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Abstract

This article studies values for cooperative games with transferable utility. Numerous such values can
be characterized by axioms of Ψε-associated consistency, which require that a value is invariant under
some parametrized linear transformation Ψε on the vector space of cooperative games with transferable
utility. Xu et al. (2008, 2009, Linear Algebra Appl.), Xu et al. (2013, Linear Algebra Appl.), Hamiache
(2010, Int. Game Theory Rev.) and more recently Xu et al. (2015, Linear Algebra Appl.) follow this
approach by using a matrix analysis. The main drawback of these articles is the heaviness of the proofs to
show that the matrix expression of the linear transformations is diagonalizable. By contrast, we provide
quick proofs by relying on the Jordan normal form of the previous matrix.

1 Introduction

A transferable utility (TU henceforth) game on a finite player set is a function which assigns a real number,
called the worth, to each subset of players. A (single-valued) solution, often called a value, assigns a single
payoff to each player in each TU game. The payoff received by a player in a TU game represents an assessment
by this player of his or her gains for participating in this TU game. In the axiomatic characterization of
values for TU games, consistency is an important principle. Roughly speaking, it indicates that the value is
invariant under some plausible transformation of the TU game.

Hamiache (2001) introduces the parameterized linear transformation Hε, ε ∈ [0, 1], on the vector space
of TU games, and shows that the Shapley value (1953), the most popular linear value for transferable utility
games is invariant under Hε. He then characterizes the Shapley value by three axioms: Hε-associated
consistency, continuity and the inessential game axiom. The axiom of Hε-associated consistency indicates
that the value is invariant under Hε; continuity stipulates that the value is continuous on the vector space
of TU games; and the inessential game axiom indicates that the value assigns to each player his or her
stand-alone worth in case the game is inessential / additive.

Hwang (2006) introduces an alternative parameterized linear transformation Hwε, ε ∈ [0, 1], on the
vector space of TU games, and shows that the Equal Allocation of Non-Separable Contributions, a well-
known value popularized by Moulin (1985), satisfies Hwε-associated consistency. He then characterizes this
value by using Hwε-associated consistency, continuity, and three other standard axioms for TU games. Xu
et al. (2013) define another parameterized linear transformation Kε, ε ∈ [0, 1], and show that replacing
Hwε-associated consistency by Kε-associated consistency in Hwang’s axiomatic system yields the Center of
gravity of Imputation Set, a value popularized by Driessen and Funaki (1991).
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Recently, Xu et al. (2015) define two other parameterized linear transformations Xε and Lε, ε ∈ [0, 1],
in order to characterize the Equal Allocation of Non-Separable Contributions and the Center of gravity of
Imputation Set, respectively. The Equal Allocation of Non-Separable Contributions is characterized by Xε-
associated consistency, continuity and the inessential game axiom. Replacing Xε-associated consistency by
Lε-associated consistency yields the characterization of the Center of gravity of Imputation Set.

The key point behind the proof of these characterizations is to show that the sequences (H
(t)
ε )t∈N,

(Hw
(t)
ε )t∈N, (K

(t)
ε )t∈N, (X

(t)
ε )t∈N and (L

(t)
ε )t∈N are convergent sequences for sufficiently small ε. To do this,

Xu et al. (2008, 2009, 2013), Hamiache (2010) and more recently Xu et al. (2015) use a matrix analysis.
More specifically, they show that the matrix expression of each linear transformation is diagonalizable. From
this point, it is easy to find the conditions under which each of the aforementioned sequences is convergent.
Nevertheless, showing that the matrix expression of each of these linear transformations is diagonalizable is
computationally demanding and not necessary at all. First, it is computationally demanding because the
authors express the matrix with respect to the standard basis, which is not the most suitable basis to ex-
amine Hε, Hwε, Kε, Xε or Lε. Second, it is unnecessary to prove that the matrix is diagonalizable to study
the corresponding sequences (H

(t)
ε )t∈N, (Hw

(t)
ε )t∈N, (K

(t)
ε )t∈N, (X

(t)
ε )t∈N and (L

(t)
ε )t∈N. Indeed, it suffices to

prove that (a) each eigenvalue λ 6= 1 of the linear transformation under consideration is such that |λ| < 1; (b)
the multiplicity of the eigenvalue λ = 1, when the latter exists, is equal to the dimension of its eigenspace.
These two properties can simultaneously be proved by exhibiting a basis in which the matrix expression of
the linear transformation is triangular, which is a weaker condition than exhibiting a diagonal basis. At
this step, it remains to put the matrix of the linear transformation in the Jordan normal form to obtain the
desired convergence result.

In this article, we show that the Jordan normal form of each matrix associated with the four linear
transformations can be quickly computed. As a byproduct, the proofs of convergence as well as the axiomatic
characterizations can be dramatically shortened. In fact, these proofs become very simple and short as soon
as a suitable basis for the vector space of TU games is chosen. Moreover, the choice of these bases appears
quite natural.

The rest of the article is organized as follows. In section 2, notations, definitions and related notions
are introduced. In section 3, we define the three different types of linear transformations on the space of
transferable utility games, and state the axiomatic characterization results obtained by Hamiache (2001),
Hwang (2006) and Xu et al. (2015). In section 4, we present the proof strategy behind the three above-
mentioned axiomatic characterization results. In section 5, we introduce what we call the Jordan normal
form approach as opposed to the “matrix analysis to associated consistency for linear values” followed by Xu
et al. (2008, 2009, 2013), Hamiache (2010) and Xu et al. (2015). In section 6, we use the Jordan normal form
approach to construct a short and simple proof of each axiomatic characterization obtained by Hamiache
(2001), Hwang (2006), Xu et al. (2013), and Xu et al. (2015), respectively.

2 Notations and definitions

Given a vector space V , its additive identity element will be denoted by 0V . If a vector space V is the
direct sum of the subspaces V 1 and V 2, i.e. V = V 1 + V 2 and V 1 ∩ V 2 = 0V , we write V = V 1 ⊕ V 2. If
Ψ : V −→ U is a linear transformation, then denote by Ker(Ψ) its kernel, i.e. the set of vectors v ∈ V such
that Ψ(v) = 0U .

Let N = {1, 2, . . . , n} be a finite and fixed set of size n. An element i ∈ N and a subset S ⊆ N are called
a player and coalition (of players), respectively. For each nonempty coalition S ⊆ N , its cardinality will be
denoted by s. Denote by ΩN the collection of all nonempty coalitions of N . Throughout this article, we
assume that ΩN is ordered according to some linear extension of the partial order ⊆. Let σ be a permutation
on N and let ΣN be the set of n! permutations on N . Throughout this article, we assume that ΩN is
ordered according to some linear extension of the partial order ⊆. Let VN be the set all coalition functions
or transferable utility (TU) games on N , v : 2N −→ R such that v(∅) = 0. The real number v(S) is
interpreted as the worth that coalition S can reach when all its members cooperate. A coalition function
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v ∈ VN is inessential or additive if, for each S ⊆ N , it holds that v(S) =
∑

i∈S v({i}). Denote by IN the
set of inessential TU games. A TU game v ∈ VN is constant if there is α ∈ R such that, for each S ∈ ΩN ,
v(S) = α. Denote by CN the subset of constant TU games. For any v ∈ VN and any σ ∈ ΣN define σv ∈ VN
as: for each S ∈ ΩN , σv(σ(S)) = v(S), where σ(S) stands for ∪i∈Sσ(i).

Let v ∈ VN , w ∈ VN and α ∈ R. The sum game v + w ∈ VN is defined for each S ⊆ N as (v + w)(S) =
v(S)+w(S). The scalar product game αv ∈ VN , where α ∈ R, is defined, for each S ⊆ N , as (αv)(S) = αv(S).
The set VN together with the operations defined above has a (real) vector space structure of dimension 2n−1.
Denote by 0VN its identity element, i.e. the null game. The standard basis for VN is the ordered collection
of games E = (eR)R∈ΩN

, where each standard TU game eR ∈ E is defined as: for each S ⊆ N , eR(S) = 1
if S = R, and eR(S) = 0 if S 6= R. Another well-used basis for VN is the ordered collection unanimity
games U = (uR)R∈ΩN

, where each unanimity TU game uR ∈ U is defined as: for each S ⊆ N , uR(S) = 1 if
S ⊇ R, and uR(S) = 0 if S 6⊇ R. Notice that IN is a n-dimensional subspace of VN , the ordered collection
of unanimity TU games I = (u{1}, u{2}, . . . , u{n}) is a basis for IN ; CN is a one-dimensional subspace of VN ,
and the TU game c ∈ CN defined as, for each S ∈ ΩN , c(S) = 1, constitutes a basis for CN . Finally, DN

denotes the one-dimensional subspace of VN spanned by the unanimity TU game uN . Thus, TU games in
DN assign a zero worth to each coalition different from N .

A value on VN is a function Φ : VN −→ Rn that assigns a single real payoff vector Φ(v) ∈ R to each
v ∈ VN . The payoff Φi(v) represents an assessment by i of his or her gains for participating in the TU game
v.

The best-known value for TU games is the value Sh, known as the Shapley value (Shapley, 1953), and
defined as:

∀i ∈ N, Shi(v) =
∑

S∈ΩN :S 63i

(n− s− 1)!s!

n!

(
v(S ∪ {i})− v(S)

)
. (1)

In particular, it is well known that, for each unanimity TU game uR ∈ U , it holds that:

∀i ∈ R, Shi(uR) =
1

r
and ∀i ∈ N \R, Shi(uR) = 0. (2)

The Equal Allocation of Non-Separable Contributions (EANSC) is the value introduced by Moulin (1985)
and defined as:

∀i ∈ N, EANSCi(v) = SCi(v) +
1

n

(
v(N)−

∑

j∈N
SCj(v)

)
, (3)

where,
∀i ∈ N, SCi(v) = v(N)− v(N \ {i})

is the marginal contribution of player i ∈ N to the coalition N .
The Center of gravity of Imputation Set (CIS), introduced in Driessen and Funaki (1991), is the dual of the
EANSC value where the dual vD of a TU game v ∈ VN is defined as:

∀S ∈ ΩN , vD(S) = v(N)− v(S).

Therefore, the CIS value is given by:

∀i ∈ N, CISi(v) = EANSC(vD)

= v({i}) +
1

n

(
v(N)−

∑

j∈N
v({j})

)
. (4)

A value Φ on VN satisfies:
Linearity if Φ is linear.
Continuity if Φ is continuous.
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Efficiency if, for each v ∈ VN , it holds that:
∑

i∈N
Φi(v) = v(N).

Inessential game axiom if, for each inessential game v ∈ IN , it holds that:
∀i ∈ N, Φi(v) = v({i}).

Translation covariance if, for each v ∈ VN and each w ∈ IN , it holds that:
Φ(v + w) = Φ(v) + (w({1}), . . . , w({n})).

Anonymity if, for each v ∈ VN and each σ ∈ ΣN , it holds that:

∀i ∈ N, Φσ(i)(σv) = Φi(v).

Fact 1: the values Sh, EANSC and CIS satisfy all the above axioms. Note that Linearity implies Continuity,
and the combination of Linearity and the Inessential game axiom implies Translation covariance.

3 Associated consistency and characterization of Sh, EANSC and CIS

Hamiache (2001) constructs a consistency axiom with respect to an associated TU game. Let Ψ : VN −→ VN
be a linear transformation which transforms any v ∈ VN into Ψ(v) ∈ VN . The axiom of Ψ-associated consis-
tency indicates that a value Φ is invariant with respect to the transformation Ψ. Formally:

Ψ-associated consistency Given a linear transformation Ψ, a value Φ on VN satisfies Ψ-associated consis-
tency if, for all v ∈ VN , it holds that Φ(v) = Φ(Ψ(v)).

In order to characterize Sh, Hamiache (2001) introduces, for each parameter ε ∈ [0, 1], the linear trans-
formation Hε defined as:

∀S ∈ ΩN , Hε(v)(S) = v(S) + ε
∑

j∈N\S

(
v(S ∪ {j})− v(S)− v({j})

)
. (5)

Theorem 1 (Hamiache, 2001)
Assume that 0 < ε < 2/n. Then, the Shapley value Sh defined as in (1) is the unique value on VN satisfying
Hε-associated consistency, Continuity and the Inessential game axiom.

In order to characterize the value EANSC, Hwang (2006) introduces, for each parameter ε ∈ [0, 1], the
linear transformation Hwε defined as:

∀S ∈ ΩN , Hwε(v)(S) = v(S) + ε
∑

j∈N\S

(
v(S ∪ {j})− v(S)− SCj(v)

)
. (6)

Theorem 2 (Hwang, 2006)
Assume that 0 < ε < 2/(n − 1). Then, the EANSC value defined as in (3) is the unique value on VN
satisfying Hwε-associated consistency, Continuity, Efficiency, Anonymity and Translation covariance.

Xu et al. (2013) suggest another parameterized linear transformation. For each ε ∈ [0, 1], they define the
linear transformation Kε as follows:

Kε(v)(S) =





v(S)− ε
∑

j∈S

(
v(S)− v(S \ {j})− v({j})

)
if S ∈ ΩN , S 6= N,

v(N) if S = N.

(7)

They obtain, within “Hwang’s framework”, i.e. by using Ψε-associated consistency, Continuity, Efficiency,
Anonymity and Translation covariance, the following characterization result.
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Theorem 3 (Xu et al. 2013)
Assume that 0 < ε < 2/(n− 1). Then, the CIS value defined as in (4) is the unique value on VN satisfying
Kε-associated consistency, Continuity, Efficiency, Anonymity and Translation covariance.

Recently, Xu et al. (2015) characterize the EANSC and the CIS value within “Hamiache’s framework”
i.e. by using Ψ-associated consistency, Continuity and the Inessential game axiom. To this end, the authors
introduce, for each parameter ε ∈ [0, 1], two linear transformations Xε and Lε defined respectively as:

∀S ∈ ΩN , Xε(v)(S) = v(S) + ε

(
s

n

(
v(N)−

∑

j∈N
SCj(v)

)
−
(
v(S)−

∑

j∈S
SCj(v)

))
, (8)

and
∀S ∈ ΩN , Lε(v)(S) = v(S) + ε

(
s

n

(
v(N)−

∑

j∈N
v({j})

)
−
(
v(S)−

∑

j∈S
v({j})

))
. (9)

Theorem 4 (Xu et al., 2015)
Let ε be such that 0 < ε < 1.

1. The EANSC value defined as in (3) is the unique value on VN satisfying Xε-associated consistency,
Continuity and the Inessential game axiom.

2. The CIS value defined as in (4) is the unique value on VN satisfying Lε-associated consistency, Conti-
nuity and the Inessential game axiom.

4 Proof strategy

The proof strategy of each of the aforementioned results is based, for some fixed ε ∈ [0, 1], on the study of the
infinite sequences (Ψ

(t)
ε (v))t∈N ⊆ VN , where Ψ

(1)
ε (v) = Ψε(v), and for each t ≥ 2, Ψ

(t)
ε (v) = Ψε(Ψ

(t−1)
ε (v)).

For each result, the main step of the proof reduces to prove that each sequence converges to a TU game
belonging to a certain subspace EΨε of VN , provided that ε is sufficiently small, i.e. for sufficiently small ε,

∀v ∈ VN , (Ψ(t)
ε (v))t∈N

t→+∞−−−−→ v∗ ∈ EΨε . (10)

Then, by Ψε-associated consistency and Continuity, we obtain:

Φ(v) = Φ(Ψ(t)
ε (v)), and lim

t→+∞
Φ
(
Ψ(t)
ε (v)

)
= Φ

(
lim

t→+∞
Ψ(t)
ε (v)

)
= Φ(v∗),

and so
Φ(v) = Φ(v∗).

The second step consists in computing Φ(v∗) with the other axioms, using the fact that v∗ ∈ EΨε . There
are some variations according to EΨε .

• Regarding Theorems 1 and 4, we have EΨε = IN , where Ψε ∈ {Hε, Xε, Lε}, and, by the Inessential
game axiom, we conclude that Φ is uniquely determined:

Φ(v) = Φ(v∗) = (v∗({1}), . . . , v∗({n}).

• Regarding Theorem 2, we have EHwε = CN ⊕ IN . After some elementary computations, we obtain:

∀S ∈ ΩN , v∗(S) =
∑

j∈S
SCj(v

∗)

︸ ︷︷ ︸
Inessential TU game

+ v∗(N)−
∑

j∈N
SCj(v

∗)

︸ ︷︷ ︸
Constant TU game

. (11)
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By Translation covariance, we obtain:

Φ(v∗) = (SC1(v∗), . . . , SCn(v∗)) + Φ(c∗v), (12)

where c∗v stands for the constant TU game in (11). By Anonymity and Efficiency apply to Φ(c∗v), we
obtain:

Φ(c∗v) =

(
c∗v(N)

n
, . . . ,

c∗v(N)

n

)
. (13)

By (12)-(13), Φ(v∗) is uniquely determined, so is Φ(v).

• Regarding Theorem 3, we have EKε = DN ⊕ IN . In particular, elementary computations give:

∀S ∈ ΩN , v∗(S) =
∑

j∈S
v∗({j})

︸ ︷︷ ︸
Inessential TU game

+

(
v∗(N)−

∑

j∈N
v∗({j})

)
uN (S)

︸ ︷︷ ︸
TU game of DN

. (14)

By applying Translation covariance, Efficiency, and Anonymity, we obtain:

Φ(v∗) = (v∗({1}), . . . , v∗({n})) + n−1

(
v∗(N)−

∑

j∈N
v∗({j}), . . . , v∗(N)−

∑

j∈N
v∗({j})

)
. (15)

By (15), Φ(v∗) is uniquely determined, so is Φ(v).

In any case, to complete the proof, it remains to apply Fact 1 and to verify that the value under con-
sideration satisfies the Ψε-associated consistency axiom, which is a routine exercise.

In Xu et al. (2008) and Hamiache (2010) a matrix approach has been applied to study the linear
transformation Hε. Xu et al. (2013) and Xu et al. (2015) also apply this matrix approach to study the linear
transformations Kε, Xε and Lε. See also Hamiache (2013) for axiomatic characterizations of other values by
using this approach.

The so-called matrix approach consists in studying the matrix expression MEΨε
with respect to the stan-

dard basis E = (eR)R∈ΩN
of the linear transformation Ψε defining the Ψε-consistency axiom. The authors

prove that MEΨε
is diagonalizable by exhibiting its eigenvalues and by showing that the dimension of the

eigenspace of each eigenvalue equals the multiplicities of the eigenvalue. As underlined in the introduction,
a main drawback of this approach is that it is unnecessarily long and computationally demanding, mainly
because the matrix of the linear transformation is expressed with respect to the standard basis. In section 6,
we show that the proof of convergence of (10) can be dramatically shortened by focusing the analysis on the
linear transformation Ψε. Considering alternative bases to E for which the matrix expression of Ψε is upper
triangular, we directly conclude by using the Jordan normal form. This approach is detailed in section 5.
Section 6 applies this approach in order to provide a shorter proof of Theorems 1, 2 and 4.

5 Jordan normal form approach

In order to prove Theorems 1, 2, 3 and 4, we will use the Jordan normal form of a matrix (see Horn and
Johnson (1990, chapter 3) for instance).

Theorem 5 (Jordan normal form) Let V be a finite dimensional vector space (over an algebraically closed
field) of dimension n and let Ψ be a linear transformation Ψ : V −→ V . Then, there exists a basis B for V
such that the matrix expression MBΨ of Ψ with respect to the basis B has the following form:
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MBΨ =




J1 O . . . O
O J2 . . . O
...

...
. . .

...
O . . . O Jk,




where O is a zero matrix, and, for each p ∈ {1, . . . , k}, the matrix Jp, called a Jordan block, is dp × dp for
some dp ∈ N and has the upper triangular matrix form

Jp = λpIdp +Ndp ,

where λp is an eigenvalue of Ψ, Ndp is the upper triangular dp× dp matrix with 0’s on the main diagonal, 1’s
on the super diagonal and 0’s above the super diagonal ; and Idp is the dp × dp identity matrix with 1’s on
the main diagonal and 0’s elsewhere. Furthermore, if Bλ denotes the set of Jordan blocks associated with
the eigenvalue λ, then the cardinality of Bλ is equal to the dimension of the eigenspace associated with λ,
and the sum of dp for Jp ∈ Bλ is equal to the multiplicity of λ.

>From Theorem 5, we obtain the following corollary

Corollary 1 Let V be a finite dimensional real vector space of dimension n and let Ψ be a linear transfor-
mation Ψ : V −→ V . Assume that the following conditions hold.

1. 1 is an eigenvalue of Ψ and the multiplicity of 1 is equal to the dimension of its eigenspace.

2. Each other eigenvalue λ of Ψ is such that |λ| < 1.

Then,
∀v ∈ VN , (Ψ(t)(v))t∈N

t→+∞−−−−→ v∗,

where v∗ belongs to the eigenspace associated with the eigenvalue 1.

Proof: Consider the blocks Jp ∈ B1 (see Theorem 5). On the one hand, because the multiplicity of 1 is equal
to the dimension of its eigenspace, it follows that each Jp ∈ B1 is a 1 × 1 matrix. All these blocks induce
a submatrix J ′1 of the Jordan normal form MBΨ such that J ′1 = Im, where m denotes the multiplicity of 1.
Therefore,

J
′(t)
1

t→+∞−−−−→ Im. (16)

On the other hand, for each Jordan block Jp ∈ Bλ, λ 6= 1, we have:

Jp = λIdp +Ndp .

Because |λ| < 1, from standard computations, we obtain:

J (t)
p

t→+∞−−−−→ O. (17)

The result follows from (16) and (17). �

What we call the Jordan normal form approach by opposition to the matrix approach can be exposed as
follows.

1. We choose a basis B′ = (b′1, . . . , b
′
2n−1) for VN .

2. For each linear transformation Ψ and for each p ∈ {1, . . . , 2n − 1}, we compute the image Ψ(b′p).

3. From step 2, we express the matrix of Ψ with respect to B′ and conclude that it is upper triangular on
the main diagonal. It follows that the entries on the main diagonal are the eigenvalues of Ψ.

4. We verify that the conditions 1 and 2 in the statement of Corollary 1 (of Theorem 5) are satisfied,
which ensures the convergence result of the linear transformation Ψ.

5. We apply the proof strategy described in section 4.
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6 Applications

6.1 Proof of Theorem 1

To prove Theorem 1, we have to show that (10) holds for Ψε = Hε and EHε = IN . To this end, we choose
the unanimity basis U = (uT )T∈ΩN

, mainly because it is well known that U is suitable for the study of the
Shapley value. By the way, the seminal paper by Shapley (1953) uses this basis. Furthermore, given the
expression of Hε given in (5), it is readily verify that Hε(uR) = uR in case r = 1, meaning that 1 is an
eigenvalue of Hε, and I = (u{1}, . . . , u{n}), a basis for IN , contains (all) the eigenvectors associated with the
eigenvalue 1. It remains to show that each other eigenvalue λ is such that |λ| < 1 for sufficiently small ε.
This fact is a consequence of the statement of the next proposition.

Proposition 1 For R ∈ ΩN , the image Hε(uR) is such that:

1. If r = 1, Hε(uR) = uR.

2. If r ≥ 2, Hε(uR) = (1− εr)uR + ε
∑

i∈R uR\{i}.

We relegate the proof of Proposition 1 to the end of this section.
>From Proposition 1, we see that the matrix expression MUHε

of Hε with respect to the basis U is upper
triangular. This allows us to quickly compute the eigenvalues of Hε as well as their multiplicities: 1 is an
eigenvalue of multiplicity n, and, for r ∈ {2, . . . , n}, 1 − εr is an eigenvalue with multiplicity

(
n
r

)
. There is

no other eigenvalue. At this step, we verify that conditions 1 and 2 in the statement of Corollary 1 hold.

(a) On the one hand I = (u1, . . . , un) is a basis for IN . Thus, the dimension of the eigenspace associated
with the eigenvalue 1 is at least equal to n. On the other hand, the multiplicity of the eigenvalue
1 is n. This enforces that n is the dimension of the eigenspace associated with the eigenvalue 1. In
other words IN is the eigenspace associated with the eigenvalue 1. So, condition 1 in the statement of
Corollary 1 holds.

(b) For sufficiently small ε, actually 0 < ε < 2/n, for each r ∈ {2, . . . , n}, it holds that |1 − εr| < 1. So,
condition 2 in the statement of Corollary 1 holds.

By (a)-(b) and Corollary 1, the convergence result (10) holds for Ψε = Hε. It remains to apply the proof
strategy as described in section 4 and Theorem 1 is proved.

To establish Proposition 1, define the linear transform Υ : VN −→ VN as:

∀S ∈ ΩN , Υ(v)(S) =
∑

j∈N\S

(
v(S ∪ {j})− v(S)− v({j})

)
, (18)

so that Hε is defined as the sum of the identity transformation and εΥ. Proposition 1 is a direct consequence
of the following result.

Proposition 2 Let R ∈ ΩN .

1. If r = 1, then Υ(uR) = 0VN .

2. If r ≥ 2, then

∀S ∈ ΩN , Υ(uR)(S) =

{
1 if |S ∩R| = r − 1,
0 otherwise.

3. If r ≥ 2, it holds that:
Υ(uR) =

∑

i∈R
uR\{i} − ruR. (19)
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Proof: Point 1. Pick any R ∈ ΩN such that r = 1. Given the expression (18) of Υ and the fact that uR ∈ IN ,
the results holds trivially.

Point 2. Pick any R ∈ ΩN such that r ≥ 2. For each S ∈ ΩN , we have to compute:

∑

j∈N\S

(
uR(S ∪ {j})− uR(S)− uR({j})

)
. (20)

Because r ≥ 2, for each j ∈ N \ S, uR({j}) = 0. Therefore, (20) rewrites:

∑

j∈N\S

(
uR(S ∪ {j})− uR(S)

)
. (21)

Two exclusive cases arise depending on the choice of S.
(a) If S is such that |S ∩ R| = r − 1. Denote by j∗ the unique player belonging to R ∩ N \ S. We have
uR(S) = 0, S ∪ {j∗} ⊇ R and so uR(S ∪ {j∗}) = 1. Therefore, (21) is equal to 1. (b) If S is such that
|S ∩R| 6= r− 1, then it is obvious that uR(S) = uR(S ∪{j}) = 0 for each j ∈ N \S so that(21) is equal to 0.

Point 2 follows from (a) and (b).
Point 3. It follows from point 2. Indeed, pick any S ∈ ΩN . If |S ∩R| = r − 1, we have uR\{i}(S) = 1 for

exactly one i ∈ R, i.e. for the unique i ∈ R \ S, and thus:
∑

i∈R
uR\{i}(S)− ruR(S) = 1− 0 = Υ(uR)(S).

If |S ∩R| = r, then we have:
∑

i∈R
uR\{i}(S)− ruR(S) = r − r = Υ(uR)(S).

If |S ∩R| < r − 1, then we obviously have:
∑

i∈R
uR\{i}(S)− ruR(S) = 0− 0 = Υ(uR)(S).

This completes the proof of point 3. �

Proof: (of Proposition 1). Recall that Hε is the sum of the identity transformation and εΥ. Pick any
R ∈ ΩN . If r = 1, then by point 1 of Proposition 2, we have Υ(uR) = 0VN , so that Hε(uR) = uR. If r ≥ 2,
then by point 3 of Proposition 2, we have:

Hε(uR) = uR + ε

(∑

i∈R
uR\{i} − ruR

)
= (1− εr)uR + ε

∑

i∈R
uR\{i},

as asserted. �

For the sake of completeness, it is easy to verify that (Υ(uR))R∈ΩN ,r≥2 ⊆ VN is a basis for Ker(Sh).
Indeed, since Sh satisfies the Inessential game property, it is onto and so the dimension of Ker(Sh) is equal
to 2n−1−n. The above collection of TU games contains exactly 2n−1−n, and these TU games are linearly
independent. At last, using the expression (19) of Υ, the linearity of Sh, and the expression (2) of Sh for
unanimity TU games, it is immediate to verify that Sh(Υ(uR)) = 0VN for r ≥ 2. >From this fact, it follows
that Sh satisfies Hε-associated for each ε ∈ [0, 1].
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6.2 Proof of Theorem 2

To prove Theorem 2, we have to show that (10) holds for Ψε = Hwε and EHwε = IN⊕CN . By expression (6)
of Hwε, we see that Hwε(c) = c for the constant TU game c, and Hwε(u{i}) = u{i} for each i ∈ N , meaning
that that the unique element of the basis (c) for CN and the elements of the basis I = (u{1}, . . . , u{n})
for IN are eigenvectors associated with the eigenvalue 1. Furthermore, consider the subspace of TU games
Vn−2 ⊆ VN such that each v ∈ Vn−2 is defined as:

∀i ∈ N, v(N) = v(N \ {i}) = 0.

We see that Hwε(v)(N) = Hwε(v)(N \ {i}) = 0. Therefore, CN , IN and Vn−2 are invariant subspaces under
Hwε. The standard basis for Vn−2 is En−2 = (δR)R∈ΩN ,r≤n−2. It turns out that that the ordered collection
B(1) = ((c), I, En−2) constitutes a basis for VN , so that VN is the direct sum of CN , IN and Vn−2. All these
facts provide a strong incentive to choose B(1) to study the convergence of the linear transformation Hwε.
As a start, we prove that B(1) is a basis for VN .

Proposition 3 The ordered collection B(1) is a basis for VN . Thus, VN = CN ⊕ IN ⊕ Vn−2.

Proof: The collection B(1) contains exactly 2n−1 vectors, i.e. the dimension of VN . It remains to prove that
these vectors are linearly independent. So, pick any any linear combination

αcc+
∑

i∈N
αiui +

∑

R∈ΩN :r≤n−2

αRδR = 0VN .

On the one hand, we have:

αcc(N) +
∑

i∈N
αiui(N) +

∑

R∈ΩN :r≤n−2

αRδR(N) = αc +
∑

i∈N
αi

= 0,

and, for each j ∈ N ,

αcc(N \ {j}) +
∑

i∈N
αiui(N \ {j}) +

∑

R∈ΩN :r≤n−2

αRδR(N \ {j}) = αc +
∑

i∈N\{j}
αi

= 0.

Thus,
∀j ∈ N,

∑

i∈N
αi =

∑

i∈N\{j}
αi

which implies, for each j ∈ N , αj = 0, and so αc = 0.
On the other hand, and taking into account that, for each i ∈ N , αi = αc = 0, we have, for each S ∈ ΩN ,

s ≤ n− 2:

αcc(S) +
∑

i∈N
αiui(S) +

∑

R∈ΩN :r≤n−2

αRδR(S) = αS

= 0,

which proves that the elements of B(1) are linearly independent. �

Proposition 4 Consider the basis B(1) for VN . The following facts hold.

1. Hwε(c) = c.

2. For each i ∈ N , Hwε(u{i}) = u{i}.
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3. For each R ∈ ΩN such that r ≤ n− 2,

Hwε(δR) = (1− (n− r)ε)δR + ε
∑

i∈R
δR\{i}.

Proof: Points 1 and 2 are obvious given the expression (6) of Hwε.
Point 3. Pick any R ∈ ΩN such that r ≤ n− 2. By (6) and definition of δR and SCj , we have:

∀S ∈ ΩN , Hwε(δR)(S) = δR(S) + ε
∑

j∈N\S

(
δR(S ∪ {j})− δR(S)− SCj(δR)

)

= δR(S) + ε
∑

j∈N\S

(
δR(S ∪ {j})− δR(S)

)

= (1− (n− s)ε)δR(S) + ε
∑

j∈N\S

(
δR(S ∪ {j}). (22)

If S = R, then (22) is equal to:
Hwε(δR)(R) = 1− ε(n− r).

If S = R \ {i} for some i ∈ R, then (22) is equal to:

Hwε(δR)(R \ {i}) = ε.

In each other case, (22) is equal to:
Hwε(δR)(R) = 0.

Thus, for each R ∈ ΩN such that r ≤ n− 2, it holds that:

Hwε(δR) = (1− (n− r)ε)δR + ε
∑

i∈R
δR\{i},

as asserted. �

>From Proposition 4, it is easy to conclude that EANSC satisfies Hwε-associated consistency. >From
Proposition 4, we also see that the matrix expression MB(1)Hwε

of Hwε with respect to the basis B(1) is upper
triangular. This allows us to quickly compute the eigenvalues of Hwε as well as their multiplicities: 1 is an
eigenvalue of multiplicity n+ 1, and, for r ≤ n− 2, 1− (n− r)ε is an eigenvalue with multiplicity

(
n
r

)
. There

is no other eigenvalue. At this step, we verify that conditions 1 and 2 in the statement of Corollary 1 hold.

(a) On the one hand, (c, u1, . . . , un) is a basis for CN⊕IN . Thus, the dimension of the eigenspace associated
with the eigenvalue 1 is at least equal to n+ 1. On the other hand, the multiplicity of the eigenvalue
1 is n+ 1. This enforces that n+ 1 is the dimension of the eigenspace associated with the eigenvalue
1. In other words, CN ⊕ IN is the eigenspace associated with the eigenvalue 1. So, condition 1 in the
statement of Corollary 1 holds.

(b) For sufficiently small ε, actually 0 < ε < 2/(n− 1), it holds that, for each r ≤ n− 2, |1− (n− r)ε| < 1.
So, condition 2 in the statement of Corollary 1 holds.

By (a)-(b) and Corollary 1, the convergence result (10) holds for Ψε = Hwε and EHwε = IN ⊕ CN . It
remains to apply the proof strategy as described in section 4, and Theorem 2 is proved.
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6.3 Proof of Theorem 3

To prove Theorem 3, we have to show that (10) holds for Ψε = Kε EKε = DN ⊕ IN . By expression (7) of
Kε, we immediately see that Kε(u{i}) = u{i} for each unanimity TU game u{i}, i ∈ N , and Kε(uN ) = uN for
the unanimity TU game uN , meaning that these n+ 1 unanimity TU games are eigenvectors associated with
the eigenvalue 1. So, let us choose the collection of unanimity TU games as a basis for VN . For convenience,
we order the unanimity TU games as follows (uN , (ui)i∈N , (uR)R∈ΩN ,r≥2,r 6=n). Denote this basis by U (1).

Proposition 5 Consider the basis U (1) for VN . The following facts hold.

1. Kε(uN ) = uN .

2. For each i ∈ N , Kε(u{i}) = u{i}.

3. For each R ∈ ΩN such that r ∈ {2, . . . , n− 1}, Kε(uR) = (1− rε)uR + rεuN .

Proof: Points 1 and 2 are immediate by expression (7).
Point 3 Pick any R ∈ ΩN such that r ∈ {2, . . . , n− 1}. By (7) and r ≥ 2, we have:

∀S ∈ ΩN , S 6= N, Kε(uR)(S) = uR(S)− ε
∑

j∈S

(
uR(S)− uR(S \ {j})− uR({j})

)

= uR(S)− ε
∑

j∈S

(
uR(S)− uR(S \ {j})

)
, (23)

Two cases arise:
(a) Consider any coalition S ⊇ R, S 6= N . For each j ∈ R ∩ S, we have:

uR(S)− uR(S \ {j}) = 1− 0 = 1.

For each For each j ∈ S \R, we have:

uR(S)− uR(S \ {j}) = 1− 1 = 0.

Therefore, for S ⊇ R, S 6= N , (23) writes:

Kε(uR)(S) = (1− rε)uR(S) + rεuN (S) (24)

(b) Consider any coalition S 6⊇ R. We obviously have:

∀j ∈ S, uR(S) = uR(S \ {j}) = 0.

It follows that (23) writes:

Kε(uR)(S) = 0

= (1− rε)uR(S) + εruN (S). (25)

It remains to consider the case S = N . By (7), we have:

Kε(uR)(N) = uR(N)

= 1

= (1− rε)uR(N) + rεuN (N). (26)

Point 3 follows from (24), (25) and (26). �
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>From Proposition 5, it is easy to verify that CIS satisfies Kε-associated consistency. Because CIS is a
linear value, it is sufficient to verify that CIS satisfies Kε-associated consistency on the elements of the basis.
In particular, for r ∈ {2, . . . , n− 1}, by linearity of the CIS value, we have:

∀i ∈ N, CISi(Kε(uR)) = (1− rε)CISi(uR) + rεCISi(uN ).

But by (4), CISi(uR) = CISi(uN ) = n−1, so that

CISi(Kε(uR)) = (1− rε)n−1 + rεn−1 = n−1 = CISi(uR),

as desired. Next, from Proposition 5, we also see that the matrix expression MU
(1)

Kε
of Kε with respect to

the basis U (2) is upper triangular. This allows us to quickly compute the eigenvalues of Kε as well as their
multiplicities: 1 is an eigenvalue of multiplicity n + 1, and, for r ∈ {2, . . . , n − 1}, 1 − rε is an eigenvalue
with multiplicity

(
n
r

)
. There is no other eigenvalue. At this step, we verify that conditions 1 and 2 in the

statement of Corollary 1 hold.

(a) On the one hand, (uN , u1, . . . , un) is a basis for DN ⊕ IN . Thus, the dimension of the eigenspace
associated with the eigenvalue 1 is at least equal to n+ 1. On the other hand, the multiplicity of the
eigenvalue 1 is n+ 1. This enforces that n+ 1 is the dimension of the eigenspace associated with the
eigenvalue 1. In other words, DN ⊕IN is the eigenspace associated with the eigenvalue 1. So, condition
1 in the statement of Corollary 1 holds.

(b) For sufficiently small ε, actually 0 < ε < 2/(n−1), it holds that, for each r ∈ {2, . . . , n−1}, |1−rε| < 1.
So, condition 2 in the statement of Corollary 1 holds.

By (a)-(b) and Corollary 1, the convergence result (10) holds for Ψε = Kε and EKε = DN ⊕ IN . It remains
to apply the proof strategy as described in section 4, and Theorem 5 is proved.

6.4 Proof of Theorem 4

To prove point 1 of Theorem 4, we have to show that (10) holds for Ψε = Xε and EXε = IN . For similar
reasons to Theorem 2, we choose the same basis for VN , with the difference that here Xε(c) 6= c. For this
reason, we order the elements of this basis as follows: (I, c, En−2). This change can be made without loss of
generality, and it is more convenient to express the matrix of Xε as an upper triangular matrix. We denote
this basis by B(2).

Proposition 6 Consider the basis B(2) for VN . The following facts hold.

1. For each i ∈ N , Xε(u{i}) = u{i}.

2. Xε(c) = (1− ε)c+ εn−1
∑

i∈N ui.

3. For each R ∈ ΩN such that r ≤ n− 2, Xε(δR) = (1− ε)δR.

Proof: Point 1. For each i ∈ N and each j ∈ N , SCj(u{i}) = ui({j}). By definition of Xε as given by (8), it
follows that:

∀S ∈ ΩN , Xε(u{i})(S) = u{i}(S) + ε

(
s

n

(
u{i}(N)−

∑

j∈N
ui({j})

)
−
(
u{i}(S)−

∑

j∈S
ui({j})

))

= u{i}(S),

which proves point 1.
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Point 2. Consider the constant TU game c. For each j ∈ N , SCj(c) = 0. We have:

∀S ∈ ΩN , Xε(c)(S) = c(S) + ε

(
s

n
c(N)− c(S)

)

= (1− ε) + ε
s

n
.

Therefore,
Xε(c) = (1− ε)c+

ε

n

∑

i∈N
ui,

as asserted.
Point 3. Pick any R ∈ ΩN such that r ≤ n − 2. Because r ≤ n − 2, for each j ∈ N , SCj(δR) = 0 and

δR(N) = 0. Thus, we have:

∀S ∈ ΩN , Xε(δR)(S) = δR(S) + ε(−δR(S))

= (1− ε)δR(S).

which proves point 3. �

>From Proposition 6, it is easy to conclude that EANSC satisfies Xε-associated consistency. >From
Proposition 6, we also see that the matrix expression MB

(2)

Xε
of Xε with respect to the basis B(2) is upper

triangular with non-zero entries. This allows us to compute the eigenvalues ofXε as well as their multiplicities:
1 is an eigenvalue of multiplicity n, and, for 1− ε is an eigenvalue with multiplicity 2n − 1− n. There is no
other eigenvalue. At this step of the proof, we verify that conditions 1 and 2 in the statement of Corollary
1 hold.

(a) As for the proof of Theorem 1, we conclude that IN is the eigenspace associated with the eigenvalue 1.
So, condition 1 in the statement of Corollary 1 holds.

(b) For each ε such that 0 < ε < 1, it holds that |1− ε| < 1. So, condition 2 in the statement of Corollary
1 holds.

>From (a)-(b), the convergence result (10) holds for Ψε = Xε and EXε = IN . It remains to apply the
proof strategy as described in section 4 and point 1 of Theorem 4 is proved.

Remark. By Proposition 6, each vector of the basis B(2) is an eigenvector associated with an eigenvalue
except the vector c. To obtain a basis of eigenvectors, it suffices to choose the basis ((c−n−1

∑
i∈N ui), I, En−2)

instead of B′. In that case, by linearity of Xε, we have:

Xε

(
c− n−1

∑

i∈N
ui

)
= Xε(c)− n−1

∑

i∈N
Xε(ui)

= (1− ε)c+ εn−1
∑

i∈N
ui − n−1

∑

i∈N
ui

= (1− ε)
(
c− n−1

∑

i∈N
ui

)
,

which proves that c− n−1
∑

i∈N ui is an eigenvector associated with the eigenvalue 1− ε.

To prove point 2 of Theorem 4, we have to show that (10) holds for Ψε = Lε and ELε = IN . By
expression (9) of Lε, we see that, for each i ∈ N , Lε(u{i}) = u{i} meaning that that the elements of the
basis I = (u{1}, . . . , u{n}) for IN are eigenvectors associated with the eigenvalue 1. Furthermore, consider
the subspace of TU games V2,n−1 ⊆ VN such that each v ∈ V2,n−1 is such that:

∀i ∈ N, v({i}) = v(N) = 0.
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By using (9), we see that Lε(v)(N) = v(N) = 0 and Lε(v)({i}) = v({i}) = 0. Therefore, IN and V2,n−1

are invariant subspaces under Lε. The standard basis for V2,n−1 is E2,n−1 = (δR)R∈ΩN ,2≤r≤n−1. By similar
arguments than those used to prove Proposition 3, we obtain IN ⊕ V2,n−1. To obtain a basis for VN , we
complete the ordered collection (I, E2,n−1) by adding the constant TU game c. For the rest of this section,
we thus consider the basis C = (I, (c), E2,n−1). This fact is summarized in the following proposition. We
omit the proof since it is similar to the proof of Proposition 3.

Proposition 7 The ordered collection C is a basis for VN . Thus, VN = IN ⊕ CN ⊕ V2,n−1.

Proposition 8 Consider the basis C for VN . The following facts hold.

1. For each i ∈ N , Lε(u{i}) = u{i}.

2. Lε(c) = (1− ε)c+ εn−1
∑

i∈N ui.

3. For each R ∈ ΩN such that r ∈ {2, . . . , n− 1}, Lε(δR) = (1− ε)δR.

The proof of Proposition 8 is similar to the proof of Proposition 6 and so it is omitted. The rest of the proof
of point 2 of Theorem 4 follows the same arguments as the proof of point 1 of this theorem.
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