
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where o} = 2:]-(qka(x))2 € Y is a SOS polynomial. And so (@I yields
(B3)), and the complementary condition (£2]) yields (3.6]). Next, multiplying
both sides of ({A.1]) with g;, and summing up yields:

* * n * *
/ gr. exp(—g) dx <= 2 /. exp(—gk)dX> = (A, My(gz, 2))

= /UZg;’idu,
K
- /K oidu [by @)

(b) The converse is because under Slater’s condition, the KKT optimality
conditions are also sufficient for g;; to be a minimizer.
(c) Write gj(x) = Z\a|:2d GraX®.  AS SUpL SUp|q=24 95| < M, there

2d) such that for every

exists a subsequence (k;), i € N, and a vector ¢g* € RY
o € N" with [af = 2d, g;., — g, as i — oo.
Notice that x — g*(x) = limsup,_,., g;.(x) = liminf; ;o g; (x). Next, as

p > pi for every k, and exp(—g;) > 0, by Fatou’s Lemma (see e.g. Ash [2])

p > liminf py, = liminf/ exp(—g;.) dx
1—00 n v

1—00

n  1—00

> / lim inf exp(—gj, ) dx
R

= /exp(—limsupgzi)dx:/ exp(—g*) dx.

On the other hand, observe that for every k € N, My(1 — g;, z) > 0 implies
M;(1 —g;,z) = 0 for all j < k. Hence, let j be fixed arbitrary so that
M, (1 — g}, z) = 0, for all sufficiently large k. For every f € R[x];, f2gy is
uniformly bounded on K and so by Fatou’s Lemma
0< limsup/ 21— gr,)dp = —liminf/ f? (g, — 1) dp
K K

i—00 1—00

IN

1—»00

/ — liminf f2 (g, — 1) dp

K
= [ P -g")dp

K
As f € R[x]; was arbitrary, M;(1 — g%, z) = 0; and as j was arbitrary,
M;(1 —g*,z) = 0, for all j = 0,1,... But by Lemma B3] this implies
1—g" > 0on K, and so g* is a feasible solution for P. Combining with
P> [pn exp(—g*)dx yields that ¢* is an optimal solution of P. O

4.2. Proof of Theorem

Proof. (a) The sequence (p;,) is monotone non increasing because Qj C Q5
for every k € N. Next, let € > 0 be fixed, and let g € P[x]o4 be such that
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p < [pnexp(—g)dx < p+ €. Observe that §:= (1+¢)"'g € P[x]yq and
/ exp(—g)dx = / exp(—(1+¢)71g) dx
= ([ exp(—g)dx < (14 p o+ o)

and 1—g = 1%;9 > 0 on K. Therefore, as Q* is Archimedean, by Putinar’s
Positivstellensatz [20], 1 — g € Q*, that is, 1 — g € @y, for some ki. Hence

g is a feasible solution of Py, which implies p < pj < (1+ )" (p+e€). As
the sequence is monotone and € > 0 was arbltrary, we obtain the desired
convergence pj — p.

Next, let w = (w,), a € N, be the sequence of moment of the Lebesgue
measure on K, and let g € R[x]yq be an arbitrary feasible solution. Let
My, (w) (resp. My, (uj w)) be the moment (resp. localizing) matrix associ-
ated with w and u;. Hence, My(w) = 0 and Mg, (u;w) = 0,5 =1,...,m,
because K has nonempty interior. The constraint 1 —g € Qy(u) which reads
(1—g) =00+~ oju; for some SOS polynomials (o) has the equivalent
form

(4.3) (1-9)a = (X0,Ba) + > (X;,Cja), Va €N,
7j=1

for some appropriate real symmetric s(2(k — v;)) x s(2(k — vj)) matrices
X, = 0, (and where B,, Cj, are given real symmetric matrices). The vec-
tor of coefficients of the SOS polynomial ¢; € X[x] is obtained from the
eigenvectors of X, 7 = 0,...,m. For more details see e.g. [11]. Multiplying
([#3) by ws and summing up yield:

/K(l_g)dx = <X07ZBawa>+Z<ijijawa>
j=1

= (X, Mg(w)) + > (X, My, (u; w))
7=1

Observe that every feasible solution g € R[x]q is nonnegative otherwise
[ exp(—g)dz is not bounded. And so exp(—g) > 1 — g on K because g > 0.
Therefore, for any minimizing sequence (gn, X}) of ([3.5),

/(1—gn)dx < / exp(—gn) dx < / exp(—gn) dx < / exp(—go) dx.
K K n n
And so

sup § (X7, Mg (w +Z 7y My, (uj W) §/ exp(—go) dx.
n j=1 "

As My(w),My,_,, (u; w) = 0 and X7 =0,j=1,...,m, all matrices X7 are
uniformly bounded. Hence one may extract a subsequence (ng) such that
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X3 = Xr=0,j=0,...,n,as £ — co. And so for every a € Nj,,

m
XO? + JZ:; - gliglo(l - gne)oc =: (1 - g*)ocv
for some homogeneous polynomial g* € R[x]oq (as all coefficients g} with
|a| # 2d vanish). In other words (gn,)a — ¢} as £ — oo, for all o € NJ,
As (1 — gp,) > 0 on K one also has (1 — ¢*) > 0 on K. Finally, since we
also have the pointwise convergence gy, (x) — ¢*(x) for all x € R", invoking
Fatou’s lemma yields

pr = lim exp(—gn,) dx > / lim inf exp(—gp, ) dx
R

{—o0 Rn n {—o0

= [ exp(=g")ax

which proves that g* is an optimal solution of (B.8]).
(b) 1 —go € int Q; for all k > ko because 1 — go € int on and QF D QZO.
Hence Slater’s condition holds for P;, whenever k > ko. Therefore, if g is an

optimal solution of P, there exists y* € Q) such that the KKT-optimality
condition hold, which yields (B.9]).

(c) Follows from the fact that under Slater’s condition, the KKT-optimality
conditions are sufficient for g; to be an optimal solution of Pj..

(d) If supy, supjq|=2q |95 | < NV, let g* be an accumulation point, i.e.,
a limit point of some subsequence (g;;i), 1 € N, i.e., such that for every «
with |af = 2d, g;., — g4 as @ — co. Let g* € R[x]zq be the homogeneous
polynomial with coefficients g, |a| = 2d. For every x € K, (1 — gz, (x)) >0
because 1 — g; € Q}. for every i. Therefore, with x € K fixed,

0<1- lim g;(x) = 1-g"(x),
i—o0 Y

and so, as x € K is arbitrary, 1 — g* € Cy4(K), which implies that 1 — ¢g* is
a feasible solution of P. Next, from (a) and by Fatou’s Lemma,

p = lim pg, = hmmfpk = liminf/ exp(—gz. ) dx
1—00 1—00 n g
> / lim inf exp(—g;, ) dx
Rn =00 g
= / exp(—g*) dx,
and so as g* is feasible for P, it is an optimal solution of P. O

4.3. The dual cone of C;(K). Recall that M (K) is the space of finite
Borel measures on K. Let Co(K) C R[x] be the space of polynomials
nonnegative on K C R™ and let A, C R[x]* be the set:

(4.4) A :z{(/Kxadqzb),aeN":qbeM(K)}.
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It is known that when K C R™ is closed then A% = Cx(K) and Ay =
Co(K)*. See e.g. the proof in Laurent [16l Prop. 4.5] for K = R™, which
also works for any closed set K C R™. The following result is a truncated
version when K is compact.

Lemma 4.1. Let K C R" be compact. For every d € N, the dual Cyq(K)*
of Cq(K) is the set:

(4.5) Ag ::{(andqﬁ),aeNg:(beM(K)}.

Proof. For every y = (yo) € Ay and f € Cy(K) with coefficient vector
f e Rs(d);

@0 ) = X fun = X [ fxrdo = [ jav =0

aEN? aeNy

Since (4.6) holds for all f € Cy(K) and y € Ay, then necessarily Ay C
Cq(K)* and similarly, Cy(K) C A}. Next,

Ay = {feRs(d) (f,y) >0 VyeAd}

~ {rerpi: [ rasz0 voerr]
K

and so A% = Cy(K). Hence the result follows if one proves that Ay is closed,
because then Cy(K)* = (A%)* = Ay, the desired result. So let (y*) C Ay,
k € N, with y* — y as k — co. Equivalently, fK x%doy — Yo for all a € NJ.
In particular, the convergence yg — yo implies that the sequence of measures
(6k), k € N, is bounded, that is, sup, ¢ (K) < M for some M > 0. As K
is compact, the unit ball of M (K) is sequentially compact in the weak *
topology o(M(K),C(K)) where C'(K) is the space of continuous functions
on K. Hence there is a finite Borel measure ¢ € M (K) and a subsequence
(ki) such that [; gdor, = [ gd¢ as i — oo, for all g € C(K). In particular,
for every a € N7},

Yo = lim y*¥ = lim y*¥ = lim x%doy, = / x“do,
1—00 K

k—oo i—oo J
which shows that y € Ay, and so Ay is closed. O
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